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Abstract 

In polynomial networks, feature vectors are mapped to a higher dimensional space through a 

polynomial function. The expanded vectors are then passed to a single layer network to compute 

the model parameters. However, as the dimensionality of the feature vectors grows with polynomial 

expansion, polynomial training and classification become impractical due to the prohibitive number 

of expanded variables. This problem is more prominent in vision-based systems where high 

dimensionality feature vectors are extracted from digital images and/or video. In this paper we 

propose to reduce the dimensionality of the expanded vector through the use of stepwise 

regression. We compare our work to the reduced-model multinomial networks where the 

dimensionality of the expanded feature vectors grows linearly whilst preserving the classification 

ability. We also compare the proposed work to standard polynomial classifiers and to established 

techniques of polynomial classifiers with dimensionality reduction. Two application scenarios are 

used to test the proposed solution, namely; image-based hand recognition and video-based 

recognition of isolated sign language gestures. Various datasets from the UCI machine learning 

repository are also used for testing. Experimental results illustrate the effectiveness of the proposed 

dimensionality reduction technique in comparison to published methods.  
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1. Introduction 

Linear discriminant functions are considered amongst the simplest supervised classification 

methods. In such methods, a sequence of feature vectors is linearly mapped into a sequence of class 

labels. Multi-class classification problems can be reduced to multiple two-class classification 

problems. Linear discriminant functions work very well with linearly separable data. However, they 

are less accurate when the data is not linearly separable. As a solution to this problem, many 

nonlinear classification methods were introduced in the past few decades including neural and 

statistical classifiers. Amongst the neural classifiers falls the polynomial classifier [1],[2] and [3] 

which can be thought of as a network which accepts feature vectors, maps them to a higher 

dimensional space through a polynomial function and passes the expanded vectors through a single 

layer network. The weights of this network are obtained through the minimization of the L2-norm of 

the error between the output of the network and the desired outputs for the training data. 

However, as the dimensionality of the feature vectors grows with polynomial expansion, polynomial 

training and classification become impractical due to the prohibitive number of expanded variables. 

One approach to solve this problem is through dimensionality reduction of the expanded feature 

set. For instance [4] proposed a speaker verification system based on polynomial networks with 

dimensionality reduction.  A random dimensionality reduction technique was proposed based on 

linear transforms such as Principal Component Analysis (PCA) [5, 6] and Fast Fourier 

Transformation (FFT). 

Another approach is based on piecewise regression. In [7] it was proposed to use polynomial models 

to fit each subset or piece of the predictors. Then contiguous pieces of the predictor space are 

generated using a recursive partitioning algorithm. Lastly, piecewise polynomial model estimates are 

combined using weighted averaging. 

More recently [8] proposed a simple yet promising reduced polynomial model whose number of 

parameters increases linearly whilst preserving decent classification capability. Multinomials that are 

a special case of multivariate polynomials are used for expansion and model estimation. 

In this paper, we propose to reduce the dimensionality of expanded feature sets through the use of 

the stepwise regression procedure. In such a procedure the predictor variables or the elements of 

the expanded feature vectors are screened to obtain the best subset of variables. We apply the 

proposed solution to two application scansions; image-based hand recognition and video-based 

recognition of isolated sign language gestures. We compare the proposed solution against the 

reviewed reduced polynomial model and standard polynomials networks. 
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This paper is organized as follows. Section 2 reviews standard polynomial networks including 

expansion, training and model estimation. Section 3 briefly reviews the reduced polynomial model. 

Section 4 introduces the proposed solution that integrates polynomial expansion with stepwise 

regression. Section 5 introduces the application scenarios used to verify the proposed solution. The 

experimental results are presented in Section 6 followed by the concluding remarks. 

 

2. Polynomial networks 

A Polynomial network is a supervised classifier that is capable of learning complex patterns that 

could be linearly inseparable. Polynomial networks have been successfully used in various 

applications of pattern recognition including speech and speaker recognition [1],[2] and[3] and 

biomedical signal separation [9].  

A polynomial network is a parameterized nonlinear map which nonlinearly expands a sequence of 

input vectors to a higher dimension and maps them to a desired output sequence. 

