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Abstract 

Data centers are an integral part of cloud computing infrastructure to support various 

cloud-based services such as web search, email, social networking, distributed file 

systems and scientific computing. Data centers provide huge computational power and 

storage, reliability, availability, and cost-effective solutions needed by the cloud 

applications. A data center network (DCN) topology connects thousands of servers 

within the datacenter and to the external world. The topology is vulnerable to failures 

due to the presence of huge number of servers, switches and links. Several data center 

network topologies have been proposed and implemented; however, most of them lack 

the ability to recover from failures. One of the biggest challenges in DCN is to provide 

a graceful degradation in performance in the event of a link or server failure. Fault-

tolerance in a DCN topology can be provided by adding extra hardware (switches, 

links) or by provisioning of multiple redundant routing paths among servers. This 

thesis proposes two new fault-tolerant DCN topologies derived from the standard 

𝐷𝑐𝑒𝑙𝑙 topology. The proposed topologies, 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 and 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔, are both 

cost-effective and scalable. In addition, the proposed topologies enhance the overall 

performance (throughput and latency) of 𝐷𝑐𝑒𝑙𝑙 topology, and offer graceful 

performance degradation in the case of a link or server failure. Furthermore, we 

propose a new mechanism to select the optimal path between the hosts in the topology 

using Genetic Algorithm (GA). Performance evaluation of the proposed topologies 

and techniques is done through a simulation study using realistic intra-datacenter 

traffic models, and the results are compared with the standard 𝐷𝑐𝑒𝑙𝑙 topology. The 

comparison is done in terms of various metrics such as throughput, latency, diameter, 

and average shortest path length. The simulation results show that the proposed 

topologies outperform the standard 𝐷𝑐𝑒𝑙𝑙 topology due to the availability of multiple 

alternate shortest paths between any pair of servers, resulting in an improvement of 

about 5% in throughput even for a small-size network. GA algorithm for the path 

selection is applied to the two proposed topologies, and it is found that there is a 

further improvement of about 2% in the throughput of the topologies. 

Search Terms: Data Center Networks, Fault-Tolerance, Throughput, Network 

Topology, Performance Evaluation, Mininet, 𝑫𝒄𝒆𝒍𝒍, Genetic Algorithm.
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Chapter 1. Introduction 

 

In this chapter, we provide a brief introduction about datacenter network (DCN) 

topologies and the problems encountered in this field. We then present the scope of the 

problem investigated in this study as well as the thesis contribution. Finally, general 

organization of the thesis is presented. 

1.1. Overview 

Due to tremendous growth in cloud-based services, such as Google Search and 

Facebook social network, the overall cloud infrastructure is constantly evolving to 

support a huge volume of data and Quality of Service (QoS) requirements of such 

services. DCN infrastructure consists of a massive number of servers with large online 

services (e.g., Amazon, Microsoft, etc.). A DCN topology connects those servers 

through switches and links with high capabilities which, in turn, connects to the 

external world. As the result, data traffic inside the DCN is increasing, which has a 

strong effect on the performance of the datacenter in general. The performance of 

DCN can be estimated using well-known metrics like throughput, latency, bandwidth, 

power consumption, reliability, cost, etc. A number of DCN architectures have been 

proposed, which are classified into two major categories: fixed-topology, and flexible-

topology. For the fixed-topology architecture, the network topology cannot be 

changed after the network is deployed, while the change is possible in the flexible-

topology architectures. Some example architectures for fixed-topologies are: Fat-Tree 

[1], Portland [2], and recursive topologies 𝐷𝑐𝑒𝑙𝑙 [3] and 𝐵𝑐𝑢𝑏𝑒 [4]. The flexible 

topologies, using optical switching technology, include c-Through [5]. There is 

another way of classification of DCN topologies based on whether they are server-

centric networks or switch-centric networks. In server-centric network, the addressing 

and routing tasks are performed by the servers. Both 𝐷𝑐𝑒𝑙𝑙 and 𝐵𝑐𝑢𝑏𝑒 topologies are 

examples of server-centric networks. On the other hand, all routing and addressing 

tasks are done by switches and routers in case of switch-centric networks. Fat-Tree 

and Portland architectures belong to this category. 

Several requirements are needed to maintain the scalability, fault-tolerance, 

efficiency and management inside DCN topologies [6]. Some of the requirements are 

summarized as follows: 
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• The detection and recovery of failures should be efficient, easy and 

rapid. 

