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Abstarct 

In this paper we present a robust polynomial classifier based on L1-norm minimization. 

We do so by reformulating the classifier training process as a linear programming 

problem. Due to the inherent insensitivity of the L1-norm to influential observations, class 

models obtained via L1-norm minimization are much more robust than their counterparts 

obtained by the classical least squares minimization (L2-norm). For validation purposes, 

we apply this method to two recognition problems: character recognition and sign 

language recognition. Both are examined under different signal to noise ratio (SNR) 

values of the test data. Results show that L1-norm minimization provides superior 

recognition rates over L2-norm minimization when the training data contains influential 

observations especially if the test dataset is noisy. 
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1. Introduction 
 

Robust classification is one of the most challenging problems in pattern recognition and 

its applications. In most pattern recognition applications, near perfect recognition rates 

can be obtained when the training and test data are acquired using same or similar data 

acquisition devices under the same or similar environment. Nevertheless, significant 

reductions in recognition rates are often experienced when the training and test data are 

mismatched. In general, mismatch between training and test conditions can be due to 

variability in background noise level and type, and in data source. A prime example is 

speech recognition where perfect recognition rates can be obtained when both training 

and test data are collected under the same or similar clean environment. However, when 

the test is done under noisy conditions or even under clean conditions using a different 

recording apparatus, recognition rates can drop significantly. Similar examples can be 

given on image recognition when lighting conditions are changed or when the imaging 

sensors are varied [1-4].  

The problem of robustness can be tackled at the feature extraction level, classification 

level, or both levels. At the feature extraction (frontend) level, various signal processing 

techniques and transformations are applied to undo the effect of the signal mismatch 

between training and test conditions. These techniques vary from one application to 

another. However, they often include some sort of filtering for either denoising or 

normalization to combat noise effect and variability of data acquisition devices or 

transmissions channel effects [4-7]. 

At the classifier (backend) level, the focus would be on designing a classifier whose 

parameters exhibit low sensitivity to variations in the test environment for a given class 

of data, and at the same time maintain good separability across the different classes. For 

example, in speech recognition, where Hidden Markov Models (HMMs) are the most 

commonly used classifier, the focus has been on robust statistics and model adaptation 

and compensation techniques [8, 9].    

Perhaps one of the simplest supervised classification methods is based on linear 

discriminant functions whereby a sequence of feature vectors is linearly mapped into a 

sequence of class labels. Any multi-class classification problem can be reduced to 

multiple two-class classification problems. A two-class classifier maps a feature vector 

into one of two class labels (often assumed as 1 and 0, or 1 and -1). Linear discriminant 

functions work very well with linearly separable data. However, they fall short when the 

data is not linearly separable. It should be noted that linearly separable data in clean 
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conditions can become linearly nonseparable under noisy conditions.  As a solution to 

this problem, many nonlinear classification methods were introduced in the past few 

decades including neural and statistical classifiers. Amongst the neural classifiers falls the 

polynomial classifier [10-12] which can be thought of as a network which accepts feature 

vectors, maps them to a higher dimensional space through a polynomial function and 

passes the expanded vectors through a single layer network. The weights of this network 

are obtained through the minimization of the L2-norm of the error between the output of 

the network and the desired outputs for the training data. This is done explicitly through 

the 'pseudo-inverse' method. The use of the L2-norm has been the standard practice due 

to its mathematical tractability which offers a computationally attractive non iterative 

solution. However, the main problem associated with the L2-norm is its sensitivity to 

outliers (influential observations) in the training data. This problem can lead to poor 

recognition rates when the test data is contaminated with noise.  In this paper we present 

a solution to this problem by using the L1-norm as the criteria for solving for the 

polynomial classifier weights. The hope is that the L1 based weights are more robust and 

hence perform better under noisy test conditions. We reformulate the problem of 

determining the polynomial classifier weights as a linear programming problem. We also 

show results on character recognition and sign language recognition under noisy 

conditions where L1 based recognition results are far more superior to those based on L2-

norm.   

The paper is organized as follows. Section 2 describes the theory of polynomial classifiers 

and their training using the L2-norm. It also presents the formulation of the L1 based 

training and describes the recognition phase in the polynomial classifier. The application 

scenarios of character recognition and sign language recognition are presented in Section 

3. Section 4 gives a detailed insight justifying the superior results presented in the 

experimental results of the application scenarios. Finally, concluding remarks are given in 

Section 5. 

