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Abstract

In this work, the problem of subsonic compressible flow over a thin airfoil located

near the ground is studied. A singular integral equation, also known as the Possio

integral equation [29], that relates the pressure jump along the airfoil to its down-

wash is derived. The derivation of the equation utilizes the Laplace transform, the

Fourier transforms, the method of images, and the theory of Mikhlin multipliers.

The existence and uniqueness of solutions to the Possio equation is verified for the

steady state case through the concepts of the finite Hilbert operator, the Tricomi op-

erator, and contraction mappings. Moreover, an approximate solution to the Possio

equation, based on a linear approximation, is obtained. The aerodynamic loads are

then calculated based on the approximate solution. Finally, the divergence speed of

a continuum wing structure located near the ground is obtained based on the derived

expressions of the aerodynamic loads.

Search Terms: Ground Effect, Tricomi Operator, Finite Hilbert Operator, Con-

traction Mapping, Possio Equation, Airfoil Equation, Aerodynamic Field Potential

Equation
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1. Introduction

Aerodynamics is a classical subfield of fluid mechanics that is concerned with air

flow over bodies and the interaction between these bodies and the air flow. In

particular, the aim of aerodynamic studies is to obtain the air flow profile over the

submerged bodies and the aerodynamic loads (aerodynamic forces and moments)

exerted on these submerged bodies. Therefore, aerodynamic studies are essential in

many important applications such as the design of commercial and high-performance

aerial vehicles, commercial and racing automotive vehicles, wind turbines, and so

on. In aerodynamic analyses, the bodies submerged in the air flow are assumed to

be rigid. If these objects are deformable, then the aerodynamic loads deform the

submerged bodies and, conversely, the deformations of the submerged bodies affect

the air flow. This coupling between the submerged bodies’ deformations and the air

flow is considered in the field of aeroelasticity assuming that the deformations of the

submerged bodies are elastic. Aeroelasticity is also concerned with studying the air

movement within a domain with elastic boundaries. The knowledge of aeroelasticity

is extremely important in the design of buildings, bridges, airplane’s wings, and so

on, to ensure the structural stability of these bodies when exposed to air flow.

In the last few decades, the fields of aerodynamics and aeroelasticity have bloomed

significantly due to advances in computation power and experimentation. As a result,

implementation of analytical methods, that require the use of rigorous mathematical

concepts such as complex analysis, integral equations, operator theory, and so on, has

receded slightly. Despite their sophistication and limitations to simplified aerody-

namic and aeroelasic problems, analytical techniques have contributed significantly

in the development of the fields of aerodynamics and aeroelasticity. An important ex-

ample is the pioneering work of Theodorsen [37] who derived closed form expressions

of the aerodynamic loads on thin deformable airfoils in incompressible potential flow

using tools from complex analysis. Despite the relative simplicity of the expressions

derived by Theodorsen, they have been intensively used by a significant number of

researchers to study the aeroelastic stability and control of wing structures (see for

example [5, 18, 24, 36]). Moreover, researchers have used Theodorsen’s work as a
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basis to develop more accurate aerodynamic models (see for example [20]). It must

to be noted that there were also other early works, besides Theodorsen’s work, that

considered analytical expressions of aerodynamic loads in subsonic potential flow

[22, 32, 39].

Another important example of implementing analytical tool in aerodynamics and

aeroelasticity, which is a base of the ideas discussed in this work, is the relatively

recent works of A.V. Balakrishnan. Balakrishnan has revived the interest in analyt-

ical techniques in aerodynamics and aeroelasticity (see for example: [6, 10, 11]) and,

in particular, the Possio integral equation of aeroelasticity (a generalization of the

classical airfoil equation). Balakrishnan has implemented functional analytic tools

intensively to derive singular integral equations (Possio equations) from which the

aerodynamic loads on thin airfoils in compressible potential flows can be obtained.

These tools include the Laplace transform, the Fourier transform, and the theory of

Mikhlin multipliers. Balakrishnan solved these singular integral equations, for spe-

cial cases, by simply conducting rigorous and lengthy calculations that resulted in

expressions, in the Laplace domain, of the aerodynamic loads on thin airfoils [13]. By

implementing these expressions, Balakrishnan could move to conducting aeroelastic

stability analysis on wing structures, represented by continuum models, by studying

the aeroelastic modes of these wing structures. Consequently, Balakrishnan could

calculate the important aeroelastic parameter, flutter speed, a speed at which the dy-

namics of wing structures start to become unstable [10]. In addition to implementing

rigorous calculations to study aeroelastic problems, Balakrishnan conducted abstract

studies on aeroelastic problems using concepts from functional analysis such as semi-

groups of operators [8]. Besides the works of Balakrishnan, there has been a series

of recent mathematical works (see for example: [14, 15, 23, 28, 33, 34, 40]) which

studied the mathematical aspects (existence, uniqueness, obtaining solutions, and

stability) of different aerodynamic and aeroelastic problems. In conclusion, imple-

mentation of analytical techniques, despite their limitations and complexities, is still

significant in studying different aerodynamic and aeroelastic phenomena.

One of the important aerodynamic phenomena that has received attention for

many years and has been experimentally, numerically, and analytically studied by a

significant number of researchers [1, 3, 21, 27, 41, 42] is ground effect. Ground effect
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is an aerodynamic phenomenon that can be observed when a flying object is near the

ground as the induced aerodynamic lift on the flying object becomes relatively high

compared to the lift induced in an open flow [31]. This phenomenon, for example,

is the base of operating hovercrafts as ground effect provides sufficient aerodynamic

lifts that withstand the weight of the mentioned vehicles. Therefore, ground effect

is very essential in the design and analysis of aerial vehicles that operate at low

altitudes, and additionally the design of high-performance automotive vehicles.

Motivated by the significance of ground effect in many important applications,

the author of this work proposes an analytical framework from which approximate

formulas of the aerodynamic loads on a thin airfoil, located near the ground in a

subsonic steady compressible potential flow, are obtained. The organization of this

work is as follows. After the introduction, the derivation of the governing equation

of subsonic compressible potential flow over a thin airfoil located near the ground

is introduced with suitable boundary and initial conditions. After that, the deriva-

tion of an algebraic equation, in the Fourier domain, that relates some aerodynamic

variables of interest, is discussed thoroughly. Using the properties of Fourier trans-

forms, the representation of the mentioned algebraic equation as a singular integral

equation, also known as the Possio equation [4], is discussed for the steady state

case. Moreover, a thorough discussion about the existence and uniqueness of the

derived Possio equation is introduced where concepts such as finite Hilbert operator,

Tricomi operator, and contraction mapping theorem are implemented. Approximate

solutions to the Possio equation are then obtained for the steady state case using

simple linear approximation. After that, expressions of the aerodynamic loads on

the airfoil are obtained based on the approximate solution of the Possio equation.

Finally, an important aeroelastic parameter, divergence speed, is calculated for a con-

tinuum wing structure located near the ground in a steady compressible potential

flow.
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2. Derivation of the Flow Governing Equation

In this work, subsonic flow over a thin airfoil located near the ground is considered.

The aim of this study is to derive formulas from which the aerodynamic loads on

the airfoil can be calculated. The airfoil is described by the set Γ = [−b, b] × {z =

z0} ⊂ R+
xz at a distance z0 > 0 from the ground z = 0 (see figure 2.1), and is subject

to an airflow with a free stream velocity of U in the positive direction, so that x = b

signifies the trailing edge and x = −b is the leading edge of the chord. In this chapter,

the linearized governing equation of a compressible potential flow over the thin airfoil

is derived. The derivation of the mentioned equation is obtained from the work of

Balakrishnan in [12]. The starting point is the fundamental equations governing the

mechanics and thermodynamics of a compressible inviscid ideal isentropic fluid. The

first equation is the continuity equation which describes the conservation of mass of

a compressible fluid and is given by

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

where ρ is the density of the fluid and u is the fluid velocity. Next, the momentum

equation of an inviscid fluid (also known as the Euler equation) is introduced which

is given by
Du

Dt
+
∇p
ρ

= 0, (2.2)

where the differential operator D(∗)/Dt = ∂(∗)/∂t + (u · ∇)(∗) represents the total

derivative with respect to time, and p is the fluid pressure. The previous equations

describe the mechanics of a compressible inviscid fluid. As the density is variable for

compressible fluids, thermodynamic relations need to be supplemented to well-define

and simplify the flow problem. The thermodynamic relations are introduced based

on the fact that the fluid is an ideal isentropic gas. The first thermodynamic relation

is Gibb’s relation which is given by

Tds+
dp

ρ
= dh, (2.3)

where s is the entropy, h is the enthalpy and T is the temperature. The isentropic

assumption yields the relation

ds = 0. (2.4)

11



Figure 2.1: Air flow over a thin airfoil near the ground

For ideal gases, the enthalpy is related to the temperature through the relation

h = cpT, (2.5)

where cp is the specific heat at constant pressure. Finally, the pressure, the density,

and the temperature are related through the ideal gas equation

p = ρRT, (2.6)

where R = cp− cv is the gas constant and cv is the specific heat at constant volume.

