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Abstract

Efficient robotic navigation requires a predefined map. In order to autonomously acquire

a map, it is desired that robots have the ability to explore unknown environments

with minimum cost and time, while ensuring complete map coverage. Meeting these

requirements is challenging, and has attracted a lot of research. Various autonomous

map exploration strategies exist, which direct robots to unexplored space by detecting

frontiers. Frontiers are boundaries separating known space form unknown space. Usually

frontier detection utilizes image processing tools like edge detection, thus limiting it

to two dimensional (2-D) exploration. In this work we present a new exploration

strategy based on the use of multiple Rapidly-exploring Random Trees (RRTs). The

RRT algorithm is chosen because it is biased towards unexplored regions. Also, using

RRT provides a general approach which can be extended to higher dimensional spaces.

The proposed strategy is implemented and tested using the Robot Operating System

(ROS) framework. Additionally this work uses local and global trees for detecting

frontier points, which enables efficient robotic exploration. Further more, a market-

based task allocation strategy for coordination between multiple robots is adopted.

Simulations and experimental results show that the proposed strategy can successfully

extract frontiers, and explore the entire map in a reasonable amount of time, and with a

reduced map exploration cost. It is also shown in this work that the proposed approach

has the above mentioned performance benefits without substantially losing performance

when compared against image processing-based frontier detection techniques in two

dimensional spaces.

Search Terms: Mapping, Exploration, ROS, Multi Agent, RRT
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Chapter 1: Introduction

Robot navigation has gained significant interest in research. For a robot to

navigate efficiently (i.e. at minimum cost) through an environment, a map has to be

provided. In order to autonomously generate such a map, a robot is required to explore

an unknown region. Map exploration can be defined as the act of moving through an

unknown environment while building a map to be used for subsequent navigation [1].

This process should be efficient, gaining as much information as possible in the shortest

amount of time. Thus, robots should avoid space that is already explored, and be biased

toward the unknown space.

Exploration is on the top of the navigation hierarchy, as shown in Figure 1. At

the bottom is robot localization followed by path planing in the middle. The ability of

the robot to localize itself (i.e. know its current pose, which is defined as the position and

the orientation of the robot) is needed for path planning and map construction. In order

to plan a path, both target and current poses are needed, and they have to be represented

in terms of a fixed global frame. This global frame with frame transformations is needed

for building the map because range sensor readings (e.g. from a laser scanner) used in

mapping have to be transformed from the sensor frame to the global frame.

Figure 1: Navigation hierarchy

The second problem in the hierarchy is path planning. The exploration strategy

generates target points to be explored in the environment. Robots should be able to use

the available generated map, and path plan their way to target points avoiding obstacles.
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While doing so, the map has to be updated. The map can also be used in relative

localization if no absolute positioning system is used. This approach is referred to as

Simultaneous Localization and Mapping (SLAM).

Frontier-based exploration strategies [1–3] have received great attention com-

pared to other exploration strategies. In frontier-based exploration, robots are directed

towards frontiers, which are the borders separating explored space from unknown space.

Frontier-based exploration strategies use image processing tools to detect frontier edges

in a map. Researchers have tried to improve this approach by proposing faster frontier

detecting algorithms, and such approaches have been implemented on both single robots

and on a team of multiple robots. Other exploration strategies utilize randomized motion

planning techniques which relay on their probabilistic nature of being biased toward

unexplored space. In both previous exploration classes, the main focus is to reduce

the probability that previously explored regions are explored again. This increases

efficiency of exploration. Also researchers are working to make the coordination of

robots decentralized, so that the exploration algorithm is more robust against individual

robot failures. However, if a decentralized robotic exploration algorithm is used, robots

then only possess locally available data and information, which comes at the expense of

poor coordination and thus can result in reduced efficiency.

This work proposes a map exploration strategy for single and multi-robot explo-

ration. The map exploration strategy is based on a path planning algorithm called the

Rapidly-exploring Random Tree (RRT). The RRT algorithm is used to detect frontier

points in the map that is being built as robots explore the environment. Using RRT

provides a general approach for fast detection of frontier points in a map, because the

RRT algorithm is known to be biased towards unexplored regions [4] which biases the

tree to detect frontier points. The RRT algorithm also works in 3-D maps. As a result,

the proposed algorithm is not limited to detection of frontier points in 2-D maps (as is

the case with image processing-based algorithms), and can also be extended to detect

frontier points in 3-D maps.

Unlike randomized search techniques, the proposed strategy directs robots to

exploration targets without making them follow the edges created by the RRT as it grows.

Instead, robots follow a path created independently from the tree. This independence
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between the growth of the tree in RRT and robot movements allows the tree to grow

faster, increasing the speed of frontier point detection.

Conserving robot battery capacity is very important when robots explore un-

known regions. Similarly, assigning robots target exploration points that are not very

far from their current position is also important. This is due to the fact that, if a robot is

assigned a point to be explored, which is very far from its current position, then there is

a chance that the robot will traverse a lot of pre-explored space. Further, greater motion

will result in decreased battery capacity with relatively little information gain. To counter

such effects, this work proposes a market-based centralized task allocation procedure.

The task allocation procedure relies on RRT to generate commanded points the robot

should explore. Further, based on the proximity of a robot to a commanded point, and

the expected information gain of the point, the task allocation procedure assigns a robot

a target point to be explored.

1.1. Literature Review

Yamauchi [1] was one of the first researchers to use a frontier-based exploration

algorithm. It is an algorithm that can autonomously explore and map complicated

environments, like offices cluttered with furniture and obstacles.

This algorithm is based on directing the robot towards frontiers, which are

“regions on the boundary between open explored space and unexplored space” [1], by

which the robot can be directed to unexplored regions increasing the open space, until

the whole area is explored. The algorithm was tested in a real office-like environment

with a single robot. Figure 2 shows the process of detecting frontier regions, where the

robot will attempt to explore the nearest region among them. In the figure, the white

region represents known space, the dotted region represents unknown space, and three

frontier regions are detected marked by a ‘+’ sign within a circle.

In [2], Yamauchi further applied his algorithm to multiple robots, which work

in a cooperative, decentralized manner, and a global map is built from the information

shared among the robots. This algorithm may result in duplicate exploration because

navigation of each robot operates independently from the others, and the frontier regions

14



(a) Obtained map (b) Frontier edges (c) Frontier regions

Figure 2: Yamauchi frontier detection. Figure is extracted from [1]

are computed locally on each robot. As a result, two robots might end up exploring the

same frontier [3].

Different exploration strategies followed Yamauchi’s work, thus there are many

exploration algorithms based on the idea of detecting frontiers. In [5] the authors

proposed a solution to the problem of duplicate exploration which Yamauchi’s algorithm

has in the multi-robot case. The solution is based on dividing the region into sub-areas,

where each robot will not attempt to enter the sub-area of another robot. A robot will

keep exploring its sub-area until no additional frontier region is detected (i.e. the sub-area

is completely explored). The robot will then enter into what is known as a “walking

state”, where the robot tries to find the next sub-area to explore.

In Yamauchi’s work [2], frontier detection is conducted each time the robot

reaches a target point. This decreases exploration efficiency because the process of

detecting frontier edges has a high computational cost [6] due to the fact that the whole

map has to be scanned each run. To save computational resources, it is customary to

avoid frequent computation of frontiers, in some cases, this can lead to unnecessary

redundant exploration tasks [3].

In [3] the authors propose two algorithms for detecting frontiers more quickly.

They are the Wavefront Frontier Detector (WFD), and the Fast Frontier Detector (FFD).

In WFD, the search for frontiers is done by scanning only the known region of the map.

the WFD detector only searches for frontier points, and when a point on a frontier edge

is detected, the containing edge can be extracted afterwards. In FFD, only the laser scans
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are included in the search. Further, by first converting laser scans into contours, a new

frontier is created and stored if the detected frontier does not match any previously stored

one.

Another direction of work relates to exploration is based on randomized motion

planning techniques. The main focus here is on the RRT algorithm. The main idea behind

frontier-based approaches is to ensure that robots explore the unknown space and avoid

what has already been explored. This can also be achieved by utilizing the probabilistic

features of RRT-based randomized techniques. Robots can be directed to unexplored

space without the need for detecting frontier regions. Using the RRT algorithm, the

tree of explored nodes formed as a robot moves is biased to expand in the unexplored

space [4]. In [7] the authors propose an exploration strategy based on the Sensor-based

Random Tree (SRT), which is a variation of RRT. In SRT target exploration goals are

generated randomly. These random points are generated within the space surrounding

the robot such that all generated points lie within a certain radius of a sensor used to

scan the environment. This is a key difference between SRT and RRT, where the latter

generates points randomly in the whole map. This makes SRT a depth-first exploration,

meaning that a series of random points will be generated more like a chain of nodes,

whereas in RRT, tree branches extend in different directions growing subbranches as

well. Due to the above-mentioned differences, SRT-based approaches are in need of

backtracking, i.e. the robot has to go back and track parent nodes of a current node

when a branch stops growing (for example when a robot reaches a dead end). The same

place may be visited multiple times during backtracking. Since this is not desirable,

researchers have proposed solutions to improve backtracking [8, 9].

In [10], the authors applied the previous SRT-based approach to multiple robots.

The SRT-based approach the authors used is a decentralized approach where each robot

starts by building its own SRT rooted at a robot’s initial pose. After a robot can no

longer expand its own tree, it will attempt to help other robots expanding their trees,

in what is known as the “supporting phase”. The authors further improved this work

in [11], by introducing direct shortcut paths between connectable nodes on the tree

(called “bridges”) which help in the supporting phase, and all robots expand a single

tree.
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Different exploration algorithms that do not follow the above-mentioned explo-

ration approaches can be classified under information-based exploration [12, 13]. They

take into account the localization and mapping problems concurrently with exploration,

such that target exploration goals are chosen in a way that reduces the uncertainty of the

robot’s pose estimate which helps to maximize map information.

An interesting approach for coordinating multiple robots in exploration is pro-

posed in [14]. Multi-robot coordination is based on a market structure, where robots are

directed in a way that maximizes revenue and minimizes cost. The gain of information is

the revenue, and the expected distance to reach a goal is the cost. Each individual robot

tries to maximize its profit, the overall effect is a team of robots with high productivity

(i.e. high gain of information and thus more efficient exploration).

In [15] the authors studied the effect of number of robots on exploration efficiency,

which they measured in terms of time needed for exploration, and the energy consumed

by all robots in the team. The conclusion was that the more robots are added the better.

A frontier-based exploration algorithm was used in their research.