2. Polynomial classifiers 

A Polynomial classifier is a supervised classifier that is capable of learning complex 

patterns that could be linearly inseparable. Polynomial classifier have been successfully 

used in various applications of pattern recognition including speech and speaker 

recognition [10-12] and biomedical signal separation [13 ].  

A polynomial classifier is a parameterized nonlinear map which nonlinearly expands a 

sequence of input vectors to a higher dimension and maps them to a desired output 



4 
 

sequence. Consider a K-class pattern recognition problem whose feature vectors are M-

dimensional. Each class, i, is represented by a sequence of Ni column vectors 

],[ ,2,1, iNiiii xxxX L= . In this case, identification requires the decision between K 

hypotheses {Hi}. Given an observation feature vector MR∈x , the Bayes decision rule 

[14] for this problem is 

KiHpi i
i

opt ,,2,1)|(maxarg L== x          (1) 

A common method for solving equation (1) is to approximate an ideal output on a set of 

training data with a network. That is, if { })(xif are discriminant functions [11-22], then 

we train
iNiif 1X =)(  and

ijNijijf
≠

=≠≠ 0X )( , where Kji ,,2,1, L= , and 
kN1  is a 

sequence of Nk ones, and 
kN0  is a sequence of Nk zeros. If fi is optimized over all 

possible functions such that 

{ } 21),()(minarg , ≤≤−= PHyfEf P
iiH

f

opt
i

i

xxx ,                                   (2) 

then the solution entails that )|( xi
opt

i Hpf =  [15]. In equation (2), Ex,H  is the 

expectation operator over the joint distribution of x and all hypotheses, and yi(x,H) is the 

ideal output for Hi. Thus, the optimization problem gives the functions necessary for the 

hypothesis test in equation (1). If the discriminant function in (2) is allowed to vary only 

over a given class (in our case polynomials with a limited degree), then the optimization 

problem of equation (2) gives an approximation of the a posteriori probabilities [15]. Using 

the resulting polynomial approximation in equation (1) thus gives an approximation to 

the ideal Bayes rule. 

Training a Qth order polynomial classifier consists of two main parts. Part one is 

expanding the training feature vectors via polynomial expansion. The purpose of this 

expansion is to improve the separation of the different classes in the expanded vector 

space. Ideally, we aim to have this expansion make all the classes linearly separable.  Part 

two is linearly mapping the polynomial-expanded vectors to an ideal output sequence by 

minimizing an objective criterion. The mapping parameters represent the weights of the 

polynomial classifier. These weights are often referred to as the class models. 

 

2.1 Polynomial Expansion 
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Polynomial expansion of an M-dimensional feature vector x = [x1  x2 ... xM] is achieved 

by combining the vector elements with multipliers to form a set of basis functions, p(x). 

The elements of p(x) are the monomials of the form 

jk
j

M

j
x

1=
∏ , where kj is a positive integer, and Qk

M

j
j ≤≤ ∑

=1
0  .  

Therefore, the Qth order polynomial expansion of an M-dimensional vector x generates 

an MQ -dimensional vector  p(x). MQ is a function of both M and Q and can be 

expressed as  

∑
=

++=
Q

l
Q lMCQMM

2
),(1         (3) 

where 







=

l
M

lMC ),(  is the number of distinct subsets of l elements that can be made 

out of a set of M elements. 

Therefore, for class i the sequence of feature vectors T
Niiii i

],[ ,2,1, xxxX L=  is 

expanded into  

T
Niiii i

])()()([ ,2,1, xpxpxpV L=     (4) 

Notice that while iX is a MNi × matrix, iV is a Qi MN × matrix. 

Expanding all the training feature vectors results in a global matrix for all K classes 

obtained by concatenating all the individual iV matrices such that   

T
K ][ 21 VVVV L= . 

 

2.2 Solving for the classifier weights                                                

For each class i, the training problem reduces to finding an optimum weight vector. This 

weight vector is obtained by minimizing the distance between the ideal output vector iy  

and a linear combination of the polynomial expansion of the training feature vectors 

iwV  such that  

pii
opt
i

i

ywVw
w

−= minarg           (5) 

The ideal output for the ith class, iy , is a column vector comprised of ones and zeros 

such as iy = [ 
1N0 , 

2N0 , … , 
1−iN0 , 

iN1 , 
1+iN0 , …, 

kN0  ]T     
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Equation (5) indicates that weight vector is obtained by minimizing the Lp-norm of the 

error vector ei = ii yVw − . 

