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Abstract

The aim of this thesis is to present a novel numerical approach for the solution of

a class of non-linear fourth-order boundary value problems. The method is based on

embedding Green’s function into some fixed point iteration schemes, an idea previ-

ously used in other works to investigate nonlinear boundary value problems of lower

order. To this end, the thesis is divided in 6 chapters. The first chapter is a short

description of the main ideas of this thesis. The second chapter represents a review

on Green’s functions for differential equations. In Chapter 3 some existence and

uniqueness results for the fourth order boundary value problems are presented. The

proposed numerical method is then explained and applied on numerical examples in

Chapter 4, where a comparison with the Spline method is also given, demonstrating

thus that our method yields accurate results up to 10−20, compared to the Spline

method, where the results are accurate up to 10−13. The results obtained by our

method were achieved within a reasonable time limit compared with other methods.

Chapter 5 is concerned with the convergence analysis of our method. More precisely,

some conditions which guarantees the convergence of the solution under specific con-

ditions is given. For the proof we used the Banach-Picard theorem along with the

Green’s function. Finally, in Chapter 6 we present a short conclusions and a summary

of the whole thesis.

Search Terms Fourth Order BVPs, Green’s Function, Fixed Point Iteration,

Picard Iteration, Mann Iteration, Beam Theory, Dynamics, Existence, Uniqueness,

Iterations Convergence.
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Chapter 1: INTRODUCTION

Fourth order differential equations play a vital role in many physical applications,

such as, for instance, traveling waves (Chen, & Mckenna, 1997), (Lin, Kondic, Thiele,

& Cummings, 2013), longitudinal and transverse vibrations (Shum, & Lin, 2010), im-

age noise removal technology (Lysaker, Lundervold, & Tai, 2003), (You & Kaveh,

2000), movement of a beam deflected under its weight or under the influence of some

external forces (Saker, Agarwal, O’Regan, 2010) etc.

Before discussing the general theories and the conditions that are needed to en-

sure the existence and the uniqueness of solutions to non-linear differential equations,

part of this thesis will be dedicated to several important, basic and necessary, def-

initions and prerequisites. These will be explained thoroughly and then applied on

numerical and applicable examples. Concepts such as Green’s functions and fixed-

point iteration schemes, will be provided and applied to equations that will be used

in subsequent chapters, especially when solving selected test examples.

Methods will be presented that have been used to solve the proposed class of

fourth order differential equations. We will present different strategies such as the

Runge-Kutta, homotopy asymptotic, Spline collocation and iterative methods. It

will be shown that these methods, which have been implemented in recent years, can

be improved in terms of the number of iterations needed and processing time (CPU

time). The disadvantages and/or deficiencies of a number of these methods to pro-

duce a reliable solution will also be discussed.

This thesis presents a novel method for solving fourth order non-linear differential

equations; the proposed method will depend on embedding Green’s functions into

fixed point iteration schemes. To confirm the efficiency, applicability and high accu-

racy of the proposed method, several examples will be presented. Comparison with

other techniques that exist in the literature will also be given. Finally, a summary

will be given that includes solutions for several famed equations. The relevant tables

for each situation will accompany the numerical solutions.
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Chapter 2: GREEN’S FUNCTIONS

In this chapter we introduce the notion of Green’s function for a nonhomogeneous

linear differential equation and show how to derive the general solution of some prob-

lems in terms of an integral involving the Green’s functions. Historically speaking, the

Green’s functions date back to 1928, when the British mathematician George Green

(1793−1841) published the “Essay on the Application of Mathematical Analysis to the

Theory of Electricity and Magnetism”. In this seminal work of mathematical physics,

G. Green sought to determine the electric potential u(x) within a vacuum bounded

by conductors with specified potentials. In nowadays notation we would say that he

examined the solutions of the Poisson equation ∆u = f , within a volume V , that

satisfy certain boundary conditions along the boundary S. In what follows we use his

idea to investigate several classes of problems for linear nonhomogeneous differential

equations.

2.1 Green’s Function For First Order Differential Equations

Let us consider the following first order differential equation

L[u] ≡ u′(x) + p(x)u(x) = f(x) for x > a, (2.1)

subject to the initial condition

B[u] ≡ u(a) = 0. (2.2)

The Green function G(x, ξ) is then defined as the solution of the following initial-value

problem  L[G(x, ξ)] = δ(x− s) for x > a,

B[G(x, s)] ≡ G(x, s) = 0,
(2.3)

where δ(x− s) is the Dirac delta function, defined by the following two conditions:

δ(x− s) = 0 if x 6= s and

s+d∫
s−c

δ(x− s)dx = 1 for any c, d > 0. (2.4)

The Dirac delta function δ(x− s) is not a function δ(.) : R→ R, but may be treated

like one for some purposes. In fact, the Dirac delta function is called a generalized

function and can be regarded as the limit of a sequence of functions. More precisely,
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if

δk(x− s) =

 k if |x− s| ≤ 1
2k

0 if |x− s| > 1
2k

, (2.5)

then the area under each curve y = δk(x− s) is equal to 1 and

δ(x− s)= lim
k→∞

δk(x− s). (2.6)

Next, let us introduce the following integral function

u(x) =

∫ ∞
a

G(x, s)f(s)ds. (2.7)

If we apply the linear differential operator L to the above integral, assuming that the

integral is uniformly convergent, we get

L

[∫ ∞
a

G(x, s)f(s)ds

]
=

∫ ∞
a

L [G(x, s)] f(s)ds =

∫ ∞
a

δ(x− s)f(s)ds. (2.8)

Combining (2.8) with the following shifting property of the Dirac-Delta function

s+d∫
s−c

δ(x− s)f (s) dx = f(x) for any c, d > 0, (2.9)

one may easily notice that the integral function u(x), defined in (2.7), is in fact a

solution of the differential equation (2.1). Moreover, the initial condition (2.2) is also

satisfied, since we have

B

[∫ ∞
a

G(x, s)f(s)ds

]
=

∫ ∞
a

B [G(x, s)] f(s)ds =

∫ ∞
a

0f(s)ds = 0. (2.10)

In conclusion, the integral function introduced in (2.7) is a solution of the initial value

problem (2.1)-(2.2).

Now, if one consider the qualitative behavior of the Green function, we may clearly

notice that for x 6= s the Green function is a solution for the homogeneous equation

L[u] = 0. However, at x = s we expect some singular behavior. Integrating the

equation

G′ + p(x)G = δ(x− s), (2.11)
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on the vanishing interval (s−, s+) , we get

G(s+, s)−G(s−, s) +

∫ s+

s−
p(x)G(x, s)dx = 1, (2.12)

or

G(s+, s)−G(s−, s) = 1. (2.13)

On the orther hand, since the Green function satisfies the homogeneous equation

L[u] = 0, then it has the following form

G(x, s) =

 c1e
−

∫
p(x)dx for a < x < s

c2e
−

∫
p(x)dx for s < x

, (2.14)

where c1 and c2 are some arbitrary constants. Moreover, since G(x, s) also satisfies

the initial condition G(a, s) = 0, then it must vanish for x ∈ [a, s) , so that we have

G(x, s) =

 0 for a < x < s

c2e
−

∫
p(x)dx for s < x

. (2.15)