• There are no traffic loops especially in multi-rooted architecture. 

• Multiple paths are available between any two hosts. 

• The ability of Virtual Machine (VM) migration without any need to 

change the IP address. 

With ever increasing data traffic in clouds, recently there has been a great 

interest in improving the performance of cloud computing infrastructure. Data centers 

provide solutions for large power consumption and storage, cost-effective, availability 

and reliability which are needed by the cloud applications. There are several design 

and operational aspects important for selecting a network topology depending on the 

needed performance objectives. As a data center network topology consists of a very 

large number of servers (hosts), switches, routers and communication links, the 

topology is vulnerable to failures (permanent or transient). In order to provide high 

availability and a certain performance level, the network topology must be designed to 

recover from such failures. At the physical hardware level, redundant links and 

switches present in the topology may aid in providing such recovery (or fault-

tolerance). Moreover, routing algorithm for the topology may offer alternate paths (if 

they exist) between hosts (servers) that will be available in case of a switch or link or 

server failure.  

1.2. Thesis Objectives 

Due to increased traffic in the DCN topologies, there is a strong need to 

improve the performance of DCN. In this work, we propose two new datacenter 

network architectures which have the ability to tackle the problems of failures, 

latency, fault-tolerance and throughput. We then compare these new proposed 

topologies with well-known topologies to show the improvements in the performance. 

These architectures provide multiple paths between hosts, achieve high throughput, 

and minimize the delay between the hosts.  They also offer fault tolerance capability 

which will result from either the redundancy of physical links or the routing protocol 

used. The architectures are simulated and results are presented under various realistic 

traffic scenarios. Furthermore, Genetic Algorithm (GA) is used as a technique to select 

the optimal path between the nodes. The objective of this work is to find a way to 
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improve the performance of architecture by providing different paths between hosts 

and then selecting the best path for routing the packets among the servers. 

1.3. Research Contribution 

      The contributions of this research work can be summarized as follows:   

• Propose new DCN architectures with higher throughput, low latency and better 

fault-tolerance and scalability by supporting multipath concept. 

• Evaluate these architectures using simulation tools (e.g. Mininet) to verify the 

superiority of these architectures compared to the well-known ones. 

• Use GA as path selection technique to compute the optimal path from one host 

to another host or from one host to all other hosts. 

• Compare the results from Mininet simulator with the ones from GA to validate 

the ability of GA to produce better performance results. 

1.4. Problem Statement 

Cloud-based services are growing at an exponential rate. These services 

demand a reliable, scalable, highly available, high throughput and energy-efficient 

DCN infrastructure. The present well-known network topologies do not offer most of 

the above mentioned desirable features at the same time. 

1.5. Thesis Organization 

The rest of this thesis is organized as follows: Chapter 2 introduces the 

background about structure of different DCN topologies and different challenges in 

DCN architectures. Moreover, related work to this research topic is described. Two 

new proposed DCN topologies with some of their structural properties and new path 

selection technique using GA are discussed in Chapter 3. Chapter 4 introduces an 

overview of the Mininet simulator and different controllers used. Additionally, several 

realistic traffic patterns are presented. Chapter 5 provides results from the performance 

evaluation for the two new proposed architectures and compare with the current well-

known topologies. In addition, Chapter 5 describes the performance results when the 

proposed fault-tolerant GA path selection algorithm is applied on different topologies, 

including the two proposed ones. Furthermore, Chapter 5 presents comprehensive 

comparison and discussion on the results. Finally, Chapter 6 concludes the thesis and 

outlines the future work. 
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Chapter 2. Background and Literature Review 

In this chapter, we discuss the structure of various standard DCN topologies 

and compare them in terms of certain parameters related to the performance and fault-

tolerance. Different challenges in DCN topologies are also presented. We, moreover, 

discuss a GA for solving the path selection problems in DCN topologies. Finally, we 

discuss the related work in this field of research and describe the different simulation 

tools used for measuring the performance of topology. 

2.1. Data Center Network Architectures 

Several DCN topologies have been proposed and implemented in real data 

centers. The list includes Google Fat-Tree,  𝐷𝑐𝑒𝑙𝑙, 𝐵𝑐𝑢𝑏𝑒, Facebook Fat-Tree, 

Diamond, and 𝐵𝐶𝐶𝐶 topologies. Some important parameters used for comparing 

different topologies are presented as follows [6]: 

• Diameter: It represents the longest of the shortest paths between two servers in 

the topology. A low value of diameter indicates lower transmission latency. 