 

a. Solution based on L2-norm              

For the special case of p=2, we arrive at the well-known L2-regression problem. That is, 

finding opt
iw that attains the minimum of the L2-norm of the error sequence ei . Or 

equivalently, minimizing the square of the L2-norm such as 
2
2minarg ii

opt
i

i

yVww
w

−=         (6) 

Fortunately, for this particular formulation with the L2-norm there is an explicit formula 

for the solution opt
iw . This solution can be obtained by applying the normal equations 

method [16]  such as 

i
Topt

i
T yVVwV =                                                                          (7) 

By incorporating equation (5), equation (6) can be rearranged as  

i
T
i

opt
ij

K

j

T
j 1VwVV =∑

=1
                                                                                             (8) 

If we define j
T
jj VVR = , ∑

=
=

K

j
j

1
RR , and i

T
ii 1Vv =  then equation (8) yields an 

explicit solution for opt
iw expressed as  

i
opt
i vRw 1−=                                                                                     (9) 

The set { }opt
iw  represents the weights of the K polynomial networks which we refer to 

as the class models. 

In [10], Campbell and Assaleh discuss the computational aspects of solving for opt
iw and 

they present a fast method for training polynomial networks by exploiting the 

redundancy of the jR matrices. They also discuss in details the computational and 

storage advantages of their training method.  

 

b. Solution based on L1-norm 

As we indicated earlier, minimizing the L2-norm of the error signal yields an explicit 

formula of the solution opt
iw . This, of course, is a highly desirable characteristic that 
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simplifies the computational cost. However, solutions based on L2-norm are known to be 

problematic when the data that contains influential observations is encountered.  L2-norm 

solutions in such cases tends to be biased towards such influential observations. 

L1-norm is known to provide a more robust solution than that obtained by the L2-norm 

[17]. This is analogous to the fact that the median gives a more robust estimate of the 

central tendency of a collection of data points than the arithmetic mean. This is so 

because L1-regression is less sensitive to outliers/ influential observations than least squares 

regression (i.e. L2-regression) [18]. 

L1-regression is achieved by minimizing the L1-norm of the error vector ii yVw − . 

Therefore, the problem is to find opt
iw  in  

1minarg ii
opt
i

i

yVww
w

−=              (10) 

Unfortunately, there is no explicit formula for the solution to the L1-regression problem. 

However, the problem can be reformulated and solved as a linear programming problem. 

If we denote the elements of the matrix V as vm n, the elements of the vector yi as yi,m, 

and the elements of the vector wi as wi,n, it is easy to see that the L1-regression problem: 

 

∑ ∑−
m n

ninmmi wvyminimize ,                 (11) 

can be rewritten as  

 

∑
m

mtminimize  

subject to ,,,2,1,0|| miwvyt
n

ninmmim L==−− ∑               (12) 

 

which is equivalent to the following linear programming problem: 

∑
m

mtminimize  

subject to mitwvyt m
n

ninmmim ,,2,1, L=≤−≤− ∑ .                         (13) 

Hence, to solve the L1-regression problem it suffices to solve the linear programming 

problem stated in equation (13) which reduces to solving a system of linear inequalities. 

A thorough theoretical and computational analysis on the solution of L1 inequalities can 

be found in [17, 19]. 
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2.3 Identification  

In the identification stage we are given a sequence of Nc feature vectors cX and we are 

required to determine its class c as one of the enrolled classes in the set { }K,,2,1 L . This is 

done by two steps: first, expand cX  into its polynomial basis 

terms T
Ncccc c

])()()([ ,2,1, xpxpxpV L= , and second, evaluate the output 

sequences against all K models { }opt
iw  to obtain a set of score sequences { }is such as 

  
opt
ici wVs = .                               (14) 

 

The elements of the score sequence is represent the individual scores of each feature 

vector in the vector sequence cX . The class of the sequence cX  is determined by 

maximizing { })( ig s such as  

))((maxarg i
i

gc s=                                                        (15) 

where g is a function that outputs a statistic of the sequence is  such as the mean or the 

median. In our case we chose g to compute the mean of is such as  

∑
=

=
cN

j
ji

c
i s

N
g

1
,

1)(s                    (16) 

To summarize, the overall operations of the polynomial classifier are illustrated in Figure 

1. Note that this work will be examining the use of both the L1-norm and the L2-norm 

minimization in the ‘Parameter Estimation’ block as mentioned above. 
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Figure 1.  Illustration of the overall operations of the polynomial classifier. 

3. Application scenarios 

3.1 Optical character recognition  

To validate the superiority of the proposed technique over the classical L2-norm 

minimization, we compare the performance of the two methods on optical character 

recognition (OCR) under noisy test conditions. The data is simply obtained by 

representing each of the 26 English alphabets by a 7x5 bit map as shown in Figure 2(a). 