1.2. Motivation

Several applications in robotics require the ability of robots to autonomously

acquire a map of the environment, where the map is used to navigate efficiently. Search

and rescue robots can conduct exploration to map danger zones that cannot be reached

by human operators, where a team of robots can first explore the area and provide a map

for other robots to use. Another application is cleaning robots. Most cleaning robots

in the market randomly traverse a house or a room until eventually the whole area is

covered and cleaned; the robot does not know what the house looks like or what its

current location is. Using map exploration, cleaning robots can discover the house first

and then start the cleaning process systematically.

This work proposes an algorithm for detecting frontier regions in a given map

regardless of its dimensionality, as it is applicable to both 2-D and 3-D maps. The

proposed algorithm is compared against another commonly used frontier detection
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algorithm, and it is shown that the proposed frontier detection algorithm delivers similar

performance in 2-D map exploration.

1.3. Thesis Organization

In Chapter 2, a brief background is provided which covers path planning using

the RRT algorithm and Dijkstra’s algorithm, ROS which is the software platform used in

the implementation, map representations, the image-based frontier detection algorithm

which is used in the comparison, mean shift clustering, and the mapping and localization

algorithm.

Chapter 3 explains the exploration strategy and the implementation. In Chapter

4, the simulation and experimental setups are shown along with the simulation and

experimental results. Finally, the report is concluded in Chapter 5.
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Chapter 2: Background

This chapter provides some needed background on path planning which includes

the RRT algorithm, as well as a brief overview of the Robot Operating System (ROS),

as ROS is used to implement and test the map exploration algorithm both in simulation

and in the real experimental setup. This chapter also covers different map represen-

tations that exist including the occupancy grid map representation which is used in

the implementation. Additionally, this chapter covers mean shift clustering, and the

Simultaneous Localization and Mapping (SLAM) problem, which are also required in

the implementation.

2.1. Path Planning

In a path planning problem, there is an initial point where the robot starts, and a

target or a goal point where the robot wants to reach. Both points are located in a map

containing obstacles to be avoided. This section covers two path planning algorithms,

the RRT algorithm, and Dijkstra’s algorithm. RRT is used to find exploration targets, i.e.

points that have not been explored yet. Dijkstra’s algorithm is used as a path planner

for the robots, which finds the shortest path between the robot’s current position and the

target position.

2.1.1. Common terminologies used in RRT and Dijkstra’s algorithm.

Map X : The space containing occupied and free spaces.

Free Space X f ree: The space that is not occupied by obstacles.

Vertices V : Nodes or points in the map. In RRT these points are connected to

one another by the tree branches, each point on the tree is a vertex, vertices are stored in

set V .

Edge E: An edge is the branch or line connecting two vertices. Each edge is

stored in terms of the spatial coordinates of the two connected points, and edges are

stored in the edge set E.

Graph G: Edges and vertices both form a graph, G = (V,E). In RRT the graph

has the structure of a tree, as shown in Figure 3.
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SampleFree: A function that returns points that are independent identically

distributed (i.i.d) in the free space X f ree.

Nearest (G = (V,E),x⊂ X f ree): A function that takes a graph (i.e. tree vertices

and edges) and a point in the free space as inputs. The function returns the closest vertex

to a point v⊂V such that, Nearest(G = (V,E),x) = argminv⊂V‖x− v‖.

Figure 3: RRT graph structure

Steer: A function that takes two points x and y, and returns a point z, where

‖z− y‖ is minimized, while ‖z− x‖ ≤ η , for an η > 0, where η is the tree growth rate.

ObstacleFree: A boolean function that takes two points in the free space, and

returns True if there is no obstacle in between.

getFirstMinCost: A function that returns the first single vertex x⊂ G carrying

the lowest cost.

neighbor(Q,u): A function that returns the set of vertices Xneighbor ⊂ Q, where

the vertices in this set are directly connected to u.

Cost(x1,x2): The cost assigned to an edge connecting two vertices, it can be the

length of the edge or an assigned cost.

Parent: Each vertex has a unique parent vertex, and each parent vertex can have

multiple child vertices.

2.1.2. The RRT algorithm. RRT was introduced by S. Lavalle [4]. It has a tree

structure that starts from a single initial vertex V = {Xinit}, and E = φ . At each iteration

a random point xrand ⊂ X f ree is sampled. The nearest vertex xnearest on the tree to this

random point xrand is found, where xnearest ⊂V .

The Steer function then generates a point xnew in between xnearest and xrand . If

there is no obstacle, both the edge {(xnearest ,xnew)} and the vertex xnew are added to the
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tree. As a result, the tree incrementally grows in the free space until the target point

is reached, at which point the algorithm stops. The pseudocode for RRT is listed in

algorithm 1 [16]. Figure 4 shows the propagation of a path being planned using RRT in

a given map.

Algorithm 1 RRT algorithm
1: V ← Xinit ; E← φ ;
2: while xnew 6= xtarget do
3: xrand ← SampleFree;
4: xnearest ← Nearest(G(V,E),xrand);
5: xnew← Steer(xnearest ,xrand);
6: if ObstacleFree(xnearest ,xnew) then
7: V ←V ∪{xnew}; E← E ∪{(xnearest ,xnew)};
8: end if
9: end while

10: return G = (V,E);

2.1.3. Dijkstra’s algorithm. Given a graph G(V,E), Dijkstra’s algorithm is used

to find the shortest path between any two vertices belonging to G assuming such a path.

In the hardware implementation of the proposed work, Dijkstra’s algorithm is used to

direct robots toward a target exploration node, as they explore the space, whereas the

target exploration nodes are obtained from a tree generated by the RRT algorithm. For a

vertex R on the minimum cost (or distance) path between vertices A and Z, finding this

path implies finding the minimum path between A and R. In other words, the optimum

path that connects two vertices, consists of optimum paths connecting vertices that

belong to it [17]. Thus, the algorithm keeps finding optimum paths to all vertices until

the target vertex is visited. The following is a pseudocode of Dijkstra’s algorithm [18].

2.2. ROS Background

ROS stands for Robot Operating System, and is a software platform for robots.

ROS combines a set of tools and services that are usually provided by any operating

system. It was developed with the purpose of maintaining code reusability, so that
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(a) (b)

(c) (d)

Figure 4: The propagation of the tree in the RRT algorithm

In (a) the tree starts from an initial point, in (b) and (c) the tree keeps growing,
in (d) a path (red dashed line) to the target (yellow circle) is found

robotics developers can create hardware-independent software. The tools and services

that are provided by ROS include:

• Hardware Abstraction: The software a person writes for a robot is independent

of the hardware used. Each sensor or actuator on the robot should have a ROS

driver. The driver is responsible for exchanging data with the hardware at the low

level, and it wraps the data in a standard message format and passes it to the ROS

software that uses the data. The driver is a piece of software that communicates

with the hardware. For instance, it can be a C++ program that reads the serial

messages sent from a sensor. It can also be a C++ program that sends motor

velocity commands as a serial message to a microcontroller, which is connected to

the motors and is controlling them.

• Device Drivers: There are many sensors and robot platforms that are supported by

ROS. For example, there is a ROS driver for Hokuyo laser scanners, which are

commonly used in localization, so the user doesn’t have to create a software that
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Algorithm 2 Dijkstra algorithm
1: Q← φ ; . Create empty vertex set
2: Parent← φ ; . Create empty parent set
3: for x⊂V do
4: C(x)← ∞; . Initial cost for all vertices
5: Q← Q∪{x};
6: end for
7: C(xstart)← 0; . Cost of starting vertex
8: while Q 6= φ do
9: Cmin← getFirstMinCost(Q);

10: u← x⊂ Q s.t. C(x) =Cmin; . u gets x, such that cost of x is the minimum
11: Q← (Q\u); . Remove current visited vertex from Q set
12: Xneighbor← neighbor(Q,u);
13: for each xn ⊂ Xneighbor do
14: cost←C(u)+Cost(u,xn);
15: if cost <C(xn) then
16: C(xn)← cost; . Update vertex’s cost
17: Parent(xn)← u; . Update vertex’s parent
18: end if
19: end for
20: end while
21: return Parent,C;

extracts data from the laser scanner. Instead, the user only has to install and run

the driver. The driver will publish the laser scans in a ROS message format which

is standard for all laser scanners.

• ROS Libraries and Community Support: ROS has an active community where

researchers around the world share their work. ROS also comes with powerful

capabilities for robots, such as path planning, different implementations of SLAM

algorithms (Simultaneous Localization and Mapping), and the Adaptive Monte

Carlo Localization (AMCL) algorithm.

• ROS file system: ROS software is organized into packages. A package can contain

multiple nodes, where each node is a process or a piece of code. A package

can also contain message formats, and configuration parameters. In addition to

this, each package must have the package manifest, which is a file that describes

the package and provides general information about it. ROS packages can also

be combined into meta packages (previously they were called stacks). A meta
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package usually combines packages that are related to each other. Figure 5 shows

the ROS file system.

Figure 5: ROS file system

• Message Passing and The Distribution of Computation: ROS provides a message

passing interface between processes. Each process can be on a different machine

belonging to the same local area network.

2.2.1. ROS concepts. ROS consists of three levels [19]: the file system level

(discussed earlier), the computational graph level, and the community level. The compu-

tational graph level refers the to the peer-to-peer network of processes which process

and share data. The main concepts in this level are listed below:

• Nodes: A node is a process. A ROS node is an executable piece of code that

performs certain computations. Typically in a robot there will be multiple nodes

running (e.g. a node for controlling the wheels, a node for the laser scanner, and

so on). Nodes are located inside packages.

• Publisher: A node that is sending data.

• Subscriber: A node that is receiving data.

• Topics: When a publishing node wants to send data, it puts these data on what is a

called a topic, so a node can send data on a certain topic where another node that

is subscribing to that topic can receive it. This way subscribers and publishers are
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separated, and the communication does not depend on whether there is a node to

receive the data. An additional benefit of this is the ability to receive published

data by any number of subscribing nodes.

• Messages: Messages are data structures describing the data and their types, nodes

send and receive messages over topics. The structure of a ROS message is stored

in a simple text file. During the compilation of a package, ROS converts these files

into a source code of the programming language used.

An Example of a ROS message is the geometry msgs/Twist.msg message used to

send velocity commands to a robot. The Twist message is stored as a text file with

the “.msg” file extension, and the file is located under the “geometry msgs” folder

that comes with ROS installation. A listing of the Twist message is shown below:

Vector3 linear

Vector3 angular

Where vector3 is a ROS message that has the following structure:

float64 x

float64 y

float64 z

“float64” is a ROS built-in field type which, for example, in C++ is compiled into

a “double” data type.

• Master: A master is responsible for node registration and tracking of topics and

services. It allows nodes to find each other and it can be thought of as a coordinator.