It has to be mentioned that the variables in the stated equations are assumed to not

to vary significantly, in time or space, far from the airfoil. Therefore, the variables

of the stated equations are assumed to have constant values far from the airfoil.

This assumption is referred to as the free stream conditions and it is essential in the

upcoming discussions.

Equations (2.1)-(2.6) well-define the flow problem over the airfoil, when appro-

priate initial and boundary conditions are supplemented, but they are difficult to

deal with analytically. In the upcoming discussion, it is aimed to reduce the stated

six governing equations to one governing equation that describes the dynamics of

the flow of an isentropic ideal compressible fluid over a thin airfoil. Using equations

(2.5) and (2.6), a direct relation between the enthalpy, the pressure and the density

is obtained which is given by

h =
cp

cp − cv
p

ρ
=

γ

γ − 1

p

ρ
, (2.7)
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where γ = cp/cv. Note that γ > 1 as cp > cv. Moreover, using the isentropic

condition (2.4) and relation (2.3) results in

∇h =
∇p
ρ
. (2.8)

Next, substituting equation (2.7) into equation (2.8) yields

∇p
ρ

=
γ

γ − 1

∇p
ρ
− γ

γ − 1

p

ρ2
∇ρ. (2.9)

After rearranging and simplifying relation (2.9), the following equation is obtained.

γ
∇ρ
ρ

=
∇p
p

or
∇p
p
− γ∇ρ

ρ
= 0. (2.10)

Equation (2.10) can be manipulated as the following.

∇p
p
− γ∇ρ

ρ
= ∇(ln(p))− γ∇(ln(ρ))

= ∇(ln(p))−∇(ln(ργ))

= ∇
(

ln

(
p

ργ

))
= 0.

(2.11)

Equation (2.11) implies that the term ln (p/ργ) does not change within the fluid flow

and therefore it is concluded that

ln

(
p

ργ

)
= ln

(
p∞
ργ∞

)
,

where p∞ is the free stream pressure and ρ∞ is the free stream density. From the

previous relation, a power law that relates the pressure to the density is obtained

which is given by

p =

(
ρ

ρ∞

)γ
p∞. (2.12)

Differentiating equation (2.12) with respect to ρ and using (2.12) to result in

dp

dρ
= γ

ργ−1

ργ∞
p∞ = γ

p

ρ
.

Next, the term, speed of sound a, is introduced by relating it to the above equation

through the relation

a2 =
dp

dρ
= γ

p

ρ
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and for the free stream conditions, the above relation becomes

a2
∞ = γ

p∞
ρ∞

(2.13)

where a∞ is the free stream speed of sound. Next, the assumption of potential flow

is introduced in the governing equations which is given by

u = ∇φ. (2.14)

Note that the potential flow assumption can be deduced from the isentropic condi-

tion but that is omitted in this discussion. Next, equation (2.8) is substituted into

equation (2.2) to result in

Du

Dt
+∇h =

∂u

∂t
+ (u · ∇)(u) +∇h = 0, (2.15)

where the term (u · ∇)(u) can be written as

(u · ∇)(u) = ∇
(
|u|2

2

)
− u×∇× u.

Substituting the above identity and equation (2.14) into equation (2.15) and using

the fact that ∇×∇φ = 0 result in

∂∇φ
∂t

+∇
(
|∇φ|2

2

)
+∇h = ∇

(
∂φ

∂t
+
|∇φ|2

2
+ h

)
= 0,

and from the above equation, it is deduced that

∂φ

∂t
+
|∇φ|2

2
+ h =

|u∞|2

2
+ h∞, (2.16)

where u∞ is the free stream velocity and h∞ is the free stream enthalpy. Substitut-

ing equations (2.7), (2.12), and (2.13) into equation (2.16) results in the Bernoulli

equation
∂φ

∂t
+
|∇φ|2

2
+

a2
∞

γ − 1

(
ρ

ρ∞

)γ−1

=
|u∞|2

2
+

a2
∞

γ − 1
,

or (
ρ

ρ∞

)γ−1

= 1 +
γ − 1

a2
∞

[
|u∞|2

2
− |∇φ|

2
− ∂φ

∂t

]
. (2.17)

Next, differentiating ργ−1 with respect to time and using equation (2.17) result in

∂ργ−1

∂t
= (γ − 1)ργ−2∂ρ

∂t
= ργ−1

∞
γ − 1

a2
∞

[
−∂

2φ

∂t2
− ∂

∂t

|∇φ|2

2

]
, (2.18)
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or

a2
∞ρ

γ−2∂ρ

∂t
= ργ−1

∞

[
−∂

2φ

∂t2
− ∂

∂t

|∇φ|2

2

]
. (2.19)

Using the continuity equation (2.1), the term ργ−2 ∂ρ
∂t

can be written as

ργ−2∂ρ

∂t
= −ργ−2 (ρ∆φ+∇φ · ∇ρ)

= −ργ−1∆φ−∇φ · (ργ−2∇ρ)

= −ργ−1∆φ−∇φ · ∇ρ
γ−1

γ − 1
.

(2.20)

Substituting equation (2.20) into equation (2.19), dividing by ργ−1
∞ , and using equa-

tions (2.17) and (2.18) result in

∂2φ

∂t2
+
∂

∂t

|∇φ|2

2
= a2

∞

( ρ

ρ∞

)γ−1

∆φ+
∇φ · ∇

(
ρ
ρ∞

)γ−1

γ − 1


= a2

∞∆φ

(
1 +

γ − 1

a2
∞

[
|u∞|2

2
− |∇φ|

2

2
− ∂φ

∂t

])
−∇φ · ∇

(
∂φ

∂t
+
|∇φ|2

2

)
.

(2.21)

Finally, Using the fact that

∇φ · ∇
(
∂φ

∂t

)
=

∂

∂t

|∇φ|2

2

simplifies equation (2.21) to the full potential equation

∂2φ

∂t2
+
∂

∂t
|∇φ|2 = a2

∞∆φ

(
1 +

γ − 1

a2
∞

[
|u∞|2

2
− |∇φ|

2

2
− ∂φ

∂t

])
−∇φ · ∇

(
|∇φ|2

2

)
.

(2.22)

Unfortunately, equation (2.22) is extremely nonlinear and difficult to analyze.

Therefore, simplifications are introduced to the mentioned equation while keeping

the main characteristics of the fluid flow (transitory and compressibility) present.

First, suiting the problem discussed in this work, Cartesian coordinates are used.

The flow is assumed to be two dimensional (x and z variables) using the assumption

of typical section theory which is valid for wings with high aspect ratios. Moreover,

the free stream velocity is assumed to be horizontal. Therefore,

u∞ = U î. (2.23)
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Furthermore, the effect of the airfoil movement is assumed to be small compared to

the free stream velocity. Therefore, the flow potential is decomposed linearly into a

free stream potential φ∞ = Ux and a disturbance potential φ̃ as the following.

φ = Ux+ φ̃. (2.24)

As mentioned previously, the free stream velocity is dominant, therefore, the assump-

tion
|u∞|2

2
≈ |∇φ|

2

2
(2.25)

is used to simplify equation (2.22). Moreover, the term ∂|∇φ|2/∂t can be approxi-

mated as the following.

|∇φ|2 =

(
U +

∂φ̃

∂x

)2

+

(
∂φ̃

∂z

)2

⇒ ∂

∂t
|∇φ|2 = 2

(
U +

∂φ̃

∂x

)
∂2φ̃

∂x∂t
+ 2

∂φ̃

∂z

∂2φ̃

∂z∂t
≈ 2U

∂2φ̃

∂x∂t
. (2.26)

In a similar fashion, the term ∇φ · ∇ (|∇φ|2/2) can be approximated as

∇φ · ∇
(
|∇φ|2

2

)
≈ U2∂

2φ̃

∂x2
. (2.27)

Using assumptions (2.23)-(2.27) in equation (2.22) and omitting any remaining non-

linear terms result in

∂2φ̃

∂t2
+ 2U

∂2φ̃

∂x∂t
= a2

∞

(
∂2φ̃

∂x2
+
∂2φ̃

∂z2

)
− U2∂

2φ̃

∂x2
. (2.28)

Finally, using φ instead of φ̃ for the disturbance potential and introducing the Mach

number M , defined as M = U/a∞ and has a range of values between zero and one

for subsonic flows, to equation (2.28) result in

∂2φ

∂t2
+ 2Ma∞

∂2φ

∂x∂t
= a2

∞(1−M2)
∂2φ

∂x2
+ a2

∞
∂2φ

∂z2
. (2.29)

Equation (2.29) is called transonic small disturbance (TSD) potential equation and

it will be the base for the upcoming discussions in this work.

