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 

Abstract—Gait Recognition is one of the latest and attractive 

biometric techniques, due to its potential in identification of 

individuals at a distance, unobtrusively and even using low 

resolution images. In this paper we focus on single lateral view 

gait recognition with various carrying and clothing conditions. 

Such a system is needed in access control applications whereby a 

single view is imposed by the system setup. The gait data is firstly 

processed using three gait representation methods as the features 

sources; Accumulated Prediction Image (API) and two new gait 

representations namely; Accumulated Flow Image (AFI) and 

Edge-Masked Active Energy Image (EMAEI). Secondly, each of 

these methods is tested using three matching classification 

schemes; image projection with Linear Discriminant Functions 

(LDF), Multilinear Principal Component Analysis (MPCA) with 

K-Nearest Neighbor (KNN) classifier and the third method: 

MPCA plus Linear Discriminant Analysis (MPCA+LDA) with 

KNN classifier. Gait samples are fed into the MPCA and 

MPCALDA algorithms using a novel tensor-based form of the 

gait images. This arrangement results into nine recognition sub-

systems. Decisions from the nine classifiers are fused using 

decision-level (majority voting) scheme. A comparison between 

unweighted and weighted voting schemes is also presented. The 

methods are evaluated on CASIA B Dataset using four different 

experimental setups, and on OU-ISIR Dataset B using two 

different setups. The experimental results show that the 

classification accuracy of the proposed methods is encouraging 

and outperforms several state-of-the-art gait recognition 

approaches reported in the literature. 
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I. INTRODUCTION 

AIT is defined as “the coordinated and cyclic combination 

of movements that result in human locomotion” [1]. As 

such, and based on these repeated patterns, it can be used to 

identify people. The use of gait traits in biometrics is 

increasingly attracting researchers’ interest. This is mainly due 

to its potential in identification of individuals at a distance. It 

can be also applied to subjects unobtrusively, without their 

cooperation or awareness. The application of gait in 

biometrics requires specific focus on some covariates like the 

view angle [2], [55], [60], [61] and [62], clothing [3], [4], [5], 

[6], [51], [52] and [53], footwear [2] and [7], time span [2], 

fatigue and muscle development [1] and carrying conditions 

[3], [4], [5], [6] and [52]. 

One important decision to make before testing any gait 

recognition algorithm is the selection of the database. The 

database should be suitable to the application under study, and 

is used to train, test and evaluate the system.  

Gait analysis methods can be generally classified into 

Model-Free and Model-Based. Model-based methods use the 

parameters taken from the human body structure or its 

kinematic data to build a model. Parameters can be, for 

instance, taken from stride length, stride speed and cadence 

[8]. Lee and Grimson [9] modeled the human body into seven 

regions, and represented each region by an ellipse. Cunado et 

al. [10] used models of the legs, as they found harmonics in 

the legs motion. Yoo et al. [11] modeled the body’s parts into 

sticks. Yam et al. [12] used the pendulum-like movement of 

the legs as a model. Dockstader et al. [13] used a model of 

thick lines connected with points for different parts of the 

body and made use of the pendulum motion of the lower part 

for feature extraction. Bobick et al. [14] and BenAbdelkader et 

al. [15] have adopted the structural model of stride parameters 

to extract gait features. Tanawongsuwan et al. [16] and Wang 

et al. [8] modeled the different joints trajectories in the upper 

as well as the lower parts of the body. Zang et al. [17] used 

five-link biped model of the upper and lower body parts. 

Recently, Guasch et al. [18] used radar techniques to create a 

model of the human body based on the Doppler frequency 
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(Doppler Signature). Luo et al. [54] used 3-dimensional 

parametric gait model reconstructed from multi-view 

silhouettes. 3D gait models were also used by Fernandez et al. 

in [62] combined with 2D silhouettes analysis techniques. 

Model-free, or appearance-based, approaches deal with 

body motion holistically. Compared to model-based methods, 

the later generally exhibit higher computational complexity 

which makes them less desirable. This explains why most of 

the current research on gait recognition adopts model-free 

approach, and mainly the silhouette-based and energy-based 

methods. 

One of the earliest model-free approaches for automatic gait 

recognition is dated back to 1994, and introduced by Niyogi 

and Adelson [19] who used spatiotemporal (XYT) patterns of 

gait. Little and Boyed have used phase features introducing 

the Shape of Motion method in [20]. BenAbdelkader et al. 

[21] implemented self-similarity between silhouettes to extract 

features. Later, Sarkar et al. [2] developed a major work in 

gait recognition, the HumanID Gait Challenge, in which they 

introduced a large database for gait as well as new techniques 

based mainly on silhouette similarity. Energy-based and 

accumulated error-based methods have then dominated the 

research trend with major contributions such as; The Average 

Silhouette by Liu and Sarkar [22], Gait Energy Image (GEI) 

by Han and Bhanu [23] and [24], Frame Difference Energy 

Image by Chen et al. [25], Accumulated Prediction Image 

(API) by Shanableh et al. [26], Active Energy Image (AEI) by 

Zhang et al. [3], Gait Flow Image (GFI) by Lam et al. [27], 

Shifted Energy Image (SEI) by Huang and Boulgouris [4], 

Chrono-Gait Image (CGI) by Wang et al. [6], Enhanced GEI 

using Joint Sparsity Model (GEIJSM) by Yogarajah et al. [47], 

Averaged Gait Key-phase Image (AGKI) by Choudhury and 

Tjahjadi [52], Segmented GEI (SGEI) by Choudhury and 

Tjahjadi [55] and Gait Texture Image (GTI) by Kusakunniran 

et al. [59]. These methods have proven to be the best trade-off 

between computational complexity and recognition 

performance. 

Recent research studies in biometrics have shown that 

single-method, or single-modality, biometric systems can be 

susceptible to noise, sensors’ sensitivity and redundancy of 

features [28] and [29]. This is particularly an issue in 

behavioral techniques such as gait. Therefore, the typical 

solution would be fusing information from multiple sensors, 

feature extractors or classifiers. In other words, fusion at 

feature-level, score-level or decision-level. Fusion may also 

take place at the sensor level (before feature extraction). An 

example of this is the fusion of 2D and 3D faces using two 

different sensors. Fusion techniques bring to biometrics 

advantages like higher recognition rates, overcoming the issue 

of small sample size or training data, higher immunity to noise 

and spoof attacks and smaller FAR/FRR figures. The 

advantages of fusion techniques make this approach attractive 

in biometrics, in spite of presenting higher storage 

requirements, processing time and computational complexity. 

Feature-level fusion can be seen in [30] where features from 

gait and foot pressure are concatenated. Face and gait features 

were fused by Chellapa et al. [31] and Hossain et al. [32]. In 

[33] static and dynamic gait features were fused. This fusion 

technique usually results into a higher dimension data, which 

can be then fed into a dimensionality reduction module. A 

more recent feature fusion technique was presented in [58], by 

fusing information from Euclidean and Riemannian spaces. 

In score-level fusion, scores usually need to be normalized 

before fusion is possible, and then combined using the sum, 

max, min or product rules. Zhang et al. [34] used score-level 

fusion in which scores were normalized using tanh technique. 

A third approach to fusion is the decision-level fusion in 

which the final decision is based on the combination of 

decisions from multiple classifiers or recognition modules. 

One advantage of decision fusion is that it picks the correct 

decisions made by the base classifiers and combines them 

producing a more accurate over-all decision. It provides a 

robust performance against challenges that each classifier has 

to deal with. Decision-level fusion becomes more attractive 

and useful when training samples are insufficient. There are 

different techniques for decision-level fusion such as; majority 

voting [35], Bayesian Decision Theory [36], Neural Networks 

[37] and the Dempster-Shafer theory of evidence [38] and 

[39]. Majority voting, however, seems to be simpler and easier 

to implement. 

The main contributions in this paper are the following 

1) Proposing and evaluating two novel gait representations 

(explained in section II); the Accumulated Flow Image 

(AFI) and the Edge-Masked Active Energy Image 

(EMAEI). 

2) Further implementation and testing of multilinear subspace 

learning methods for gait feature extraction. The first 

implementation of these methods on the gait recognition 

problem was by Lu et al. [40] using the Multilinear 

Principal Component Analysis (MPCA) technique. 

However, we have tested the method on the CASIA B 

dataset (explained in section V-C) for the first time, 

introducing novel tensorial gait representations that proved 

to be efficient. 

3) Testing the outcome of decision-level fusion on the overall 

performance of gait recognition systems.  

4) Achieving competitive recognition rates, compared to 

several state-of-the-art methods. 

II. GAIT REPRESENTATION 

In this section we introduce the gait pre-processing methods 

used, starting with the Accumulated Prediction Image (API) 

method which was borrowed from [26] due to its promising 

performance coupled with the relatively simple concept and 

low computational cost. 

 In addition to the API, two new methods were developed 

and tested; the Accumulated Flow Image (AFI) which is very 

similar to the API in shape however based on the optical flow 

principles, and a variation of the AEI method from [3] based 

on masking the static part of the accumulated silhouettes. 