Training a Pth order polynomial network consists of two main parts. Part one is expanding the 

training feature vectors via polynomial expansion. The purpose of this expansion is to improve the 

separation of the different classes in the expanded vector space. Ideally, we aim to have this 

expansion make all the classes linearly separable.  Part two is linearly mapping the polynomial-

expanded vectors to an ideal output sequence by minimizing an objective criterion. The mapping 

parameters represent the weights of the polynomial network. These weights are often referred to as 

the class models. 

 

2.1 Polynomial Expansion 

Polynomial expansion of an M-dimensional feature vector x = [x1  x2 ... xM] is achieved by 

combining the vector elements with multipliers to form a set of basis functions, p(x). The elements 

of p(x) are the monomials of the form
jk

j

M

j
x

1
 , where kj is a positive integer, and Pk

M

j

j 
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0  .  

Therefore, the Pth order polynomial expansion of an M-dimensional vector x generates an OM,P-

dimensional vector  p(x). OM,P is a function of both M and P and can be expressed as  
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where 









l

M
lMC ),(  is the number of distinct subsets of l elements that can be made out of a set 

of M elements. Therefore, for class i the sequence of feature vectors T
Niiii i

],[ ,2,1, xxxX   is 

expanded into: 

T
Niiii i

])()()([ ,2,1, xpxpxpV      (2) 

Notice that while iX is a MNi  matrix, iV is a p,Mi ON  matrix. 

Expanding all the training feature vectors results in a global matrix for all K classes obtained by 

concatenating all the individual iV matrices such that  T
K ][ 21 VVVV  . 

 

2.2 Solving for the network weights                                                

For each class i, the training problem reduces to finding an optimum weight vector. This weight 

vector is obtained by minimizing the distance between the ideal output vector iy  and a linear 

combination of the polynomial expansion of the training feature vectors iwV  such that  

pii
opt
i

i

ywVw
w

 minarg           (3) 

The ideal output for the ith class, iy , is a column vector comprised of ones and zeros such as iy = [ 

1N0 , 
2N0 , … , 

1iN0 , 
iN1 , 

1iN0 , …, 
kN0  ]

T .Equation 3 indicates that weight vector is obtained 

by minimizing the Lp-norm of the error vector ei = ii yVw  . For the special case of p=2, we arrive 

at the well-known L2-regression problem. That is, finding 
opt
iw that attains the minimum of the L2-

norm of the error sequence ei . Or equivalently, minimizing the square of the L2-norm such as 

2

2
minarg ii

opt
i

i

yVww
w

         (4) 

Fortunately, for this particular formulation with the L2-norm there is an explicit formula for the 

solution
opt
iw . This solution can be obtained by applying the normal equations method [10] such as 

i
Topt

i
T

yVVwV                                                                          (5) 

By incorporating Equation 3, Equation 5 can be rearranged as  

i
T
i

opt
ij

K

j

T
j 1VwVV 

1

                                                                                            (6) 
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If we define j

T

jj VVR  , 



K

j

j

1

RR , and i

T

ii 1Vv   then equation (6) yields an explicit solution 

for 
opt
iw expressed as  

i

opt

i vRw
1                                                                                   (7) 

The set  opt
iw  represents the weights of the K polynomial networks which we refer to as the class 

models. 

In [1], Campbell and Assaleh discuss the computational aspects of solving for 
opt
iw and they present 

a fast method for training polynomial networks by exploiting the redundancy of the jR matrices. 

They also discuss in details the computational and storage advantages of their training method.  