Remark (Perturbation analysis). It has to be mentioned that the previous discus-

sion of the derivation of equation (2.29) is an informal version of the method of

perturbation analysis where the flow potential is given by the perturbation expansion

φ(ε) =
∑∞

n=0 φnε
n, with φ0 = Ux such that the expansion is substituted in the full

potential equation (2.22) and the first order terms only are considered.
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The assumption of potential flow neglects the effects of the boundary layer which

become significant when the airfoil is very close to the ground. Therefore, the im-

plementation of the theory discussed in this work is valid for thin airfoils that are at

elevation ranges in which the boundary layer effects are small but the ground effect

is still present. Additionally, equation (2.29) is valid for ranges of Mach number

between 0 and 0.7 [25].

The interaction between the airfoil and the flow is obtained by introducing equa-

tions and boundary conditions that relate the airfoil movement, directly or indirectly,

to the fluid pressure. As the airfoil has a zero thickness, the fluid pressure will be

discontinuous along the airfoil chord. Therefore, there will be a pressure jump along

the airfoil chord and that will induce the aerodynamic loads on the airfoil. To calcu-

late the pressure jump along the airfoil, a reasonable approximation in terms of the

acceleration potential ψ(x, z, t) is used where

ψ =
∂φ

∂t
+ U

∂φ

∂x
. (2.30)

The pressure jump term A(x, t) is then defined by

A = −∆ψ

U
, (2.31)

where

∆ψ = ψ(z+
0 )− ψ(z−0 ).

Equation (2.29) is supplemented with the following boundary conditions which de-

scribe zero normal velocity at the ground, matching normal flow-structure velocity

on the airfoil (flow tangency), zero pressure jump off the wing (Kutta -Joukowski

condition), zero pressure jump at the trailing edge of the airfoil (Kutta condition),

and vanishing disturbance potential far from the airfoil.

Zero normal velocity at the ground:
∂φ

∂z
= 0, z = 0, (2.32)

Flow tangency condition:
∂φ

∂z
= wa, z = z0 and |x| ≤ b,

Kutta-Joukowski condition: A(x, t) = 0, |x| > b,

Kutta condition: lim
x→b−

A(x, t) = 0,

Vanishing disturbance potential at infinity : lim
x→±∞,z→∞

φ(x, z, t) = 0,
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where wa(x, t) is the downwash or the normal velocity on the airfoil surface. The

downwash wa(x, t) is the term that will account for the airfoil movement in this

study. Note that the Kutta condition in (2.32) ensures the uniqueness of solution to

the problem under consideration as shall be discussed in the later chapters. Finally,

the initial conditions of equation (2.29) are set to be

∂

∂t
φ(x, z, t)

∣∣∣∣
t=0

= φ(x, z, 0) = 0. (2.33)

In the next chapter, equation (2.29) and its boundary and initial conditions are

manipulated to deduce an algebraic equation in the Fourier domain that relates the

pressure jump A to the normal velocity v = ∂φ/∂z at a distance z0 from the ground.

18



3. Derivation of the Possio Equation in the Fourier

Domain

In this chapter, an algebraic equation, in the Fourier domain, that relates the

pressure jump to the normal velocity at a distance z0 from the ground is derived.

The derivation process starts with applying the Laplace transform in the t variable

and the Fourier transform in the x variable to both sides of equation (2.29) to obtain

λ2 ˆ̂
φ+ 2Ma∞iωλ

ˆ̂
φ = −a2

∞(1−M2)ω2 ˆ̂
φ+ a2

∞
∂2 ˆ̂
φ

∂z2
, (3.1)

where f̂(x, z, λ) =
∫∞

0
e−λtf(x, z, t) dt is the Laplace transform, where Re(λ) ≥ σ >

0, and
ˆ̂
f(ω, z, λ) =

∫∞
−∞ e

−iωxf̂(x, z, λ) dx is the Fourier transform. It is very im-

portant to mention that all the improper integrals in this work are evaluated in the

sense of Cauchy principal values. Rearranging equation (3.1) results in

∂2 ˆ̂
φ

∂z2
= B(ω, k)

ˆ̂
φ, (3.2)

where B(ω, k) = M2(k+ iω)2 +ω2 and k = λ
U

is the reduced frequency. The function

B(ω, k) is never zero. To show that, the function B(ω, k) can be rewritten as

B(ω, k) =
[
M2(Re(k)2 − Im(k)2)− 2M2ωIm(k) + (1−M2)ω2

]
+ [Im(k) + ω]2M2Re(k)i.

Since Re(k) ≥ σ/U > 0, the imaginary part of B(ω, k) is not equal to zero unless

Im(k) = −ω and in that case B(ω, k) becomes

B(ω, k) = M2(Re(k)2 + ω2) + (1−M2)w2

which is positive as 0 ≤ M < 1 for subsonic flows. It is important to have the

function B(ω, k) non-vanishing to guarantee obtaining decaying solutions to the flow

problem as illustrated in the following discussion.

Taking an advantage of the linearity of the flow problem, the method of images

is implemented in this study to account for the ground effect (see figure (3.1)). The

method assumes an open flow (no ground) and an image of the airfoil to be located
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Figure 3.1: The flow over the airfoil and its image in an open flow

at a distance −z0 from the ground axis. Due to the linearity of equation (3.2), the

solution of the flow problem is obtained by studying the open flow over the airfoil

and its image separately. The separate solutions are given by

ˆ̂
φairfoil =


ˆ̂
φ(z+

0 )e−
√
B(ω,k)(z−z0), z > z0

ˆ̂
φ(z−0 )e

√
B(ω,k)(z−z0), z < z0

ˆ̂
φimage =


ˆ̂
φ(z−0 )e−

√
B(ω,k)(z+z0), z > −z0

ˆ̂
φ(z+

0 )e
√
B(ω,k)(z+z0), z < −z0

,

where
√
∗ is the square root with a positive real part. Consequently, by implementing

the superposition principle, the solution to equation (3.2) is given by

ˆ̂
φ =

ˆ̂
φairfoil +

ˆ̂
φimage. (3.3)

By differentiating equation (3.3) with respect to z, the normal velocities about the

axis z = z0, denoted by ˆ̂v+ and ˆ̂v−, are obtained and are given by

ˆ̂v+ = −
√
B(ω, k)

(
ˆ̂
φ(z+

0 ) +
ˆ̂
φ(z−0 )e−2

√
B(ω,k)z0

)
, (3.4)

ˆ̂v− =
√
B(ω, k)

ˆ̂
φ(z−0 )

(
1− e−2

√
B(ω,k)z0

)
. (3.5)

The solution to the flow problem should ensure the continuity of the velocity field

and therefore, ˆ̂v+ = ˆ̂v− = ˆ̂v. Using the equations in (3.4) and (3.5), the difference in

ˆ̂
φ(z+

0 ) and
ˆ̂
φ(z−0 ) is expressed in terms of ˆ̂v as

ˆ̂
φ(z+

0 )− ˆ̂
φ(z−0 ) =

−2√
B(ω, k)

(
1− e−2

√
B(ω,k)z0

) ˆ̂v. (3.6)
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Next, the Fourier and the Laplace Transforms are applied to the acceleration poten-

tial in (2.30) and the pressure jump term in (2.31) to obtain

ˆ̂
ψ = (λ+ iUω)

ˆ̂
φ, (3.7)

ˆ̂
A = −∆

ˆ̂
ψ
U
. (3.8)

Using equations (3.6) and (3.7), the pressure jump term
ˆ̂
A is represented in terms

of the normal velocity ˆ̂v as

ˆ̂
A =

2(k + iω)√
B(ω, k)

(
1− e−2

√
B(ω,k)z0

) ˆ̂v.

Rearranging the above equation yields

ˆ̂v =

√
B(ω, k)

(
1− e−2

√
B(ω,k)z0

)
2(k + iω)

ˆ̂
A. (3.9)

Equation (3.9) is the desired algebraic equation that relates the pressure jump to

the normal velocity at z0 in the Fourier domain. The algebraic equation is referred

to as the Possio equation in the Fourier domain. The next step is to obtain an

integral equation (a Possio integral equation), based on equation (3.9), that relates

the pressure jump along the airfoil to the airfoil downwash. To accomplish this, the

theory of Mikhlin multipliers is introduced and implemented in the next chapter.
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4. Mikhlin Multipliers and the Possio Integral Equa-

tion

In this chapter, the necessary definition and theory of Mikhlin multipliers used in

this work are presented. The readers are refereed to [26] for detailed discussions and

proofs.