• Parameter Server: In ROS, parameters (for example configuration parameters,

declared constants) are stored by the master in the parameter server. All nodes in a

ROS network have access to, and can retrieve stored parameters at runtime.

The last level, the community level, consists of ROS distributions, repositories,

ROS forums, and the ROS mailing list.

2.2.2. ROS coordinate frames. Axes orientation in ROS are defined such that

the x-axis points to the forward direction of the robot, while the y-axis points to the left,

and the z-axis points up [20]. When a project comprises different frames, transformations

between them are required. In ROS, frame transformations are computed by the tf
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package. This package keeps track of the relationships between coordinate frames and

stores them in a tree structure buffered in time (when a transformations tree is stored, a

time stamp is also captured and stored along with it) [21]. Publishing transformations

can be done in two ways, either by writing a node that publishes the transformation,

or by a static transform publisher. The former is the general way and works for all

transformations, and the latter can be used as a command line tool, or within roslaunch

files. Some frame conventions related to mobile robots [22] are listed below:

• map

The map coordinate frame is a global fixed frame. The pose of a mobile platform

represented in this frame is usually estimated using a localization component.

Therefore this frame is not continuous and the poses represented in it can jump

over time. This frame should not have a significant drift over time, and It is not

suitable for local sensing and actuation due to its discrete nature. However, it is

useful as a long term reference.

• odom

The odom coordinate frame is a global fixed frame. The pose of a mobile platform

represented in this frame is obtained from the odometry data. Therefore this frame

is continuous but drifts over time, which makes it useful as a short-term reference

but not as a global one.

• base link

This frame is attached rigidly to the mobile robot base, and its origin can be any

point on the base. Usually a robot driver publishes the transformation between this

frame and the odom frame.

• base footprint

This frame is the projection of the base link frame on the ground, where the pitch

and roll angles are zeros, and its yaw rotation is the same as the base link yaw

rotation. A static transformation publisher can be used to publish the corresponding

transformation.

• base laser link

This frame is attached to the laser scanner sensor in which raw laser scans are

represented. If the laser scanner is fixed on the robot and does not have relative
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motion (which is usually the case), a static transformation publisher can be used

to publish the corresponding transformation.

The previous frame names are just conventions and they can have different names.

Figure 6 provides a visualization for the above-mentioned frames.

Figure 6: Common coordinate frames associated with mobile robots. Extracted and
edited from [23]

2.2.3. ROS launch files. Launch files are called by the roslaunch tool. The

roslaunch tool has three main functions: running nodes, names remapping1, and setting

parameters on the parameter server. Instead of running nodes individually, which can be

impractical especially in large projects containing many nodes with different configu-

rations, a launch file can run nodes locally and remotely as well. Launch files are also

used to set parameters on the parameter server, which is intended for static parameters.

Usually, packages include parameter files that are used for node configuration.

2.3. Map Representations

A map is a description of an environment. In general, it consists of a list of

objects located in the environment along with their properties [24]:

m = {m1,m2, ...,mN} (1)

where N is the number of objects in the map. An object can be a landmark, or it can be a

certain location in the environment.

1Changing a ROS name, this allows running the same node under multiple configurations.
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Map representations can be classified under two categories; feature-based maps,

and Volumetric maps.

2.3.1. Volumetric maps. Also known as metric maps or Location-based maps,

in this type of map representation, each object in Equation 1 corresponds to a certain

location in the environment. A location-based map includes all locations in the envi-

ronment; it maps the occupied space where obstacles are located, and the free space

where the environment is not occupied. A typical example of location-based maps is the

occupancy grid map (see Figure 7).

Figure 7: An occupancy grid map

In an occupancy grid map, the environment is represented as a 2-D grid that

consists of cells. Each cell carries an occupancy value that refers to the probability that

the cell is occupied. An occupancy grid map is expressed as follows:

p(m) = ∏
i

p(mi) (2)

where mi represents a cell in the grid which corresponds to a location in the environment.

A probability value p(mi) = 0 means the cell is free, while a probability value p(mi) = 1

means the cell is occupied, and a probability value p(mi) = 0.5 means the state of the

cell is totally unknown (maximum confusion). Visualization tools (like “Rviz” software
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which comes with ROS) show the occupancy grid as an image where the free space is

marked in white, occupied space is marked in black, and unknown space is marked in

gray. Map resolution depends on the cell size of the grid (see figure 8).

unknown

free

occupied

Figure 8: A zoomed view showing the cells of an occupancy grid map

2.3.2. Feature-based maps. Unlike the previous representation, feature-based

maps only represent certain features in the environment. Each object mi in Equation 1

corresponds to a feature, and mi contains its properties including its location. A feature

could be a visual landmark, hence, this type of map representation usually requires vision

sensors. Feature-based maps don’t store all locations in the environment, and due to that,

they are memory-friendly.

2.3.3. Topological maps. Topological maps store only certain places in the en-

vironment, along with the relationships between these places. The graph of a topological

map contains nodes which represent certain locations in the space, and linking edges

between the nodes. See Figure 9.

Figure 9: A topological map
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Topological maps can be extracted from occupancy grid maps. An example of

this is shown in Figure 10.

(a) (b)

Figure 10: Extraction of topological maps

A topological map in (b) extracted from the occupancy grid in (a) [25]

2.4. Frontier-Based Exploration

Frontier-based exploration algorithms can be considered as the most widely

used approach for autonomous exploration thus far. Therefore, we use a frontier-based

exploration algorithm in the comparison against the proposed exploration algorithm (i.e.

RRT-based exploration).

In the RRT-based algorithm, RRT is used to find exploration targets, and the

robot task allocator is responsible for assigning the detected exploration targets to each

robot. So in order to be able to compare how each algorithm detects target points,

our own frontier-based algorithm is implemented such that it only detects exploration

goals, and does not allocate them to the robots. By this configuration, both RRT and

the frontier-based algorithms use the same task allocator for robot assignment. This

eliminates the effect of task allocation so only the detection of exploration targets is

compared across both approaches.

2.4.1. Overview. The frontier-based algorithm detects exploration goals by ex-

tracting frontier edges. In an occupancy grid map, frontier edges are the lines separating

known space (marked in white) and unknown space (marked in gray). After extracting

the edges, the center of each edge is marked as an exploration target.
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2.4.2. Extraction of frontier edges. In our implementation, frontier edges are

extracted using image processing tools provided by the Open Source Computer Vision

(OpenCV) library. The process of extracting frontiers is explained below:

1. A ROS occupancy grid map message is converted into a gray-scale image format.

This is needed in order to be able to use OpenCV tools. The occupancy grid

message has the following structure [26]:

Header header

MapMetaData info

# The map data , in row -major order , starting with (0,0).

Occupancy

# probabilities are in the range [0 ,100]. Unknown is -1.

int8[] data

where “data” is a 1-D array, and its elements are the occupancy values of each

grid in the map. A gray-scale image in OpenCV is stored as a 2-D array, and each

element in the array caries the color of the corresponding pixel. The “data” array

is converted to an image by reordering its elements and storing them in a 2-D array.

Each element is converted to an appropriate color value as follows:

grid cell value of 0 (unoccupied)→ pixel with a color value of 255 (white)

grid cell value of 100 (occupied)→ pixel with a color value of 0 (black)

grid cell value of -1 (unknown)→ pixel with a color value of 205 (gray)

(a) (b)

Figure 11: Extraction of frontier edges in an occupancy grid map

An occupancy grid map is shown in (a). In (b) frontier edges are extracted and
marked in red
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2. A threshold is applied on the image to only keep the pixels that correspond to

occupied cells (figure 12b), contours are then drawn and marked on the image

(Figure 12c). After that, image colors are inverted (Figure 12d). The result is an

image that contains only the occupied grids marked in bold black lines.

3. The next step is applying the Canny edge detector, which returns an image con-

taining all the edges including the occupied grids (the obstacles or the walls), and

the frontier edges (Figure 12e).

4. The last step is to subtract the occupied cells from the edges obtained in the

previous step. This will keep only the frontier edges. It is accomplished by a

bitwise AND operation between the images obtained in the previous two steps.

The final result is shown in Figure 12f.

(a) (b) (c)

(d) (e) (f)

Figure 12: The process of extracting frontier edges

2.4.3. Limitations. Although frontier-based algorithms have shown success

in autonomous exploration, they have a significant limitation in that they are highly

dependent on the map representation. In particular, they need the map to be represented
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as an occupancy grid. As a result, frontier-based algorithms are more suitable for 2-D

exploration. For 3-D maps, frontier extraction becomes more complex, and image

processing tools, which are used to extract frontiers, cannot be used [27, 28].

2.5. Mean Shift Clustering

This section covers the mean shift clustering algorithm, which is used in the

implementation of the exploration strategy in order to reduce the computational load.

The exploration strategy, explained thoroughly in Chapter 3, detects frontier points in a

given map. The number of detected frontier points can be very large. Usually, a large

portion of the detected frontier points are located very close to each other. Hence, frontier

points must be clustered to discard redundant frontier points; otherwise, accounting for

many detected frontier points would unnecessarily slow down the exploration algorithm

without much information gained, since points in the same vicinity correspond to the

same frontier edge.

The mean shift clustering algorithm is chosen because it does not require the

number of clusters as an input, it only requires specifying the size of the cluster. These

features makes it a good fit for our proposed exploration algorithm.

2.5.1. General description. For a given set of points {xi}N
i=1 ∈ Rd , the mean

shift algorithm considers the points as samples taken from a probability density function

(PDF) fK(x), where higher probability values correspond to dense regions. The local

maxima (or the modes) of fK(x) correspond to the centers of clusters (it’s a multi-modal

PDF). The mean shift algorithm iteratively shifts each point towards the modes of fK(x).

The PDF fK(x) is obtained by kernel density estimation using a certain kernel

function K(x). For example, Figure 13 shows a 1-D data set (d = 1), where fK(x) is

obtained using a Gaussian kernel function.

fK(x) =
1

Nhd

N

∑
i=1

K
(

x− xi

h

)
(3)

K(x) =
1

(2π)d/2 e−1/2 |x|2 (4)
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Equation 3 shows that fK(x) is the addition of individual kernel functions. In

Figure 13, kernel functions are Gaussian distributions centered at the points with a

variance of h = 1.
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Figure 13: Kernel density estimation using Gaussian kernel function

The kernel function parameter h, is referred to as the bandwidth. For a Gaussian

kernel function, h is the variance (the width of the Gaussian distribution). In Figure 13,

h = 1, and the number of local maxima (modes) is 3 (which is equal to the number of

clusters).