Also, the jump condition (2.13) gives us the constrain G(s+, s) = 1, which implies

that c2 = 1. We can thus write the Green function in the following explicit form

G(x, s) = H(x− s)e−
∫ x
s p(t)dt, (2.16)

where H(x− s) is the Heaviside function, defined as follows:

H (x− s) =

 0 if x < s

1 if x ≥ s
. (2.17)

To summarize, we have the following theorem:

Theorem 2.1. The first order nonhomogeneous initial-value problem L[u] ≡ u′(x) + p(x)u(x) = f(x) for x > a

B[u] ≡ u(a) = 0
, (2.18)
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has the solution given in the following form

u(x) =

∫ ∞
a

G(x, s)f(s)ds, (2.19)

where the Green’s function G(x, s) satisfies the non-homogenous initial-value problem L[G(x, s)] ≡ G′(x, s) + p(x)G(x, s) = δ(x− s) for x > a,

B[G(x, s)] ≡ G(a, s) = 0.
(2.20)

More precisely, the Green’s function G(x, s) is given by the explicit formula

G(x, s) = H(x− s)e−
∫ x
s p(t)dt. (2.21)

2.2 Green’s Function For 2nd Order Differential Equations

Let us now consider the following second order differential equation

L[u] ≡ u′′(x) + p(x)u′(x) + q(x)u(x) = f(x) for a < x < b, (2.22)

subject to the following boundary conditions B1[u] ≡ α11u(a) + α12u
′(a) + β11u(b) + β12u

′(b) = γ1,

B2[u] ≡ α21u(a) + α22u
′(a) + β21u(b) + β22u

′(b) = γ2.
(2.23)

where αij, βij, i, j = 1, 2 and γk, k = 1, 2, are some real constants. The general

solution of the problem (2.22)-(2.23) is given by

u(x) = uh(x) + up(x), (2.24)

where  L[uh] = 0 for a < x < b,

B1[uh] = γ1, B2[uh] = γ2,
(2.25)

and  L[up] = f for a < x < b,

B1[up] = 0, B2[up] = 0.
(2.26)

The problem (2.25) may have no solution, a unique solution or an infinite number of

solutions. We consider only the case when there is a unique solution. In such a case,
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the homogeneous equation subject to homogeneous boundary conditions has only the

trivial solution. Let u1(x) and u2(x) be two solutions of the homogeneous equation

(2.25) that satisfy the homogeneous boundary conditions

B1[u1] = 0, B2[u2] = 0. (2.27)

Since the completely homogeneous problem has no solution, then B1[u2] 6= 0 and

B2[u1] 6= 0. Writing

uh(x) = c1u1(x) + c2u2(x), (2.28)

and making use of the boundary conditions (2.25), we may determine the constants

c1 and c2, so that

uh(x) =
γ2

B2[u1]
u1(x) +

γ2
B1[u2]

u2(x), (2.29)

is the solution of problem (2.25).

On the other hand, following the idea of the previous section, one may easily note

that we can represent the solution of (2.26) as an integral of a Green’s function. More

precisely, we have

up(x) =

b∫
a

G(x, s)f(s)ds, (2.30)

where G(x, s) is the Green’s function for (2.26), which means that it satisfies L[G(x, s)] = δ(x− s) for a < x < b,

B1[G(x, s)] = 0, B2[G(x, s)] = 0.
(2.31)

The continuity and jump conditions are, in this case, the followings

G(s−, s) = G(s+, s),

G′(s−, s) + 1 = G′(s+, s).
(2.32)

We write the Green functions as

G(x, s) = H(x− s)us(x) + d1u1 + d2u2, (2.33)

where the casual function us(x) is the linear combination of the homogeneous solutions

u1(x) and u2(x) which satisfies

us(s) = 0, u′s(s) = 1. (2.34)

14



Then, in this form, the continuity and jump conditions are automatically satisfied.

Moreover, from the boundary conditions we have

B1[G] = 0 ⇐⇒ B1[H(x− s)us(x)] + d2B1[u2] = 0,

⇐⇒ β11us(b) + β12u
′
s(b) + d2B1[u2] = 0,

B2[G] = 0 ⇐⇒ B2[H(x− s)us(x)] + d1B2[u2] = 0,

⇐⇒ β21us(b) + β22u
′
s(b) + d1B2[u1] = 0.

(2.35)

Therefore, the Green’s function becomes

G(x, s) = H(x− s)us(x)− β21us(b) + β22u
′
s(b)

B2[u1]
u1 −

β11us(b) + β12u
′
s(b)

B1[u2]
u2, (2.36)

and it is well defined, since B2[u1] 6= 0 and B1[u2] 6= 0. Thus, if there exists a unique

solution uh for (2.25) the general solution for (2.3) is

u(x) =

b∫
a

G(x, s)f(s)ds+
γ2

B2[u1]
u1 +

γ2
B1[u2]

u. (2.37)

To summarize, we have the following theorem:

Theorem 2.2. Let us consider the a nonhomogeneous linear second order differential

equation

L[u] ≡ u′′(x) + p(x)u′(x) + q(x)u(x) = f(x), for a < x < b, (2.38)

subject to the following boundary conditions B1[u] ≡ α11u(a) + α12u
′(a) + β11u(b) + β12u

′(b) = γ1,

B2[u] ≡ α21u(a) + α22u
′(a) + β21u(b) + β22u

′(b) = γ2.
(2.39)

If the homogeneous differential equations subject to the homogeneous boundary condi-

tions has no solution, then the problem has the unique solution

u(x) =

b∫
a

G(x, s)f(s)ds+
γ2

B2[u1]
u1(x) +

γ2
B1[u2]

u2(x), (2.40)
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where the Green function is given by

G(x, s) = H(x− s)us(x)− β21us(b)+β22u′s(b)
B2[u1]

u1(x)

−β11us(b)+β12u′s(b)
B1[u2]

u2(x).
(2.41)

In (2.40) and (2.41), u1(x) and u2(x) are solutions of the homogeneous equation that

satisfy homogeneous boundary conditons (2.27), while us is the linear combination of

u1(x) and u2(x) that satisfies (2.34).

2.3 Green’s Function For Higher Order Differential Equations

Let’s now consider the general case of an nth order differential equation

L[u] ≡ u(n)(x) + pn−1(x)u(n−1)(x) + ....+ p1(x)u′(x)

+p0(x)u(x) = f(x), for a < x < b,
(2.42)

subject to the following boundary conditions

Bj[u] ≡
n−1∑
k=0

αjku
(k)(a) +

n−1∑
k=0

βjku
(k)(b) = γj, j = 1, . . . , n, (2.43)

where αij, βij, i, j = 1, ..., n, and γk, k = 1, . . . , n, are some real constants. If the

completely homogeneous problem L[u] = 0 for a < x < b, Bj[u] = 0, j = 1, . . . , n,

has only the trivial solution, then a solution of problem (2.42)-(2.43) exists and is

unique, being given in the following form

u(x) = uh(x) + up(x), (2.44)

where  L[uh] = 0, for a < x < b,

Bj[uh] = γj, j = 1, . . . , n,
(2.45)

and  L[up] = f, for a < x < b,

Bj[up] = 0, j = 1, . . . n.
(2.46)

The problem (2.45) may have no solution, a unique solution or an infinite number of

solutions. We consider only the case when there is an unique solution. In such a case,

the homogeneous equation subject to homogeneous boundary conditions has only the
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trivial solution. Let {u1, ..., un} be a set of solutions.of equation (2.45), which are

linearly independent, that is

W [u1, ..., un] :=

∣∣∣∣∣∣∣∣∣∣
u1 u2 ... un

u′1 u′2 ... u′n
...