Definition 4.0.1. Let f and g be two functions in Lp(−∞,∞) where p > 1 (a

function f is in a Banach space Lp[a1, a2] where a1 < a2 and a1, a2 ∈ R ∪ {±∞} if∫ a2
a1
|f(x)|pdx <∞) and let their Fourier transforms F and G be related by

G(ω) = µ(ω)F (ω),

where the multiplier µ is C1 (continuously differentiable) and satisfies

|µ(ω)|+ |ωµ′(ω)| < Cp <∞

for all ω except maybe at ω = 0 where Cp is a positive constant that depends on p.

Then, µ is called a Mikhlin multiplier.

Theorem 4.0.1. If f and g are two functions defined and related as in definition

4.0.1, then there exists a bounded linear operator T : Lp(−∞,∞) → Lp(−∞,∞)

where p > 1 such that g = T (f) [26].

Equipped with definition 4.0.1 and theorem 4.0.1, the next step is to show that

the multiplier
√
B(ω, k)(1− e−2

√
B(ω,k)z0)/(2(k + iω)) in equation (3.9), which is

denoted by γ(ω, k), is a Mikhlin multiplier and therefore a Possio integral equation

based on equation (3.9) can be obtained.

Theorem 4.0.2. γ(ω) is a Mikhlin multiplier.

Proof. γ(ω) can be written as γ(ω) = α(ω)β(ω) where α(ω) =
√
B(ω, k)/(2(k+ iω))

and β(ω) = 1 − e−2
√
B(ω,k)z0 . It was shown in [9] that α(ω) is a Mikhlin multiplier.

Therefore, it remains to show that β(ω) is a Mikhlin multiplier as the multiplication

of two Miklin multipliers is also a Mikhlin multiplier. The term |β(ω)| satisfies the

estimate

|β(ω)| = |1− e−2
√
B(ω,k)z0| ≤ 2. (4.1)
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Moreover, the term |ωβ ′(ω)| can be written as∣∣∣ωβ ′(ω)
∣∣∣ =

∣∣ωB′(ω, k)
∣∣∣∣∣z0

√
B(ω, k)

∣∣∣
∣∣∣e−2
√
B(ω,k)z0

∣∣∣ . (4.2)

For a fixed value of k, it can be verified, by calculations that are omitted in this

work, that

•
∣∣ωB′(ω, k)

∣∣ is asymptotically equivalent to 2(1−M2)ω2.

•
∣∣∣√B(ω, k)

∣∣∣ is asymptotically equivalent to
√

1−M2|ω|.

•
∣∣∣e−2
√
B(ω,k)z0

∣∣∣ is asymptotically equivalent to e−2z0
√

1−M2|ω|.

• Therefore, |ωβ ′(ω)| is continuous, except at ω = 0, and has convergent limits

at infinity, and hence |ωβ ′(ω)| is bounded.

Therefore, β(ω) is a Mikhlin multiplier.

Based on the previous discussion, there exists a bounded linear operator T : Lp(−∞,∞)→

Lp(−∞,∞) corresponding to equation (3.9) such that

v̂ = T (Â). (4.3)

Applying the projection operator P : Lp(−∞,∞)→ Lp[−b, b] to both sides of equa-

tion (4.3) results in

ŵa = PT (Â), (4.4)

which is the Possio integral equation that relates the pressure jump to the downwash.

The existence and uniqueness of solution to equation (4.4) depends on the properties

of the operator T . In the upcoming chapter, the existence and uniqueness of solution

to equation (4.4) is discussed for the steady state case.
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5. The Possio Integral Equation for the Case k=0

In this chapter, an explicit expression for the Possio integral equation deduced

from equation (3.9) is considered for the case k = 0, which corresponds to the steady

state case. Solving the Possio integral equation for the steady state case is essential

for the static and steady-state analyses of thin wing structures. Setting k = 0 in

equation (3.9) results in

ˆ̂v =

√
1−M2|ω|

(
1− e−2

√
1−M2|ω|z0

)
2iω

ˆ̂
A. (5.1)

The construction of the Possio integral equation is based on breaking the multiplier

in (5.1) into simpler multipliers and then using Fourier transform tables to conclude

a correspondence between the simple multipliers and some integral operators. For

example, the multiplier |ω|/iω corresponds to the Hilbert operatorH which is defined

as

H(f(τ))(t) =
1

π

∫ ∞
−∞

f(τ)

t− τ
dτ. (5.2)

This is due to the fact that the Fourier transform of the function f(x) = 1/x is

given by F (ω) = |ω|/(iω). Hilbert operator or Hilbert transform appears frequently

in many mathematical fields such as complex analysis [38] and functional analysis

[30]. Moreover, Hilbert operator is of a big significance in engineering applications

especially in signal processing [19] and mechanical vibrations [17]. The multiplier

e−2
√

1−M2|ω|z0 corresponds to the integral operator L that is defined by

L(f(τ))(t) =
1

πc

∫ ∞
−∞

f(τ)

1 + ( t−τ
c

)2
dτ, (5.3)

where

c = 2z0

√
1−M2.

Note that the parameter c plays an essential role in the existence of solution argu-

ment. Based on equation (5.1), the operators defined in (5.2) and (5.3), and applying

the projection operator P : Lp(−∞,∞)→ Lp[−b, b], the following integral equation

is obtained.
2√

1−M2
wa = PH(I − L)A, (5.4)
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where I is the identity operator. Note that A vanishes off the airfoil chord according

to the Kutta-Joukowski condition, therefore A = PA. Additionally, the operators H

and (I−L) commute as their product in the Fourier domain correspond to a Mikhlin

multiplier. Implementing the above points and using the distributive property of

operators in equation (5.4) result in

2√
1−M2

wa = PHPA− PLHPA.

The operator LHP is given by

LHP(f(τ))(x) =
1

πc

∫ ∞
−∞

1

1 +
(
x−t
c

)2

(
1

π

∫ b

−b

f(τ)

t− τ
dτ

)
dt. (5.5)

Changing the order of integration in (5.5) results in

LHP(f(τ))(x) =
−1

πc

∫ b

−b
f(τ)

(
1

π

∫ ∞
−∞

1

τ − t
1

1 +
(
t−x
c

)2dt

)
dτ. (5.6)

The integral between brackets in (5.6) corresponds to the Hilbert operator applied

to

h(t) =
1

1 +
(
t−x
c

)2 .

Note that

H
(

1

1 + τ 2

)
(t) =

t

1 + t2

and that

H
(
f

(
τ − x
c

))
(t) = H(f(τ))

(
t− x
c

)
.

Therefore, PLHP can be written as

PLHP(f(τ))(x) =
−1

πc

∫ b

−b
f(τ)g

(
τ − x
c

)
dτ, |x| ≤ b, (5.7)

where

g(t) =
t

1 + t2
.

Note that changing the integration order in the previous steps can be verified by

using order of integration theorems or by the simple fact that the Fourier transform

of the function

f(x) =
1

π

x2

x2 + c2

is given by

F (ω) = −|ω|
iω
e−c|ω|.
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The operator PHP corresponds to the finite Hilbert operator Hb which is given by

Hb(f(τ))(t) =
1

π

∫ b

−b

f(τ)

t− τ
dτ, |t| ≤ b. (5.8)

Finally, the Possio integral equation has the form

2√
1−M2

wa = (Hb − PLHP)A. (5.9)

In the next two chapters, the solvability of equation (5.9) is discussed thoroughly.
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6. Tricomi Operator and the Classical Airfoil Equa-

tion

In this work, the Tricomi operator T defined by

T (f(τ))(x) :=
1

π

√
b− x
b+ x

∫ b

−b

√
b+ τ

b− τ
f(τ)

τ − x
dτ, |x| ≤ b, (6.1)

is used as an inversion formula of the finite Hilbert operator. In the following discus-

sion in this chapter, the existence and uniqueness of solution to the classical airfoil

equation, f = Hb(g), on a certain class of Banach spaces is verified. Moreover, the

boundedness of the Tricomi operator is illustrated. These two points are essential

in the later discussion about the existence and uniqueness of solution to equation

(5.9). It has to be mentioned that in the upcoming discussions, the notation Lp0+ of

a Banach space Lp with p > p0 is sometimes used to avoid tediousness. Similarly, the

notation Lp0− of a Banach space Lp with 1 < p < p0 is also used. In the following

lemma, the existence of solutions to the classical airfoil equation is discussed which

is a classical result due to Sohngen and Tricomi [35, 38].