A. Accumulated Prediction Image (API) 

The formation of an accumulated prediction image (or 
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images) is analogous to the prediction error computation 

technique used in digital video coding. Each frame is 

subtracted from its immediate previous (past) frame, a process 

known as forward prediction. This subtraction results in an 

error image. A threshold is then applied to the image so as to 

filter out those pixels that are non-motion related. The resulted 

prediction error images after thresholding are then 

accumulated resulting in the Accumulated Prediction Image 

(API). For further filtration of the non-motion (or noise) 

pixels, a decision is made whether to use forward prediction or 

backward prediction (difference between each frame and the 

immediate future frame). This decision is based on the 

minimization of the Sum of Absolute Difference (SAD) 

between the forward prediction error image and the backward 

prediction error image. The image that minimizes this SAD 

value is taken towards the final construction of the API. 

Additionally, for the sake of a better representation, the 

process is split into two parts; positive API and negative API 

(by reversing the order of subtraction). This process is 

illustrated in Fig. 1, and the resulting accumulated images are 

also shown. Each video sequence ends up with two APIs that 

can be used for feature extraction. Note that the spatial 

information is maintained in the two images, an aspect that 

shall be of added value in feature extraction. 

      

API method was first introduced and successfully used in 

[26] to report high recognition rates on a locally-collected gait 

database. It is noticed that this gait representation, followed 

with the feature extraction technique explained in section III-

A (image projection + 1D-DCT), contributed in extracting 

linearly-separable features that are easy to input into a linear 

classifier, in a relatively simple approach. 

 
Fig. 2: Validation Recognition Rates using different threshold values for API 

 

As mentioned above, this method is dependent on 

thresholding, which can be optimized. In principle, the 

threshold can be any digit between 1 and 255. Clearly, very 

small threshold values result in waiving some representative 

features. Similarly, we wish to remove the intrinsic noise. It 

was observed that the maximum threshold value to test for 

should be 10. This can be understood knowing that the 

intensity values 1 to 10 of the API image represent more than 

90% of the non-zero pixels of the image. Beyond 10, 

thresholding has almost no effect. Therefore, the threshold 

parameter was varied between 1 and 10, with a step value of 1, 

and tested accordingly for this individual method and using 

the training data from Setup 1, which is explained further in 

Section V-C. These are 3 normal sequences; nm1, nm2 and 

nm3. Sequences nm1 and nm2 are used in training for the 

parameters, while nm3 is used for validation. As seen in Fig. 

2, the final optimum value was 7. In [26], the threshold was 

set to the 75th percentile of the non-zero pixels of the 

prediction error image, which approximately corresponds to 3. 

Upon testing however, the value 7 (corresponding to the 90th 

percentile) yielded better performance in average. 

B. Accumulated Flow Image (AFI)  

Optical flow corresponds to the movement of pixels in a 

sequence of images [41], or in other words, the rate of change 

of motion (velocity) of intensity patterns. Such information is 

very useful for gait recognition. It can be used in objects’ 
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Fig. 3: AFI's of Subject 1, Normal Sequence 1, CASIA B Database, 

(a) Positive AFI, (b) Negative AFI 
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(b) 

Fig. 1: API's of Subject 1, Normal Sequence 1, CASIA B Database, 

(a) Positive API, (b) Negative API 
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segmentation and motion detection and produces a pool of 

features for object classification. In the literature, there are 

different methods for the computation of optical flow, 

including differentiation, correlation, feature-based and 

hierarchical methods. Differentiation methods are classical, 

yet popular. These include global differentiation techniques 

such as Horn and Schunk, and local differentiation techniques 

such as Lucas and Kanade. In the AFI representation, images 

are constructed using the Horn and Schunk differential method 

[42]. Therefore, we summarize its main equations, constraints 

and assumptions.  

The first assumption made in the calculation of optical flow 

is that the image brightness, reflectivity and illumination are 

constant while moving in a short time interval ∆t, from t1 to 

t2. Let I(x,y,t) be the image intensity at point (x,y) and time t. I 

is constant at a fixed point, that is 

 

 𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0 (1) 

where u and v are the two components of the flow vector v, 

which we seek in the computation of the optical flow. u and v 

are given by: 

 
𝑢 =

𝑑𝑥

𝑑𝑡
 𝑎𝑛𝑑 𝑣 =

𝑑𝑦

𝑑𝑡
 

 

 

The second constraint in Horn and Schunk method is the 

smoothness constraint. The idea is that the optical flow should 

vary smoothly everywhere over the entire image. This can be 

derived by minimizing the square of the magnitude of the 

optical flow vector v. 
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+ (
𝜕𝑣

𝜕𝑥
)

2

+ (
𝜕𝑣

𝜕𝑦
)

2

 
(2) 

This equation represents the difference between the flow 

vector and its neighbors. Adding this to equation (1), or the 

constraint equation, enables us to solve for u and v. After a 

method of derivation explained in [42], we get two equations 

to iteratively update for the values of u and v: 

 

 
𝑢𝑛+1 = 𝑢̅𝑛 −

𝐼𝑥[𝐼𝑥𝑢̅𝑛 + 𝐼𝑦𝑣̅𝑛 + 𝐼𝑡]

𝛼2 + 𝐼𝑥
2 + 𝐼𝑦

2
 

(3) 

 
𝑣𝑛+1 = 𝑣̅𝑛 −

𝐼𝑦[𝐼𝑥𝑢̅𝑛 + 𝐼𝑦𝑣̅𝑛 + 𝐼𝑡]

𝛼2 + 𝐼𝑥
2 + 𝐼𝑦

2
 

(4) 

where; un+1 and vn+1 are the new optical flow components at 

iteration n+1, u̅n and v̅n are the averages of the optical flow 

vector components in a small neighborhood, and at previous 

iteration n. Ix and Iy are the spatial gradients. It is the temporal 

gradient, and α2 is a weighing factor. 

The construction of the AFI's is based on equations (3) and 

(4), being an iterative method. As such, the parameters that 

govern its behavior are the number of iterations, the 

smoothness factor α and the initial values of u and v. In these 

experiments, we assume initial values of 0 for each of u and v 

components. 

The computation of the optical flow between every two 

consecutive frames produces a flow error image. Similar to the 

work in computing the Accumulated Prediction Image (API), 

error images are accumulated to produce the final AFI. In this 

case, however, we have to deal with two sets of variables 

every time, u and v. Recalling that the process is actually split 

into two parts, positive and negative image differences, means 

we will have 4 images upon the computation of each image 

difference. However, after the initial experiments, it was found 

that the horizontal component (u) results in higher recognition 

rates. Therefore, in all subsequent analysis we have only 

considered the u-based AFI's. Fig. 3 shows sample AFI's 

constructed from the first sequence of subject 1 in the normal 

condition of the CASIA B database. 

The number of iterations and the smoothness factor are 

important parameters in defining the quality of the output gait 

image. As such, these two parameters were varied and the 

method tested accordingly, yet without optimization.  

Exhaustive experiments may still be required on this part. 

 
(a) 

 
(b) 

 
(c) 
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(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Fig. 4: (a) GEI of subject 1 under normal condition, (b) GEI of 

subject 1 with bag, (c) GEI of subject 1 with coat, (d) AEI of 

subject 1 under normal condition, (e) AEI of subject 1 with 

bag, (f) AEI of subject 1 with coat, images (g, h, i) are the 

corresponding MAEIs to images (d, e, f) using Zero Masking, 

images (j, k, l) are the corresponding MAEIs to images (d,e,f) 

using Edge Masking. 
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1) Number of iterations: These were varied between 1 and 

100 but only at randomly selected values; 1, 5, 10, 20, 32, 

64 and 100. Results were best at 64, and so it was fixed for 

all succeeding experiments. This selection could still be 

optimized by further experiments. 

2) Smoothness factor: This value is responsible for the quality 

of the output gait image and how representative it is for the 

motion patterns. The higher the value, the smoother the 

image. However, at some relatively high values, 

smoothness leads to less representative features. At initial 

random selection of values, it was noticed that values 

above 20 should be avoided. The parameter was, thus, 

varied between 1 and 20 with a step value of 5. The value 

corresponding to the optimum result was 5, and so it was 

fixed for the succeeding experiments. 

C. Edge-Masked Active energy Image (EMAEI)  

Recall that the GEI method [43] produces a single gait 

sample image per cycle, in which the intensity at a single point 

is a representation of the frequency of that particular part of 

the body. It is noticed that GEI accumulates both dynamic and 

static features of the moving body, which makes it 

appearance-based and sensitive to the change in clothing and 

carrying conditions. Zhang et al. introduced in [3] the AEI gait 

representation that better highlights the dynamic features of 

the subject and minimizes those related to the static parts, 

especially the bag and the coat in our case. 

This was achieved by accumulating the differences (instead 

of summation in GEI) between every two consecutive frames 

and averaging them by the number of frames N, or: 

 

 

𝐴(𝑥, 𝑦) =
1

𝑁
∑ 𝐷𝑡(𝑥, 𝑦)

𝑁−1

𝑡=0

 

(5) 

where Dt(x,y) is the difference between frames given as: 

 

 
𝐷𝑡(𝑥, 𝑦) = {

𝑓
𝑡(𝑥,𝑦)

, 𝑡 = 0

‖𝑓
𝑡
(𝑥, 𝑦) − 𝑓

𝑡−1
(𝑥, 𝑦)‖, 𝑡 > 0

 
(6) 

where ft(x,y) is the tth silhouette. 