• Degree of the servers: It is the number of networking ports present on the 

servers. 

• Number of wires: Total number of wires (communication links) required for 

constructing the topology.  

• Number of servers: It demonstrates the scalability metric for different 

topologies. 

• Node-disjoint Paths: It represents the minimum of total number of paths with 

no intermediate common nodes between any two hosts. It gives indication 

about available number of paths in case of switch failure. 

• Edge-disjoint Paths: It shows the common edges of the available path between 

any two hosts, and it gives an indication of the number of available paths in 

case of a link failure. 

• Average shortest path length: It indicates the shortest path between any two 

pairs of servers to cover all available paths in the network structure. 

2.1.1. Fat-Tree topology. This topology, proposed by Leiserson [7], is based 

on a complete binary tree, and is considered the most popular one till now. It consists 

of different levels, as shown in Figure 2.1, starting from the core switches till the edge 

switches which directly connect to the hosts. Each 𝑛 − port edge switch is linked to 
𝑛

2
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hosts, while the remaining ports connect with the upper switches (aggregation 

switches). Each subset in the topology is called a pod that contains 
𝑛

2
 aggregation-level 

switches,  
𝑛

2
 edge-level switches and the hosts connected to the edge switches. All 

levels use the same kind of switches and the maximum number of hosts linked with 

the edge level is 
𝑛3

4
 . With the increase in traffic load, the topology presents the 

bottlenecks, especially in the low level. The topology offers multipath flows between 

any two hosts in network which makes it a fault-tolerant topology. The diameter for 

Fat-Tree topology is 6. This topology is also known as Google Fat-Tree. 

 

 

Figure 2.1: A 3-level Fat-Tree Topology [8] 

 

2.1.2. 𝐁𝐜𝐮𝐛𝐞 topology. As shown in Figure 2.2, the level − 𝑘 𝐵𝑐𝑢𝑏𝑒𝑘 [4] is 

recursively constructed from 𝐵𝑐𝑢𝑏𝑒0 which consists of 𝑛 servers and  𝑛 − 𝑝𝑜𝑟𝑡 

switch. Here, k represents the level number in the topology. Each server is connected 

to one port of switch whereas there is no direct link between these servers. For the 

higher level, 𝐵𝑐𝑢𝑏𝑒𝑘 is composed of 𝑛 𝐵𝑐𝑢𝑏𝑒𝑘−1 connected together through 𝑛𝑘 𝑛 −

port  switch, in which each server port attaches to a switch at each level. This 

architecture utilizes the largest number of switches and wires compared to others, 

especially when building the higher levels. The diameter in this topology grows 

logarithmically with the number of servers (𝑙𝑜𝑔𝑛 𝑁) where n is the number of ports on 

a switch and N is the total number of servers in the topology. 
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Figure 2.2:  A 𝐵𝑐𝑢𝑏𝑒1 Topology [9] 

 

2.1.3. 𝐃𝐜𝐞𝐥𝐥 topology. The 𝐷𝑐𝑒𝑙𝑙 architecture [3] is recursively created from 

servers, mini-switches and links to connect servers together or servers with switches. 

Figure 2.3 shows the construction in general. 𝐷𝑐𝑒𝑙𝑙0 comprises of n servers attached 

to 𝑛 − 𝑝𝑜𝑟𝑡 mini-switches. To establish the higher levels, for example, 𝐷𝑐𝑒𝑙𝑙1, 𝑛 + 1 

𝐷𝑐𝑒𝑙𝑙0s are connected to each other via direct links. The main difference between 

𝐷𝑐𝑒𝑙𝑙 and the 𝐵𝑐𝑢𝑏𝑒 topology is the way of scaling up, while the limiting factor of 

both topologies for higher levels is the number of network ports (or Network Interface 

Cards (NICs)) on the servers. In 𝐷𝑐𝑒𝑙𝑙 topology, the diameter is 2𝑘+1 − 1 where k is 

the number of ports on a server or the level of  𝐷𝑐𝑒𝑙𝑙𝑘. In addition, 𝐷𝑐𝑒𝑙𝑙 topology is 

considered better scalable topology compared to the others. 

 

 

Figure 2.3: Original  𝐷𝑐𝑒𝑙𝑙1 Topology [9] 
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2.1.1. Facebook Fat-Tree topology. The standard unit of the Facebook Fat-Tree 

topology, as shown in Figure 2.4, is called a pod. The architecture can consist 

of many pods such that each pod has up to 48 switches called top of rack 

(TOR) switches. The architecture can be easily extended to accommodate 

several pods [10]. The diameter in this topology is 4. 