 

2.3 Identification  

In the identification stage we are given a sequence of Nc feature vectors cX and we are required to 

determine its class c as one of the enrolled classes in the set  K,,2,1  . This is done by two steps: 

first, expand cX  into its polynomial basis terms T
Ncccc c

])()()([ ,2,1, xpxpxpV  , and 

second, evaluate the output sequences against all K models  opt
iw  to obtain a set of score 

sequences  is such as 

opt

ici wVs  .                             (8) 

The elements of the score sequence is represent the individual scores of each feature vector in the 

vector sequence cX . The class of the sequence cX  is determined by maximizing  )( ig s such as  

))((maxarg i
i

gc s                                                                (9) 

where g is a function that outputs a statistic of the sequence is  such as the mean or the median. In 

our case we chose g to compute the mean of is such as  


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3. Review of reduced polynomial model 
 
In [8] the use of multinomial for expansion and model estimation was proposed. The weight 

parameters are estimated from the following multinomial model: 

𝑓𝑅𝑀(𝜶,x)=𝛼0 +∑∑𝛼𝑘𝑗𝑥𝑗
𝑘

𝑙

𝑗=1

𝑟

𝑘=1

+∑𝛼𝑟𝑙+𝑗(𝑥1 + 𝑥2 +⋯+ 𝑥𝑙)
𝑗 +

𝑟

𝑗=1

 

∑ (𝜶𝑗
𝑇 .x)(𝑥1 + 𝑥2 +⋯+ 𝑥𝑙)

𝑗−1, 𝑙, 𝑟 ≥ 2𝑟
𝑗=2      (11) 

 

Where r is the order of the polynomial, α is the polynomial weights to be estimated, x is the feature 

vector containing l inputs. The total number of terms in 𝑓𝑅𝑀(𝜶,x) is equal to 1+r+l(2r-1). Just like 

the case of standard polynomial networks, the polynomial weights can be estimated using least-

squares error minimization. 

 

4. Proposed polynomial networks with stepwise regression: 
 
Stepwise regression is a wildly used regressor variable selection procedure. To illustrate the 

procedure (as described in [11]), assume that we have K candidate variables x1,x2,…,xk and a single 

response variable y. In classification the candidate variables correspond to the polynomial-expanded 

elements of the feature vectors and the response variable corresponds to the class label. Note that 

with the intercept term β0 we end up with K+1 variables. 

In the procedure the polynomial weights (or the regression model) are iteratively found by adding or 

removing variables at each step. The procedure starts by building a one variable regression model 

using the variable that has the highest correlation with the response variable y. This variable will also 

generate the largest partial F-statistic. In the second step, the remaining K-1 variables are examined. 

The variable that generates the maximum partial F-statistic is added to the model provided that the 

partial F-statistic is larger than the value of the F-random variable for adding a variable to the 

model, such an F-random variable is referred to as fin. Formally the partial F-statistic for the second 

variable is computed by: 𝑓2 =
𝑆𝑆𝑅(𝛽2|𝛽1,𝛽0)

𝑀𝑆𝐸(𝑥2,𝑥1)
. Where MSE(x2,x1) denotes the mean square error for 

the model containing both x1 and x2. SSR(β2|β1,β0) is the regression sum of squares due to β2 given 

that β1,β0 are already in the model. 

In general the partial F-statistic for variable j is computed by: 

 

𝑓𝑗 =
𝑆𝑆𝑅(𝛽𝑗|𝛽0,𝛽1,,…,𝛽𝑗−1,𝛽𝑗+1,…,𝛽𝑘)

𝑀𝑆𝐸
                  (12) 
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If variable x2 is added to the model then the procedure determines whether the variable x1 should be 

removed. This is determined by computing the F-statistic 𝑓1 =
𝑆𝑆𝑅(𝛽1|𝛽2𝛽0)

𝑀𝑆𝐸(𝑥2,𝑥2)
. If f1 is less than the 

value of the F-random variable for removing variables from the model, such an F-random variable 

is referred to as fout . 

The procedure examines the remaining variables and stops when no other variable can be added or 

removed from the model. More information on stepwise regression can be found in classical 

statistics and probability texts such as [11].  

It is also worth mentioning that one cannot arrive to the conclusion that all of the regressors that 

are important for predicting the response variable have been retained in the stepwise procedure. 

This is so because such a procedure retains regressors based on the use of sample estimates of the 

true model weights. It is understood that there is a probability of making errors in retaining 

regressors. 

The integration of the stepwise regression into the polynomial classifier is illustrated in Figure 1. 