 

Example AEI images are shown in Fig. 4 and compared to 

GEI for the same subject (Subject 1) taken from the same 

dataset (CASIA B). 

An observation of the resulted AEI images indicates that the 

mid portion of the images seem to have the least dynamic 

features. It was intuitive to think about tracing those areas of 

less contribution to the final features and masking them out, 

and expect this to improve the final recognition rate when 

testing for the bag and coat sequences. More precisely, if the 

human body is divided into 8 proportions, it’s the area 

between the 1st proportion (just under the chin) and 5th 

proportion (mid-thigh) that is masked, or proportions 2-5. We 

opted to implement a simple model that imposes the mask 

manually during the formation of the AEI resulting in a 

masked AEI or MAEI. A more efficient and optimized system 

can be developed to trace the least significant features and 

mask them out automatically. This can be accomplished using 

filtering, wrapping or decision tree approaches. Good 

examples of feature subset selection techniques were 

presented in [44] and [55]. 

Two masking versions have been tested in this work: 

1) Zero Masking: This simply replaces all values that lie 

between two predetermined lines by zeroes. The two lines 

were at rows 30 (Proportion 2 of the body) and 150 

(Proportion 5 of the body). Knowing that all AEI images 

are of fixed normalized size 240x180 pixels, means this 

fixed selection should generalize well as a primary mask. 

Example masked AEI images using this approach are 

shown in Fig. 4, images g, h and i. 

2) Edge Masking: Instead of zeroing out all pixels between 

the two lines (at rows 30 and 150), we applied an edge 

detection technique to the same area. The intention is to 

minimize the contribution of the static features related to 

the bags and coats, while still maintaining some 

discrimination power in them. Edge detection, using 

‘Sobel’ edge operator, is applied to every difference image 

prior to image accumulation. This method performed better 

compared to Zero Masking, based on the average 

recognition rates in both cases. We notice from Fig. 4 that 

although the Edge-Masked AEI's (or EMAEI's), j, k and l, 

show very little information in the mid portion, are still 

non-zero, indicating those areas with motion difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5: Illustration of Image Projection + 1D-DCT Method 

 

III. FEATURE EXTRACTION 

A. Image Projection and 1D-DCT 

This simple approach takes the horizontal projection of each 

gait image, followed by one-dimensional Discrete Cosine 

Transform (DCT) to smooth and reduce the size of the 

projected values. This produces one feature vector which is 

truncated using a pre-selected cutoff value, the value of which 

is determined empirically. After testing the code through a 

range of dimensionality values between 20 and 200, the value 

100 was selected. When applying this approach to the API's 

and AFI's, being two images per sample, we use half the 

dimensionality value as the cutoff for each image. Then the 

two feature sub-vectors are interleaved to produce one 

combined vector of 100 variables. This method is illustrated in 

Fig. 5. When used with the edge-masked AEI gait image, the 
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whole image produces one single feature vector of 

dimensionality 100. 

B. Multilinear Principal Component Analysis (MPCA) 

MPCA is an unsupervised Multilinear Subspace Learning 

(MSL) method that implements the Tensor-to-Tensor 

Projection (TTP) technique, to project high-order tensor 

objects into lower-dimensional tensors. In other words, it 

applies dimensionality reduction directly on objects in their 

tensorial form. Vector-based subspace learning methods have 

been used in gait recognition several times in the literature; 

recently in [56] and [57]. However, the main advantage of 

using this method, which is introduced in [40], is that it is 

generalized to work on higher-order tensors. Therefore, it 

introduces systematic procedure and provides tensor 

representation to tensorial objects, compared to other heuristic 

methods or those that use vector or matrix forms.  

 

 
Fig. 6: Effect of varying the number of tensors in the MPCA algorithm 

 

MPCA was implemented on gait recognition, tested on the 

USF database and compared to the HumanID algorithm 

introduced in [2]. It was, thus, a good benchmark to develop 

our method and compare our results. 

The objective of the MPCA algorithm is to define N 

multilinear projection matrices{𝑈𝑛 ∈ 𝑅𝐼𝑛×𝑃𝑛 , 𝑛 = 1, … , 𝑁}, 

each of which is to map an input tensor object 𝒳𝑚 ∈
𝑅𝐼1×𝐼2×…×𝐼𝑁 into a lower-dimensional tensor object 𝒴𝑚 ∈
𝑅𝑃1×𝑃2×…×𝑃𝑁 (where Pn<In for n=1, 2,…, N). 

The MPCA objective function is defined as: 

 {𝑈𝑛, 𝑛 = 1, … , 𝑁} = 𝑎𝑟𝑔𝑚𝑎𝑥𝑈1,𝑈2,…,𝑈𝑁(𝜓𝒴) (7) 

Where 𝜓𝒴 is the total tensor scatter, defined as: 

 

𝜓𝒴 = ∑‖𝒴𝑚 − 𝒴̅‖𝐹
2

𝑀

𝑚

 

(8) 

Where M is the number of samples and 𝒴̅ is the mean tensor 

calculated as: 

 

𝒴̅ =
1

𝑚
∑ 𝒴𝑚

𝑀

𝑚

 

(9) 

Equation 7 means that the objective of MPCA is to determine 

the N projections that maximize the total tensor scatter 𝜓𝒴. 

Below is a general MPCA algorithm: 

 

Input: 𝒳𝑚 ∈ 𝑅𝐼1×𝐼2×…×𝐼𝑁 , 𝑚 = 1, … , 𝑀 

Algorithm:   

1. Center the input samples,𝒳̃𝑚 = 𝒳𝑚 − 𝒳̅, where 

𝒳̅ =
1

𝑚
∑ 𝒳𝑚

𝑀
𝑚=1  is the sample mean. 

2. Calculate the eigen decomposition of 𝜙𝑛 =
∑ 𝑋̃𝑚(𝑛) .  𝑋̃𝑚(𝑛)

𝑇𝑀
𝑚=1  

3. Set 𝑈̃𝑛 to consist of the eigenvectors corresponding to 

the most significant Pn eigenvalues. 

4. Calculate cumulative distribution of eigenvalues, 

𝜆𝑖𝑛
= 𝜆𝑖𝑛−1+𝜆𝑖𝑛

 

5. Determine the dimension of the projected space Pn 

6. For k=1:K (K: number of iterations) 

- For n=1:N  

Set 𝑈̃𝑛 to consist of the Pn eigenvectors of 

𝜙𝑛corresponding to the largest Pn eigenvalues. 

7. Calculate the weight tensor (to be used in classification): 

𝒲(𝑝1, 𝑝2, … , 𝑝𝑁) = √∏ 𝜆𝑝𝑛

(𝑛)
𝑁

𝑛=1
 

8. Calculate the projection of tensor samples: 

𝒴𝑚 = 𝒳𝑚 ×1 𝑈̃(1)𝑇 ×2 𝑈̃(2)𝑇 … ×𝑁 𝑈̃(𝑁)𝑇, 𝑚 = 1, … , 𝑀 

 

Output: 𝒴𝑚 ∈ 𝑅𝑃1×𝑃2×…×𝑃𝑁 , 𝑚 = 1, … , 𝑀 

Finally, the output tensor is vectorised and sorted by 

discriminality. The number of vector components kept for the 

analysis is determined empirically. We have tested values 

ranging between 100 and 1000, with a step value of 100, as 

seen in Fig. 6. These are similar to the values range used in 

[40]. The value that yielded the best average classification 

rates using different gait inputs was 600. Training and 

validation data is same from Section II-A 

In an attempt to optimize the iterative solution, the 

following techniques were used in [40] and adopted in our 

work: 

1. Initialization by Full Projection Truncation (FPT): This is 

done by starting iterations in each mode n by assuming Pn 

= In. In each mode, we get In number of eigenvalues. 

These are sorted in descending order, each two successive 

eigenvalues accumulated and then normalized by dividing 

by the sum of all eigenvalues. The resulted accumulated 

and normalized eigenvalues are then used to determine the 

projection dimensionality reduction. This method proved 

to yield quick convergence, using only one iteration. 

2. Determination of the tensor subspace dimensionality: 

using the Q-based method. Q is a user-defined number, 

determined empirically, that represents the number of 

accumulated eigenvalues (or energy) kept. If Q=97, for 

example, Pn is identified as the index corresponding to the 

normalized eigenvalue of less than or equal to 0.97. 

 

In this work Linear Discriminant Analysis (LDA) is also 

applied after the MPCA output to maximize the ratio of the 

between-class scatter matrix to the within-class scatter matrix, 

in an attempt to produce higher class discriminability. 