 

 

Figure 2.4: Facebook Topology [10] 

 

2.1.2. Diamond topology. The Diamond network [11] topology, as shown in 

Figure 2.5, consists of only two types of switches: core and edge switches. Each edge 

switch has n ports, out of which 
𝑛

4
 connect to servers, 

𝑛

4
 connect to core switches and 

the remaining 
𝑛

2 
  ports connect to the edge switches in the same pod. The network 

comprises of 𝑛 pods, with 𝑛 edge switches in each pod, with a total of 𝑛2 edge 

switches in the network, 
𝑛2

4
 total number of core switches, and 

𝑛3

4
 total number of hosts 

in the network. Edge switches in the same pod as well as core switches are placed in 

two lines with 
𝑛

2 
   edge switches and 

𝑛2

8
 core switches in each of the upper and lower 

line. Each edge switch connects to the opposite edge switches in the same pod. In 

addition, each core switch in the upper and lower line has a link with each edge switch 

in the upper and lower line in each pod, respectively. In this case, the diameter is the 

same as in Fat-Tree topology (i.e. 6). 
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Figure 2.5: Diamond Topology with 4-port Switches [11] 

 

2.1.3. 𝐁𝐂𝐂𝐂 topology. 𝐵𝐶𝐶𝐶 topology is a recursive network structure [12], 

as shown in Figure 2.6, and it is derived from the 𝐵𝑐𝑢𝑏𝑒 topology. Each element in 

the topology consists of 𝑛 servers connected to a single 𝑛 − 𝑝𝑜𝑟𝑡 switch. 

𝐵𝐶𝐶𝐶(𝑛, 𝑘) denotes 𝐵𝐶𝐶𝐶 with order 𝑘 and 𝑛 number of servers which are linked to a 

related switch in each element. The construction of  𝐵𝐶𝐶𝐶(𝑛, 𝑘 ) is done by 

connecting 𝑛 number of 𝐵𝐶𝐶𝐶(𝑛, 𝑘 − 1 )s, together with a total of 𝑛𝑘 elements. In 

general, it requires (𝑘 + 1)𝑛𝑘+1 dual-port servers, 𝑛𝑘+1(𝑘 + 1) − 𝑝𝑜𝑟𝑡 switches and 

(𝑘 + 1)𝑛𝑘 𝑛 − 𝑝𝑜𝑟𝑡 switches to build 𝐵𝐶𝐶𝐶(𝑛, 𝑘 ). Moreover, there are two types of 

switches, called type A switch and type 𝐵 switch. A type A switch is used to form an 

element with 𝑛 ports. While a type 𝐵 switch is used to connect different elements 

together with (𝑘 + 1) ports. Therefore, the first port in the server is for 

communication within the elements and the second one is for expansion purposes and 

for the communication between different elements. The diameter of 𝐵𝐶𝐶𝐶(𝑛, 𝑘) 

is 2(𝑘 + 1). 

2.2. Challenges in DCN Topologies 

      There are several challenges in the present-day DCN architectures, as indicated 

below: 

 



 

21 

 

 
 

Figure 2.6: Topology of BCCC(4, 1) [12] 

 

• Reliability: DCN hardware still suffers from frequent and disruptive failures. 

The number of servers, switches and links has dramatically increased in the 

recent past. Despite the fact that, with today’s technology we have highly 

reliable (~99.9%) servers, links and switches, there is still a high probability 

for the switch or link failures. The solution for this problem is carried out by 

providing either a fault-tolerant routing algorithm or a topology with multiple 

(redundant) paths between the hosts. 

• Performance: Due to strict QoS requirements of some cloud-based (especially, 

real-time) applications, the DCN infrastructure cannot meet the requirements 

of all such applications, especially under high traffic load.  

• Power Consumption: Due to the presence of a huge number of servers and 

switches in a DCN infrastructure, the power consumption in the datacenter is 

very high and costly. In order to have an energy-efficient data center, one 

needs to design newer mechanisms to reduce to overall power consumption. 