...
. . .

...

u
(n−1)
1 u

(n−1)
2 ... u

(n−1)
n

∣∣∣∣∣∣∣∣∣∣
6= 0 for all x ∈ (a, b) , (2.47)

where the function W [u1, ..., u2], defined above, is the Wronskian of u1(x), ..., un(x).

Then, we can write in the form

uh = c1u1(x) + c2u2(x) + ...+ cnun(x), (2.48)

where the constants are determined by the matrix equation
B1[u1] B1[u2] ... B1[un]

B2[u1] B2[u2] ... B2[un]
...

...
. . .

...

Bn[u1] Bn[u2] ... Bn[un]



c1

c2
...

cn

 =


γ1

γ2
...

γn

 . (2.49)

On the other hand, as in the previous section, we represent the solution of (2.46)

as an integral of a Green’s function

up(x) =

b∫
a

G(x, s)f(s)ds, (2.50)

where G(x, s) is the Green’s function for (2.46), so it is the function satisfying L[G(x, s)] = δ(x− s) for a < x < b,

Bj[G(x, s)] = 0, j = 1, . . . , n.
(2.51)

Let us(x) be the casual solution, i.e the linear combination of u1(x), ..., un(x), that

satisfies the following conditions

us(s) = u′s(s) = ... = u(n−2)s (s) = 0, u(n−1)s (s) = 1. (2.52)
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The Green functions will then have the following form

G(x, s) = H(x− s)us(x) + d1u1 + ....+ dnun, (2.53)

where the constants d1, ..., dn are determined by the matrix equation
B1[u1] B1[u2] ... B1[un]

B2[u1] B2[u2] ... B2[un]
...

...
. . .

...

Bn[u1] Bn[u2] ... Bn[un]



d1

d2
...

dn

 =


−B1[H(x− s)us(x)]

−B2[H(x− s)us(x)]
...

−Bn[H(x− s)us(x)]

 . (2.54)

To summarize, we have the following theorem:

Theorem 2.3. Let us consider the following second order differential equation

L[u] ≡ u(n) + pn−1(x)u(n−1) + ....p1(x)u′ + p0(x)u = f(x), for a < x < b, (2.55)

subject to the following boundary conditions

Bj[u] ≡
n−1∑
k=0

αjku
(k)(a) +

n−1∑
k=0

βjku
(k)(b) = γj, j = 1, . . . , n. (2.56)

If the homogeneous differential equation subject to the homogeneous boundary condi-

tions has no solution, then the problem (2.55)-(2.56) has the unique solution

u(x) =

b∫
a

G(x, s)f(s)ds+ c1u1 + ...+ cnun, (2.57)

where the Green’s function is given as follows

G(x, s) = H(x− s)us(x) + d1u1 + ...+ dnun. (2.58)

In (2.57) and (2.58), {u1(x), ..., un(x)} is a fundamental set of solutions for the ho-

mogeneous equation, us(x) is the linear combination of u1(x), ..., un(x) which satisfies

(2.52), while the constants c1, ..., cn and d1, ..., dn are obtained by solving (2.49), re-

spectively (2.52).

Finally, we note that a Green’s function depends only on the fundamental set of
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solutions for the associated homogeneous differential equation and not on the non-

linear term on the right, namely the forcing function f(x). Therefore, all the linear

nonhomogeneous differential equations with the same left-hand side but with different

right-hand side forcing functions f(x) have the same Green’s functions. In conclusion,

one may alternatively say that the Green’s functions for non-homogenous differential

equations are Green’s functions for the differential operators L[u] appearing on the

left-hand side of such equations.

2.4 Some examples

In this section we will use the previous theorems to solve some problems making

use of Green’s functions.

Example 2.1. Use the Green’s function to solve the following first order initial value

problem  u′(x)− au(x) = ebx for x > 0,

u(0) = 0,
(2.59)

where a, b ∈ R∗, a 6= b.

Solution:

From Theorem 2.1 we know that the general solution is given in the following

integral form

u(x) =

∫ ∞
0

G(x, s)ebsds, (2.60)

where

G(x, s) = H(x− s)e
∫ x
s adt =

 0 if x < s,

eax−as if x ≥ s.
(2.61)

Therefore, the solution of problem (2.59) is

u(x) =

∫ x

0

eax−asebsds = eax
e(b−a)s

b− a

∣∣∣∣s=x
s=0

=
ebx − eax

b− a
. (2.62)

Example 2.2 (Forced Harmonic Oscillator). Use the Green’s function to solve the

following first order initial value problem u′′ + u(x) = f(x) for 0 < x < π
2
,

u(0) = 0, u(π
2
) = 0.

(2.63)
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Solution:

First of all, let us note that the fundamental set of solutions for the homogeneous

equations is given by

u1(x) = sinx, u2(x) = cos x. (2.64)

From Theorem 2.2 we know that the general solution is given in the following integral

form

u(x) = uh(x) + up(x) =

∫ π
2

0

G(x, s)f(s)ds, (2.65)

where

G(x, s) = H(x− s)us(x)−
us(

π
2
)

u1(
π
2
)
u1(x), (2.66)

and us is the linear combination of the homogeneous solutions u1(x) and u2(x) that

satisfies us(s) = 0, u′s(s) = 1, that is

us(x) = cos s sinx− sin s cosx. (2.67)

Therefore

G(x, s) =

 − cos s sinx if x < s,

− sin s cosx if x ≥ s,
(2.68)

and the solution of problem (2.63) is

u(x) =

∫ π
2

0

G(x, s)f(s)ds = − sinx

π
2∫

x

cos sf(s)ds− cosx

π
2∫

x

sin sf(s)ds. (2.69)

Example 2.3. Use the Green function to solve the following fourth order boundary

value problem  u(4)(x) = 120x for 0 < x < 1

u(0) = 0, u′(0) = 0, u′′(0) = 0, u′′′(1) = 60
. (2.70)

Solution:

First of all, let us note that the fundamental set of solutions for the homogeneous

20



equation is given by

u1(x) = 1, u2(x) = x, u3(x) = x2, u4(x) = x3. (2.71)

The causal solution us(x), i.e. the linear combination of u1(x), ..., u4(x) which satisfies

us(s) = u′s(s) = u′′s(s) = 0, u′′′s (s) = 1, (2.72)

is in this case

us(x) = −1

6
s3 +

1

2
s2x− 1

2
sx2 +

1

6
x3 =

1

6
(x− s)3. (2.73)

Then, Theorem 2.3 implies that the general solution is

u(x) = uh(x) + up(x) = 10x3 +

1∫
0

G(x, s)f(s)ds, (2.74)

where the Green’s function is given as follows

G(x, s) = H(x− s)us(x)− 1
6
x3

= 1
6
(x− s)3H(x− s)− 1

6
x3

⇐⇒ G(x, s) =

 −
1
6
x3 if x < s,

−1
2
x2s+ 1

2
xs2 − 1

6
s3 if x ≥ s.