Therefore, we have actually tested two methods; MPCA and 

MPCA+LDA. In both sets of experiments the data setup and 

classifier are the same. In the case of the LDA algorithm, the 

dimension of the feature vector is fixed to C-1, where C is the 

number of classes. In our data C=124, yielding an LDA 

feature vector of dimension 123. In this case, the number of 

vector components kept in the analysis, and subsequent 

experiments on different values, is 200. 
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The MPCA method was applied to our pre-processed gait 

images (explained in Section II) so as to extract the gait 

features. With three gait representation methods, namely API, 

AFI and edge-masked AEI, we shall have three models for 

feature extraction using the MPCA algorithm and three more 

using the MPCA+LDA algorithm. For this purpose, our data 

need to be arranged first in tensorial form. Compared to the 

work in [40], the gait cycle determination module was 

dropped in our work, since our accumulated gait images 

present these intrinsically. As such, we chose the gait samples 

to be the accumulated images mentioned earlier. With these 

arranged in tensorial form and fed to the MPCA algorithm, a 

novel feature representation method is introduced; namely, 

Accumulated Gait Tensor (AGT). Primary comparative 

experiments have yielded better results using this 

representation compared to using single silhouettes or cycles. 

However, further analysis on this part, and using different gait 

databases and experimental set-ups, is necessary before 

generalizing this finding. One advantage of the AGT's is 

reducing the dimensionality of the tensorial input dramatically 

while preserving discriminative features. Additionally, we 

reduce the input tensors from being three-mode (3rd-order) 

tensors, spatial and temporal modes, into two-mode (2nd-order) 

tensors since the time-mode is embedded in the accumulated 

gait images. Below is a break-up of the tensorial data 

representation and dimensionality of each of the three gait 

representations: 

a) API Tensorial Representation 

The API approach applies to the original frames, and these 

are of dimension 240x320 pixels. In our preprocessing, the 

images are cropped to 168x320 pixels, where the cropped 

portion has no information. Moreover, and for the sake of 

using them in the MPCA algorithm, it was intuitive to reduce 

the resolution. We tested using 25%, 50% and 75% of the 

original resolution. The differences in the recognition rates 

were negligible, thus we opted to use the maximum reduction, 

75%, yielding images of 42x80 pixels. Since in API there are 

two accumulated images per subject, positive and negative, 

the final tensor dimension would be 42x80x2, which is still a 

3rd-order tensor. However, compared to using the individual 

silhouettes, which average to approximately 60 per sequence, 

in the latter case we get a tensor dimension of 42x80x60. And 

using each gait half-cycle as a sample, with average gait half-

cycle of approximately 10 silhouettes, the tensor dimension in 

this case is 42x80x6. The reduction of the input tensor 

dimensionality is therefore apparent. Applying the AGT 

concept to the data, the term Accumulated Prediction Tensors 

(APT's) shall be used in our experimental analysis later to 

indicate the APIs in tensorial form. 

b) AFI Tensorial Representation 

AFI also uses the 240x320 frames. Therefore, the 

produced tensors have the same three-mode of 42x80x2. This 

data is called Accumulated Flow Tensors (AFTs). 

c) EMAEI Tensorial Representation 

Unlike in the two previous gait representations, edge-

masked AEI uses the gait silhouettes, and not the frames, as 

inputs. These are also found in the CASIA B dataset with the 

resolution of 240x320. In preprocessing, all silhouettes were 

cropped to produce images of 240x180 pixels, in which 

silhouettes were centered and resized to occupy the full frame. 

This way, we ensure that all silhouettes are aligned. In 

preparation for using them in the MPCA algorithm, the 

resolution is reduced by 75% to 60x45 pixels. And knowing 

that we have one image to represent each gait sequence means 

that this problem is actually reduced into a two-mode tensor 

problem, or two-dimensional (2D) PCA. For the sake of 

consistency with the other two tensorial representations, 

however, we will call the tensor data here Edge-Masked 

Active Energy Tensors (EMAETs). 

IV. CLASSIFICATION AND FUSION TECHNIQUES 

We opted to use two simple classifiers in our tests; Linear 

Discrinimant Functions (LDF) and K-Nearest Neighbor 

(KNN, K=1). Some more advanced classifiers, such as the 

Polynomial Networks, Support Vector Machines (SVM) and 

Neural Networks might be tested to compare the performance 

and final results. The distance measure we used in the 1-NN 

classifier is the Modified (or weighted) Angle Distance 

(MAD) from [40], given by: 

 

 
𝑑(𝑎, 𝑏) = −

∑ 𝑎(ℎ). 𝑏(ℎ)𝐻
ℎ=1

𝑤(ℎ)√∑ 𝑎(ℎ)2𝐻
ℎ=1 ∑ 𝑏(ℎ)2𝐻

ℎ=1

 
(13) 

Where H represents tensors and w(h) represents the weight 

tensor computed in the MPCA algorithm, and defined as: 

 

 

𝒲(𝑝1, 𝑝2, … , 𝑝𝑁) = √∏ 𝜆𝑝𝑛

(𝑛)
𝑁

𝑛=1
 

(14) 

Where 𝜆𝑝𝑛

(𝑛) represents the pnth n-mode eigenvalue 

corresponding to the projection matrix U(n).  

 

We used the following voting schemes for decision-level 

fusion: 

1) Unweighted Voting (UWV) 

This is the simplest and most straightforward voting 

method for decisions’ combination. It simply counts the 

number of decisions for each class and assigns the sample to 

the class that received the highest number of votes. In this case 

the final decision D is given by: 

 

𝐷 = 𝑎𝑟𝑔 max
𝐶𝑗

∑ 𝛿(𝐷𝑘, 𝐶𝑗)

𝑘

1

 

(15) 

Where Cj is the target class,  

Dk is the decision of the base classifier Ck, and  

 

 
𝛿 = {

1, 𝑖𝑓 𝐷𝑘 = 𝐶𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(16) 
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2) Weighted Voting (WV) 

By introducing weights, we aim to give more significance 

to those base classifiers that perform better individually.  

Most of the weighted voting methods are derived from 

evaluating the decisions of all base classifiers. They are sorted 

according to their estimated accuracy (using the training 

dataset), and proportional weights are assigned. Accuracy is 

estimated by validation. For this purpose, the training data 

used in Setup 1 (Tr1) (explained in section V-C) is split into 

two parts; 2 normal sequences for training and 1 normal 

sequence to test for the classifiers’ accuracy. We test here one 

simple weighted voting method. 

After estimating the error of each base classifier ek based 

on the validation data, we evaluate the authority value ak, 

which is equivalent to 1-ek. The weight wk is given by: 

 

 𝑤𝑘 =
𝑎𝑘

∑ 𝑎𝑖𝑖
 

(17) 

 

After assigning the weights to all base classifiers, the final 

decision will be evaluated using similar equation to 15, by 

only adding the weights wk: 

 

 

𝐷 = 𝑎𝑟𝑔 max
𝐶𝑗

∑ 𝑤𝑘𝛿(𝐷𝑘, 𝐶𝑗)

𝑘

1

 

(18) 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Final proposed scheme 

Fig. 7 illustrates a simplified block diagram of our 

proposed gait recognition system. A decision-level fusion 

scheme takes as inputs the decision labels from nine different 

gait recognition sub-systems. The sub-systems are designed in 

such a way to utilize three different gait representations (pre-

processing techniques) with three different matching methods. 

The system is made-up of the following components: 

Gait Representation (Pre-processing) Techniques: 

1) Accumulated Prediction Image (API) 

2) Accumulated Flow Image (AFI). 

3) Edge-Masked Active Energy Image (EMAEI) 

Each of the above-listed gait images is used three times; 

implementing the following methods: 

1) Image projection followed by LDF classifier. We shall 

label this as Method 1 or (Mthd1). 

2) MPCA, followed by KNN classifier (1-NN). We shall 

label this as Method 2 or (Mthd2). 

3) MPCA+LDA, followed by KNN classifier (1-NN). We 

shall label this as Method 3 or (Mthd3). 

Note that inputs to both Mthd2 and Mthd3 are the tensorial 

gait representations, APT, AFT and EMAET. 

B. Testing Methodology 

The next section lists-up the four different experimental 

setups used to evaluate the proposed method. In each setup we 

carry-out 11 experimental groups. Each group comprises a 

number of experiments equivalent to the number of testing 

probes as detailed for each case. The groups are as follows: 

 

1)  Single-level gait recognition: 

a. API + Mthd1, labeled Recognizer 1 (R1) 

b. AFI + Mthd1, labeled Recognizer 2 (R2) 

c. Edge-masked AEI + Mthd1, labeled Recognizer 3 (R3) 

d. APT + Mthd2, labeled Recognizer 4 (R4) 

e. AFT  + Mthd2, labeled Recognizer 5 (R5) 

f. Edge-masked AET + Mthd2, labeled Recognizer 6 (R6) 

g. APT + Mthd3, labeled Recognizer 7 (R7) 

h. AFT  + Mthd3, labeled Recognizer 8 (R8) 

i. Edge-masked AET + Mthd3, labeled Recognizer 9 (R9) 

 

2) Decision-level fusion schemes: 

a. Three-decision Fusion Schemes detailed as follows: 

(1) 3Fus123: 3-decision fusion of R1, R2 and R3. 

(2) 3Fus456: 3-decision fusion of R4, R5 and R6. 