As a simple feature extraction method, each 7x5 bit map is unfolded into a 35-

dimensional binary feature vector. The feature vectors of the 26 classes are linearly 

separable, and can be perfectly classified by a simple linear classifier. However, the 

challenge is when the bit maps are contaminated with noise whereby the vector elements 

start to be confusable. An example is shown in Figure 2(b) where the bitmaps of the 
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characters have undergone a noisy channel that imposes an additive Gaussian noise with 

the same strength of the signal itself (i.e. a 0dB SNR). To asses the performance of the 

proposed method and compare it to the classical L2-norm based method,  we have applied 

an additive Gaussian noise to the clean set of bitmaps of the characters  to obtain SNRs 

between 20 dB and -10 dB in steps of 5 dB. The noisy data is then used as test data for 

different polynomial classifiers (i.e. with different polynomial orders) that were trained on 

the clean dataset.  We have experimented with the 1st and 2nd orders using L2-norm 

minimization and we obtained the performance as shown in Figure 3.  The figure clearly 

shows that the recognition rate deteriorates as the SNR decreases. The figure also shows 

that 2nd order polynomial performs better than simple 1st order polynomial. First order 

polynomial classifiers are similar to linear discriminant analysis and they only work well 

when the classes are linearly separable. The figure also shows the results of 

experimenting with the polynomial classifier using L1-norm minimization for 1st and  2nd 

order polynomials. The figure shows the recognition rates obtained for different SNR 

testing conditions; it vividly shows the superiority of L1-norm minimization over the L2-

norm minimization. 

 

 

(a) OCR clean data 
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(b) OCR data with Gaussian noise at 0dB SNR 

 

Figure 2. Clean and noisy data used in the character recognition application scenario. 

 

 

 

Figure 3. Recognition rates using L1-norm and L2-norm minimizations. 

 

3.2 Online video-based recognition of isolated Arabic sign language gestures. 

The performance of the proposed method of L1-norm minimization is also illustrated 

through an online recognition system of video-based isolated gestures of Arabic sign 



12 
 

language. This section starts with a description of the sign language dataset used in the 

experiments followed by feature extraction and experimental results. 

a. Dataset description 

Arabic Sign Language does not yet have a standard database that can be purchased or 

publicly accessed. Therefore, we decided to use our own ArSL database which we 

describe in greater details in [20]. The dataset contains 23 Arabic gestured words/phrases 

collected from 3 different signers. Each of the three signers was asked to repeat  

each gesture 50 times over three different sessions resulting in a total of 150 repetitions 

of the 23 gestures which corresponds to 3450 video segments. The signer was videotaped 

without imposing any restriction on clothing or image background.  

 

b. Sign language feature extraction  

We adopt one of the feature extraction techniques that we have previously proposed in 

[16]. For completeness this section provides a summary of the adopted technique. It was 

shown that the motion information in a video-based gesture is extracted from the 

temporal domain of the input image sequence through successive image differencing. Let 
)(

,
j
igI  denote image index j of the ith repetition of a gesture at index g. The image formed 

from the Accummulated Differences (ADs) can be computed by: 

( )∑
−

=

−−∂=
1

1

)1(
,

)(
,,

n

j

j
ig

j
jgjjg IIAD         (17) 

Where n is the total number of images in the ith repetition of a gesture at index g. j∂  is a 

binary threshold function of the jth frame. 

Radon transformation is applied to the resultant ADs image. As such, the pixel intensities 

of the ADs image are projected at a given angle θ using the following equation: 

')cos'sin',sin'cos'()( dyyxyxfxR θθθθθ +−∫
+∞

∞−
=     (18) 

Where f is the input image and the line integral is parallel to the y’ axis where x’  and y’ are 

given by:   


















−
=

y
x

y
x

θθ
θθ

cossin
sincos

'
'        (19) 

The projected ADs image is then coarsely represented by transforming it into the 

frequency domain using a 1-D DCT followed by an ideal low pass filter. It was shown in 

[20] that the number of DCT coefficients to retain in the ideal low pass filter can be 

determined empirically. Given that the ADs image is projected onto the x-axis, a DCT 
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cutoff of 100 was shown to be adequate. The feature vectors entail the retained 100 DCT 

coefficients. 

 

c. Experimental setup and results 

In online recognition systems training is required to be done as the user is enrolled to the 

system. Normally, this mode involves a few numbers of training samples per class. Hence 

in this work the polynomial classifiers are trained using few samples per sign language 

gesture. These samples are selected in a round robin fashion from the training set and the 

classification results are averaged and reported in this section. The dataset is comprised 

of three users and is spilt into 70% for training and 30% for testing. 