Note that the elements of the expanded feature vectors are examined using the aforementioned 

procedure during the training stage of the classifier. The indices of the retained elements of the 

expanded feature vectors are stored and passed on to the testing or validation stage. Polynomial 

expansion is applied to a test feature vector. Only, the feature vector elements corresponding to the 

indices found from the training stage are retained. Thus the stepwise regression procedure is applied 

during the training stage only. The model parameters are based on the reduced training feature 

vectors. The same parameters are used for classification during the testing stage. 
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Figure 1. Illustration of polynomial classification with stepwise regression. 
 

Note that the time complexity of the stepwise regression using the Big-O notation is O(N2). But 

again, such a procedure is only needed during the training stage. 

5. Application scenarios 

We use two computer vision application scenarios to validate the proposed solution, namely; image-

based hand recognition and recognition of video-based isolated sign language gesture. Additionally, 

to further test the proposed solution, we use 10 classification datasets taken from the UCI Machine 

Learning Repository [12]. 

 5.1 Hand recognition 

This application scenario is based on an image-based hand recognition system. The application 

scenario proposes the use of both palm and back of hand images for hand recognition.  
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a. Dataset description: 

A wooden box that contains 2 digital cameras is used to collect images. The box is shown in part ‘a’ 

of Figure 2. A total of 53 users participated in the data collection phase. Images of both sides of the 

hand of each subject were captured. Example images are shown in parts ‘b’ and ‘c’ of Figure 2. 

Subjects are asked to reenter their hands into the box after each capture of image pairs. Data was 

collected over two sessions. In each session 10 image pairs are collected per subject. The total 

number of images per session is therefore 53x10x2. The data collected in the first session is used for 

training and the data collected in the second session is used for validation.   

 
(a) Data collection box fixed with two cameras to capture hand images 

 

 
(b) Example image of the hand’s palm 

 

 
(c) Example image of the back of the hand. 

 

Figure 2. Data collection for the hand recognition 
 
b. Feature extraction: 
The feature extraction scheme we use is rather simple. Each image is converted to gray scale and  
transformed into the frequency domain using the 2-D Discrete Cosine Transformation (DCT) given 

by: 









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
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
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Where NxM are the dimensions of the input image ‘f’ and F(u,v) is the DCT coefficient at row u and 

column v of the DCT matrix. C(u) is a normalization factor equal to 
2

1 for u=0 and 1 otherwise. 

More information about DCT transforms are found in [13]. 

An attractive property of this transformation is its energy compaction. Low frequencies are 

concentrated in the top left corner of the transformed image. Thus the input image can be coarsely 

represented by discarding high frequencies. In this work the DCT coefficients are zigzag scanned 

from the top left corner into an n dimensional vector [14]. The dimensionality is empirically 

determined as illustrated in the experimental results section. The block diagram of the proposed 

spatial feature extraction is shown in Figure 3: 

 
 
 
 

 
 
 
 

Figure 3. block diagram of the feature extraction technique from hand images. 
 

Note that other transform-based feature extraction techniques for hand recognition are reported in 

the literature. For instance [15, 16] proposed to extract features from wavelet coefficients of the 

palm. Likewise [17] proposed the use of Fourier transformation in the feature extraction stage. 

 

5.2 Isolated Sign language recognition 

This section describes the sign language dataset used in this application scenario followed by feature 

extraction. 

a. Dataset description 

Arabic Sign Language does not yet have a standard database that can be purchased or publicly 

accessed. Therefore, we decided to use our own ArSL database which was collected in [18, 19]. The 

dataset contains 23 Arabic gestured words/phrases from 3 different signers. The list of words is 

shown in Table 1.  

 

 

 

 

Input 
image 

   2-D DCT   Zonal coding 

DCT Cutoff 

Feature 
vector 
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# Arabic word Meaning in  
English 

# Arabic 
word 

Meaning in  
English 

 To Eat يأكل Friend 13 صديق 1

 To sleep ينام Neighbor 14 جار 2

 To Drink يشرب Guest 15 ضيف 3

 To wake up يستيقظ Gift 16 هدية 4

 To listen يسمع Enemy 17 عدو 5

 To stop talking يسكت Peace upon you 18 السلام عليكم 6

 To smell يشم Welcome 19 اهلا وسهلا 7

 To help يساعد Thank you 20 شكرا 8

 Yesterday امس Come in 21 تفضل 9

 To go يدهب Shame 22 عيب 10

 To come يأتي House 23 بيت 11

    I/me انا 12

Table 1: Arabic sign language gestures and their English meanings. 