(3) 3Fus789: 3-decision fusion of R7, R8 and R9. 

(4) 3Fus147: 3-decision fusion of R1, R4 and R7 

(5) 3Fus258: 3-decision fusion of R2, R5 and R8 
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Fig. 7:  Block Diagram of the proposed Gait Recognition System 

 

 



 

 

 

9 

(6) 3Fus369: 3-decision fusion of R3, R6 and R9 

 

Each of these fusion experiments is repeated twice, 

using Unweighted Voting (UWV) and Weighted Voting 

(WV) techniques. 

b. Nine-decision Fusion (9Fus) Scheme. Similarly, 

repeated twice using the UWV and WV techniques.  

C. Experimental Setups 

As mentioned previously, in this work the CASIA B 

database is used. This database consists of 124 subjects, each 

subject walked 10 times resulting in 10 video sequences; 6 

sequences in normal condition, 2 sequences carrying different 

shapes and sizes of bags, and 2 sequences wearing different 

types of coats. With 11 cameras distributed at 11 different 

view angles, ranging between 18o and 180o, we end up with a 

total of 13,640 video sequences. As we only focused on 

testing for the carrying condition and clothing, we used 

sequences corresponding to only single view angle, which is 

90o or lateral view. This corresponds to using only 1240 

sequences. The database is divided into training dataset 

(gallery) data and testing dataset (probe). Number of 

sequences in each of the two data groups has been varied 

based on similar setups taken from nine recently published 

papers that studied the same topic and used the same database. 

Total number of sequences is obviously the same in all the 4 

setups and these are:  

a. Six sequences for normal-condition walking, labeled 

nm1, nm2, nm3, nm4, nm5 and nm6 

b. Two sequences for walking carrying bag, labeled bg1 

and bg2. 

c. Two sequences for walking wearing coat (cloth), 

labeled cl1 and cl2. 

 

The data breakdown in each of the setups is as follows: 

1) Setup 1 as reported in [3] and [46] 

a. Training Data (Tr1): 3 normal sequences; nm1, nm2 

and nm3 

b. Testing Data : 3 sets for 3 experiments;  

(1) Ts11: 3 normal sequences; nm4, nm5 and nm6 

(2) Ts12: 2 bag sequences; bg1 and bg2 

(3) Ts13: 2 coat sequences; cl1 and cl2 

Zhang et al. [3] used the Active Energy Image (AEI) 

method for gait representation, followed by two-dimensional 

Locality Preserving Projection (2DLPP) for dimensionality 

reduction and feature extraction, and finally nearest neighbor 

classifier. Zeng et al. propose in [46] a gait approach based on 

silhouette features via deterministic learning.  

 

2) Setup 2 as reported in [4], [44], [45], [47] and [48] 

a. Training Data (Tr2): 4 normal sequences; nm1, nm2, 

nm3 and nm4 

b. Testing Data : 3 sets for 3 experiments;  

(1) Ts21: 2 normal sequences; nm5 and nm6 

(2) Ts22: 2 bag sequences; bg1 and bg2 

(3) Ts23: 2 coat sequences; cl1 and cl2 

 

Huang et al. [4] implemented feature-level fusion of two 

gait signatures; Shifted Energy Image (SEI) and Gait 

Structural Profile (GSP). Dupuis et al. [44] implemented the 

Random Forest algorithm for feature ranking, and produced a 

Masked GEI, followed by Canonical Discriminant Analysis 

(CDA). Gait Pal and Pal Entropy (GPPE) Image is used by 

Jeevan et al. in [45] as the gait representation, followed by 

PCA and SVM classifier. Experiments in [45] were carried out 

on 98 subjects only. In [47], Yogarajah et al. implement the 

Joint Sparsity Model, to enhance the GEI. While Jiménez et 

al. use tracklet-based gait and SVM classifier in [48] 

 

3) Setup 3 as reported in [6] 

In [6], Wang et al. implemented a temporal gait template, 

named Chrono-Gait Image (CGI), followed by PCA+LDA for 

feature extraction and 1-NN classifier. 

a. Training Data (Tr3): 5 normal sequences; nm1, nm2, 

nm3, nm4&nm5. 

b. Testing Data : 5 sets for 5 experiments;  

(1) Ts31: normal sequence nm6 

(2) Ts32: bag sequence bg1 

(3) Ts33: bag sequence bg2 

(4) Ts34: coat sequence cl1 

(5) Ts45: coat sequence cl2 

 

 

TABLE I 

RECOGNITION RATES (%) OF EXPERIMENTS USING SETUP 1 [3] AND [46] 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 
9Fus 

(UWV) 

9Fus 

(WV) 

Zhang et 

al. [3] 

Zeng et 

al. [46] 

Ts11 98.66 98.39 65.59 93.55 93.28 90.59 89.25 76.61 90.32 99.19 99.19 98.40 98.40 

Ts12 87.90 84.68 41.53 75.81 82.26 52.02 68.95 53.23 44.76 96.77 95.97 91.95 93.50 

Ts13 40.32 51.21 42.74 42.34 51.21 81.05 39.92 41.94 76.61 83.87 88.31 72.19 90.30 

Average 75.63 78.09 49.95 70.57 75.58 74.55 66.04 57.26 70.56 93.28 94.49 87.51 94.07 

Ts11 (nm1, nm2&nm3), Ts12 (bg1 & bg2) and Ts13 (cl1 & cl2) 

TABLE II 

WEIGHTS GIVEN TO BASE RECOGNITION MODULES 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 

ek 0.081 0.057 0.629 0.081 0.089 0.105 0.177 0.210 0.032 

ak (WV) 0.919 0.944 0.371 0.919 0.911 0.895 0.823 0.790 0.968 

wk (WV) 0.122 0.125 0.049 0.122 0.121 0.119 0.109 0.105 0.128 
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4) Setup 4 as reported in [5] 

In this paper, Kumar et al. used the concept of ‘Axis of 

Least Inertia’ to produce gait features. 

a. Training Data (Tr4): 3 normal sequences; nm1, nm2 

and nm3 plus 1 bag sequence bg1 and 1 coat sequence 

cl1. 

b. Testing Data : 5 sets for 5 experiments;  

(1) Ts41: 1 normal sequence; nm4 

(2) Ts42: 1 normal sequence; nm5 

(3) Ts43: 1 normal sequence; nm6 

(4) Ts44: 1 bag sequence; bg2 

(5) Ts45: 1 coat sequence; cl2 

 

D. Results and Analysis 

1) Results using experimental setup 1 

Table I summarizes the recognition rates (%) obtained for 

the experiments carried out using Training Data Tr1 and 

Testing Data Ts11, Ts12 and Ts13. Note that in this 

arrangement sequences of bag and coat are unseen during 

training. We compare our results with those obtained by 

Zhang et al. in [3] and Zeng et al. propose in [46] 

We notice that it is possible to achieve high recognition 

rates when testing normal sequences (Ts11) even without 

fusion, using a simple linear classifier, as in R1 and R2. This 

would be observed in all the succeeding results of other 

setups, when testing for normal sequences, which would prove 

that the implemented gait representation techniques, especially 

the API, are efficient when covariates are controlled. 

We notice also that experiments using API with Projection 

and LDF were good enough to produce very good recognition 

rates when testing for bag sequences (Ts12). They are yet not 

good enough compared to those reported in [3] or [46]. 9-

decision fusion (9Fus) method, however, outperforms Zeng et 

al. by almost 3%. Edge-masked AEI is still not efficient 

representation for the two cases of normal and bag sequences, 

especially in R3. However, it works well in the case of coat 

sequences (Ts13), even without optimization. We notice that 

although Zeng et al. achieved very good results, especially in 

the Ts13 test, their average recognition rates from the three 

tests is 94.07 compared to 94.49 from our 9Fus (WV) method. 

We show herein a comparison between Unweighted and 

Weighted fusion techniques at the two levels; 3-decision 

fusion and 9-decision fusion. In order to do that, we need first 

to estimate the base classifiers’ accuracies and assign them 

authority values, and eventually weights. For this purpose, we 

split the training data used in Setup 1 (Tr1) into two parts; 2 

normal sequences (nm1 and nm2) for training and 1 normal 

sequence (nm3) to test for the classifiers’ accuracy. This gives 

us a general indication on each classifier’s relative 

performance. Table II lists the errors (ek), authority values (ak) 

and weights (wk) given to each of the nine base recognizers 

using the WV (Equation 17) method. These weights are used 

throughout the different experimental setups. However, we 

will demonstrate them in details here using Setup 1.  