. (2.75)

Therefore

∫ 1

0
G(x, s)120sds =

x∫
0

[
−1

2
x2s+ 1

2
xs2 − 1

6
s3
]

120sds+
1∫
x

[
−1

6
x3
]

120sds

=
x∫
0

[−60x2s2 + 60xs3 − 20s4] ds+
1∫
x

−20x3sds

= x5 − 10x3

(2.76)

In conclusion, the solution of problem (2.70) is

u(x) = 10x3 +

∫ 1

0

G(x, s)120sds = x5. (2.77)
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Chapter 3: EXISTENCE AND UNIQUENESS

3.1 Introduction

In this chapter we are dealing with some existence and uniqueness results for a

general class of fourth order boundary value problems. Similar results for second

order differential equations are well-known and may be found in the reference book of

B. Bailey, L. F. Shampine, and P. E. Waltman (Nonlinear Two Point Boundary Value

Problems”, 1968 ). For fourth order differential equations which arise while studying

the deflection of a beam, sufficient conditions for the existence and uniqueness of

the solution have been obtained in (Agarwal, 1989). Our goal here is to present

some extensions of Bailey’s work to our more general case of fourth order differential

equations, covering also Agarwal’s particular results. These generalizations have been

already obtained by O.A. Teterina in a recent master thesis (The Green’s Function

Method for Solutions of Fourth Order Nonlinear Boundary Value Problem, 2013),

but for the sake of completeness we present them in what follows.

3.2 Existence and Uniqueness of Fourth Order Differential Equation

Let us consider the following fourth order differential equation

u(4)(x) = f(x, u(x), u′(x), u′′(x), u′′′(x)), (3.1)

subject to the following linearly independent boundary conditions

B1[u] ≡ α10u(a) + α11y
′(a) + α12y

′′(a) + α13y
′′′(a) = 0,

B2[u] ≡ α20u(a) + α21u
′(a) + α22u

′′(a) + α23y
′′′(a) = 0,

B3[u] ≡ β30u(b) + β31u
′(b) + β32u

′′(b) + β33u
′′′(b) = 0,

B4[u] ≡ β40u(b) + β41u
′(b) + β42u

′′(b) + β43u
′′′(b) = 0,

(3.2)

where a test for the linear independence of the coefficients is given by:

Rank


α10 α11 α12 α13 0 0 0 0

α20 α21 α22 α23 0 0 0 0

0 0 0 0 β30 β31 β32 β33

0 0 0 0 β40 β41 β42 β43

 = 4. (3.3)
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Let us define the following space of functions

S :=
{
C(4)[a, b] : u satisfies (3.2)

}
, (3.4)

which may become a subspace of a Banach space, by assigning some appropriate

norm. We have:

Theorem 3.1. (See Theorem 1.4 in Teterina, O.A. (2013))

Assume that f : R2 → R is a continuous function which satisfies

|f(x, y1)− f(x, y2)| ≤ h(x)|y1 − y2|, (3.5)

for some continuous function h(x) ≥ 0. Assume that a Green’s function G for the

equation

y(4) = g(x), (3.6)

subject to the boundary conditions (3.2), exists. Let us define the operator T :

C[a, b]→ S ⊂ C[a, b], as follows

T [u(x)] =

∫ b

a

G(x, s)f(s, u(s))ds. (3.7)

For a fixed w(x) ∈ C[a, b], nonnegative and nonidentically zero, assume that T :

Bw → Bw, where (Bw, ‖·‖) is the Banach space defined below

Bw := {u ∈ C[a, b] : |u(x)| ≤ Cw(x) for some C = C(u) > 0} ,

‖u‖ = sup
a<x<b

|u(x)|
w(x)

.
(3.8)

a) If G has constant sign on [a, b] and

max
x∈Sw

[
z(x)

w(x)

]
< 1, (3.9)

where z is given by

z(x) =

∫ b

a

|G(x, s)|h(s)w(s)ds, (3.10)

while

Sw = {x ∈ [a, b] : w(x) 6= 0}, (3.11)

then the boundary value problem (3.1)-(3.2) has a unique solution. Moreover, z(x)
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satisfies

z(4)(x) = (signG)h(x)w(x), (3.12)

subject to the boundary conditions (3.2).

b) If G is possibly not of a constant sign and

max
x∈Sw

[
1

w(x)

∫ b

a

|G(x, s)|h(s)w(s))ds

]
< 1, (3.13)

then the boundary value problem (3.1)-(3.2) has a unique solution.

Proof. (a) Assume, without loosing the generality, that G is negative (when G is

positive, the proof is similar). We have

|T [u(x)]− T [v(x)]| = |
∫ b
a
G(x, s) [f(s, u(s))− f(s, v(s))] ds|

≤
∫ b
a
|G(x, s)||u(s)− v(s)|h(s)ds

≤
∫ b
a
‖u(s)− v(s)‖∗|G(x, s)|h(s)w(s)ds

= ‖u(s)− v(s)‖∗z(x),

(3.14)

From (3.10) and the fact that G is a Green’s function for (3.6), we conclude that z(x)

satisfies

z(4)(x) = −h(x)w(x), (3.15)

subject to the boundary conditions (3.2). Moreover, for x ∈ Sw, we have

|T [u(x)]− T [v(x)]|
w(x)

≤ z(x)‖u(x)− v(x)‖∗

w(x)
, (3.16)

so

‖T [u]− T [v]‖ ≤ ‖u− v‖∗max
x∈Sw

z(x)

w(x)
. (3.17)

Since, by hypothesis, maxx∈Sw
z(x)
w(x)

< 1, then (3.17) implies that T is a contraction

on Bw, so it has a unique fixed point which is the solution of the boundary value

problem (3.1)-(3.2). The proof of a) is thus achieved.

(b) If G is possibly not of one sign, then for x ∈ Sw,

|T [u(x)]− T [v(x)]|
w(x)

≤ ‖u− v‖∗ 1

w(x)

∫ b

a

|G(x, s)|h(s)w(s)ds, (3.18)
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which implies that

‖T [u(x)]− T [v(x)]‖ ≤ ‖u− v‖∗max
x∈Sw

[
1

w(x)

∫ b

a

|G(x, s)|h(s)w(s)ds

]
. (3.19)

Since, by hypothesis, the above maximum is less than 1, then T is a contraction, so

it has a unique fixed point which is the solution of the BVP (3.1)-(3.2).

Example 3.1. Consider f : R2 → R defined as f(x, y) = x2

1+x2
·sin(y) By the Mean

Value Theorem, for any y1, y2 ∈ R, there exists a number ξ ∈ (y1, y2) such that

|f(x, y2)− f(x, y1)| =
∂f

∂y
(x, ξ)|y2 − y1|. (3.20)

Then, with

h(x) =
x2

1 + x2
, (3.21)

we have indeed that

|f(x, y1)− f(x, y2)| ≤ h(x)|y1 − y2|. (3.22)

Let us next consider a more general case:

Theorem 3.2. (See Theorem 1.5 in Teterina, O.A. (2013))

Assume that f : [a, b]× R4 → R satisfies the general Lipschitz condition

f(x, u(x), u′(x), u′′(x), u′′′(x)) −f(x, v(x), v′(x), v′′(x), v′′′(x))

≤ K|u(x)− v(x)|+ L|u′(x)− v′(x)|

+M |u′′(x)− v′′(x)|+N |u′′′(x)− v′′′(x)|,

(3.23)

where K,L,M,N are some fixed positive constants. Assume also that the Green’s

function G(x, s), a ≤ x, s ≤ b, exists for the boundary value problem u(4)(x) =

g(x), subject to (3.2). Furthermore, assume that there exist some constants, say

M1,M2,M3, and M4, such that for all x ∈ [a, b] we have∫ b
a
|G(x, s)|ds ≤M1,

∫ b
a
|Gx(x, s)|ds ≤M2,∫ b

a
|Gxx(x, s)|ds ≤M3,

∫ b
a
|Gxxx(x, s)|ds ≤M4,

and

LM1 +KM2 +MM3 +NM4 < 1.