Figure 14 shows a kernel function of a larger bandwidth h = 10. The number of

obtained clusters is 1.
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Figure 14: Gaussian kernel function with a larger bandwidth
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Figure 14 shows a kernel function of a smaller bandwidth h = 0.1. The number

of obtained clusters is 7 (which is equal to the number of data points).
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Figure 15: Gaussian kernel function with a smaller bandwidth

The mean shift algorithm shifts each data point in the direction of increasing

probability. Hence, for a Gaussian kernel function, it shifts data points in the direction

of the gradient 5 fK(x). Shifting a point means adding the mean shift vector (vector

of dimension d) to the point (for a Gaussian kernel function, the mean shift vector is

calculated from the gradient).

2.5.2. Mean shift using flat kernel functions. In the implementation of the

exploration strategy, a Python ready-made library is used [29]. This library includes

an implementation of the mean shift clustering that uses a flat kernel function of the

following form:

K(x) =
1
2

 1, if ||x|| ≤ h

0, if ||x||> h
(5)

Figure 16 shows the obtained PDF fK(x) using the flat kernel function on the

same data set used in Figure 13, with a bandwidth of h = 1.

Each point x ∈ {xi}N
i=1 is shifted towards the mean m(x) of data points {xi}N

i=1

that lie within radius h from the point x [30]. The points are iteratively shifted until they

settle and converge to a value. This value is the cluster center, and all the points that
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Figure 16: Kernel density estimation using flat kernel

converge to the same center belong to the same cluster.

T he mean = m(x) =
∑

N
i=1 K(xi− x)x

∑
N
i=1 K(xi− x)

(6)

where “m(x)− x” is the mean shift. Each iteration the mean m(x) is computed for each

data point x ∈ {xi}N
i=1, and each point x is shifted to its associated mean (i.e. x← m(x))

(where m(x) is calculated using Equation 6). Figure 17 shows how points are shifted

each iteration until they settle in the centers of clusters .

2.6. Rao-Blackwellized Particle Filters (RBPF)

The exploration strategy includes a module that is responsible for localizing the

robot and building a map of the environment. This problem is referred to as Simultaneous

Localization and Mapping (SLAM). For this purpose, a ready-made ROS package is

used in the implementation [31], this package implements a SLAM algorithm that uses

a Rao-Blackwellized Particle Filter (RBPF). The algorithm takes range measurements

from the laser scanner and the odometry of the robot as inputs. The outputs are the

robot’s pose and a map of the environment represented as an occupancy grid (discussed

previously). Occupancy grid maps are discussed below.

2.6.1. Rao-Blackwellization. For any SLAM algorithm, the main goal is to

estimate the map and robot’s pose within this map. The SLAM problem is formulated as
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Figure 17: Mean shift using flat kernel functions

In (a) each point initially is a center of a cluster. In Figures (b),(c) for each
point the mean of the points lying within a circle of radius h is computed, and
each point is shifted to the mean. In (d) the means of all points settle at cluster

centers.

finding the following joint probability:

p(x1:t ,m | z1:t ,u1:t) (7)

where u is the control input (usually taken from the odometry), z is the observation (e.g.

from a laser scanner), m is the map, and x is the robot’s pose. The RBPF SLAM splits

the problem into two independent subproblems: i) estimating the robot’s pose posterior

p(x1:t | z1:t ,u1:t) using a particle filter, and ii) estimating the map posterior p(m | x1:t ,z1:t)

for each particle. The latter subproblem is referred to as “mapping with known poses”.

Thus the SLAM problem is simplified as follows:

p(x1:t ,m | z1:t ,u1:t) = p(m | x1:t ,z1:t).p(x1:t | z1:t ,u1:t) (8)
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This technique is referred to as Rao-Blackwellization [32].

2.6.2. Mapping with known poses. Given a robot’s path and the observations,

the problem is formulated as follows:

p(m | x1:t ,z1:t) = ∏
i

p(mi | x1:t ,z1:t) (9)

where m is the map (occupancy grid map), and mi is a cell in this map. Using Bayes

filter, the probability p(mi) can be estimated as follows [24]:

l(mi | x1:t ,z1:t) = l(mi | zt ,xt)+ l(mi | z1:t−1,x1:t)− l(mi) (10)

where:

l(x) = log
p(x)

1− p(x)
(11)

This equation has three terms. l(mi) is the prior and is computed from p(mi) as shown

in Equation 11. Normally it is initialized as p(mi) = 0.5 which indicates that the cell is

unknown before incorporating any observations. The term l(mi | z1:t−1,x1:t) is a recursive

term, and l(mi | zt ,xt) is referred to as the “inverse sensor model”, where l(mi | zt ,xt) is

updated from the perception sensor, which in our case is the laser scanner [24].
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Chapter 3: RRT-Based Exploration Strategy

The exploration strategy is split into three modules: the RRT-based frontier

detector module, the filter module, and the robot task allocator module. The frontier

detector module is responsible for detecting frontier points and passing them to the filter

module. The filter module clusters the frontier points and stores them. In this work the

mean shift clustering algorithm [33] is used. The filter module also deletes invalid and

old frontier points (invalid and old frontier points are defined in Section 3.1). The task

allocator module receives the clustered frontier points from the filter module, and assigns

them to a robot for exploration. Each module is explained in more detail in Sections 3.3,

3.4, and 3.5. The exploration strategy also requires mapping and path planning modules,

which are available in existing work [17,32,34]. An overall high level schematic diagram

of the exploration strategy is shown in Figure 18. Implementation details are available in

Section 3.6.

Figure 18: Overall schematic diagram of the exploration algorithm

The proposed configuration, i.e. splitting the exploration strategy into three

modules (i.e. frontier detector module, filter module, and task allocator module) has

the following advantages. The task allocation routine can be changed without affecting

the detection of frontier points. Similarly different types of frontier detectors could be

tested using the same robot task allocator (this is required when a comparison between

different types of frontier detectors is made). Additionally, multiple instances of the

frontier detector can be run in parallel for faster detection of frontier points.

Normally, each robot runs an instance of the local frontier detector module. The

master machine runs an instance of the global frontier detector module in addition to the
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filter and the robot task allocator modules. The master machine can be one of the robots.

So for n robots, there are n+1 instances of frontier detector modules, a single instance

of the filter module, and a single instance of the robot task allocator module.

This configuration also provides scalability, as computational load can be dis-

tributed among the robots, such that each robot can run its own local frontier detector.

3.1. Terminologies

The following terminologies, in addition to the terminologies defined in section

2.1, are needed:

GridCheck: A function that takes a map and two points as arguments. It returns

0 if there is an obstacle between the points based on the given map. It returns -1 if there

is an unknown region between the points. Otherwise it returns 1 indicating that the points

are in known free space.

PublishPoint: A function that sends detected frontier points to the filter. The

‘filter’ is described later in the chapter.

Old frontier point: A frontier point detected in earlier iterations of the frontier

detector, and which is no longer in the unknown region of the map.

Invalid frontier point: A frontier point the robot cannot physically reach, i.e.

no valid path exists between the robot’s position and the given frontier point.

3.2. Why RRT?

RRT is heavily biased to grow towards unknown regions of the map [4], which

biases the tree to detect frontier points. This property can be explained by showing the

Voronoi diagram of RRT during exploration. This diagram shows how the tree is biased

to grow and extend from the vertices that are at the ends of the tree.

For a given graph that consists of vertices and edges (similar to the RRT graph),

a Voronoi diagram divides the space into regions, where each region is associated with

a vertex. A region is a collection of points that are nearest to the corresponding vertex.

Thus, a Voronoi diagram can be used to graphically know which vertex is nearest to any

given point in the space.
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Figure 19 shows the Voronoi diagram of RRT during exploration. Vertices with

larger Voronoi regions are closer to the unknown space. Since the selection of vertices

is based on finding the nearest neighbor, the tree is more likely to extend from these

regions.

node with largest Voronoi region

Figure 19: RRT Voronoi diagram

RRT is also not limited to 2-D space. As a result it can be used in 3-D exploration

(which can help to extend the work in [35, 36]), unlike image processing techniques

which rely on having a 2-D map of the environment. RRT is also probabilistically

complete [16], and it is guaranteed that the map will be completely discovered and

explored.

3.3. RRT-Based Frontier Detector

The RRT-based frontier detector module discovers frontier points. In our work,

any point that is reached by the growing RRT tree is considered a frontier point, if

this point lies in the unknown region of the map. In our implementation, the map

is represented as an occupancy grid (discussed in Section 2.3). Points located in the

unknown region carry a cell value of -1, so by reading the cell value of a point, it can be

classified according to its region.

We propose the use of two versions of frontier detectors: i) a local frontier

detector, and ii) a global frontier detector. The local frontier detector is meant to be run

by each robot. The global frontier detector is meant to be run by the master, which can be
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one of the robots. Running additional instances of the local or the global frontier detectors

enhances the detection of frontier points at the expense of increasing computational load.

3.3.1. Local frontier detector. The outline is listed in Algorithm 3. Similar to

the RRT algorithm discussed in Section 2.1, the tree in the local frontier detector starts

from a single initial vertex V = {xinit}, and E = φ , and at each iteration a random point

xrand ⊂ X f ree is sampled. The first vertex of the tree which is nearest to xrand is found

(this point is called xnearest ⊂V ). Then, the Steer function generates a point xnew. The

GridCheck function checks if xnew lies in the unknown region, or if any point on the

line segment between xnew and xnearest lies in the unknown region. If either of the above

conditions is true, then xnew is considered as a frontier point. The point xnew is then sent

to the filter module, and the tree is reset, i.e. tree nodes and edges are deleted. The next

iteration of the tree starts from the current robot position (i.e. V = {xcurrent}, and E = φ ).

This step is shown in line 8 of Algorithm 3. If there is no obstacle at xnew and no obstacle

in the space between xnew and xnearest , the tree extends by adding xnew as a new vertex.

An edge is created between xnew and xnearest .

Algorithm 3 Local Frontier Detector
1: V ← xinit ; E← φ ;
2: while True do
3: xrand ← SampleFree;
4: xnearest ← Nearest(G(V,E),xrand);
5: xnew← Steer(xnearest ,xrand);
6: if GridCheck(xnearest ,xnew) =−1 then . Unknown region
7: PublishPoint(xnew);
8: V ← xcurrent ; E← φ ; . Reset tree
9: else if GridCheck(xnearest ,xnew) = 1 then . Free Known region

10: V ←V ∪{xnew}; E← E ∪{(xnearest ,xnew)};
11: end if
12: end while

The resetting of the tree as shown in line 8 of Algorithm 3 is one of the major

differences between the usage of RRT for exploration in this work, compared to other

standard implementations of RRT available in the literature. The reason behind resetting

the tree in the local frontier detector is explained in subsection 3.3.3.
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For each robot running the local frontier detector, a tree is generated through the

process described above. Once the tree reaches an unknown region, a frontier point is

marked and the tree is reset. This process happens during a robot’s motion. Therefore the

tree grows from a new initial point each time it resets according to line 8 of Algorithm

3. The local frontier detector is proposed for fast detection of frontier points in the

immediate vicinity of the robot at any time. Figure 20 shows the propagation of the local

RRT and the process of detecting a frontier point.