These weights are used in the voting scheme for fusion, and 

consequently we will compare the results obtained for the 

presented fusion techniques. After applying this to the 

experiments in Setup 1, we get the fusion recognition rates 

(%) as in Table III and Fig. 8. Note that schemes F1-F6 

combine recognizers of the same [feature extraction + 

 
Fig. 8:  Recognition Rates (%) of the experiments groups Ts11 (nm1, nm2&nm3), Ts12 (bg1 & bg2) and Ts13 (cl1 & cl2), using 

different methods of fusion. Ts11*, Ts12* and Ts13* are the experimental results for fusion schemes F1*-F6* 
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TABLE III 

RECOGNITION RATES (%) OF FUSION TECHNIQUES USING SETUP 1 [3] 

Fusion Scheme Ts11 Ts12 Ts13 Average 

3Fus123/ (UWV) – F1 99.19 87.90 52.02 79.70 

3Fus123 / (WV) – F2 99.19 89.52 57.26 81.99 

3Fus456 / (UWV) – F3 96.51 81.05 66.94 81.50 

3Fus456 / (WV) – F4 97.04 81.05 58.47 78.85 

3Fus789 / (UWV) – F5 93.28 70.16 63.71 75.72 

3Fus789 / (WV) – F6 96.24 62.90 79.84 79.66 

3Fus147/ (UWV) – F1* 97.58 85.08 42.34 75.00 

3Fus147 / (WV) – F2* 97.58 85.08 45.97 76.21 

3Fus258 / (UWV) – F3* 96.77 84.27 56.45 79.16 

3Fus258 / (WV) – F4* 98.12 89.11 56.45 81.23 

3Fus369 / (UWV) – F5* 92.47 52.02 64.92 69.80 

3Fus369 / (WV) – F6* 93.01 52.42 57.66 67.70 

9Fus / (UWV) – F7 99.19 96.77 83.87 93.28 

9Fus / (WV) – F8 99.19 95.97 88.31 94.49 

Zhang et al. [3] 98.40 91.95 72.19 87.51 

Zeng et al. [46] 98.40 93.50 90.30 94.07 
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classifier] pair, while varying gait representation techniques; 

whereas schemes F1*-F6* combine recognizers of the same 

representation techniques while varying [feature extraction + 

classifier] pairs. 

Based on the fusion experiments, the following is 

concluded: 

1) In the case of 3-decision fusion; fusing decisions of 

different representations using the same [feature extraction 

+ classifier] pair performed better than fusing decisions 

from different classifiers. We will make use of this in the 

succeeding experimental setups. 

2) In average, the Weighted Voting (WV) method performed 

better than the Unweighted Voting (UWV) method, as 

seen in 5 out of the 7 experiments in Table III. 

3) In the 9-decision fusion schemes (9Fus), each of the two 

tested schemes (unweighted and weighted) performed 

well, while WV gives higher average classification rate. 

 

2) Results using experimental setup 2 

Table IV summarizes the recognition rates (%) obtained 

for the experiments carried out using Training Data Tr2 and 

Testing Data Ts21, Ts22 and Ts23. Sequences with bag and 

coat are still unseen during training. The difference here is one 

additional normal sequence (nm4) in the training data. We 

compare our results with those obtained by Huang et al. in [4], 

Dupuis et al. in [44], Jeevan et al. in [45], Yogarajah et al. in 

[47] and Jiménez et al. in [48] 

 

TABLE IV 

RECOGNITION RATES (%) OF EXPERIMENTS USING SETUP 2 [4], [44], [45], [47] AND [48] 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 
9Fus 

(UWV) 

9Fus 

(WV) 

Huang 

et al. 

[4] 

Dupuis 

et al. 

[44] 

Jeevan 

et al. 

[45]* 

Yogarajah 

et al [47] 

Jiménez 

et al. 

[48] 

Ts21 99.19 99.60 77.82 94.76 95.57 91.13 94.36 93.95 96.77 99.60 99.60 99 98.79 93.36 97.20 99.50 

Ts22 43.15 54.03 50.00 46.77 54.03 85.08 37.50 46.77 88.71 87.50 91.93 64 92.74 22.44 63.30 78.80 

Ts23 88.71 88.71 51.21 79.03 84.27 53.23 74.19 72.18 60.48 98.39 97.58 72 77.82 56.12 91.90 96.80 

Avg. 77.02 80.78 59.68 73.52 77.96 76.48 68.68 70.97 81.99 95.16 96.37 78.33 89.78 57.31 84.13 77.02 

*Experiments carried out on 98 subjects only 

Ts21 (nm1, nm2), Ts22 (cl1 & cl2) and Ts23 (bg1 & bg2) 

 

 TABLE V 

FUSION RECOGNITION RATES (%) OF EXPERIMENTS USING SETUP 2 [4], [44], [45], [47] AND [48] 

 
3Fus123 

(UWV) 

3Fus123 

(WV) 

3Fus456 

(UWV) 

3Fus456 

(WV) 

3Fus789 

(UWV) 

3Fus789 

(WV) 

9Fus 

(UWV) 

9Fus 

(WV) 

Huang 

et al. [4] 

Dupuis et 

al. [44] 

Jeevan et 

al. [45] 

Yogarajah 

et al [47] 

Jiménez 

et al. [48] 

Ts21 99.60 99.60 97.98 97.18 98.79 98.79 99.60 99.60 99 98.79 93.36 97.20 99.50 

Ts22 57.26 60.89 64.52 62.50 69.35 89.52 87.50 91.93 64 92.74 22.44 63.30 78.80 

Ts23 90.60 91.94 82.66 85.08 79.44 78.63 98.39 97.58 72 77.82 56.12 91.90 96.80 

Avg. 82.49 84.14 81.72 81.59 82.53 88.98 95.16 96.37 78.33 89.78 57.31 84.13 91.70 

 

 

TABLE VI 

RECOGNITION RATES (%) OF EXPERIMENTS USING SETUP 3 [6] 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 
9Fus 

(UWV) 

9Fus 

(WV) 

Wang 

et al. 

[6] 

Ts31 99.19 100 78.23 96.77 97.58 93.55 96.77 98.39 98.39 100 100 100 

Ts32 89.52 87.90 52.42 79.03 82.26 55.65 79.03 82.26 68.55 99.19 97.58 68.52 

Ts33 91.94 90.32 58.06 83.07 85.48 57.26 78.23 77.42 61.29 99.19 98.39 75.00 

Ts34 41.94 54.84 50.81 41.94 50.81 87.90 38.71 46.77 92.74 90.32 90.32 49.07 

Ts35 44.35 60.48 54.84 54.84 62.10 88.71 46.77 53.23 94.36 91.94 91.94 44.44 

Average 73.39 78.71 58.87 71.13 75.65 76.61 67.90 71.61 83.07 96.13 95.65 67.41 

Ts31 (nm6), Ts32 (bg1), Ts33 (bg2), Ts34 (cl1) and Ts35 (cl2) 

 

 
TABLE VII 

FUSION RECOGNITION RATES (%) OF EXPERIMENTS USING SETUP 3 [6] 

 
3Fus123 

(UWV) 

3Fus123 

(WV) 

3Fus456 

(UWV) 

3Fus456 

(WV) 

3Fus789 

(UWV) 

3Fus789 

(WV) 

9Fus 

(UWV) 

9Fus 

(WV) 

Wang 

et al. 

[6] 

Ts31 99.19 100 98.39 98.39 100 100 100 100 100 

Ts32 90.32 91.94 82.26 85.48 83.87 83.87 99.19 97.58 68.52 

Ts33 91.94 95.16 82.26 86.29 86.29 82.26 99.19 98.39 75.00 

Ts34 60.48 60.48 71.77 62.10 73.39 90.32 90.32 90.32 49.07 

Ts35 63.71 65.32 75.81 71.77 74.19 94.35 91.94 91.94 44.44 

Average 81.13 82.58 82.10 80.81 83.55 90.16 96.13 95.65 67.41 
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It is still noticeable that high recognition rates are possible 

without fusion using the two recognition approaches of R1 and 

R2, in both cases of normal sequences (Ts21) and bag 

sequences (Ts23).  Again, edge-masked AEI gait 

representation has worked well for coat sequences (Ts22), 

especially with the MPCA+LDA algorithm R9. The rate in 

[44] still exceeds this one by more than 4%. But it is higher 

than the rate obtained in 9Fus (WV) by less than 1%. 

General behavior of all base methods is similar to that in 

Setup 1. Average 9-decision fusion results (WV) are 

approximately 6% higher than the highest of the other 

methods.  

Table V shows the fusion results using Setup 2. It can be 

seen that 3-decision fusion techniques are more effective here 

compared to the more onerous Setup 1. Again, in average, WV 

performs better than UWV. 

3) Results using experimental setup 3 

Table VI summarizes the recognition rates obtained for the 

experiments carried out using Training Data Tr3 and Testing 

Data Ts31, Ts32, Ts33,Ts34 and Ts35. Note that one more 

normal sequence (nm5) is added to the training data. We 

compare our results with those obtained by Wang et al. in [6]. 

Most of the base methods have performed well. It can be 

noticed that one of these methods, R2 has outperformed the 

target in all the five testing experiments. Fusion has improved 

this very dramatically. We can see in the case of coat (Ts34 

and Ts35) our fusion rates are approximately 50% higher than 

those reported in [6]. Table VII shows the fusion results using 

Setup 3. It can be seen that all 3-decision fusion techniques 

outperforms the target results and score very well. As 

expected, 9-decision fusion improves this further.