(3.24)

Then, there exists a unique solution to the boundary value problem (3.1)-(3.2).
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Proof. Let

‖u‖ := max
a≤x≤b

[L|u(x)|+K|u′(x)|+M |u′′(x)|+N |u′′′(x)|] , (3.25)

be a norm on C(3)[a, b], so that
(
C(3)[a, b], ‖·‖

)
becomes a Banach space. Let us define

the operator T : C(3)[a, b]→ C(4)[a, b], as follows

T [u(x)] =

∫ b

a

G(x, s)f(s, u(s), u′(s), u′′(s), u′′′(s))ds. (3.26)

We first show that, indeed, T maps C(3)[a, b] into C(4)[a, b]. To this end, differentiating

successively (3.26), we get

[T [u(x)]]′ =
∫ b
a
Gx(x, s)f(s, u(s), u′(s), u′′(s), u′′′(s))ds,

[T [u(x)]]′′ =
∫ b
a
Gxx(x, s)f(s, u(s), u′(s), u′′(s), u′′′(s))ds,

[T [u(x)]]′′′ =
∫ b
a
Gxxx(x, s)f(s, u(s), u′(s), u′′(s), u′′′(s))ds,

(3.27)

and

[T [u(x)]](4) =

∫ b

a

Gxxxx(x, s)f(s, u(s), u′(s), u′′(s), u′′′(s))ds. (3.28)

Next, we want to show T is a contraction map, so we estimate

T [u(x)]− T [v(x)] ≤
∫ b
a
|G(x, s)| · |f(s, u(s), u′(s), u′′(s), u′′′(s))

−f(s, v(s), v′(s), v′′(s), v′′′(s))|ds

≤
∫ b
a
|Gx(x, s)| · |[L|u(s)− v(s)|+K|u′(s)− v′(s)|

+M |u′′(s)− v′′(s)|+N |u′′′(s)− v′′′(s)|
≤ ‖u− v‖

∫ b
a
|G(x, s)|ds

≤ ‖u− v‖M1.

(3.29)

In a similar way, one may also show that

T [u(x)]′ − T [v(x)]′ ≤ ‖u− v‖
∫ b
a
|Gx(x, s)|ds ≤ ‖u− v‖M2

T [u(x)]′′ − T [v(x)]′′ ≤ ‖u− v‖
∫ b
a
|Gxx(x, s)|ds ≤ ‖u− v‖M3

T [u(x)]′′′ − T [v(x)]′′′ ≤ ‖u− v‖
∫ b
a
|Gxxx(x, s)|ds ≤ ‖u− v‖M4.

(3.30)
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Since x is an arbitrary in the above four inequalities, it follows that

‖T [u(x)]− T [v(x)]‖≤ ‖u− v‖(LM1 +KM2 +MM3 +NM4). (3.31)

Since, by hypothesis, LM1 + KM2 + MM3 + NM4 < 1, then (3.31) implies that T

is a contraction. Consequently, it has a unique fixed point u(x), which is the desired

solution of the boundary value problem (3.1)-(3.2).
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Chapter 4: ITERATIVE METHODS: DESCRIPTION AND

RESULTS

In this chapter we will describe some iterative methods usually used to get numer-

ical solutions for differential equations. Then we will describe and use our method,

based on embedding Green’s functions into some well-established fixed point itera-

tions, such as, for instance, Picard’s and Krasnoselskii-Mann’s iterative schemes. The

effectiveness of the proposed iterative method is established by implementing it on

several numerical examples, including linear and nonlinear fourth order boundary

value problems. We then compare our results with the analytical solution or with

other numerical solutions obtained in the literature using different methods.

4.1 Fixed Point Iteration Methods

The Fixed Point Iteration methods are some mathematical methods widely used

to solve numerically differential equations with initial and boundary value problems.

As the name suggests, the idea is to repeat a certain number of steps until when the

desired fixed point condition is met. More precisely, let us consider the Banach space

X and a given operator T : X −→ X. We say that x ∈ X is a fixed point for T if

T (x) = x. (4.1)

Let us now consider and arbitrary point x0 ∈ X. Then a sequence {xn} ⊂ X, defined

as

xn+1 = T (xn) , n = 0, 1, 2, .... (4.2)

is called the fixed point iteration or Picard iteration procedure and it is the most

basic iterative method. More general iterative methods can be derived easily and we

mentioned below two such more general ierative method:

1) The Mann Iterative procedure:

xn+1 = (1− αn)xn + αnTxn, n = 0, 1, 2, ..., (4.3)

where {αn} ⊂ [0, 1].

2) The Ishikawa Iterative procedure:

xn+1 = (1− αn)xn + αnTyn, n = 0, 1, 2, ...,

yn = (1− βn)xn + βnTxn, n = 0, 1, 2, ...,
(4.4)
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where {αn} , {βn} ⊂ [0, 1]. We note that when αn ≡ a 6= 1 (const.), the iteration (4.3)

reduces to the so-called Krasnoselskii iteration, while for αn ≡ 1 we obtain the Picard

iteration (4.2). Also, for βn ≡ 0 in (4.4) we obtain (4.3). Picard, Mann and Ishikawa

iterations are all known to be convergent to a unique fixed point (see (Berinde, 2014)

for a comparison between their convergence’s conditions).

However, in this thesis we will deal with iterative methods for solving differen-

tial equations, in which the given operator T involves the Green’s function of the

differential equation.

4.2 Green’s Function-Picard’s fixed point iteration

We will describe our method by applying it directly to find the solution of the

following boundary value problem:

Example 4.1. Let us solve u(4)(x)− 2u′′(x) + u(x) = −8ex,

u(0) = u(1) = 0, u′′(0) = 0, u′′(1) = −4e.
(4.5)

One may easily verify that the problem has an exact solution u(x) = x(1− x)ex.

Moreover, using the techniques of Chapter 2, one may find that the Green’s function

for the above problem is

G(x, s) =


(
1
6
s− 1

6

)
x3 +

(
1
6
s3 − 1

2
s2 + 1

3
s
)
x if 0 < x < s,(

1
6
s
)
x3 +

(
−1

2
s
)
x2 +

(
1
3
s+ 1

3
s3
)
x− 1

6
s3 if s < x < 1.