3.3.2. Global frontier detector. The outline is listed in Algorithm 4. This

version of the detector is identical to the local frontier detector with one difference being

that the tree doesn’t reset and keeps growing during the whole exploration period (i.e.

until the map is completely explored), which makes the global frontier detector algorithm

similar to RRT. The global frontier detector is meant to detect frontier points through the

whole map and in regions far from the robot.

The global frontier detector uses the global map obtained by merging the local

maps of all the robots, whereas the local frontier detector uses the local map of a robot.

unexplored
space

explored space

robot

obstacle

previously
detected
frontier
point

(a)

RRT

(b)

tree reached
the boundary
of unknown
space

(c)

detected frontier
point

(d)

tree starts from
robot’s current position

(e) (f)

Figure 20: Propagation of the local RRT and the detection of frontier points

In (a) the tree starts from the current position of the robot. In (b) and (c) the
tree keeps growing, and in (d) a tree vertex lying in the unknown region is

marked as a frontier point and the tree is reset. In (e) and (f) the loop repeats
and the tree grows back again from the robot’s current position
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Algorithm 4 Global Frontier Detector
1: V ← xinit ; E← φ ;
2: while True do
3: xrand ← SampleFree;
4: xnearest ← Nearest(G(V,E),xrand);
5: xnew← Steer(xnearest ,xrand);
6: if GridCheck(xnearest ,xnew) =−1 then . Unknown region
7: PublishPoint(xnew); . Tree does not reset
8: else if GridCheck(xnearest ,xnew) = 1 then . Free known region
9: V ←V ∪{xnew}; E← E ∪{(xnearest ,xnew)};

10: end if
11: end while

If there is a delay in obtaining the merged global map, the local frontier detectors are

still able to detect frontier points.

robot 1

robot 2

robot 3

Global detector

local detector

Figure 21: Global and local frontier detectors

3.3.3. The need for global and local frontier detectors. As explained above,

the local tree is reset after it detects a frontier point and starts growing again from the

robot’s current position. This has two consequences. First, it allows quicker detection

of frontier points because the tree starts growing from the previously-detected frontier

point, so the chance that the next point picked from the RRT for exploration lies in the

unknown space is higher. Second, the robot can miss exploring small corners in a map.
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To fix this problem, and also to make sure that points which are far from the robot’s

current position are detected and explored, we use the global frontier detector.

However, the growth of the tree in the global frontier detector becomes slower as

the tree grows larger (i.e. the number of tree vertices increases). This can be explained

by analyzing the Voronoi diagram of RRT: as the number of tree vertices increases, the

space is decomposed into smaller and smaller Voronoi regions. As a result, the steer

function will create edges of smaller length; hence, detection of frontier points also

becomes slower. This is why the local frontier detector is needed. Thus our proposed

strategy uses local and global RRT-based frontier detectors to complement one another

so that frontier detection is as fast as possible.

3.4. The Filter Module

The filter module receives the detected frontier points from all the local frontier

detectors and from the global frontier detector. Every time a new frontier point is

received, the filter module stores it in the frontier points array. At first, the filter module

clusters the points stored in the frontier points array using the mean shift clustering

algorithm [29, 33] discussed in Section 2.5, and it updates the array by discarding

(deleting) every frontier point that is not a center of a cluster. The frontier points array is

then sent to the robot task allocator module. The clustering and subsequent discarding

process is needed to reduce the number of frontier points, since global and local frontier

detectors can provide too many frontier points which are extremely close to each other.

If such points are sent to the robot task allocator module, then there will be unnecessary

consumption of computational resources, and no additional information about the map is

necessarily gained. The filter module also deletes invalid and old frontier points in each

iteration.

3.5. Robot Task Allocator

This module receives the frontier points array from the filter module and assigns

them to the robots. The robot task allocator module assigns frontier points to be explored

by a particular robot by considering the following:
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• Navigation cost (N): The expected distance to be traveled by the robot to reach a

frontier point. In order to simplify computation, the navigation cost is calculated

by considering the norm of the difference between the robot’s current position and

the location of a frontier point.

• Information gain (I): The area of an unknown region expected to be explored for

a given frontier point. The information gain is quantified by counting the number

of unknown cells surrounding a frontier point within a user defined radius. This

radius is referred to as the information gain radius, which should be set to a value

equal to the perception sensor range. The area is then calculated by multiplying

the number of cells within the information gain radius, by the area of each cell

(which is computed from the map resolution). In Figure 22, the information gain

approximately equals 1.81 m2 (i.e. the number of unknown cells is 181, each cell

is a square with a width equal to map resolution, which, in this case, is 0.1 m).

frontier point

Information gain
radius

Figure 22: Information gain region of a frontier point

• Overlapping: The following must be achieved in order to reduce overlapping: i)

a robot should not explore a frontier point that is currently assigned to another

robot, or a frontier point that is close to the current location of another robot, ii)
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robots should be biased to explore neighbor frontier points which lie in the region

surrounding the last assigned frontier point or surrounding the robot’s current

position.

In order to achieve these criteria, a market based approach is adopted for robot assignment

similar to [37] with a few modifications. The outline of the task allocator is listed in

Algorithm 5. The following sections explain each step in more detail.

3.5.1. Market-based assignment. The robot task allocator module is run on the

master At each iteration a bidding list is computed, where a bid is equal to the expected

revenue. The revenue is the expected information gain of exploring a frontier point

minus the expected cost to reach that point, and it is computed as shown in lines 14-18 of

Algorithm 5. The robot with the highest bid is assigned to the associated point. A bidding

list consists of records, where each record is a robot-point combination along with the

expected revenue for the robot to explore the point. A scenario for robot assignment is

shown in Figure 23. The bidding list created for this scenario is shown below, where

it has six records (each robot has two records, because there are two frontier points

detected):

{‘robot_id ’: 2, ‘point ’: [-4.24, -0.68], ‘revenue ’: 26.24} ,

{‘robot_id ’: 1, ‘point ’: [-4.24, -0.68], ‘revenue ’: 26.22} ,

{‘robot_id ’: 2, ‘point ’: [-1.67, -1.94], ‘revenue ’: 6.97} ,

{‘robot_id ’: 3, ‘point ’: [-4.24, -0.68], ‘revenue ’: 6.60} ,

{‘robot_id ’: 1, ‘point ’: [-1.67, -1.94], ‘revenue ’: 6.42} ,

{‘robot_id ’: 3, ‘point ’: [-1.67, -1.94], ‘revenue ’: -1.77}

The winning bid is for Robot 2 with the frontier point [−4.24,−0.68]. Although point

[−1.67,−1.94] is closer to Robot 2, its information gain is small, and hence its revenue

is less profitable.

In line 18, the revenue is calculated as shown in Equation 12:

Revenue = (λ × I)−N (12)

where λ is a positive user-defined constant which is used as a weight. The weight λ is

used to give more importance to the information gained from exploring a frontier point,
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frontier points

robot 1

robot 2

robot 3

Figure 23: A scenario for robot assignment

compared to the navigation cost. This also helps to ensure that the terms I, and N have a

similar order of magnitude.

The calculation of bids and the subsequent robot assignment involves only

available robots (robots that are not currently executing an exploration command, and

are ready to be assigned). If there are no available robots (all robots are busy), a bidding

list is created for all the busy robots, so that if a frontier point with a higher revenue

exists, it will be assigned instead of the currently assigned frontier point. An example

is when the assigned frontier point is explored before the robot reaches the point. In

this scenario, the information gain of the point will be zero, and hence it would be more

efficient if a new frontier point with higher revenue is assigned to the robot instead.

3.5.2. Discount process. To avoid assigning the same frontier point to multiple

robots, the “discount” function is used (line 7 of Algorithm 5). For each frontier point

that has an overlapping area with a previously assigned frontier point, the “discount”

function is applied, where it subtracts that overlapping area from its information gain.

Overlapping area is computed by counting the number of overlapping cells and mul-

tiplying the count by the area of each cell (which depends on the map resolution).

Overlapping cells are the ones common between the information gain region of the

previously assigned frontier points, and the current frontier point. Figure 24 shows an

example of the discount process.
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Information gain of B

Information gain of A

Discount

A B

Figure 24: Updating information gain of a frontier point in the discount step

A robot is assigned to point A, and as a result, a discount equal to the overlapping area is
applied on the information gain of frontier point ‘B’.

3.5.3. Hysteresis gain. The information gain of every frontier point that is close

to a robot’s current position or a robot’s currently assigned frontier point (in case if a

robot is currently executing an exploration command) is multiplied by the hysteresis

gain (hgain) [37], where hgain is a gain larger than 1 (in our implementation it is set to 2).

The radius that defines how close a point should be is referred to as the hysteresis radius

(hrad), and is set based on user experience (in our implementation it is set to 3 m).

Applying the hysteresis gain increases the revenue of frontier points that lie in the

vicinity of a robot which biases the robot to continue exploring the region surrounding

it. This reduces overlapping, as robots do not switch to a new region unless the current

region is completely explored. The process of a robot switching between distant regions

in the environment is a major source of overlapping, since robots during this process

cover pre-explored areas. This is not preferable as it consumes time and cost (where cost

is the total distance traveled by a robot).

The hysteresis gain is applied in two cases: i) for available robots, it is applied to

the information gain of frontier points that are close to the robot’s position within hrad

(lines 15-17 of Algorithm 5), and ii) for busy robots (only when there are no available

robots). In this case, the hysteresis gain is applied to the information gain of frontier

points that are close to the robot’s position or close to the robot’s currently assigned

frontier point within hrad (lines 30-35 of Algorithm 5).
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3.5.4. Removing the discount. Note that the robot task allocator first assigns

available robots, and only if all robots are busy, the task allocator reassigns busy robots

to frontier points that have higher expected revenue, if such points exist. The discount

process reduces the information gain of the frontier points that are near to an assigned

point. After applying the discount process, the current assigned frontier point will have

zero information gain. Hence, its expected revenue will become small so that other

robots will not be assigned this point, which solves the problem of assigning the same

frontier point to multiple robots.

However, when all robots are busy, if the discount is not removed, once a robot

is assigned a frontier point, its information gain will become zero after the discount. As

a result, the robot task allocator will assign a different frontier point to the robot even if

this point has a lower revenue. This will cause busy robots to be reassigned different

frontier points even before exploring them.