 

TABLE VIII 

RECOGNITION RATES (%) OF EXPERIMENTS USING SETUP 4 [5] 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 
9Fus 

(UWV) 

9Fus 

(WV) 

Kumar 

et al. [5] 

Ts41 96.77 98.39 66.94 94.36 93.55 95.97 90.32 94.35 98.39 99.19 99.19 93.33 

Ts42 100 99.19 58.06 95.97 92.74 95.16 87.90 90.32 98.39 100 100 96.66 

Ts43 99.19 96.77 66.94 94.36 93.55 91.94 87.10 91.94 97.58 100 100 92.50 

Ts44 98.39 99.19 63.71 93.55 90.32 87.10 84.68 87.90 93.55 100 100 76.66 

Ts45 85.48 95.16 56.45 84.68 85.48 95.97 70.97 77.42 97.58 99.19 100 79.16 

Average 95.97 97.74 62.42 92.58 91.13 93.23 84.19 88.39 97.10 99.68 99.84 87.66 

Ts41 (nm4), Ts42 (nm5), Ts43 (nm6), Ts44 (bg2) and Ts45 (cl2) 

 

TABLE X 

RECOGNITION RATES (%) FROM FUSION OF R1, R2 AND R9 USING SETUP 1 [3] AND [46] 

 3Fus129 (WV) 9Fus(WV) Zhang et al. [3] Zeng et al. [46] 

Ts11 98.93 99.19 98.40 98.40 

Ts12 86.29 95.97 91.95 93.50 

Ts13 79.84 88.31 72.19 90.30 

Average 88.35 94.49 87.51 94.07 

 

TABLE XI 

RECOGNITION RATES (%) FROM FUSION OF R1, R2 AND R9 USING SETUP 2 [4], [44], [45], [47] AND [48] 

 3Fus129 (WV) 9Fus(WV) Huang et al. [4] Dupuis et al. [44] Jeevan et al. [45] Yogarajah et al [47] Jiménez et al. [48] 

Ts21 99.60 99.60 99 98.79 93.36 97.20 99.50 

Ts22 86.69 91.93 64 92.74 22.44 63.30 78.80 

Ts23 92.73 97.58 72 77.82 56.12 91.90 96.80 

Average 93.01 96.37 78.33 89.78 57.31 84.13 91.70 

 

TABLE IX 

FUSION RECOGNITION RATES (%) OF EXPERIMENTS USING SETUP 4 [5] 

 
3Fus123 

(UWV) 

3Fus123 

(WV) 

3Fus456 

(UWV) 

3Fus456 

(WV) 

3Fus789 

(UWV) 

3Fus789 

(WV) 

9Fus 

(UWV) 

9Fus 

(WV) 

Kumar 

et al. [5] 

Ts41 99.19 99.19 97.58 98.39 95.97 97.58 99.19 99.19 93.33 

Ts42 99.19 99.19 97.58 97.58 96.77 98.39 100 100 96.66 

Ts43 97.58 96.77 98.39 98.39 97.58 97.58 100 100 92.50 

Ts44 99.19 99.19 96.77 97.58 96.77 97.58 100 100 76.66 

Ts45 92.74 95.97 95.97 95.97 93.55 99.19 99.19 100 79.16 

Average 97.58 98.06 97.26 97.58 96.13 98.06 99.68 99.84 87.66 
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4) Results using experimental setup 4 

Table VIII summarizes the recognition rates obtained for 

the experiments carried out using Training Data Tr4 and 

Testing Data Ts41, Ts42, Ts43,Ts44 and Ts35. This is the only 

setup in which training data has samples from all three groups, 

normal, bag and coat. It is expected that this arrangement 

should enhance the final overall recognition rate, especially 

when testing for bag and coat sequences. We compare our 

results with those obtained by Kumar et al. in [5]. 

Exactly as expected, recognition rates have topped high 

due to training for the two variables of carrying condition 

(bag) and clothing (coat). Most of our methods, especially R1, 

R2 and R9, have outperformed those in [5]. This is especially 

noticeable in the two cases of Ts44 (bg2) and Ts45 (cl2). 

Edge-masked AEI is apparently not so efficient when 

combined with image projection and LDF (R3). However, it 

performs very well with MPCA+LDA (R9). Table IX shows 

the fusion results using Setup 4. 3-decision fusion techniques 

also perform very well, and they all outperform the target 

results. Almost all of the recognition rates achieved by 9-

decision fusion are at top 100%. This table also shows, 

through all average values, that Weighted Voting (WV) 

performs better compared to Un-Weighted Voting (UWV). 

In general, the unweighted and weighted 9-decision voting 

schemes outperform all the recently published methods that 

use state-of-the-art algorithms. While this is the case, fusion 

may not be always needed. In most of the tests presented 

above, two of the base methods, R1 and R2, have also 

individually exceeded the target results. To recall, these 

methods use the API and AFI gait representations 

respectively, using the simple image projection for feature 

extraction and linear classifier. The edge-masked AEI gait 

representation has performed well for the coat sequences, 

particularly when combined with the MPCA+LDA algorithm. 

As can be noticed, experimental setups gradually decrease in 

difficulty moving from Setup 1 to Setup 4. 3-decision fusion 

techniques perform very well in Setup 4. They also 

outperform the target results in Setup 3, and with less 

percentage for Setup 2. In Setup 1, however, we need 9-

decision fusion to achieve our targets. 

It should be also noted that the fusion results in Setups 2-4 

were achieved using the weights from Setup 1. These might be 

optimized further, and results improved, by utilizing the 

additional training dataset for validation. 

As a final test, and based on the findings of our 

experiments above, we will evaluate another 3-decision fusion 

combination using base recognizers R1, R2 and R9. These 3 

base methods yielded the smallest errors from Table II, and 

the best average individual recognition rates in the four setups. 

We will also concentrate on the Weighted Voting (WV) 

scheme only. The method is labeled 3Fus129. Tables X-XIII 

list these final results and compare them to the 9-decision 

fusion rates and the published rates. We can see this 3-

decision fusion method outperforms almost all the target 

results in the four setups. Obviously, the 9-decision fusion 

enhances the rates further. 

As said earlier in Section I, there are also drawbacks of the 

fusion methods, generally higher processing time and 

computational complexity. To further highlight this point we 

used the Matlab functions tic and toc to simulate the 

processing power of each of the proposed fusion method. The 

PC used during the test has: Intel Core i5 processor, 8GB 

Memory and 5400RPM HDD. In this case, we report the total 

processing time required for pre-processing, feature extraction 

TABLE XII 

RECOGNITION RATES (%) FROM FUSION OF R1, R2 AND R9 USING SETUP 3 [6] 

 3Fus129 (WV) 9Fus (WV) Wang et al. [6] 

Ts31 100 100 100 

Ts32 91.94 97.58 68.52 

Ts33 95.97 98.39 75.00 

Ts34 90.32 90.32 49.07 

Ts35 91.94 91.94 44.44 

Average 94.03 95.65 67.41 

 

TABLE XIII 

RECOGNITION RATES (%) FROM FUSION OF R1, R2 AND R9 USING SETUP 4 [5] 

 3Fus129 (WV) 9Fus (WV) Kumar et al. [5] 

Ts41 100 99.19 93.33 

Ts42 99.19 100 96.66 

Ts43 99.19 100 92.50 

Ts44 99.19 100 76.66 

Ts45 97.58 100 79.16 

Average 99.03 99.84 87.66 

 

TABLE XIV 

TOTAL PROCESSING TIMES OF THE PROPOSED WEIGHTED VOTING FUSION METHODS 

Method 3Fus123 3Fus456 3Fus789 3Fus129 9Fus 

Time (sec) 10.537 47.975 96.177 49.953 179.927 
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and classification of one single object, being bag sequence 1 

(bg1). Table XIV summarizes these processing times. We 

notice that the tensor-based multilinear subspace learning 

methods (using MPCA and MPCALDA) are more 

computationally complex than other methods, which is 

expected. We suggest that the method giving the best trade-off 

between recognition rates and computational complexity is 

3Fus129. 

E. Robustness Experiments using OU-ISIR database 

1) OU-ISIR Treadmill Dataset B 

As an additional robustness test, we carried out several 

experiments using the OU-ISIR database, particularly the 

‘Treadmill’ database. The Treadmill database tests for 

different variations including; view variation (Dataset A), 

cloth variation (Dataset B), speed variation (Dataset C) and 

gait fluctuations (Dataset D). We chose to use Dataset B, 

which is more relevant to this paper. The dataset, explained in 

[49], comprises 68 subjects captured from side view, walking 

on treadmill, with up to 32 different combinations of clothes 

as shown in Fig. 9. This dataset was also used in some of the 

recent experiments on gait recognition as in [50], [52] and 

[53]. 

The dataset is divided into three parts: 

1. Training Subset: contains 20 subjects with 15-28 cloth 

variations. We did not use this subset, as we wish to test 

our pre-tuned system using the same parameters from 

previous experiments 

2. Gallery Subset: contains 48 subjects with one cloth type 

(9). 

3. Probe Subset: contains 48 subjects with the rest cloth 

types, resulting into 856 samples. 