 

Each of the three signers was asked to repeat each gesture 50 times over three different sessions 

resulting in a total of 150 repetitions of the 23 gestures which corresponds to 3450 video segments. 

The signer was videotaped without imposing any restriction on clothing or image background.  

 

b. Sign language feature extraction  

We adopt one of the feature extraction techniques proposed by the authors in [18]. For 

completeness this section provides a summary of the adopted technique. 

It was shown that the motion information in a video-based gesture is extracted from the temporal 

domain of the input image sequence through successive image differencing. Let )(
,
j
igI  denote image 

index j of the ith repetition of a gesture at index g. The image formed from the Accumulated 

Differences (ADs) can be computed by: 

 





1

1

)1(

,

)(

,,

n

j

j

ig

j

jgjjg IIAD         (14) 

Where n is the total number of images in the ith repetition of a gesture at index g. j  is a binary 

threshold function of the jth frame. 

Radon transformation is applied to the resultant ADs image. As such, the pixel intensities of the 

ADs image are projected at a given angle  using the following equation: 

')cos'sin',sin'cos'()( dyyxyxfxR  



     (15) 

Where f is the input image and the line integral is parallel to the y’ axis where x’  and y’ are given by:   
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The projected ADs image is then coarsely represented by transforming it into the frequency domain 

using a 1-D DCT followed by an ideal low pass filter. It was shown in [18] that the number of DCT 

coefficients to retain in the ideal low pass filter can be determined empirically. Given that the ADs 

image is projected onto the x-axis, a DCT cutoff of 100 was shown to be adequate. The feature 

vectors entail the retained 100 DCT coefficients. 

 

6. Experimental results: 

In this section, the proposed use of stepwise regression with polynomial networks is compared 

against the reviewed reduced polynomial model. The proposed work is also compared against 

standard polynomial classifiers with polynomial expansion but without dimensionality reduction. 

In Figure 4, we experiment with the application scenarios of hand recognition and sign language 

recognition.  The figure shows the classification rate as a function of the dimensionality of the 

feature vectors prior to the expansion. In both application scenarios this corresponds to the DCT 

cutoff in the feature extraction stage as described in Sections 5.1 and 5.2 above.  

 
DCT 
cutoff 

Proposed Reduced 
model 

Polynomial 

40 0.918 0.86 0.834 

50 0.92 0.84 0.868 

Average 0.92 0.85 0.85 

(a) Palm recognition 
 

DCT 
cutoff 

Proposed Reduced 
model 

Polynomial 

40 0.78 0.73 0.55 

50 0.78 0.72 0.63 

Average 0.78 0.72 0.59 

(b) Back of hand recognition 
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DCT 
cutoff 

Proposed Reduced 
model 

Polynomial 

40 0.962 0.955 0.911 

50 0.973 0.948 0.823 

Average 0.968 0.956 0.867 

(c) Sign language classification 
 

Figure 4. DCT cutoff versus classification rate for different application scenarios. 
 
In Part ‘a’ of the figure, it is shown that the classification rate of the proposed solution is higher 

than the both the reduced polynomial model and the standard polynomial classifier.  

In part ‘b’ of the figure, the classification rates of the reduced polynomial model are on average 

higher than those of the standard polynomial classifier. However both are inferior to the 

classification rates of the proposed solution. On average, the classification rate of the proposed 

solution is around 6% higher than the reduced polynomial model and 19% higher than the standard 

approach.  Also note that due to the ‘curse of dimensionality’ the standard polynomial classifier 

results in expanded feature vectors with high dimensionality affecting the numerical stability of the 

inversion of a potentially ill-conditioned matrix R in Equation 7 above, thus the less accurate 

classification results. This problem is frequent and is one of the major drawbacks of standard 

polynomial networks. 

Part ‘c’ of the figure presents the classification results for the sign language recognition application 

scenario. Again on average, the proposed solution generates the highest classification results. 