(4.6)

Next, we create some iterations as follows. The first term will be acquired from

solving the homogeneous problem u(4)(x) = 0,

u(0) = u(1) = 0, u′′(0) = 0, u′′(1) = −4e.
(4.7)

The solution of this problem is

w[0] := −2

3
ex3 +

2

3
ex. (4.8)
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The iteration will continue using the coefficients of Green’s function

H[k + 1] :=
∫ s
0

[(
1
6
s− 1

6

)
x3 +

(
1
6
s3 − 1

2
s2 + 1

3
s
)
x
]
·

·
(
w[k](4) − 2w[k]′′ + w[k] + 8ex

)
dx;

(4.9)

G[k + 1] :=
∫ 1

s

[(
1
6
s
)
x3 −

(
1
2
s
)
x2 +

(
1
3
s+ 1

6
s3
)
x−

(
1
6
s3
)]
·

·
(
w[k](4) − 2w[k]′′ + w[k] + 8ex

)
dx;

(4.10)

Then, the next term of the iteration is given as follows

w[k + 1] = w[k]− α(G[k + 1] +H[k + 1]), (4.11)

where α may depend on the parameters and the nature of the boundary value problem.

In the following table the evaluation of |w[35]− x(1− x)ex| for i from 1 to 10, is

given:

x Absolute Error

0.1 2.54630333× 10−25
0.2 4.84335676× 10−25
0.3 6.66630867× 10−25
0.4 7.83671585× 10−25
0.5 8.24001068× 10−25
0.6 7.83671585× 10−25
0.7 6.66630867× 10−25
0.8 4.84335676× 10−25
0.9 2.54630333× 10−25

Table 4.1: Absolute Error Numerical Solution Vs Exact Solution

We note that the time taken to calculate an exact number of iterations could be

costly. As an alternative approach, we can make use of Taylor series approximations,

when the original differential equation is replaced with an approximating polynomial,

which will have a positive effect on the process efforts. More precisely, we can replace

the previous iterations using Taylor series as follows

H[k + 1] :=

∫ s

0

[(
1

6
s− 1

6

)
x3 +

(
1

6
s3 − 1

2
s2 +

1

3
s

)
x

]
(T (x))) dx; (4.12)
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G[k + 1] :=

∫ 1

s

[(
1

6
s

)
x3 −

(
1

2
s

)
x2 +

(
1

3
s+

1

6
s3
)
x−

(
1

6
s3
)]

(T (x)) dx (4.13)

where T (x) is defined to be the Taylor series of

w[k](4) − 2w[k]′′ + w[k] + 8es. (4.14)

In this case, with this new iterative method, we used computed the first 60 terms and

the time taken for the solution was reasonable.

In the the following example the Taylor approximation is used for iterations from

the 4th to the 25th term of the iteration, since the nonlinear function f in the dif-

ferential equation is cubic and calculating 25, or even a less number of iterations,

using the exact function could be time consuming. On the other hand, using Taylor

approximation one may see that we get better approximations of the solution.

Example 4.2. Let us solve

u′′′′(x) = 3(u′)2 + 4.5u3,

u(0) = 4, u′′(0) = 24, u(1) = 1, u′′(1) = 1.5.
(4.15)

The exact solution of problem (4.15) is

u(x) =
4

(1 + x)2
. (4.16)

Next, we create some iterations as follows. The first term will be acquired from

solving.the homogeneous problem u(4)(x) = 0,

u(0) = 4, u(1) = 1, u′′(0) = 24, u′′(1) = 1.5.
(4.17)

The iteration will continue using the coefficients of Green’s function mentioned before

H[k + 1] :=
∫ s
0

[(
1
6
s− 1

6

)
x3 +

(
1
6
s3 − 1

2
s2 + 1

3
s
)
x
]
·

·
(
w[k](4) − 3 (w[k]′)2 − 4.5 (w[k])

)
dx;

(4.18)
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G[k + 1] :=
∫ 1

s

[(
1
6
s
)
x3 −

(
1
2
s
)
x2 +

(
1
3
s+ 1

6
s3
)
x−

(
1
6
s3
)]
·

·
(
w[k](4) − 3 (w[k]′)2 − 4.5 (w[k])

)
dx;

(4.19)

Then, the next term of the iteration is given as follows

w[k + 1] = w[k]− α(G[k + 1] +H[k + 1]), (4.20)

where α may depend on the parameters and the nature of the boundary value problem.

Then using the following procedure, we obtain the best α which will optimise our

method.

• Define u1 = w[n](x).

• Define R1 = u′′′′1 (x)− 3u′1
2(x)− 4.5u31(x)

• Take Lnorm =
∫ 1

0
(R1)

2dx

• Minimize Lnorm

By applying these steps, one may find that the best α is equal to 1.23.

The Taylor approximation will be used from the 4th term to the 20th term of the

iteration, to minimise the CPU timing. So, as in the previous example, we replace

the previous iterations using now Taylor series

H[k + 1] :=

∫ x

0

[(
1

6
s− 1

6

)
x3 +

(
1

6
s3 − 1

2
s2 +

1

3
s

)
x

]
(T (x))) dx; (4.21)

G[k + 1] :=

∫ 1

x

[(
1

6
s

)
x3 −

(
1

2
s

)
x2 +

(
1

3
s+

1

6
s3
)
x−

(
1

6
s3
)]

(T (x)) dx (4.22)

where T (x) is defined to be the Taylor series of the solution of(
w[k](4) − 3 (w[k]′)

2 − 4.5 (w[k])3
)
. (4.23)

The next iteration will be then calculated as

w[k + 1] := (w[k]− α(G[k + 1] +H[k + 1])). (4.24)
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We note that another factor that helped reducing the CPU time was to take Taylor

approximation around (0.5, 0.5), rather than around (0, 0). Given the results of all the

previous modifications the time taken for the solution was reasonable. The absolute

error is shown by the table below:

x Absolute Error

0.1 1.388041910× 10− 15
0.2 9.091535178× 10− 16
0.3 1.228994381× 10− 15
0.4 1.491554362× 10− 15
0.5 4.548867987× 10− 15
0.6 5.736664592× 10− 15
0.7 4.855987077× 10− 15
0.8 2.991137639× 10− 15
0.9 1.256766229× 10− 15

Table 4.2: Absolute Error Numerical Solution Vs Exact Solution

4.3 Comparison with the Spline Method

In this subsection we will illustrate a general example of solving numerically fourth

order boundary value problems. Various approaches are already known to deal with

such problems. For instance, in (Graef, Qian, & Yang, 2003) the Green’s function was

also used, while in (Zhao, C., Chen, W., & Zhou, J. 2010) a so-called periodic method

was used. Also, an efficient method for solving higher order differential equations was

presented in (Malek, Beidokhti, 2006) using neural-like systems of computation, while

in (M. Sakai and R. Usmani, 1983) the differential equation is solved by using Spline

Method. Our aim is to compare our method with a few such known methods.

Example 4.3. Let us consider the following boundary value problem

u(4)(x) + xu(x) = −(8 + 7x+ x3)ex,

u(0) = u(1) = 0, u′(0) = 1, u′(1) = −e.
(4.25)

This problem has an exact solution

u(x) = x(1− x)ex. (4.26)
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As per (M. Sakai and R. Usmani, 1983), the table below shows the maximum errors

in absolute value for the above problem. Richardson’s h2-extrapolation technique was

used to improve the accuracy of their solution.