2) Experiments and results 

The first observation on the dataset is that it comprises 

normalized silhouettes of the subjects only. To recall, two of 

the three gait representations we used in this paper; API and 

AFI, are based on the original frames as inputs, in order to 

accumulate differences producing strip-like images that 

preserve the spatial information. These frames are not 

available in the dataset, thus the two mentioned methods could 

not be used in this test. The only method that could be used is 

the non-optimized EMAEI. It was still worth testing how the 

system would generalize and see the effect of fusion as well. 

Besides, there is only one sample per subject in the gallery, 

which means that the number of samples (48) is less than the 

number of features (100) in the linear feature matrix. 

Therefore, we could not use the LDF classifier and had to 

replace it with the KNN (N=1) classifier. 

 

 
Fig. 9:  OU-ISIR Treadmill Dataset B sample clothing types 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10:  Human Body Proportions (Courtesy www.tutsplus.com) 

 

 

With this, the experiments we have undertaken in this 

section are as follows: 

a) Experiments using EMAEI with mask that extends 

from parts 2 to 5 of the body proportions 

An edge-mask similar to the one described in section II-C 

is implemented here, after dividing each silhouette image into 

8 equal proportions (Fig 10). The lines that mark the 

beginning of 2nd proportion (chin) and the end of 5th 

proportion (mid-thigh) are 16 and 80 respectively, and thus are 

used in this experiment. See Fig. 11-a for example. This 

experimental set is labeled EMAEI-25, and it comprises three 

experiments, namely: 

(1) EMAEI + Image Projection + KNN Classifier; 

labeled R3* to differentiate it from R3 used in 

previous experiments (replacing LDF with KNN for 

classification) 

(2) EMAET + MPCA + KNN Classifier - (R6) 
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We also reduced the silhouettes resolution similar to 

the work in section III-C, resulting into a gallery 

matrix of size 64x44x48 and probe matrix of size 

64x44x856 

(3) EMAET + MPCALDA + KNN Classifier - (R9)  

The same resolution reduction also applies here. 

b) Experiments using EMAEI with mask that extends 

from parts 1 to 5 of the body proportions 

It was noticed that some of the cloth types in the OU-ISIR 

dataset B include various types of head cover in different 

combinations. Trying to eliminate the effect from this part of 

the body, we tested to extend the mask to include proportions 

1 to 5, or pixels 1 to 80 in the corresponding silhouette image, 

keeping only the legs swing. See Fig. 11-b for example. This 

experimental set is labeled EMAEI-15. 

c) Experiments using AEI 

This is the basis method for the EMAEI, described by 

Zhang et al. in [3]; we repeated the same experiments on AEI 

for comparison. See Fig. 11-c for example. 

 

The results from these experiments are listed in Table 

XIV, and compared to the results reported by Arora et al. in 

[50], who used Gait Information Image with Sigmoid Feature 

(GII-SF) method, which is based on the information set 

theory. 

We notice that R6, which is based on tensorial data and the 

non-linear MPCA algorithm, has yielded the best results 

among the three individual methods. And this is in line with 

the results on CASIA B database, where the average results 

using MPCA were the highest compared to the rest methods. 

Method EMAEI-25 was slightly better than EMAEI-15, which 

means that there are still discriminating features in the head 

part. Recall that EMAEI-25 is the same method used in 

CASIA B experiments. The results using the basis method 

AEI are still better. As noted earlier, the Masked AEI methods 

implemented in this paper are based on a simple approach of 

manual masking and must be improved, by using more 

advanced feature selection criteria, such as those introduced in 

[44] and [55]. 

d) Decision Fusion Experiments 

We tested here three different fusion methods: 

(1) Weighted Decision Fusion using weights from 

Table II  

These weights are 0.049, 0.119 and 0.128 corresponding to 

methods R3*, R6 and R9 respectively. Recall that these 

weights are calculated from testing the different methods at 

normal walking conditions, using Setup 1, on CASIA B 

Dataset. At those controlled and limited conditions, R9 scored 

the highest rate, which was not the case on OU-ISIR Treadmill 

B dataset. This led to poor fusion results, as seen in Table XIV 

under 3FusWV, which indicates the need for more 

experiments on different conditions in order to better estimate 

the fusion weights. 

(2) Weighted Decision Fusion using new weights 

In these experiments we use a different set of weights 

estimated from the performance on the OU-ISIR Treadmill B 

dataset. These are 0.3, 0.6 and 0.1 corresponding to R3*, R6 

and R9 respectively. And the fusion results using these 

weights are shown in Table XIV under 3FusWV*. We notice 

that these weights have dramatically improved the rates, 

matching the individual rate of the MPCA-based method, R6. 

(3) Unweighted Decision Fusion  

TABLE XIV 

RECOGNITION RATES (%) FROM EXPERIMENTS ON OU-ISIR DATASET B USING 1 GALLERY SEQUENCE 

 R3* R6 R9 3FusWV 3FusWV* 3FusUWV Arora et al. [50] 

EMAEI-15 27.78 53.34 2.11 22.74 53.34 34.11 

61.20 EMAEI-25 29.07 60.84 1.64 23.80 60.84 36.81 

AEI 29.43 66.94 1.64 24.97 66.94 38.57 

Average 28.76 60.37 1.80 23.84 60.37 36.50 - 

 

TABLE XV 

RECOGNITION RATES (%) FROM EXPERIMENTS ON OU-ISIR DATASET B USING 5 GALLERY SEQUENCES 

 R3* R6 R9 3FusWV 3FusWV* 3FusUWV 

EMAEI-15 35.25 62.48 25.87 42.21 62.48 47.81 

EMAEI-25 37.52 71.10 21.79 44.78 71.10 52.50 

AEI 45.99 83.21 30.26 54.92 83.21 60.51 

Average 39.59 72.26 25.97 47.30 72.26 53.61 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 11: (a) EMAEI-25 of subject 94, cloth type 9, (b) 

EMAEI-15 of the same subject and cloth type, (c) AEI of the 

same subject and cloth type. 
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Finally, fusion of the three decisions without weights 

yielded the rates under 3FusUWV, which as seen are between 

those yielded from the two previous fusion methods. 

e) Experiments using five gallery sequences (cloth 

types) 

As additional experiments to test the impact of adding 

gallery samples, we added four more sequences to the gallery 

set, selecting those that are common to all subjects; cloth types 

A, B, C, 5 and 9 resulting into a linear feature matrix of size 

240x100. The rest of sequences go in the probe set with 

feature matrix of size 664x100. And the tensorial data, after 

resolution reduction, become 64x44x240 for gallery and 

64x44x664 for probe. 

After repeating exactly the same experiments from a 

through d above, we get the results in Table XV. We notice 

that the behavior is still the same, with higher rates in all 

experiments resulted from the additional samples. 

VI. CONCLUSIONS AND FUTURE WORK 

Major part of the research work on gait recognition is 

dedicated to overcome the challenges associated with 

covariates such as carrying and clothing conditions. In the 

outcome of our literature review, and based on the results of 

the experimental analysis, it is concluded that model-free gait 

approaches, and particularly spatio-temporal (accumulated 

error) and energy-based methods can perform well. 

The focus of this work has been on single-view gait 

recognition with varying clothing and carrying conditions. 

Hence, the use of this part of the CASIA-B dataset and OU-

ISIR Dataset B. In future work other applications should be 

explored where multi-view is needed.  
Nine different gait approaches have been proposed and 

evaluated. Three gait representation methods are used; 

Accumulated Prediction Image (API) and two new 

representation techniques namely, Accumulated Flow Image 

(AFI) and Edge-Masked Active Energy Image (EMAEI). It 

was shown that the first two methods are effective in 

producing distinctive features. The EMAEI method, although 

requires further optimization, has performed well when tested 

with coat sequences on CASIA B dataset as it removes the 

parts of the body that correspond to static features. Therefore, 

it contributes in the final fusion scheme.  

Three methods have been evaluated for feature extraction. 

Image projection with 1D DCT, and two multilinear 

techniques namely MPCA and MPCA+LDA. The two 

multilinear techniques are compatible with the tensorial nature 

of the gait features, being 3-mode data. The advantage was to 

keep data in its raw nature. Each of the three gait 

representation images was tested with each of the feature 

extraction methods, yielding a model of nine different base 

recognizers. 

As future work, the different parameters obtained 

empirically in this work may still be optimized by further 

testing and experimenting. More advanced methods of feature 

selection could be tested that may reduce the effect of static 

features in gait images. 

It is shown that fusion can combine the base classifiers’ 

discriminating power and boost the overall system’s 

performance. Decision-level fusion is simple and 

straightforward compared to feature-level and score-level 

fusion techniques. It is concluded that fusion is recommended 

for gait recognition. Based on a comparison between 

unweighted and weighted voting fusion schemes, it was found 

that weighting can improve the classification accuracy, 

provided previous knowledge of the individual methods’ 

performance. As for the two voting schemes tested in this 

work; Unweighted Voting (UWV) and Weighted Voting 

(WV), the WV method has shown improvements in majority 

of the fusion tests carried out, while UWV is still an easy and 

safe choice if individual performances are ignored or 

unknown. On the other hand, further testing would be required 

to improve the computational power of the proposed fusion 

methods. 
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