However, the gain in this application scenario is not as pronounced as in the previous two figures.  

In general, the gain in classification rate using the proposed solution is expected. This is because the 

stepwise regression procedure adds regressor variables that will affect the response variable most 

rather than blindly using all the regressors of the expanded feature vector. 

It is also shown in the figure that the classification rate using the polynomial classifier decreases at a 

cutoff of 50 DCT coefficients. Again this is due to the aforementioned numerical instability caused 

by the fact that the matrix R in Equation 7 is ill conditioned which leads to an unreliable set of 

model weights hence a lower classification rate as reported in Figure 4.c. 

In Figure 5 we present the dimensionality of the expanded feature vectors through the use of the 

proposed and the reviewed solutions. The three parts of the figure correspond to the experiments in 

Figure 4 with a second order expansion. It is shown that the dimensionality of the expanded feature 

vectors using the reduced polynomial model and the standard polynomial expansion are of fixed 
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length regardless of the content of the training datasets. On the other hand, in the proposed 

solution only regressors that affect the response variable most are selected, hence the length of the 

expanded feature vector depends on the content of the training dataset. 

 
DCT cutoff Standard 

Polynomials 
Multinomials Proposed 

40 861 123 123 

50 1326 153 129 

(a) Palm expansion 
DCT cutoff Standard 

Polynomials 
Multinomials Proposed 

40 861 123 121 

50 1326 153 111 

(b) Back of hand expansion 
DCT cutoff Standard 

Polynomials 
Multinomials Proposed 

40 861 123 199 

50 1326 153 284 

(c) Sign language expansion 
 

Figure 5. Dimensionality of expanded feature vectors using the proposed solution versus existing 
work. 

 
Clearly, the standard polynomial expansions results in an exponential growth of the feature vector as 

a function of the DCT cutoff. At a moderate DCT cutoff of 50 the length of the expanded vector 

grows to 1326. On the other hand, the proposed solution reasonably expands the dimensionality of 

the feature vectors. In the first application scenario, this dimensionality is lower than that proposed 

by the reduced polynomial model. However the reverse situation is evident in the sign language 

recognition scenario. Nonetheless, the dimensionality is still much smaller than that proposed by the 

standard polynomial expansion. 

Regarding the computational complexity of the proposed method, we mentioned in Section 4 that 

the training of polynomial networks with stepwise regression is computationally expensive. In Table 

2, the elapsed times of the standard polynomial network and the proposed method on the hand 

dataset are reported. The experiments were repeated a number of times and the average time in 

seconds is reported in the table. The elapsed time is captured using Matlab Profiler tool running on 

an IBM Thinkpad Laptop with Due 1.8GHz CPUs and 2 GB of RAM. Recall that 50% of the 

dataset is used for training. Both the training and testing times are reported in the table. Note that 

the training time in the standard polynomial classifier at higher feature dimensionality is also high 
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because of the exponential growth of the expanded terms. On the other hand, the elapsed time for 

the testing phase of the proposed solution is more efficient than that of the standard polynomial 

classifier due to the reduced number of model weights.  

Dimensionality 
 prior to expansion  

(DCT cutoff) 

Standard  
Polynomial classifier 

Polynomial classifier 
with stepwise regression 

Train (sec) Test (sec) Train (sec) Test (sec) 

40 5.8 0.23 13.12 0.17 

50 19.58 0.39 19.45 0.195 

Table 2. Comparison of training and testing elapsed times. 
 

Lastly, we test our proposed solution on a number of classification datasets taken from the UCI 

Machine Learning Repository [12]. The datasets are described in Table in 3. 

Index Name Attribute 
Types 

# Instances # Attributes # classes 

1-1 Breast Cancer Wisconsin (Diagnostic) 

 

Real 569 32 2 

2-4 Ionosphere 

 

Integer, 
Real 

351 34 2 

3-5 Iris Real 150 4 3 

4-6 Letter Recognition Real 20000 16 26 

5-7 Lung Cancer 

 

Integer 32 56 3 

6-8 MAGIC Gamma Telescope 

 

Real 19020 11 2 

7-9 
 

Pima Indians Diabetes 

 

Integer, 
Real 

768 8 2 

8-11 Image Segmentation 

 

Real 2310 19 7 

9-12 Connectionist Bench (Sonar, Mines vs. Rocks) 

 

Real 208 60 2 

10-14 Statlog (Shuttle) 

 

Integer 58000 9 7 

Table 3. Description of classification datasets taken from the UCI Machine Learning Repository. 
 