First, the values without Richardson’s technique are shown below: Next, the table

Maximum Errors
Values of h quintic sextic
h = 1/4 0.689× 10−3 0.380× 10−5
h = 1/8 0.172× 10−3 0.222× 10−6
h = 1/16 0.429× 10−4 0.137× 10−7
h = 1/32 0.107× 10−4 0.854× 10−9
h = 1/64 0.268× 10−5 0.536× 10−10

Table 4.3: Comparison Between Quintic and Sextic Techniques

below shows the errors on Richardson’s extrapolation at t = 1/2.

Maximum Errors
Values of h quintic sextic
h = 1/4
h = 1/8 0.859× 10−6 0.168× 10−7
h = 1/16 0.452× 10−7 0.168× 10−9
h = 1/32 0.269× 10−8 0.177× 10−11
h = 1/64 0.158× 10−9 0.853× 10−13

Table 4.4: Richardson’s Extrapolation with t = 1
2

We note that he iteration used for Quintic Splines is

4x̄h/2(1/2)− x̄h(1/2)/3− x̂(1/2), (4.27)

whereas, the iteration used for sextic Splines is

16z̄h/2(1/2)− z̄h(1/2)/15− x̂(1/2). (4.28)
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The best results of Spline Method with possible combinations can be shown in the

following table:

Absolute Errors
Richardson’s ex-
trapolation

quintic sextic

Not Applied 0.268× 10−5 0.536× 10−10
Applied 0.158× 10−9 0.853× 10−13

Table 4.5: Possible Combinations of Spline Methods

In a recently published paper (Hossain, 2015), the same problem was solved using

Legendre Polynomials Method. The table below shows the numerical results

using 11-polynomials.

x Absolute Error

0.1 4.6490× 10−14
0.2 1.276× 10−13
0.3 1.782× 10−13
0.4 2.831× 10−15
0.5 2.501× 10−13
0.6 1.865× 10−13
0.7 8.543× 10−14
0.8 2.007× 10−13
0.9 1.443× 10−13

Table 4.6: Numerical Results of BVP using Legendre Polynomials

The table below shows the results found when using the proposed numerical so-

lution by applying Green’s Function with Iteration method. It is worth noting that

only 25 iterations were used in the task below, and CPU timing was significantly less.

The maximum absolute error in this method 4.140 × 10−20, whereas the maximum

error from Legendre Polynomials was 2.501× 10−13.
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x Absolute Error

0.1 4.676× 10−21
0.2 1.530× 10−20
0.3 2.730× 10−20
0.4 3.690× 10−20
0.5 4.140× 10−20
0.6 3.941× 10−20
0.7 3.112× 10−20
0.8 1.861× 10−20
0.9 6.058× 10−21

Table 4.7: Absolute Error using Green’s Function with Fixed Point Iteration
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Chapter 5: CONVERGENCE ANALYSIS

In the previous chapter, to obtain approximations for the solutions to some fourth

order problems, we have used some numerical methods based in iterations. Therefore,

the convergence of such iteration should be also investigated, this final chapter being

thus dedicated to the convergence of the methods employed and their rates. To this

end, the contraction principle will be used. More precisely, the method we have used

in the previous chapter is based on Green’s functions and fixed point iterations. Such

a method has been previously used by M. Abushammala, A. Khouri and Sayfy in

(Abushammala, 2015) for a third order differential equations and adapted by us to

fourth order equations in this thesis.

First, let us state the following classical result:

Theorem 5.1. (Banach-Picard Theorem)

Let (X,d) be a non-empty complete metric space with a contracting mapping T : X →
X. Then T admits a unique point x∗ in X such that T (x∗) = x∗. Moreover, we can

determine precisely x∗ by choosing an arbitrary value x0 in X, defining xn = T (n−1)

and then letting xn → x∗.

The proof will be applied on nonlinear differential equations with boundary con-

ditions.

u(4)(t)− f(t, u(t), u′(t), u′′(t), u′′′(t)) = 0 (5.1)

with boundary conditions

u(0) = α, u(1) = β, u′′(0) = γ, u′′(1) = ζ. (5.2)

We define an operator T [up] follows

T [up] = up +
∫ b
a
G(t, s)

[
H(s)u′′′′p (s) + I(s)u′′′p (s) + J(s)u′′p(s) +K(s)u′p(s)

+L(s)up(s)− f(t, u(t), u′(t), u′′(t), u′′′(t))] ds.
(5.3)

where

up =

∫ b

a

G(t, s)f(s, up(s), u
′
p(s), u

′′
p(s), u

′′′
p (s))]ds. (5.4)
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Using Green’s function found in the previous chapter

G(t, s) =

 (1
6
s− 1

6
)t3 + (1

6
s3 − 1

2
s2 + 1

3
s)t if 0 < t < s,

(1
6
s)t3 − (1

2
s)t2 + (1

3
s+ 1

3
s3)t− 1

6
s3 if s < t < 1.

(5.5)

Therefore, the iteration scheme can be defined as follow:

un+1(t) = un(t) +

∫ 1

0

G∗(t, s)[u′′′′n (s)− f(s, un(s), u′n(s), u′′n(s), u′′′n (s))]ds, (5.6)

where G∗(t, s) is the adjoint Green’s function of the previously defined G(t, s) :

G∗(t, s) =

 (1
6
s)t3 − (1

2
s)t2 +

(
1
3
s+ 1

3
s3
)
t− 1

6
s3 if 0 < t < s,

(1
6
s− 1

6
)t3 + (1

6
s3 − 1

2
s2 + 1

3
s)t if s < t < 1.

(5.7)

On some occasions the adjoint Green’s function had to be replaced with the

Green’s function, which should also satisfy the conditions imposed on the Green’s

function, i.e. LG(t, s) = δ(t− s), so the adjoint Green’s function satisfies

L∗G∗(t, s) = δ(t− s).

Theorem 5.2. Assume that f(t, u, u′, u′′, u′′′) is a continuous function on [a, b], whose

derivative is bounded with respect to u. Assume that K := 1
24
Lc < 1, where

Lc = max
∣∣ δf
δu

∣∣. Then the iterative sequence {un(t)}∞n=1, given by

un+1(t) = un(t)−
∫ t
0

[
(1
6
s)t3 − (1

2
s)t2 + (1

3
s+ 1

3
s3)t− 1

6
s3
]

·[u′′′′n (s)− f(s, un(s), u′n(s), u′′n(s), u′′′n (s))]ds

−
∫ 1

t

[
(1
6
s− 1

6
)t3 + (1

6
s3 − 1

2
s2 + 1

3
s)t
]

·[u′′′′n (s)− f(s, un(s), u′n(s), u′′n(s), u′′′n (s))]ds,

(5.8)

converges uniformly to the exact solution u(t) of the problem.

Proof. Let us start by computing I =
∫ b
a
Gu′′′′(t)ds by parts. Let u = G, so

u′ = Gs, and dv = u′′′′(s), so v = u′′′(s).We then have

I = G(b)u′′′(b)−G(a)u′′′(a)−
∫ b

a

Gsu
′′′ds. (5.9)

By repeating this argument, taking u = G and dv = u′′′(s), we get

I = G(b)u′′′(b)−G(a)u′′′(a)−Gs(b)u
′′(b) +Gs(a)u′′(a) +

∫ b

a

Gssu
′′(t)ds. (5.10)
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Then, we repeat again the same argument until when we get

I = G(b)u′′′(b)−G(a)u′′′(a)−Gs(b)u
′′(b) +Gs(a)u′′(a) +Gss(b)u

′(b)

−Gss(a)u′(a)−Gsss(b)u(b) +Gsss(a)u(a) +
∫ b
a
Gssssu(t)ds.