To solve this problem, and when calculating the bidding list records that corre-

spond to a particular robot, the discount is removed on every frontier point that is close to

the robot’s currently assigned frontier point (close within hrad). The discount is removed

by recalculating information gains, as shown in line 34 of Algorithm 5. Removing

the discount is applied only when all robots are busy, so it biases busy robots to keep

executing their current command, unless a point with a significantly higher revenue

exists.

3.5.5. Calculation of information gain. In order to calculate the information

gain of a frontier point efficiently (without scanning the whole occupancy grid), the

information gain of a frontier point in a given occupancy grid is calculated by scanning

only the cells that lie within a square surrounding the information gain disk, as shown in

Figure 25. Each cell within the square shown in Figure 25 (marked in dashed blue) is

checked to see whether it lies within the information gain disk (marked in red). All cells

that lie within the information gain disk are counted. The index of the square starting cell

is found by first obtaining the index of the frontier point. Next, the offset is subtracted.

The offset can be computed knowing the information gain radius and the occupancy grid

width and height (the width of an occupancy grid is the number of cells in a row).
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frontier point
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Figure 25: Calculation of information gain for a frontier point

3.6. Implementation

Figure 26 shows an implementation diagram of the exploration strategy. It

consists of the SLAM module, path planning module, map merging module, global and

local frontier detector modules, the filter module, and the robot task allocator module.

Different ready-made ROS packages are used in the implementation for mapping

and path planning. Also, the proposed exploration strategy is itself implemented as a

ROS package called “rrt exploration” [38] consisting of four nodes: the local frontier

detector node, the global frontier detector node, the filter node, and the robot task

allocator node.

3.6.1. Mapping and localization module (SLAM). For each robot, this module

requires the odometry, the laser scans and the transformation between the laser frame

and the robot base frame, in order to provide a local map for the robot and the location

of the robot within the map. The ROS “gmapping” package is used for this [31]. It

implements a SLAM algorithm that uses a Rao-Blackwellized particle filter [32, 34].

The SLAM algorithm takes robot odometry and laser scans as inputs, and publishes the

map as an occupancy grid.

3.6.2. Path planning module. This module takes the map generated by the

SLAM module, robot location, and target assigned point to plan a path and send velocity

commands to the robot. For that, the “move base” node [39], which comes with the ROS

“Navigation” stack, is used. This node acts as an interface with several components in the
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Figure 26: Implementation diagram

“Navigation” stack. It creates local and global costmaps. A costmap is an occupancy gird,

but unlike a map, the cell values range from 100 to 0 (no threshold is applied, unlike in

a map, where cell values are binary, either 0 or 100). Cell values correspond to costs

that are obtained by inflating the obstacle. The closer the cells are to an obstacle, the

higher cost values, as shown in Figure 27 (colors correspond to cost values; blue is for

low cost value, red is for high cost value, cyan indicates an area where the robot cannot

physically reach, and yellow is for the occupied cells). The local costmap is used by the

local planner which is responsible for driving the robot to follow the global path created

by the global planner, and the global costmap is used by the global planner. Running

the “move base” node also provides robot recovery behaviors that are used when the

robot gets stuck. The reader can refer to [40, 41] for more details regarding the local and

global planners that are used in the ROS “Navigation” stack. The global planner uses

Dijkstra’s path planning algorithm (discussed in Section 2.1) for generating the paths.
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(a) (b)

Figure 27: Costmap showing how obstacles are inflated

An occupancy grid map is shown in (a). In (b) a costmap is drawn over the
occupancy grid map, where occupied cells are inflated

3.6.3. Map merging module. This module is required to combine the local

maps of all the robots into one global map used by the global detector. Map merging

requires frame transformations between local map frames. In our implementation, Robot

1’s frame is used as a global frame, and the transformation between other robots’ frames

and the global frame is assumed to be rigid (i.e. not changing with time).

In order to obtain frame transformation, robot poses are initialized so the relative

position and orientation between robots is known. A ready-made ROS package is used

for map merging [42]. Figure 28 shows three local maps obtained from the three robots,

and the global map obtained after merging them.

(a) Robot 1 local map (b) Robot 2 local map (c) Robot 3 local map

(d) Global merged map

Figure 28: Map merging example
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Map merging has a limitation when it comes to the quality of the merged map

when one of the local maps is not accurate. Figure 29 shows an example, where robot’s 3

local map was not correct (Robot 3’s estimated location exhibited a drift, which affected

the process of map building). As a result, the merged map was also affected. Despite

this, Robot 3’s can still use its local map to navigate without any problems.

(a) Robot 1 local map (b) Robot 2 local map (c) Robot 3 local map

(d) Global merged map

Figure 29: Map merging limitation

3.6.4. Global and local frontier detector modules. The global and local detec-

tors are made as ROS nodes written in C++ to make frontier detection as fast as possible.

The node subscribes to the map topic, and publishes the detected frontier points on

the “/detected points” topic, where the message type of this topic is “PointStamped”.

Normally, in multiple robots configuration, the local frontier detectors take the local

maps of the robots, whereas the global frontier detector takes the global merged map.

The node also takes two parameters (i.e. fetches them from the ROS parameter

sever); the growth rate (η) of the RRT, and the map topic. Thus, these parameters can

be changed according to the user setup (i.e. different setups might have different topic
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names). Running multiple instances of the global/local detector causes all the nodes to

publish detected points on the same topic the filter node is subscribing to.

3.6.5. Filter module. The filter module is made as a ROS node written in the

programming language Python. The filter node subscribes to a ROS topic (default name

is “/detected points”), on which it receives detected frontier points. The message type of

the topic is the ROS “PointStamped” message. This message type is used since it carries

the point location, and also shows in which coordinate frame the point is represented.

Knowing the coordinate frame is needed for deleting invalid frontier points.

The filter node receives detected frontier points from multiple sources (Robot

1, Robot 2, etc..). In order to delete invalid frontier points, the global costmap of each

robot is used. When a point is received by the filter node, it reads the coordinate frame

associated with the received point. It will then use the global costmap of the robot that

corresponds to this coordinate frame for checking the validity of the received point. For

example, a frontier point represented in coordinate frame ”robot 1/map” will be checked

(to see if it is a valid point or not) using the the global costmap of Robot 1. Frontier

points that have a cost value above a user-defined threshold in the associated global

cost map, will be deleted and considered as invalid. The filter node also calculates the

information gain of received frontier points. If the information gain is zero, the frontier

point is considered an old point and is therefore deleted.

After filtering the stored frontier points, the filter node publishes all the filtered

frontier points on the ROS topic (where the default name is “filtered points”) which the

robot task allocator is subscribing to. The message type of this topic is ”PointArray”,

which is a custom defined ROS message that comes with our ROS package [38].

The user can define the following ROS parameters which the filter node accepts:

• “map topic”: Specifies the map topic used by the filter node to delete old frontier

points (the map on this topic is used to calculate the information gain of received

frontier points). its default value is “/robot 1/map”.

• “info radius”: Yhe information gain radius. where the default value is 1 m.

• “costmap clearing threshold”: The threshold used for clearing invalid frontier

points. Any frontier point with a cost value higher than this threshold will be
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considered invalid. its default value is 70. Note that higher cost values correspond

to cells that are very close to obstacles. These cells are hard or impossible for the

robot to reach, which is why such frontier points are considered invalid and are

deleted.

• “goals topic”: Topic to receive detected frontier points on. Its default value is

“/detected points”.

• “n robots”: Number of robots. Its default value is 1.

• “rate”: The rate at which the node runs. Its default value is 100 Hz.

3.6.6. Robot task allocator module. The robot task allocator module is made

as a ROS node written in Python. The node by default subscribes to the “/filtered points”

topic on which it receives the filtered frontier points. The node takes the following ROS

parameters:

• “map topic”: Specifies the map topic used by the robot task allocator node to

calculate the information gain of frontier points. Its default value is “/robot 1/map”.

• “info radius”: It is the information gain radius. Its default value is 1 m.

• “info multiplier”: This is the weight λ that gives importance to the information

gain over the cost of a frontier point, as indicated in Equation 12. Its default value

is 3.

• “info multiplier”:

• “hysteresis radius”: The hysteresis radius hrad . Its default value is 3.

• “hysteresis gain”: The hysteresis gain hgain. Its default value is 2.

• “frontiers topic”: The topic name on which the task allocator node will receive

the filtered frontier points. Default value is “/filtered points”.

• “n robots”: Number of robots. Its default value is 1.

• “delay after assignment”: Number of seconds to wait after a robot is assigned a

frontier point. Its default value is 0.5 sec.

• “rate”: The rate at which the node runs. Its default value is 100 Hz.
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Algorithm 5 Robot Task Allocator
1: while True do
2: n f rontiers← length o f Frontiers;
3: for i = 1, ...,n f rontiers do
4: in f oGains[i]← getInfoGain(Frontiers[i]);
5: end for
6: for each robot do
7: in f oGains← discount(map, in f oGains,Frontiers,assigned point);
8: end for
9: V ← φ ; . Bidding list

10: R← φ ; . Robots list
11: C← φ ; . Frontier points list
12: for each available robot do
13: for i = 1, ...,n f rontiers do
14: Cost← norm(Frontiers[i],robot position);
15: if norm(Frontiers[i],robot position)≤ hrad then
16: in f oGains[i]← in f oGains[i]×hgain; . Applying hysteresis gain
17: end if
18: Revenue← λ × in f oGains[i]−Cost;
19: V ←V ∪Revenue;
20: R← R∪ robot ID;
21: C←C∪Frontiers[i];
22: end for
23: end for
24: if no available robots then
25: V ← φ ;
26: R← φ ;
27: C← φ ;
28: for each busy robot do
29: Cost← norm(Frontiers[i],robot position);
30: if norm(Frontiers[i],robot position)≤ hrad then
31: in f oGains[i]← in f oGains[i]×hgain; . Applying hysteresis gain
32: end if
33: if norm(Frontiers[i],assigned point)≤ hrad then
34: in f oGains[i]← getInfoGain(Frontiers[i])×hgain;
35: end if
36: Revenue← λ × in f oGains[i]−Cost;
37: V ←V ∪Revenue;
38: R← R∪ robot ID;
39: C←C∪Frontiers[i];
40: end for
41: end if
42: index = Max(V );
43: Assign(robot with ID = R[index],C[index]);
44: end while

57



Chapter 4: Simulation and Experimental Work

The proposed RRT-based local and global frontier detectors are compared against

the image processing-based frontier detector explained in Section 2.4. The same robot

task allocator explained in Section 3.5 is used in both cases. Also, the steer function

used in RRT-based exploration (as shown in line 5 of Algorithms 3 and 4) requires

tree growth rate η as an argument. Two simulation maps and one experimental map

are presented below, which are explored using our proposed exploration strategy. For

each map, we perform a total of 70 exploration runs. Out of these 70, 10 exploration

runs are performed using the image processing-based frontier detector. The remaining

60 runs are performed using our proposed local and global frontier detectors. Further,

these 60 exploration runs are divided into 6 sets of 10 exploration runs, where the global

frontier detector in each set uses a steer function with a particular growth rate η , where

η ∈ {0.5,1,4,6,10,15}, and the local frontier detectors use a steer function with fixed

η = 1. Simulations and experiments are preformed for a single robot, and also for a

team of three robots. The total number of exploration runs is 420.