One possible solution is VM migration from lightly loaded servers to other 

servers, and switch off those lightly loaded servers, without violating the QoS 

requirements of applications. 
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2.3. Introduction to Genetic Algorithms (GAs) 

In this thesis, we present a GA for solving the path selection problems in DCN 

topologies. In classical GA, the search for an optimal solution for a considered 

problem starts by generating a population of chromosomes (possible solutions) and the 

evaluation of the fitness (cost function) of these chromosomes. Thereafter, an 

offspring population from the current one is created using the Darwinian principle of 

“reproduction” and “survival of fitness” [13], and the genetic reproduction operators: 

crossover and mutation. Reproduction involves selecting individuals from the current 

population based on their fitness levels. Afterwards, for each two selected individuals, 

crossover and mutation are applied and two new offspring individuals are created.  

The process is repeated for many generations until a given stopping condition is 

satisfied. Typically, the best individual that appeared in any generation (i.e. best-so-far 

individual) [14] is designated as the result produced by the GA. 

2.4. Related Work 

This section describes the related work reported in the literature on the subject 

of evaluating DCN topologies using simulation tools and the comparison among 

topologies using well-known metrics. Additionally, it provides various approaches on 

the use of GAs in finding the shortest path between two hosts in simple networks.   

Several datacenter network topologies have been proposed and implemented in 

real data centers. The list includes Google Fat-Tree, 𝐷𝑐𝑒𝑙𝑙, 𝐵𝑐𝑢𝑏𝑒 and Facebook Fat-

Tree. A good survey about DCN topologies can be found in [15, 16]. Most of the 

earlier research work carried out deals with the performance evaluation of topologies 

without consideration of any failure in the network topology. Moreover, different 

types of simulators with different traffic generators were used to evaluate the 

performance. Therefore, the comparisons among topologies become difficult on the 

similar baseline parameters. In [17], two DCN topologies, Fat-Tree and 𝐷𝑐𝑒𝑙𝑙 

topologies are compared using random traffic with exponential and uniform 

distribution. Simulation results from ns-3 simulator show that the performance of Fat-

Tree is better than 𝐷𝑐𝑒𝑙𝑙 in terms of throughput and latency. In [18], an evaluation of 

the fault-tolerance characteristics of some DCN topologies is made using a Java-based 

simulator. Several metrics such as Average Path Length (APL), Aggregate Bottleneck 

Throughput (ABT) and connection failure ratio are analyzed. A fault-tolerance 
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parameter is measured using different metrics for four different DCN topologies (e.g. 

Fat-Tree, 𝐷𝑐𝑒𝑙𝑙, 𝐵𝑐𝑢𝑏𝑒, and 𝐹𝑙𝑎𝑡𝑁𝑒𝑡,) in [19]. Simulator DCNSim is used to capture 

the effects of various failures in the topologies in details in terms of connection-

oriented metrics which include ABT, APL and Routing Failure Rate (RFR); and 

network size-oriented metrics, covering Component Decomposition Number (CDN) 

and Smallest/Largest Component Size (SCS/LCS). The performance indicates the 

varieties of results with respect to server-centered fault regions or switch-centered 

fault regions for different topologies. Both Fat-Tree and 𝐵𝑐𝑢𝑏𝑒 topologies require 

higher cost for switches and wirings, although they get best ABT and APL compared 

to other topologies. In general, we cannot say that a certain topology is better than 

others, but there is always a trade-off between the performance and cost. Several 

popular architectures are compared with respect to various parameters, such as power, 

cost, scalability, hop counts and path diversity in [20] using analytical methods. It uses 

the “Mininet” [21] simulator for the evaluation of throughput; however, results 

regarding the fault-tolerance characteristics of the topologies are not considered. The 

work in [11] reports a new topology called Diamond, which is an improvement over 

the Fat-Tree topology.  The Diamond topology replaces all aggregate switches with 

edge switches. With this new Diamond topology, the average path length and End-to-

End delay decrease by 10% compared with the original Fat-Tree topology. The 

Diamond topology also proposes a simple routing algorithm, called Fault-Avoidance 

Routing (FAR), with the ability of handling thousands of servers and providing fault-

tolerance. Furthermore, [12] proposes a server-centric, scalable DCN topology, named 

𝐵𝑐𝑢𝑏𝑒 Connected Crossbars (BCCC). The performance of the topology is compared 

with other topologies, and it is found that the BCCC topology outperforms FiConn and 

DCN [22] in some metrics such as network diameter, performance against server/link 

failure, expandability and server port utilization. In addition, the BCCC topology 

proposes two routing algorithms for two different types of traffic communications 

(i.e., One-to-One and One-to-All). 