Lemma 6.0.1. Given f ∈ Lp[−b, b] with p > 4/3 there exists a solution g ∈ Lr[−b, b]

with 1 < r < 4/3 to the classical airfoil equation

Hb(g) = f, (6.2)

where Hb is given by (5.8). Moreover, the solution g has the form

g(x) =
1

π

∫ b

−b

√
b2 − y2

b2 − x2

f(y)

y − x
dy +

C√
b2 − x2

, (6.3)

with C being an arbitrary constant.

Proof. The proof is based on using the convolution identity of the finite Hilbert

operator [38] given by

Hb (f1Hb(f2) + f2Hb(f1)) = Hb(f1)Hb(f2)− f1f2, (6.4)

where f1 ∈ Lp1 [−b, b] and f2 ∈ Lp2 [−b, b] such that 1/p1 + 1/p2 < 1. The derivation

of the solution expression starts with the fact that

Hb

(√
b2 − y2

)
(x) = x. (6.5)
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Substituting f1 = g and f2 =
√
b2 − x2 in equation (6.4) and using equations (6.2)

and (6.5) result in

Hb(yg(y) +
√
b2 − y2f(y))(x) = xf(x)−

√
b2 − x2g(x). (6.6)

But

Hb(yg(y))(x) =
1

π

∫ b

−b

yg(y)

x− y
dy

=
1

π

∫ b

−b

(y − x+ x)g(y)

x− y
dy

= x
1

π

∫ b

−b

g(y)

x− y
dy − 1

π

∫ b

−b
g(y)dy

= Hb(g)(x)− 1

π

∫ b

−b
g(y)dy

= xf(x)− 1

π

∫ b

−b
g(y)dy

= xf(x)− C,

(6.7)

where C = 1
π

∫ b
−b g(y)dy. Therefore, substituting equation (6.7) into equation (6.6)

yields

xf(x)− C +Hb(
√
b2 − y2f(y))(x) = xf(x)−

√
b2 − x2g(x).

Rearranging the above equation results in the inversion formula given by equation

(6.3). Tricomi [38] showed that constant C has the character of an arbitrary constant

due to the fact that

Hb

(
1√

b2 − y2

)
(x) = 0 (6.8)

and therefore, regardless of the value of C, the second term on the right side of

the inversion formula (6.3) will vanish when the finite Hilbert operator is applied.

Note that using the convolution identity to derive the inversion formula is valid as
√
b2 − x2 ∈ Lp[−b, b] for any large p and therefore the condition 1/p1 + 1/p2 < 1 is

satisfied. The inversion formula shows that if a solution to the airfoil equation exists

in L1+[−b, b], then it is given by (6.3). Next, it has to be shown that the expression

of g given by (6.3) is well defined. In particular, given that f ∈ L4/3+[−b, b] then

g ∈ L4/3−[−b, b]. To verify that, equation (6.3) can be rewritten as the following.

g(x) = − 1

π

1√
b2 − x2

∫ b

−b

(x+ y)f(y)
√
b2 − x2 +

√
b2 − y2

dy− 1

π

∫ b

−b

f(y)

x− y
dy+

C√
b2 − x2

. (6.9)
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In a following lemma about the boundedness of the Tricomi operator (6.1), it is shown

that the first term on the right side of equation (6.9) is in L4/3−[−b, b] given that

f ∈ L4/3+[−b, b]. The second term on the right side of (6.9) corresponds to Hb(f)

which, using the properties of finite Hilbert operator, belongs to the same class of

f . Finally, the last term on the right side of (6.9) belongs to the class L2−[−b, b]. In

conclusion, the expression given by (6.3) belongs to the class L4/3−[−b, b] given that

f ∈ L4/3+[−b, b]. Now, it remains to show that g given by (6.3) is actually a solution

to the airfoil equation(6.2). To do so, f1 =
√
b2 − x2 and f2 = g(x) given by (6.3)

are substituted in the convolution identity (6.4) and equations (6.5) and (6.7) are

used to result in

Hb

(√
b2 − y2Hb(g(z))(y)

)
(x) + xHb(g(y))(x)− C = xHb(g(y))(x)−

√
b2 − x2g(x).

Simplifying the above equation and using the definition of g given by (6.3) result in

Hb

(√
b2 − y2Hb(g(z))(y)

)
(x) = C +Hb

(√
b2 − y2f(y)

)
(x)− C. (6.10)

After simplifying the above equation and using the linearity of the finite Hilbert

operator, the following equation is obtained.

Hb

(√
b2 − y2 (Hb(g(z))(y)− f(y))

)
(x) = 0. (6.11)

Tricomi [38] showed that, due to (6.8), the null space of the finite Hilbert operator

is given by the span of the function (b2 − x2)
−1
2 or equivalently,

Hb(g) = 0⇔ g(x) = C ′′(b2 − x2)
−1
2 , (6.12)

where C ′′ is an arbitrary constant. Using (6.12) in equation (6.11) results in

Hb(g)− f =
C ′′′

b2 − x2
, (6.13)

where C ′′′ is an arbitrary constant. But the right side of (6.13) is not integrable and

the left side is integrable. Therefore, C ′′′ = 0 and consequently

Hb(g) = f, (6.14)

and that completes the proof.
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Remark ( Class of f). One may question the necessity of imposing conditions on

the class of function f in the airfoil equation (6.2). In fact, it is crucial to put

restrictions on the class of f as, in general, there are no well-defined solutions to the

airfoil equation in L1+[−b, b]. The following example illustrates the previous point.

Let

f(y) =
1

y2
√
b2 − y2

(6.15)

which is highly irregular and in Lp[−b, b] with p < 1/2. If a solution to the airfoil

equation associated with (6.15) exists in L1+[−b, b], then it is given by the inversion

formula (6.3) as the following.

g(x) =
1

π
√
b2 − x2

∫ b

−b

1

y2(y − x)
dy +

C√
b2 − x2

.

Without loss of generality, let 0 < x < b. Then, the integral in the above equation is

evaluated in the sense of Cauchy principal value as the following.∫ b

−b

1

y2(y − x)
dy = lim

t→∞

(∫ − 1
t

−b
+

∫ x− 1
t

1
t

+

∫ b

x+ 1
t

)
1

y2(y − x)
dy

= lim
t→∞

A(x) ln |y|+ B(x)

y
+ C(x) ln |y − x|

]− 1
t

−b

+ A(x) ln |y|+ B(x)

y
+ C(x) ln |y − x|

]x− 1
t

1
t

+ A(x) ln |y|+ B(x)

y
+ C(x) ln |y − x|

]b
x+ 1

t

(6.16)

where A(x), B(x), and C(x) are functions of x to be determined by the partial frac-

tions decomposition of 1/(y2(y− x)) and the integration step. The integral in (6.16)

is divergent due to the term B(x)/y and the singularity at y=0. Therefore, the airfoil

equation with associated f given by (6.15) does not have a well-defined solution in

L1+[−b, b]. It is essential to have the solution in L1+[−b, b] as the solution, which

corresponds to the pressure jump A, will be integrated to obtain expressions for the

aerodynamic loads. An important point to be mentioned is that the estimate that f

should belong to the class L4/3+[−b, b] comes from implementing Hölder’s inequalities

repetitively on some related functions and imposing that the integrals in the Hölder’s

inequalities are finite. A different approach to specifying the class of f may result in

a different estimate.
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Next, the uniqueness of solutions to the classical airfoil equation is discussed in

the following lemma.

Lemma 6.0.2. Given f ∈ Lp[−b, b] with p > 2, there exists a solution to the equation

Hb(g) = f

given by g = T (f) ∈ Lr[−b, b] with 1 < r < 4/3 . Moreover, the solution is unique

in the class of functions satisfying the Kutta condition limx→b− g(x) = 0.

Proof. Starting with the inversion formula from Lemma 6.0.1, any solution g(x) can

be expressed as

g(x) =
1

π

∫ b

−b

√
b2 − y2

b2 − x2

f(y)

y − x
dy +

C√
b2 − x2

= T (f(y))(x)− 1

π

∫ b

−b

√
b2 − y2

b2 − x2

f(y)

b− y
dy +

C√
b2 − x2

= T (f(y))(x)− 1

π

1√
b2 − x2

∫ b

−b

√
b+ y

b− y
f(y) dy +

C√
b2 − x2

= T (f(y))(x)− C1√
b2 − x2

+
C√

b2 − x2
,

where

C1 =
1

π

∫ b

−b

√
b+ y

b− y
f(y) dy

is finite since f ∈ L2+[−b, b] , which implies that all possible solutions g(x) can be

expressed as

g(x) = T (f(y))(x) +
C0√
b2 − x2

,

with C0 arbitrary. Now, As the solution g(x) satisfies the Kutta condition, this

implies C0 = 0, and the proof is complete.