To illustrate the robustness of the proposed L1-norm minimization, we assume that the 

testing feature vectors are contaminated with Gaussian noise. Such a scenario might arise 

if the feature vectors are transmitted over wireless or mobile links to be classified at a 

destination end-system. Considering limited bandwidth communications, transmission of 

feature vectors would be a great advantage over transmitting row image sequences that 

represent a sign language gesture. 

Figure 4 presents the Signal to Noise Ratio (SNR) versus the classification rate using 

second order polynomial expansion with L1-norm and L2-norm minimization. Our 

experiments show that the sign language data is not linearly separable hence second order 

polynomial expansion is used in this experiment. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4. Comparison between L1-norm and L2-norm minimization in online Arabic sign 

language recognition. 

 

We experimented with 1 up to 4 training samples per gesture. The classification results 

are shown in Figure 4 parts (a)-(d) respectively. The figure shows that the proposed L1-

norm minimization outperforms its L2-norm counterpart. This statement is true for an 

SNR range of 0 up to 20 dB. Clearly in this application, an SNR below 0 dB results in 

very poor classification rates which in some cases fall below 50% and therefore not 

reported in the figure.  In parts (a)-(d) the average classification rate at an SNR of 20 dB 

for the L1-norm is 85.88% and for the L2-norm is 81.65%. Likewise the average 

classification rate at an SNR of 0 dB for the L1-norm is 58% and for the L2-norm is 51.3%. 

 

4. Discussion 

To further elaborate on the superiority of the L1-norm based training as demonstrated in 

the previous section, we examine the spread of the training data for both applications. 

For visualization purposes we project the multidimensional feature set onto one-

dimensional set using Fisher Linear Discriminant analysis. The distribution of the 

projected data is then analyzed using Boxplot diagrams as shown in Figures 5 and 6. 

Recall that Boxplots are used to show the spread of the data via a box that contains lines 

at the 25th percentile, median, and the 75th percentile values. Whiskers extend from each 

end of the box to the most extreme values within 1.5 times the interquartile range from 

the two ends of the box. Influential observations are data points with values beyond the 

ends of the whiskers represented by the either “+” or “◊”. 

For each of the 26 letters in the alphabet Figure 5 shows the spread of the out-of-class 

projected feature sets (each comprised of 25 values). Note that each of the in-class 

feature vectors is represented by one projected value shown as a “red” dash.  



15 
 

Clearly, Figure 5 shows that the data does include significant percentage of influential 

observations. Therefore, and as mentioned previously, L2-norm based training would yield 

a biased estimate of the separating hyperplane parameters, opt
iw .  Whereas the L1-norm 

based training exhibits robustness against the influential observations yielding a more 

accurate separating hyperplane as evident in the experimental results shown in Figure 3. 
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Figure 5. Data spread of the in-class (red) and out-of-class (blue) of the projected feature 

sets for the OCR dataset. 

 

The spread of the sign language dataset is also examined via the Boxplots and shown in 

Figure 6. For each of the 23 gestures the figure shows the spread of the in-class and out-

of-class projected feature sets. Each of the in-class feature sets is comprised on 105 

values (35 per signer) while each of the out-of-class features sets is comprised of 2310 

values. 
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Figure 6. Data spread of the in-class (red) and out-of-class (blue) of the projected feature 

sets for the sign language dataset. 

In comparison to Figure 5 (the spread of the OCR dataset), Figure 6 shows that the sign 

language dataset includes a smaller percentage of influential observations. As such, the 

improvement in classification rates using the L1-norm training as opposed to L2-norm 

training is more advantageous in the case of the OCR dataset.  

5. Conclusion 

In this paper we have presented a robust polynomial classifier based on L1-norm 

minimization. We have reformulated the classifier training process as a linear 

programming problem and took advantage of its inherent insensitivity to influential 

observations. We have showed that class models obtained via L1-norm minimization are 

more robust than those obtained by the classical least squares minimization (L2-norm). We 

applied this method to both character recognition and online recognition of sign 

language. Results show that L1-norm minimization provides superior recognition rates 

over L2-norm minimization when the training data contains influential observations. This 

conclusion was also verified by examining the spread of in-class and out-of-class data 

using Boxplots of projected feature vectors. The percentage of influential observations in 

the character recognition scenario was higher than that of the sign language recognition 

thus the use of L1-norm minimization in the former scenario was more advantageous. 
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