The problem of finding the optimal solution for the shortest paths between any 

two hosts in simple networks is well-known. GAs have been successfully applied in 

solving a variety of optimization problems [23, 24]. Some researchers used GAs for 

finding the optimal routing path between any two nodes [25] or from one node to all 

other nodes [26] or from all nodes to all other nodes. The work presented in [25] 
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generates chromosomes representing routing paths or possible solutions containing 

different nodes between the source and destination and selects the best one after 

applying crossover and mutation. The resultant chromosomes have usually better 

routing paths than the previous population ones. Searching for better solutions 

(chromosomes) is done under the constraints of minimizing the path length or, in other 

words, the number of hop counts. The research in [26] reported similar results, but 

with different methods used for the representation of chromosomes and a different 

crossover operation. The work presented in [25-27] uses optimization strategies for 

high performance, scalability and optimal path for routing the packets through the 

network.  

In [28], another technique for multipath schema in data center topologies is 

presented. This technique consists of two phases called the configuration phase and 

path selection phase. The first phase is based on a GA for generating multiple paths 

for minimizing the path length and increasing the link usage diversity. The proposed 

GA exploits the switch features in data center, which is called Virtual Local Area 

Network (VLAN), to map multiple paths for connecting the servers into multiple trees 

with the cost function of minimizing the path length and maximizing the link usage 

diversity. The second phase uses heuristics for making a selection between the 

available multi-paths. The proposed schema does not make any modification in the 

infrastructure while it utilizes some specifications in the data center Virtual Local 

Area Network (VLAN). The technique is compared with the popular multipath 

schema such as Spanning Tree Protocol (STP) [29], and Equal Cost Multi-Path 

(ECMP) [30]. The results show an increase in the transmission rates for the proposed 

schema even in heavy traffic (e.g. All-to-All and All-to-One).  

Additionally, many recent advances in improving the performance of DCN 

topologies, as in Ethernet [31], are by providing the shortest paths between all pairs of 

hosts. By tuning the weight of the links between hosts, we can minimize the traffic 

delay and congestion, and also improve the throughput achieved between nodes. When 

any failure in link or nodes occurs, it will propagate through the network topology by 

the shortest path routing protocol and recalculate other shortest paths among the hosts.  
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Chapter 3. Proposed DCN Topologies and GA Path Selection Algorithm 

 

In this chapter, we introduce two proposed DCN topologies derived from 

𝐷𝑐𝑒𝑙𝑙 topology. In addition, we provide some structural parameters for the topologies 

which are compared with the standard 𝐷𝑐𝑒𝑙𝑙. Finally, we present detailed approaches 

for GAs in selecting the optimal path between the hosts in DCN topologies. 

3.1. Proposed Data Centre Network Topologies 

Here, we propose two new DCN topologies that are derived from the standard 

𝐷𝑐𝑒𝑙𝑙 topology with slight modifications. We have added some extra switches and 

links aiming to improve the performance in terms of throughput, latency and fault-

tolerance. We discuss how to construct new topologies recursively. 

3.1.1. 𝐃𝐜𝐞𝐥𝐥 − 𝐒𝐭𝐚𝐫 topology. Figure 3.1 shows the structure of the first 

proposed topology called  𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟. In this topology, an additional (central) 

switch is added at the higher level to connect all mini-switches present at lower levels 

together. The main reasons of providing the central switch are to provide multiple 

alternate paths between hosts and to reduce the diameter and the average shortest path 

length. Figure 3.1 depicts an example of  𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟1 structure which consists of 

five basic  𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0 units. Each 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0 consists of  𝑛 = 4 servers and a 

mini-switch connecting them together. For constructing level − 1 of  𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 

(i.e., 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟1), 𝑛 + 1 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0 are connected through dual-port servers 

and the central switch joining all mini-switches. There is an increase in the number of 

ports for a mini-switch which needs one more port for its connection with the central 

switch, resulting in a total of  𝑛 + 1 ports. The central switch also requires 𝑛 + 2 

ports;  𝑛 + 1 ports are needed to connect all mini-switches and one port for the 

connection to the higher level central switch. Figure 3.2 exhibits the structure of 

𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟2 following the similar steps in constructing topology using 𝐷𝑐𝑒𝑙𝑙 −

𝑆𝑡𝑎𝑟1 units with 𝑛 = 2.  