Next, a bound for the norm of the Tricomi operator is obtained in the following

lemma.

Lemma 6.0.3. The Tricomi operator T defined in (6.1) is bounded from Lp[−b, b]

to Lr[−b, b] for every p > 2 and 1 ≤ r < 4/3.
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Proof. T (f) can be written as the following.

T (f(y))(x) =
1

π

√
b− x
b+ x

∫ b

−b

√
b+ y

b− y
f(y)

y − x
dy

=
1

π

∫ b

−b

√
b2 − y2

b2 − x2

b− x
b− y

f(y)

y − x
dy

=
1

π

∫ b

−b

√
b2 − y2

b2 − x2

f(y)

y − x
dy +

1

π

∫ b

−b

√
b2 − y2

b2 − x2

f(y)

b− y
dy

= − 1

π

1√
b2 − x2

∫ b

−b

(x+ y)f(y)
√
b2 − x2 +

√
b2 − y2

dy

− 1

π

∫ b

−b

f(y)

x− y
dy +

1

π

1√
b2 − x2

∫ b

−b

√
b+ y

b− y
f(y) dy

= − 1√
b2 − x2

Π1(x)− Π2(x) +
1√

b2 − x2
Π0

where

Π1(x) =
1

π

∫ b

−b

(x+ y)f(y)
√
b2 − x2 +

√
b2 − y2

dy,

Π2(x) =
1

π

∫ b

−b

f(y)

x− y
dy,

and

Π0 =
1

π

∫ b

−b

√
b+ y

b− y
f(y) dy.

Next, the norm of T (f) in Lr[−b, b] given f ∈ Lp[−b, b] is estimated. Using Minkowski’s

inequality, the norm ||T (f)||Lr[−b,b] is estimated by

||T (f)||Lr[−b,b] ≤
∣∣∣∣∣∣∣∣ 1√

b2 − x2
Π1

∣∣∣∣∣∣∣∣
Lr[−b,b]

+ ||Π2||Lr[−b,b] + |Π0|
∣∣∣∣∣∣∣∣ 1√

b2 − x2

∣∣∣∣∣∣∣∣
Lr[−b,b]

.

(6.17)

In the following discussion, the definitions of r and p are unchanged but the terms

p′ and q′ are redefined for each subsection. Next, each term in (6.17) is considered

separately.

First term
∣∣∣∣(b2 − x2)−1/2Π1

∣∣∣∣
Lr[−b,b]

The first term
∣∣∣∣(b2 − x2)−1/2Π1

∣∣∣∣
Lr[−b,b] can be estimated by Hölder’s inequality so

that ∣∣∣∣∣∣∣∣ 1√
b2 − x2

Π1

∣∣∣∣∣∣∣∣r
Lr[−b,b]

≤
∣∣∣∣∣∣∣∣ 1√

b2 − x2

∣∣∣∣∣∣∣∣ q
′
r

Lq′ [−b,b]
||Π1||

p′
r

Lp′ [−b,b]
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where 1/r = 1/q′ + 1/p′. Note that
∣∣∣∣(b2 − x2)−1/2

∣∣∣∣
Lq′ [−b,b] is finite if q′ < 2. More-

over, the term ||Π1||Lp′ [−b,b] can be estimated using Hölder’s inequality to yield

∫ b

−b
|Π1(x)|p′ dx ≤

∫ b

−b

∫ b

−b

(
|x+ y|

π(
√
b2 − x2 +

√
b2 − y2)

)p′

dy dx

(∫ b

−b
|f(y)|p dy

) p′
p

≤

∫ b

−b

∫ b

−b

(
|x+ y|

π(
√
b2 − x2 +

√
b2 − y2)

)p′

dy dx

 ‖f‖p′Lp[−b,b],

where 1/p′ + 1/p = 1. The double integral can be shown to be finite for p′ < 4 [38].

To illustrate that, the double integral is estimated as the following.∫ b

−b

∫ b

−b

(
|x+ y|

√
b2 − x2 +

√
b2 − y2

)p′

dx dy ≤
∫ b

−b

∫ b

−b

(
2b√

b2 − x2 − y2

)p′

dx dy.

Using polar coordinates, the term
∫ b
−b

∫ b
−b

(
2b/
√
b2 − x2 − y2

)p′
dx dy can be written

as∫ b

−b

∫ b

−b

(
2b√

b2 − x2 − y2

)p′

dx dy =
8(2b)p

′

p′ − 2

(
b2−p′

∫ π
4

0

(
2− sec2 θ

)1− p
′
2 dθ − π

21+ p′
2

b2+p′

)
.

Using the substitution u = 1− tan2 θ, the integration term
∫ π/4

0
(2− sec2 θ)

1−p′/2
dθ

can be estimated as∫ π
4

0

(
2− sec2 θ

)1− p
′
2 dθ =

∫ π
4

0

1

(1− tan2 θ)
p′
2
−1
dθ

=
1

2

∫ 1

0

1

u
p′
2
−1
√

1− u(2− u)
du

=
1

2

∫ 1
2

0

1

u
p′
2
−1
√

1− u(2− u)
du+

1

2

∫ 1

1
2

1

u
p′
2
−1
√

1− u(2− u)
du

≤
√

3

2

∫ 1
2

0

1

u
p′
2
−1
du+ 2

p′
2
−2

∫ 1

1
2

1√
1− u

du.

From the above inequality, the finiteness is ensured when p′/2 − 1 < 1 and hence

p′ < 4. Since q′ < 2, then r < 4/3 and p > 4/3.

The second term ||Π2||Lr[−b,b]

The term Π2 corresponds to the finite Hilbert operator applied on f . Using Riesz

theorem [30], the finite Hilbert operator is bounded on Ls[−b, b] for any s > 2.

Consequently, ||Π2||Lr[−b,b] ≤ Cp,r‖f‖Lp[−b,b] for 1 ≤ r ≤ p where Cp,r is a positive

constant that depends on p and r .

33



The third term Π0

∣∣∣∣(b2 − x2)−1/2
∣∣∣∣
Lr[−b,b]

For the last term Π0

∣∣∣∣(b2 − x2)−1/2
∣∣∣∣
Lr[−b,b], it can be shown that Π0 is a finite con-

stant since

|Π0| ≤
1

π

∫ b

−b

∣∣∣∣∣
√
b+ y

b− y
f(y)

∣∣∣∣∣ dy
≤ 1

π

∫ b

−b

(
b+ y

b− y

) p′
2

dy

 1
p′

‖f‖pLp[−b,b],

where 1/p′+1/p = 1. Note that the integral in the above inequality is finite when p′ <

2 which corresponds to the case of p > 2. Moreover, the term
∣∣∣∣(b2 − x2)−1/2

∣∣∣∣
Lr[−b,b]

is finite when r < 2 without imposing any conditions on p. Based on studying the

boundedness of the three terms in (6.17), T is bounded when p > 2 and r < 4/3 and

that completes the proof.

In the following chapter, the inversion relation between the finite Hilbert operator

and the Tricomi operator and the boundedness of the Tricomi operator will be used

to prove the existence and uniqueness of solution to the Possio integral equation

(5.9).
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7. Existence and Uniqueness of Solutions to the

Possio Equation for the Case k=0

In this chapter, the existence and uniqueness of solution to equation (5.9) is es-

tablished through the framework of contraction mapping theory. Next, the Tricomi

operator is applied to each side of equation (5.9) to yield

2√
1−M2

T (wa) = A− T PLHPA = (I − T PLHP)A. (7.1)

The equivalence of equation (5.9) and (7.1) follows from Lemma 6.0.2, under the

assumption of wa ∈ L2+[−b, b], PLHP(A) ∈ L2+[−b, b], and A ∈ L4/3−[−b, b] with A

satisfying the Kutta condition. Note that the Tricomi operator defined in (6.1) maps

functions from L2+[−b, b] to L4/3−[−b, b] in a bounded fashion according to lemma

(6.0.3) while the operator PLHP maps functions from L4/3−[−b, b] to L2+[−b, b]. If

the operator PLHP is bounded, which is verified in a following lemma, the existence

and uniqueness of a solutionA in L4/3−[−b, b] to (7.1) can be established. Let L(X, Y )

be the space of linear bounded operators from a Banach space X to a Banach space

Y (can be written as L(X) if Y = X) and let ||T ||L(X,Y ) be the conventional operator

norm of a bounded linear operator T ∈ L(X, Y ). If there exists values of c such that

||T PLHP||L(L4/3−[−b,b]) < 1, then the solution to equation (7.1) is given uniquely by

A =
2√

1−M2
(I − T PLHP)−1T (wa) =

2√
1−M2

∞∑
n=0

(T PLHP)nT (wa). (7.2)

The expression in (7.2) can then be rearranged to give

A =
2√

1−M2
T (wa) +

2√
1−M2

∞∑
n=1

(T PLHP)nT (wa). (7.3)

The right side of equation (7.3) shows that the pressure jump is a linear combination

of two terms. The first term is equivalent to the pressure jump along the airfoil in

an open flow and the second term couples the effect of the downwash with the effect

of the elevation from the ground (ground effect). Next, a preliminary lemma is

introduced in order to establish the existence and uniqueness of the solution to the

derived Possio equation (7.1).
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Lemma 7.0.1. The operator PLHP : L4/3−[−b, b] → L2+[−b, b] given by equation

(5.7) is bounded with a bound inversely proportional to c.