(5.11)

By Green’s function properties, we know that Gssss(t, s) = −δ(t− s), so∫ b

a

Gssss(t, s)u(s)ds = −u(t), (5.12)

Now, we know that the Green’s Function satisfies G(t, 0) = G(t, 1) = 0. Moreover,

Gss(t, 0) = Gss(t, 1) = 0 so that

un+1(t) = un(t) +G(b)u′′′(b)−G(a)u′′′(a)−Gs(b)u
′′(b) +Gs(a)u′′(a) +Gss(b)u

′(b)

−Gss(a)u′(a)−Gsss(b)u(b) +Gsss(a)u(a)

+
∫ b
a
Gssssu(t)ds−

∫ b
a
G∗(t, s)f(s, u, u′, u′′, u′′′))ds.

(5.13)

After some simplification we get

un+1(t) = −ζG∗s(t, b) + γG∗s(a)− βG∗sss(b) + αG∗sss(a)

−
∫ b
a
G∗(t, s)f(s, un(s), u′n(s), u′′n(s), u′′′n (s))ds.

(5.14)

Based on (5.7), we can compute G∗s(t, b), G
∗
s(t, a), G∗sss(t, a), and G∗sss(t, b). For in-

stance

G∗s(t, s) =


1
6
t3 − 1

2
t2 +

(
1
3

+ s2
)
t− 1

2
s2 if 0 < t < s,

1
6
t3 + (1

2
s2 − s+ 1

3
)t if s < t < 1.

(5.15)

Therefore, G∗s(t, 1) = 0 and G∗s(t, 0) = 1
6
t3 − 1

2
t2 + 1

3
t. Similarly, one may obtain

G∗ss(t, s) =

 2st− s if 0 < t < s,

(s− 1)t if s < t < 1,
(5.16)

and

G∗sss(t, s) =

 2t− 1 if 0 < t < s,

t if s < t < 1,
(5.17)
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so G∗s(t, 1) = 0 and G∗s(t, 0) = 1
6
t3 − 1

2
t2 + 1

3
t. In conclusion

yn+1(t) = γ

[
1

6
t3 − 1

2
t2 +

1

3
t

]
− βt+ α(2t− 1)−

∫ b

a

G∗(t, s)f(s, un, u
′
n, u

′′
n, u

′′′
n ))ds.

(5.18)

Next, we define a new operator TG : C[0, 1]→ C[0, 1], as follows:

TG(yn) =
[γ

6

]
t3 − γ

2
t2 +

(
2α− β +

γ

3

)
t− α−

∫ b

a

G∗(t, s)f(s, un, u
′
n, u

′′
n, u

′′′
n )ds,

(5.19)

and note that

un+1(t) = TG(un). (5.20)

To apply Banach-Picard fixed point theorem, we have to show that TG is con-

tracting mapping. To this end, we consider the following difference

|TG(y)− TG(z)| =
∣∣∣∣∫ b

a

G∗(t, s)f(s, y, y′, y′′, y′′′)ds−
∫ b

a

G∗(t, s)f(s, z, z′, z′′, z′′′)ds

∣∣∣∣,
(5.21)

and try to find the appropriate estimate for it. Let us consider

g(t) =

∫ b

a

G∗(t, s)ds. (5.22)

The integration of the Green’s Function’s branches should be then calculated sepa-

rately, as follows∫ t

0

[
(
1

6
s)t3 − (

1

2
s)t2 + (

1

3
s+

1

3
s3)t− 1

6
s3
]
ds = (

1

6
)t5 − (

7

24
)t4 + (

1

6
)t3, (5.23)

respectively∫ 1

t

[
(
1

6
s− 1

6
)t3 + (

1

6
s3 − 1

2
s2 +

1

3
s)t

]
ds = (−1

8
)t5 + (

1

24
)t+ (

1

3
)t4 − (

1

4
)t3. (5.24)

Simplifying the above integrals, one can write that

g(t) =
1

24
t5 +

1

24
t4 − 1

12
t3 +

1

24
t. (5.25)
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Therefore, by looking for the extreme values of g(t), we find that

|g(t)| ≤ 1

24
, (5.26)

so

|TG(y)− TG(z)| ≤ 1

24

∣∣∣∣∫ 1

0

G∗(t, s)f(s, y, y′, y′′, y′′′)− f(s, z, z′, z′′, z′′′)

∣∣∣∣ ds. (5.27)

Applying next the mean value theorem for f , we get

|TG(y)− TG(z)| ≤ 1

24
max |f(s, y, y′, y′′, y′′′)− f(s, z, z′, z′′, z′′′)|. (5.28)

By defining

‖ y − z ‖= max|y(t)− z(t)| and Lc = max| δ
δy
f(t, y, y′, y′′, y′′′)|, (5.29)

and making use of the fact that K = 1
24
Lc < 1, we have

‖ TG(y)− TG(z) ‖≤ K ‖ y − z ‖ . (5.30)

The rate of convergence can be calculated by taking two consecutive terms from the

iteration

‖un+1 − un‖ = ‖TG(un)− TG(un−1)‖ ≤ K ‖un − un−1‖ ≤ Kn ‖u1 − u0‖ . (5.31)

Using the above inequality with two terms with indices m,n such that m > n > 0,

then
‖um − un‖ ≤ ‖um − um−1‖+ ...+ ‖un+1 − un‖

≤ (Km−1 + ...+Kn) ‖u1 − u0‖

≤ Kn (1 + ...+Km−n) ‖u1 − u0‖

≤ Kn

1−K ‖u1 − u0‖ ,

(5.32)

where the term Kn

1−K is the infinite sum of the previous geometric series. In conclusion,

as m grows, the error is

‖u− un‖ =
Kn

1−K
‖u1 − u0‖ . (5.33)
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Chapter 6: CONCLUSION

In this thesis we have first introduced some basic facts and properties for the

Green’s Functions of some general classes of linear differential equations. We have

shown how to obtain the Green’s Functions for equations of different orders and sup-

ported these results by several examples.

Then we have presented some Existence and Uniqueness results, based on some

classical ideas found in P. B. Baley, L.F. Shampine, P. E. Waltman, 1969. Again, the

theoretical results have been supported by some examples.

Next, we discussed the concept of Fixed Point Iteration and presented some clas-

sical iteration schemes, such as, for instance, Picard Iteration and Mann Iteration,

which were then used in our proposed method in different contexts. Also, we pre-

sented a comparison between our proposed method and other established methods,

such as, for instance, the Spline method, and the Richardson’s h2-extrapolation. The

results shown demonstrate the advantage of the proposed method over these tradi-

tional methods. Another advantage of our method is the ability of controlling the

parameter to improve the accuracy and the processing time. We have illustrated a

step by step description of the proposed method, applied on numerical examples with

exact solutions, to show the effectiveness of this method. The use of other techniques

that we can eventually employ in some future works to improve our results and opti-

mise the processing timing were also explained.

Finally, the convergence of the solution of our numerical method has been investi-

gated, as well. Based on the Banach-Picard fixed-point theorem we found some clear

conditions for the convergence of the iteration sequences considered.
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