The address of a server in 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟𝑘 can be denoted as 𝑎𝑡 𝑎𝑡−1 

……….𝑎1𝑎0 where 𝑎0 refers to the index of the server in 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0 and it takes 

values from 0 to 𝑛 − 1, and 𝑎𝑖 represents unique ID for 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0, 1 ≤ 𝑖 ≤ 𝑘. We 

can further say that two hosts 𝐴 =  𝑎𝑡 𝑎𝑡−1 ……….𝑎1𝑎0 and  𝐵 =  𝑏𝑡 𝑏𝑡−1 

……….𝑏1𝑏0 are in the same lowest level  𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0  when  𝑎𝑖 =  𝑏𝑖 and 𝑎0 ≠  𝑏0, 
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for all values of  𝑖, 1 ≤ 𝑖 ≤ 𝑘. Following a similar approach, the address of a mini-

switch can be represented as 𝑠𝑡 𝑠𝑡−1 ……….𝑠1𝑠0 where 𝑠0 = 𝑘 − 1 indicates the next 

lower level of 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟𝑘 and 𝑠𝑖,  1 ≤ 𝑖 ≤ 𝑘 ,represents unique ID for 𝐷𝑐𝑒𝑙𝑙 −

𝑆𝑡𝑎𝑟0. The addressing of the central switch is exactly the same as used with a mini-

switch, except 𝑠0  =  𝑘 represents the level of 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟𝑘. 

As discussed earlier, two servers are in the same 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟𝑘 when all digits 

are equal except the least significant one. Therefore, forwarding the packets between 

two servers in the same 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0 is done through the related mini-switch, 

with 𝑠𝑖 =  𝑎𝑖. By considering one hop count between any two directly connected 

devices, the hop count between two hosts in the same 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0 will be two. 

However, when two servers are located in different  𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0 s, packets are first 

routed to the related mini-switch, then to the central switch which, in turn, directs the 

packet to the mini-switch connected to the destination node. This path needs a hop 

count of four to reach to the desired destination server. 

 

 

Figure 3.1: 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟1  Topology with 𝑛 = 4 

 

3.1.1.1 Structural properties of 𝑫𝒄𝒆𝒍𝒍 − 𝑺𝒕𝒂𝒓 topology. We analyze some 

vital properties of the proposed topology 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟. The first property is about the 

network diameter which gives an indication of the latency between the hosts in the 

topology. This property is presented in the following theorem. 
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Figure 3.2: 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟2 Topology with 𝑛 = 2 

 

Theorem 1.1: The diameter of 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟𝑘 is 2𝑘 + 2. 

Proof:  

  In general, moving the packets between any two neighbor servers 𝐴 =  𝑎𝑡 𝑎𝑡−1 

……….𝑎1𝑎0 and  𝐵 =  𝑏𝑡 𝑏𝑡−1 ……….𝑏1𝑏0 requires only two hop counts, since the 

path for the packet will be through the related mini-switch. This estimate assumes a 

hop count of one for the link between any two directly connected networking devices. 

For 𝑙𝑒𝑣𝑒𝑙 − 1 of 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟, the packets are transmitted between two servers in 

different 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0𝑠 through the central switch requiring two hop counts between 

the related mini-switches. Therefore, for 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟1, the diameter will be 2 + 2 = 4. 

Moving to 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟2, the packets need at least 4 hop counts to reach to the 

desired mini-switch connected to the destination server; thus, resulting in a diameter of 

6. This means that there is a relationship between the path length of the packet and the 

level of 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟. Thus, for 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟𝑘, the diameter is 2𝑘 + 2. The second 

term in the diameter (2 hop counts) is because of routing the packet from the source 

node to its related mini-switch, and from the destination mini-switch to the destination 

server.                                                                                                                     Q.E.D.                                                                                    

Theorem 1.2: The average shortest path length between any two pairs of servers in 

One-to-All traffic pattern when 𝑘 = 1 is 
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1+8(𝑛−1)+4(𝑛−1)2

𝑛(𝑛+1)−1
                                                            (1) 

where 𝑛 is the number of ports in a mini-switch. 