Proof. Let PLHP : Lp[−b, b] → Lr[−b, b] where r > 2 and p < 4/3. The operator

PLHP can be written as :

PLHP(f)(x) =
1

π
X[−b,b](x)

∫ ∞
−∞
X[−2b,2b](x− τ)gc(x− τ)f(τ)X[−b,b](τ)dτ (7.4)

where XQ(x) is simple function that is equal to one inside Q and vanishes out-

side it and gc(t) = t/(t2 + c2). It can be seen that PLHP in (7.4) is written as

composition of a projection (multiplying by X[−b,b](x)) and a convolution (the inte-

gration in (7.4)). In other words, PLHP can be seen as an integral operator (denote

it Gc : L4/3−[−b, b] → L2+[−2b, 2b]) followed by a projection operator (denote it

P2b→b : L2+[−2b, 2b]→ L2+[−b, b]). In other words,

PLHP =
1

π
P2b→bGc.

It is clear that the mentioned projection operator has a norm less than or equal to

one. So, the estimate of the operator norm ||PLHP||L(Lp[−b,b],Lr[−b,b]) depends mainly

on estimating the norm of the integral operator Gc. The norm of Gc is defined as

||Gc||L(Lp[−b,b],Lr[−2b,2b]) = sup
||f ||

L
p
[−b,b]

≤1

||Gc (f) ||Lr
[−2b,2b]

= sup
||f ||Lp≤1

∣∣∣∣∣∣∣∣∫ ∞
−∞
X[−2b,2b](x− τ)gc(x− τ)X[−b,b](τ)f(τ)dτ

∣∣∣∣∣∣∣∣
Lr
,

where p < 4/3 and r > 2. Let q be related to p and r through the relation 1/p+1/q =

1 + 1/r. Then using Young’s inequality for convolution, the norm of the integral

operator operator ||Gc||L(Lp[−b,b],Lr[−2b,2b]) is estimated by

||Gc||L(Lp[−b,b],Lr[−2b,2b]) ≤ ||gc||Lq [−2b,2b],

where ||gc||Lq [−2b,2b] is estimated by

||gc||Lq [−2b,2b] =

(∫ 2b

−2b

∣∣∣∣ t

t2 + c2

∣∣∣∣q dt)
1
q

≤
∣∣∣∣ c

c2 + c2

∣∣∣∣ (4b) 1
q =

(4b)
1
q

2c

and that completes the proof.

Finally, the existence-uniqueness theorem of equation (5.9) is introduced and proved.
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Theorem 7.0.2. Given wa ∈ Lp[−b, b] with p > 2, there exists a value c0 > 0 such

that for all c > c0 the Possio equation (5.9) has a unique solution A ∈ L4/3−[−b, b]

satisfying the Kutta condition.

Proof. Consider the equivalent equation (7.1). Given wa ∈ Lp[−b, b] with p > 2,

T (wa) ∈ Lr[−b, b] for every r < 4/3. It is sufficient to show that the operator

T PLHP is a contraction on the space Lr[−b, b]. Now, T PLHP is bounded on

Lr[−b, b] since it is a composition of PLHP : L4/3−[−b, b] → L2+[−b, b] and T :

L2+[−b, b] → L4/3−[−b, b] as established in Lemmas 6.0.3 and 7.0.1 respectively.

The norm ||T PLHP||L(Lr[−b,b]) is estimated using the bounds on ||T ||L(Lp,Lr) and

||PLHP||L(Lr,Lp), from Lemmas 6.0.3 and 7.0.1 respectively, to obtain

||T PLHP||L(Lr[−b,b]) ≤ ||T ||L(Lp[−b,b],Lr[−b,b])||PLHP||L(Lr[−b,b],Lp[−b,b])

≤ K(4b)
1
q

2c
,

where 1/p + 1/q = 1 + 1/r, and K = ||T ||L(Lp[−b,b],Lr[−b,b]). Choosing c > c0 =

K(4b)1/q/2 results in that ||T PLHP||L(Lr[−b,b]) is a contraction, and hence (7.1) has

a unique solution A ∈ Lr[−b, b] for any 1 < r < 4/3. Moreover, A clearly satisfies the

Kutta condition. From Lemma 6.0.2, A must satisfy (5.9), and on the other hand,

a solution to (5.9) which satisfies the Kutta condition must necessarily satisfy (7.1).

This establishes that A is the unique solution to (5.9) in the class of L4/3−[−b, b]

functions satisfying the Kutta condition.

37



8. Approximate Solution to the Possio Equation

for the Case k=0

In the previous chapter, it is shown that the solution to equation (5.9) or its

equivalence (7.1) is given by (7.2). Unfortunately, the given expression of the solu-

tion cannot be evaluated in general. Therefore, an approximate solution to (7.1) is

obtained in this chapter. Function g ((τ − t)/c) in equation (5.7) is approximated

linearly by (τ − t)/c. Therefore, T PHP(A) can be approximated by

T PLHP(A(τ))(x) =
−1

πc

∫ b

−b
A(τ)

(√
b− x
b+ x

∫ b

−b

√
b+ t

b− t
1

t− x
τ − t
c

dt

)
dτ. (8.1)

Note that changing integration order was implemented when introducing equation

(8.1) and that can be verified by simple direct calculations. The expression between

brackets in (8.1) corresponds to applying the Tricomi operator on (τ−t)/c. Therefore,

T PHP(A) can be written as the following.

T PLHP(A(τ))(x) =
−1

πc2

∫ b

−b
A(τ) (τT (1)(x)− T (t)(x)) dτ,

where T (1)(x) =
√

(b− x)/(b+ x) and T (t)(x) =
√
b2 − x2. Therefore, equation

(7.1) is approximated to be

2√
1−M2

T (wa) = A− 1

πc2

(
√
b2 − x2R0(A)−

√
b− x
b+ x

R1(A)

)
, (8.2)

where R0(A) =
∫ b
−bA(τ)dτ and R1(A) =

∫ b
−b τA(τ) dτ . Applying R0 and R1 on

equation (8.2) respectively results in the set of equations

2√
1−M2

R0((T (wa))) = R0(A)

− 1

πc2

(
R0

(√
b2 − x2

)
R0(A)−R0

(√
b− x
b+ x

)
R1(A)

)
,

2√
1−M2

R1((T (wa))) = R1(A)

− 1

πc2

(
R1

(√
b2 − x2

)
R0(A)−R1

(√
b− x
b+ x

)
R1(A)

)
,
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whereR0

(√
(b− x)/(b+ x)

)
= bπ,R0(

√
b2 − x2) = πb2/2,R1

(√
(b− x)/(b+ x)

)
=

−πb2/2, and R1(
√
b2 − x2) = 0. Solving the above set of equations for R0(A) and

R1(A) results in

R0(A) =
2

√
1−M2

(
1− b2

2c2

)2

((
1− b2

2c2

)
R0 (T (wa))−

b

c2
R1 (T (wa))

)
, (8.3)

R1(A) =
2R1 (T (wa))√

1−M2
(
1− b2

2c2

) .
Finally, substituting (8.3) into (8.2) and solving for A yield

A =
2√

1−M2

×

T (wa) +
1

πc2
(
1− b2

2c2

)2

√b2 − x2

−
√

b−x
b+x

T 1− b2

2c2
− b
c2

0 1− b2

2c2

R0 (T (wa))

R1 (T (wa))


 .

(8.4)

Note that the approximate solution in (8.4) satisfies the Kutta condition. Moreover,

denote the approximate solution in (8.4) by A′. The difference between the approx-

imate solution A′ and the exact solution in (7.2) can be estimated as the following.