4.1. Simulation Setup

Simulations are carried out using the Gazebo simulator [43], which provides

realistic robotic movements, a physics engine, and the generation of sensor data combined

with noise.

4.1.1. Robot model. The “kobuki gazebo” package [44] provides simulation

files needed for running the Kobuki robot simulations. After running this package, the

simulated Kobuki platform publishes/subscribes to the same topics as a real Kobuki

platform. In order to add the lase scanner, the “URDF” 1 files of the Kobuki platform

are modified (i.e. by adding the laser scanner plug-in and the laser scanner model link).

Figure 30 shows the simulated Kobuki robot with the laser scanner on top.

1In Gazebo, “URDF” files describe a robot model in terms of the links the robot consists of, moment
of inertia of each link, center of gravity, and even the visual appearance.
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laser scanner

Figure 30: Simulated Kobuki platform

4.1.1.1. Environments used in simulations. Two environments are used for the

simulation. The first environment, shown in Figure 31, is a large map with an area

of approximately 182 m2 (free space area), where the robot radius is 0.175 m. In the

experiments made using this environment, the laser scanner range is set to 50 m.

Figure 31: Simulation environment, first map

The second map is made to be very similar to the real map that is actually used

in the real setup, and the area of the map is approximately 49 m2. In the experiments

made using this map, the laser scanner range is set to 4 m which is identical to the range

of the actual laser scanner used in the real setup. Two sizes of maps and two different

laser scanner ranges are used in order to observe the effect of map size and laser scanner

range on the proposed exploration strategy.
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Figure 32: Simulation environment, second map

4.2. Hardware Setup

This section describes the hardware setup used in the experimental work. Figure

33 shows an overview of the hardware components used.

Figure 33: Overview of the hardware setup
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4.2.1. Laser scanner. A Hokuyo URG-04LX laser scanner is used. It is a

scanning laser range finder used in mapping and navigation, with a scanning area of

240◦, and a range of up to 400 cm. This laser scanner has a ROS driver that can be used

to read the raw data and publish it as a ROS message of type “LaserScan”.

In the implementation, the laser scanner is mounted 11.5 cm from the robot’s

center as shown in Figure 34. As a result, a transformation between the laser frame and

the robot frame is required, for which a ROS static transformation publisher is used.

Figure 34: Laser scanner mounting on the Kobuki mobile base

4.2.2. Robot platform. The mobile platform used is the Kobuki robot. It

provides odometry measurements, cliff detecting sensors, bumpers, and battery voltage

sensing. The Kobuki requires a controller. It supports an embedded microcontroller

(where the connection is made through the GPIO pins on the robot), or a computer

(where the connection is made through a USB port) that can have either Windows or

Linux installed. C++ Kobuki drivers are available for both operating systems.

Since ROS is used in the implementation, each Kobuki robot is connected to a

Raspberry Pi (which is a single-board computer, described later) that has Linux Ubuntu

installed. The Kobuki robot is supported by ROS and has a package for it. This package

provides what is referred to as the Kobuki control system [45]. The Kobuki control

system is basically is a collection of nodes that provide additional features such as

velocity command smoothening (i.e. preventing jerky motion of the robot), and it

also has safety features and velocity command multiplexing. The driver node receives

velocity commands on different topics, a node that serves as a multiplexer assigns
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different priorities to each topic to avoid any conflict. For example, if the robot hits

an obstacle, the bumper sensor will trigger the safety controller node which will send

a velocity command to drive the robot backward. If another node sends a velocity

command during this process, the multiplexer will give the node a lower priority and

prevent it from controlling the robot until the safety control stops sending velocity

commands. Without the multiplexer node a conflict will arise. The multiplexer node is

called “cmd vel mux”.

4.2.3. Robot computer. On each robot, a Raspberry Pi 2 model B is used.

The Raspberry Pi 2 is a low-price single-board computer, with 1 GB RAM, and a 900

MHz quad-core CPU. In the implementation, the operating system installed on each

Raspberry Pi is Snappy Ubuntu Core 14.04, a special distribution of Ubuntu that provides

a minimalistic version of Ubuntu (for instance it does not have a graphical user interface),

but supports ROS. The chosen ROS distribution is Indigo. With the low specifications of

the Raspberry Pi, the computation on it is limited to only run the Kobuki driver node

and the laser scanner node, where the master computer does the rest of the computation.

Figure 35 shows the three robots used in the experiments.

laser scanner

Figure 35: Robots used in the experiments

4.2.4. Master computer. The master computer has Ubuntu 14.04 and ROS

Indigo installed. It runs the “gmapping” SLAM node and the “move base” node for all

the robots. It also runs the map merging node, the local and global detector nodes, the

62



filter node, and the robot task allocator node. The master computer is connected to the

robots using a WiFi connection through a router. The master computer has an i7-2600

CPU (quad-core, 3.40 GHz), 4 GB RAM, and an AMD Radeon HD 6350 GPU.

4.2.5. Network setup. A ROS network can be setup by running the ROS master

on one machine (by running the “roscore” command on the master computer). This

will create a ROS network but on the local machine only. For other robots to connect

to the ROS network, the “ROS MASTER URI” environment variable has to be set to point

to the master computer. In our setup, this is done by adding the following line to the

“.bashrc” file. The “.bashrc” file is a bash script that is run every time you open a

shell or a terminal window. It is located in the home directory (i.e. “∼/.bashrc” is the

path for this file). It’s file name starts with a dot indicating that it is a hidden file.

# This line is added to the end of the .bashrc file in each robot

# "hassandesktop" is the master hostname

export ROS_MASTER_URI=http :// hassanNewDesktop :11311

In addition, each machine on the network should have its host name added to the “hosts”

file of all the other machines. The “hosts” file path is “/etc/hosts”. For example, the

master machine “hosts” file has the following:

127.0.0.1 localhost

127.0.1.1 hassanNewDesktop

# The following lines are desirable for IPv6 capable hosts

::1 ip6 -localhost ip6 -loopback

fe00 ::0 ip6 -localnet

ff00 ::0 ip6 -mcastprefix

ff02 ::1 ip6 -allnodes

ff02 ::2 ip6 -allrouters

192.168.2.111 robot1

192.168.2.112 robot2

192.168.2.113 robot3
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In a ROS network, the clocks of all the machines have to be in sync (many ROS

messages are time stamped, and a large time offset between clocks can cause errors).

For that, the “chrony” tool is used by setting the master computer as a server (i.e. the

master computer will be the clock source, to which all the robots will sync their clocks).

This is not always required; however, in our setup it is needed.

4.2.6. The map used in the experiment. The map where the real experiments

are conducted is shown in Figure 36. The area of this map is approximately 49 m2.

Figure 36: The real map used in the experiments

4.3. Results

As described at the beginning of this chapter, 70 exploration runs are performed

for 3 maps (2 simulation, 1 real). The outcome of each exploration experiment is

an occupancy gird. Figure 37 shows the occupancy grids obtained for the simulated

environments, and the real map using a single robot. At the end of each exploration run,

the total time taken for exploration and the total distance covered by the robot during

exploration are recorded.

4.3.1. Simulation results. The first set of results is for the first environment

with the large map, shown in Figure 31, where the long-range laser scanner is used. The

results for this part are shown in Figure 39.
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(a) (b) (c)

Figure 37: Occupancy grid maps generated using the proposed exploration strategy,
single robot case.

Picture (a) is the occupancy grid of the first simulation environment, (b) is the
occupancy grid of the second simulation environment, and (c) is the occupancy grid of

the real map, showing the robot after it has finished exploration.

(a) (b) (c)

Figure 38: Occupancy grid maps generated using the proposed exploration strategy,
three robots case.

Picture (a) is the occupancy grid of the first simulation environment, (b) is the
occupancy grid of the second simulation environment, and (c) is the occupancy grid of

the real map. All these maps are obtained by merging the local maps of all robots

The second set of simulation results is for the second environment with a small

map, shown in Figure 32, where a low-range laser scanner is used. The results for this

part are shown in Figure 40.

The simulation results show that using RRT-based detection does not compromise

the efficiency of exploration in terms of the time and total distance needed to cover

the map. The effect of the laser scanner range is also insignificant, although it affects

the speed at which RRT expands in the space. The effect of the laser scanner range is
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Figure 39: Large map simulation results

compensated by the multiple RRTs (a global frontier detector which never resets, and a

local frontier detector which resets frequently).

The simulation results for the single robot and for the first (large) environment

show that the time needed to finish exploration using the proposed algorithm is less than

123 seconds on average. In contrast with an earlier work of the proposed algorithm,

which is similar to the work in [7,46], where the robot is made to follow the edges of RRT

as the tree grows, the obtained exploration time for the same simulation environment
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Figure 40: Small map simulation results

was more than 300 seconds. This shows that not following tree edges as the RRT grows

results in a substantial improvement in exploration speed.

4.3.2. Experimental results. The last set of results is produced using the

real experimental setup. Figure 41 shows the experimental results. The results agree

in general with the above mentioned simulation results. The only difference is that

the RRT-based experimental exploration is slightly more time consuming than the

image processing-based exploration. However we believe that such small differences
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in performance show that the proposed exploration strategy will be viable for 3-D

exploration, where image processing-based exploration techniques may be unusable.
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Figure 41: Real map results
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Chapter 5: Conclusion and Future Work

5.1. Conclusion

In this work, a new map exploration strategy is presented. The strategy is based

on the Rapidly-exploring Random Tree (RRT) algorithm, where RRT is used to find

frontier regions. Usual implementations of frontier detectors utilize image processing

tools to extract frontier regions, limiting their application to 2-D exploration. The

proposed strategy uses RRT to detect frontier points. RRT is not limited to 2-D space,

hence, it can be applied to find frontier points in 3-D maps, which can in the future allow

for efficient 3-D exploration.