It is worth noting that subspace learning algorithms can also be used to reduce the dimensionality of 

expanded feature vectors. One efficient subspace learning algorithm is known as Spectral Regression 

[20] which combines spectral graph analysis and ordinary regression. The algorithm can be applied 

to the training data to generate a projection matrix. Consequently, this matrix is used to project both 

the training and the testing datasets into lower dimensionality. In the following experiment we 

compare the classification results of the proposed solution to both the aforementioned procedure 

and the reduced model. In the same figure we also report the classification results of the subspace 

method proposed in [4] since it was also applied to polynomial classifiers. The idea is to reduce the 

dimensionality of the expanded feature vectors by linearly transforming them into a lower 

dimensional space. This is achieved by the use of a transformation matrix whose entries are IID 

http://archive.ics.uci.edu/ml/datasets.html?format=&task=&att=&area=&numAtt=&numIns=&type=&sort=nameDown&view=table
http://archive.ics.uci.edu/ml/datasets.html?format=&task=&att=&area=&numAtt=&numIns=&type=&sort=attTypeUp&view=table
http://archive.ics.uci.edu/ml/datasets.html?format=&task=&att=&area=&numAtt=&numIns=&type=&sort=attTypeUp&view=table
http://archive.ics.uci.edu/ml/datasets.html?format=&task=&att=&area=&numAtt=&numIns=&type=&sort=instUp&view=table
http://archive.ics.uci.edu/ml/datasets.html?format=&task=&att=&area=&numAtt=&numIns=&type=&sort=attUp&view=table
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://archive.ics.uci.edu/ml/datasets/Ionosphere
http://archive.ics.uci.edu/ml/datasets/Lung+Cancer
http://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
http://archive.ics.uci.edu/ml/datasets/Image+Segmentation
http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar%2C+Mines+vs.+Rocks%29
http://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29
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Gaussian. In [4] and references within it is shown that using such a matrix for dimensionality 

reduction preserves similarity. 

 

Figure 6. Classification results using 10 datasets from the UCI machine learning repository. 
 

Figure 6 shows a comparison between the classification rates of the proposed solution and the 

reviewed ones. All training datasets contain 50% of the features vectors in a cross validation fashion. 

And a third order polynomial is used in expanding the feature vectors. It is shown in the figure that 

the average classification rate of the proposed solution is 84.8%, while that of the reduced model is 

79.2%. The  

Polynomial expansion followed by spectral regression achieved an average classification rate of 70% 

For a fair comparison with the linear transformation applied to the expanded feature vectors [4] , we 

stored the dimensions that resulted from the proposed solution and reused them in creating the 

transformation matrix. As such, the lengths of the final feature vectors are the same in both 

approaches. Nonetheless, it is shown in the figure that the classification rates of the proposed  

method are constantly higher than those of the reviewed solutions. 
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7. Conclusion 

In this paper we examined a number of application scenarios for the purpose of verifying the use of 

polynomial expansion followed by stepwise regression.  It was shown that stepwise regression can 

be used to reduce the dimensionality of expanded feature vectors whilst preserving the 

discrimination ability. The indices of the selected feature variables or regressosr are stored and used 

during the testing or validation stage. The proposed work was compared against both standard 

polynomial networks and recently proposed reduced model multinomial networks. We also 

compared the proposed algorithm to two other dimensionality reduction techniques; namely, 

spectral regression and random dimension reduction. The comparisons showed that the proposed 

technique offered favorable classification accuracy for the majority of the datasets used in this work. 

It is worthwhile to mention that the computational complexity of the proposed method in the 

training mode is relatively high. However, training is usually done in an offline mode where 

computational complexity is not critical as such. Nonetheless, the computational complexity of the 

proposed method in the testing mode is lower than that of the standard polynomial classifier.    
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