Let G = PLHP and let G′ be the approximation of G introduced in (8.1). It can

be shown, In a methodology similar to the one applied to the operator G in the

previous chapter, that the operator G′ is bounded on L(L4/3−[−b, b]) with a bound

inversely proportional to c. If c is sufficiently large, then both ||G||L(L4/3−[−b,b]) and

||G′||L(L4/3−[−b,b]) are less than one and moreover, the equations T (wa) = (I−G)A and

T (wa) = (I−G′)A′ have the unique solutions A = (I−G)−1T (wa) =
∑∞

n=0G
nT (wa)

and A′ = (I − G′)−1T (wa) =
∑∞

n=0(G′)nT (wa) respectively. Therefore, the error

||A−A′||L4/3−[−b,b] has the following bound (the norms’ subscripts are dropped in the
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following relation to avoid tediousness).

||A− A′|| = ||(I −G)−1T (wa)− (I −G′)−1T (wa)||

= ||[(I −G)−1 − (I −G′)−1]T (wa)||

≤ ||(I −G)−1 − (I −G′)−1|| ||T (wa)||

= ||(I −G′)−1(I −G′)(I −G)−1 − (I −G′)−1(I −G)(I −G)−1|| ||T (wa)||

= ||(I −G)−1(G−G′)(I −G′)−1|| ||T (wa)||

≤ ||(I −G)−1|| ||G−G′|| ||(I −G′)−1|| ||T (wa)||

≤
∞∑
n=0

||G||n ||G−G′||
∞∑
n=0

||G′||n ||T (wa)||

=
||T (wa)||

(1− ||G||) (1− ||G′||)
||G−G′||.

(8.5)

The bound in (8.5) shows that the error ||A−A′||L4/3−[−b,b] depends continuously on

||G−G′||L(L4/3−[−b,b]). Consequently, ||A−A′||L4/3−[−b,b] → 0 as ||G−G′||L(L4/3−[−b,b]) →

0. In the next section, expressions of the aerodynamic lift and moment are obtained

based on the approximate solution given by (8.4).

8.1 Lift and Moment Calculations

After obtaining the approximate solution (8.4), it remains to calculate the aerody-

namic lift and moment on the airfoil. Obtaining expressions for the aerodynamic lift

and moment is essential to conduct aerodynamic and aeroelastic analyses on wing

structures.

For the steady state case, the airfoil downwash wa is a function of the angle of

attack θ. In particular,

wa = −Uθ. (8.6)

Note that the downwash given in (8.6) is not a function of x and therefore, only

R0(T (1)) and R1(T (1)) are required to compute the pressure jump for the steady

state case with a downwash given by (8.6). The pressure jump is calculated to be

A = − 2Uθ√
1−M2

[(
1 +

b2

2c2
(
1− b2

2c2

))√b− x
b+ x

+
b

c2
(
1− b2

2c2

)2

√
b2 − x2

]
. (8.7)
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Now, the aerodynamic lift F on the airfoil is calculated using the formula

F = −ρU
∫ b

−b
A(x)dx = −ρUR0(A). (8.8)

Substituting equation (8.7) into equation (8.8) results in

F =
2πρU2bθ√

1−M2
+

πρU2b3θ√
1−M2

2− b2

2c2

c2
(
1− b2

2c2

)2 . (8.9)

Figure 8.1: General shape of the lift force profile as

a function of the parameter c.

Note that in equation (8.9), the first term on the right hand side represents the aero-

dynamic lift assuming an open flow and the second term introduces the aerodynamic

lift due to the ground effect. The general shape of the aerodynamic lift profile as a

function of the parameter c is shown in figure 8.1. Next, the aerodynamic moment

M on the airfoil is calculated using the equation

M = ρU

∫ b

−b
(x− a)A(x) dx = ρUR1(A) + aF, (8.10)

where a is the location of the center of rotation of the airfoil. Substituting equation

(8.4) into equation (8.10) results in

M =

(
πρU2b2θ√

1−M2
+

2πaρU2bθ√
1−M2

)
+

(
πρU2θb4

2c2
√

1−M2
(
1− b2

2c2

) +
πaρU2b3θ√

1−M2

2− b2

2c2

c2
(
1− b2

2c2

)2

)
.

(8.11)
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Figure 8.2: General shape of the moment profile as

a function of the parameter c.

Similar to equation (8.9), equation (8.11) separates the open flow moment (first term

on the right hand side) from the moment due to the ground effect. The general profile

of the aerodynamic moment as a function of the parameter c is illustrated in figure

8.2

Remark (Complex analysis approach). For the steady state incompressible case

(k = 0,M = 0), the present problem can be studied using complex analytic meth-

ods which include Joukowski transformations to construct flow potential and contour

integration to obtain the aerodynamic loads [2]. Despite the relative ease of obtaining

flow potential using Joukowski transformations, up to the knowledge of the author,

there are no closed expressions for the aerodynamic loads in the present case.

8.2 Divergence Speed

One of the important parameters in the static aeroelastic analysis of wing structures

is the divergence speed [16]. Divergence speed is defined as the minimum speed at

which the static aeroelastic equations linearized about the steady state solution have

a nonzero solution [7]. At that speed, the aerodynamic loads on a wing structure
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leads to its deformation in a way such that the aerodynamic loads increase even more.

Consequently, the wing structure deforms excessively which may lead to its structural

failure. In this section, the divergence speed Udiv of a thin wing structure (see figure

(8.3)) located near the ground in a subsonic flow is calculated. The calculation of

the divergence speed in this section is based on expressions (8.9) and (8.11) of the

aerodynamic lift moment that are obtained in the previous section.

Figure 8.3: Wing configuration

The steady state configuration of the wing is governed by the equations

−GJ d2

dy2
θ = M, (8.12)

EI
d2

dy4
h = −F, (8.13)

where 0 ≤ y ≤ L, L is the span of the wing, θ(y) is the torsion angle and corresponds

to the angle of attack in (8.6), h(y) is the deflection of the wing, GJ is the torsional

stiffness of the wing, and EI is the bending stiffness. The clamped-free boundary

conditions satisfied by h and θ are given by

θ(0) = h(0) =
d

dy
θ

∣∣∣∣
y=L

=
d2

dy2
h

∣∣∣∣
y=L

=
d3

dy3
h

∣∣∣∣
y=L

= 0. (8.14)

The divergence speed is obtained by solving the eigenvalue problem of finding the

minimum free stream velocity that satisfies system (8.12)–(8.13) and the boundary
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conditions (8.14). The divergence speed is now calculated as the following. The

Moment expression (8.11) is rewritten as

M = U2δθ, (8.15)

where

δ =

(
πρb2

√
1−M2

+
2πaρb√
1−M2

)
+

(
πρb4

2c2
√

1−M2
(
1− b2

2c2

) +
πaρb3

√
1−M2

2− b2

2c2

c2
(
1− b2

2c2

)2

)
.

(8.16)

Then, the governing equation of the torsion is given by

d2

dy2
θ +

U2δ

GJ
θ = 0. (8.17)

The general solution to equation (8.17) is

θ(y) = a1 sin

(
U

√
δ

GJ
y

)
+ a2 cos

(
U

√
δ

GJ
y

)
, (8.18)

where a1 and a2 are positive constants that depend on the boundary conditions. For

the boundary conditions (8.14), the following relation is obtained

cos

(
U

√
δ

GJ
L

)
= 0⇒ U

√
δ

GJ
L =

2n+ 1

2
π, n = 0,±1,±2, ... (8.19)

The lowest speed that satisfies equation (8.19) (divergence speed) is then given by

Udiv =
π

2L

√
GJ

δ
. (8.20)

Note that equation (8.13) is not relevant in the calculation of the divergence speed

as solving equation (8.13) with its associated boundary conditions does not impose

any additional conditions, similar to condition (8.19), on the divergence speed.

Remark (Flutter analysis). The present work can be extended to obtain lift and

moment expressions for the incompressible transient case (k 6= 0,M = 0) and conse-

quently a flutter analysis can be conducted in a fashion similar to [10].
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Conclusions and Future Work

In this work, the problem of subsonic potential flow over a thin airfoil located

near the ground is studied. A singular integral equation, namely the Possio integral

equation, is derived to relate the pressure jump along the thin airfoil to its downwash.

The existence and uniqueness of solutions to the Possio integral equation is verified

for the case of steady subsonic potential flow. Moreover, an approximate solution of

the derived Possio integral equation is obtained for the steady state case and closed-

form expressions of the aerodynamic loads are obtained based on the approximate

solution to the Possio integral equation. Finally, an important static aeroelastic

parameter, divergence speed, is calculated for a wing structure located near the

ground in a subsonic potential flow.

The framework of this work can be extended in future works to cover some topics

in aeroelasticity. For example, as mentioned previously, a Possio integral equation

for transient potential subsonic flow over a thin airfoil in ground effect can be derived

and solved for certain values of the Mach number and ,consequently, flutter analysis

on wing structures in ground effect can be conducted. Moreover, the framework

of the Possio integral equation can be applied on the problem of axial flow over

cantilever plates which is a recent topic of importance especially in energy harvesting

applications.
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