The proposed exploration strategy is implemented using the Robot Operating

System (ROS). It is tested using simulations and real experiments, with a total number of

420 exploration runs. Simulations are carried out using the Gazebo simulator. Whereas

the real experiments are conducted using three mobile robots equipped with laser scan-

ners. The map representation that is used in the experiments is the 2-D occupancy gird

map. Two simulation environments of different sizes are used in the simulation in order

to test the effect of map size on the speed of exploration. For each exploration run two

metrics are recorded; the total time needed to finish exploring the map, and the cost

which is defined as the total distance traveled by all the robots. Additionally, different

values of the RRT growth rate η are tested. The proposed strategy is also compared

against an image processing-based frontier detection algorithm.

The results show that the proposed strategy can successfully extract frontiers

and explore the entire map in a reasonable amount of time and cost, with minimal

sacrifices to performance when compared against the image processing-based frontier

detection algorithm. Another contribution of this work is that a custom ROS package for

RRT-based exploration has been developed, and it is available for users at [38].

5.2. Future Work

This work shows that RRT-based frontier detection can be used for detecting

frontier points in 2-D maps having similar performance compared to existing algorithms.
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However, the main advantage of using RRT for frontier point detection is that it can

be used on 3-D maps, where other existing algorithms might fail. The proposed RRT-

based frontier detection algorithm can be extended to 3-D map representations such as

OctoMaps [47].

Another improvement that can be added is the distribution of computation. Due to

the low performance of the Raspberry Pi computer used on each robot, all the processing

(SLAM, path planning, running the RRT-based frontier point detectors, and the robot task

allocator) was made on the master computer. Instead, each robot can run the followings

locally; i) SLAM module, ii) path planning module, and iii) the local RRT-based frontier

detector module. In order to be able to do that, a more powerful computer has to be used

on each robot. This reduces the data sent over the network which helps in speeding up

exploration.

Additionally, the exploration strategy can be changed from being centralized to

being hybrid. The modules which make the proposed exploration strategy a centralized

approach are the robot task allocator module and the filter module; all other modules

can be run locally on each robot. Thus, each robot can do exploration on its own using a

local task allocator module. Every time a robot comes in the range of another robot, one

of them becomes a master and starts running the global task allocator commanding the

two robots. This requires the use of an ad hoc network.

More work can also be added to the exploration strategy itself. The current robot

task allocator does not take into account map quality (the probability values of each cell

in the occupancy grid map, i.e. p(mi)), as the SLAM module runs independently from

other modules. This can be changed so the robot task allocator takes into account map

quality and robot pose estimates, so it generates target points that increase map quality

in addition to exploring new regions at the lowest cost. Also, more work can be added to

fix the problem of map merging. The current solution merges the local maps given that

the initial poses of the robots are known. If one of the local maps is not accurate, the

obtained global map is also affected and it becomes unusable for navigation.

Finally, the exploration strategy was tested in small environments. Large envi-

ronments require long-range laser scanners (a range above 20 m).
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Appendix A: Raw Data Results

Single Robot, Simulation, First (Large) Map Results
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Figure 42: Raw data results for single robot, simulation, first (large) map
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Single Robot, Simulation, Second (Small) Map Results
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Figure 43: Raw data results for single robot, simulation, second (small) map
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Single Robot Real Experimental Results
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Figure 44: Raw data results for single robot real experiments
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Three Robots, Simulation, First (Large) Map Results

E
xp

. N
o.

R
R

T
 D

et
ec

to
r

Im
ag

e 
ba

se
d

E
ta

=
1

E
ta

=
4

E
ta

=
0.

5

T
im

e 
(s

ec
)

r1
 d

 (
m

)
r2

 d
 (

m
)

r3
 d

 (
m

)
to

t d
 (

m
)

T
im

e 
(s

ec
)

r1
 d

 (
m

)
r2

 d
 (

m
)

r3
 d

 (
m

)
to

t d
 (

m
)

T
im

e 
(s

ec
)

r1
 d

 (
m

)
r2

 d
 (

m
)

r3
 d

 (
m

)
to

t d
 (

m
)

T
im

e 
(s

ec
)

r1
 d

 (
m

)
r2

 d
 (

m
)

r3
 d

 (
m

)
to

t d
 (

m
)

1
48

10
.0

2
12

.8
4

11
.3

8
34

.2
4

54
12

.8
9

13
.9

7
13

.0
1

39
.8

7
73

17
.5

9
19

.4
1

18
.6

55
.6

51
13

.7
11

.7
4

11
.8

3
37

.2
7

2
69

.7
9

16
.2

7
18

.1
4

17
.3

6
51

.7
7

69
16

.1
8

19
.1

2
12

.4
9

47
.7

9
84

19
.2

9
23

.6
9

19
.4

7
62

.4
5

63
16

.2
3

15
.0

5
13

.1
7

44
.4

5

3
53

13
.4

1
13

.2
9

13
.1

9
39

.8
9

39
9.

44
9.

93
10

.1
8

29
.5

5
93

23
.7

9
25

.2
25

.5
74

.4
9

46
12

.0
6

11
.8

2
11

.6
7

35
.5

5

4
42

9
11

.0
6

9.
21

29
.2

7
72

18
.1

8
18

.6
5

13
.9

4
50

.7
7

93
18

.9
7

25
.0

8
23

.3
8

67
.4

3
49

13
.5

9
11

.9
3

12
.1

37
.6

2

5
53

7.
69

13
.1

3
13

.0
3

33
.8

5
55

13
.6

2
15

.0
5

12
.9

5
41

.6
2

74
13

.6
8

18
.0

7
17

.7
9

49
.5

4
44

11
.0

1
11

.0
2

10
.5

2
32

.5
5

6
43

.4
9

11
.0

6
11

.6
5

11
.9

5
34

.6
6

56
12

.2
3

14
.7

15
.3

8
42

.3
1

51
5.

82
12

.6
6

12
.1

1
30

.5
9

45
10

10
.7

1
10

.3
31

.0
1

7
50

12
.2

5
12

.3
12

.1
36

.6
5

40
8.

25
11

.8
9.

3
29

.3
5

66
14

.8
7

16
.5

4
15

.1
3

46
.5

4
51

12
.1

4
13

.0
1

11
.1

9
36

.3
4

8
38

.6
9

9.
44

9.
3

9.
92

28
.6

6
41

.5
5

11
.9

10
.3

8.
31

30
.5

1
93

24
.1

8
23

.4
9

23
.9

2
71

.5
9

50
13

.0
2

11
.7

9
12

.8
3

37
.6

4

9
41

10
.8

3
11

.1
3

9.
27

31
.2

3
65

12
.6

2
14

.4
17

.3
5

44
.3

7
61

16
.0

4
16

.5
12

.4
8

45
.0

2
65

16
.2

3
17

.3
3

13
.5

3
47

.0
9

10
49

12
.3

3
12

.9
4

9.
38

34
.6

5
58

14
.0

9
15

.1
7

14
.5

3
43

.7
9

10
5

26
.5

2
26

.4
4

21
.9

74
.8

6
54

14
.4

3
11

.7
9

14
.6

2
40

.8
4

A
V
G

48
.7

97
11

.2
3

12
.5

78
11

.6
79

35
.4

87
54

.9
55

12
.9

4
14

.3
09

12
.7

44
39

.9
93

79
.3

18
.0

75
20

.7
08

19
.0

28
57

.8
11

51
.8

13
.2

41
12

.6
19

12
.1

76
38

.0
36

E
xp

. N
o.

E
ta

=
6

E
ta

=
15

E
ta

=
10

T
im

e 
(s

ec
)

r1
 d

 (
m

)
r2

 d
 (

m
)

r3
 d

 (
m

)
to

t d
 (

m
)

T
im

e 
(s

ec
)

r1
 d

 (
m

)
r2

 d
 (

m
)

r3
 d

 (
m

)
to

t d
 (

m
)

T
im

e 
(s

ec
)

r1
 d

 (
m

)
r2

 d
 (

m
)

r3
 d

 (
m

)
to

t d
 (

m
)

1
50

10
.0

5
11

.9
7

12
.5

8
34

.6
67

17
.3

8
18

16
.9

6
52

.3
4

49
10

.4
7

12
.0

5
11

.8
9

34
.4

1

2
73

19
.0

2
19

.4
5

20
.0

6
58

.5
3

63
14

.0
4

16
.9

9
16

.1
9

47
.2

2
62

15
.9

3
16

.4
7

15
.3

9
47

.7
9

3
65

15
.4

2
17

.1
8

12
.5

7
45

.1
7

37
9.

64
9.

57
9.

08
28

.2
9

44
9.

06
11

.5
3

10
.5

31
.0

9

4
11

3
29

.3
4

27
.0

9
29

.8
1

86
.2

4
58

14
.9

8
12

.9
6

14
.3

1
42

.2
5

52
12

.9
8

12
.9

6
12

.3
2

38
.2

6

5
46

.4
11

.0
8

11
.9

3
12

.4
6

35
.4

7
85

21
.9

2
22

.9
8

21
.0

6
65

.9
6

51
11

.2
5

13
.0

5
12

.8
3

37
.1

3

6
54

13
.3

1
13

.8
6

9.
4

36
.5

7
67

15
.9

3
18

.3
6

14
.1

3
48

.4
2

64
15

.6
4

16
.7

6
17

.0
7

49
.4

7

7
57

13
.9

8
14

.3
8

13
.0

2
41

.3
8

67
17

.6
5

15
.2

8
13

.1
1

46
.0

4
63

16
.0

6
17

.7
3

11
.8

1
45

.6

8
68

17
.1

9
17

.3
6

18
.2

52
.7

5
42

10
.2

1
11

.4
7

10
.7

2
32

.4
44

10
.6

10
.8

6
12

.5
7

34
.0

3

9
57

13
.0

9
15

.6
14

.7
43

.3
9

53
12

.9
13

.5
14

.5
6

40
.9

6
41

9.
55

8.
36

10
.6

5
28

.5
6

10
49

11
.2

9
9.

41
13

.5
4

34
.2

4
53

12
.9

7
10

.5
1

13
.1

8
36

.6
6

64
15

.1
5

17
.2

3
14

.7
1

47
.0

9

A
V
G

63
.2

4
15

.3
77

15
.8

23
15

.6
34

46
.8

34
59

.2
14

.7
62

14
.9

62
14

.3
3

44
.0

54
53

.4
12

.6
69

13
.7

12
.9

74
39

.3
43

Figure 45: Raw data results for three robots, simulation, first (large) map
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Three Robots, Simulation, Second (Small) Map Results
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Figure 46: Raw data results for three robots, simulation, second (small) map
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Three Robots Real Experimental Results
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Figure 47: Raw data results for three robots real experiments
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