Proof: 

For calculating the shortest path from one to all other servers, we have to 

consider each case one by one. For the first case, when we have a direct link between 

any two servers, the shortest path from the source to the directly connected server will 

be one hop count. In the second case, the hop count of 3 is required to reach to each 

neighbor of the directly connected server with a total of  𝑛 − 1 servers. In the third 

case, only 2 hop counts are needed for passing traffic to  𝑛 − 1 neighboring servers of 

the source in the same 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0. In the fourth case, 3 hop counts are required to 

reach to 𝑛 − 1 servers which have the direct connection with the neighbors of the 

source server in different 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0. For the last case, the remaining hosts need 4 

hop counts when the traffic is transmitted through the central switch. Furthermore, for 

the last term, we have 𝑛 − 1 remaining 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0𝑠, each with 𝑛 − 1 servers, after 

excluding the one covered in the previous case.                                                    Q.E.D.                                                               

Thus the total shortest path length from the source to all other hosts is:  

 𝑆𝑃𝐿 = 1 + 3(𝑛 − 1) + 2(𝑛 − 1) + 3(𝑛 − 1) + 4(𝑛 − 1)(𝑛 − 1)                             (2) 

= 1 + 4(𝑛 − 1)(𝑛 + 1)                                                                 

Then the average shortest path length 𝑆𝑎𝑣𝑔 is 

𝑆𝑎𝑣𝑔 =  
𝑆𝑃𝐿

𝑛(𝑛 + 1) − 1
 

=  
1 + 8(𝑛 − 1) + 4(𝑛 − 1)2

𝑛(𝑛 + 1) − 1
 

=
1 + 4(𝑛 − 1)(𝑛 + 1)

𝑛(𝑛 + 1) − 1
 

where 𝑛(𝑛 + 1) − 1  is the total number of paths from one host to all other hosts in 

 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟1. In the other words, 𝑛(𝑛 + 1) − 1 represents the total number of nodes 

in the topology excluding the source node.                                                           Q.E.D.                                                                                                   
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3.1.2. 𝐃𝐜𝐞𝐥𝐥_𝐑𝐢𝐧𝐠 topology. 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 is our second proposed topology 

that also modifies the original 𝐷𝑐𝑒𝑙𝑙 topology. In  𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔, all min-switches in 

the same level are connected together, forming a ring as shown in Figure 3.3. The 

main objectives of linking the mini-switches together in the form of a ring are to 

provide multiple alternate paths between hosts, reduce the average shortest path length 

and the diameter of the standard 𝐷𝑐𝑒𝑙𝑙 topology. Figure 3.4 displays the structure of 

𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔2 following the similar steps in constructing topology using  𝐷𝑐𝑒𝑙𝑙 −

𝑅𝑖𝑛𝑔1 units with 𝑛 = 2. 

The addressing mechanisms for servers and mini-switches are exactly the same 

as formulated for 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟. For the routing, transmitting the packets in the same 

𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔0 is done via the related mini-switch, with a hop count of two.  

However, when the source and destination servers are in different  𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔0𝑠 , 

the packets are first routed to the related mini-switch, then towards the desired 

destination mini-switch through the ring, and finally to the destination server. In this 

case, we need a hop count of 3 when two hosts are in two different 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟0𝑠 

and their mini-switches are directly connected; otherwise, the hop count will be more 

than three. 

3.1.2.1 Structural properties of 𝑫𝒄𝒆𝒍𝒍 − 𝑹𝒊𝒏𝒈 topology. We now discuss 

some properties in the 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 topology. The first property is the network 

diameter presented in the following theorem. 

Theorem 2.1: The diameter of 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔𝑘 , 𝐷𝑘 , is given by 𝐷𝑘 = 2𝐷𝑘−1 + 1 

where the level k starts from 2. The base cases are 𝐷0 = 2, and 𝐷1 = ⌊
𝑛+1

2
⌋ + 2 

for 𝑛 < 5, while 𝐷1 =  5 for 𝑛 ≥ 5, where 𝑛 is the number of servers in 𝐷𝑐𝑒𝑙𝑙 −

𝑅𝑖𝑛𝑔0.  

Proof: 

Calculating the diameter is based on the value of  𝑛  (for 𝑛 < 5 ), and whether 

it is even or odd. This is due to the fact that the path length between two hosts in 

different  𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔0 depends whether the related mini-switches are connected 

directly or not. If the mini-switches are directly connected, the total hop count between 

any two hosts in different  𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔0 is 3. In the case where mini-switches are not 

directly connected, we need at least 4 hop counts. Therefore, estimating the diameter 
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for the higher level 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔𝑘 depends on the diameter of  𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔𝑘−1 

which, in turn, depends on whether the number of servers in  𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔0  is even 

or odd. 

For 𝑛 ≥ 5, the destination server present in the farthest  𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔0𝑠 can 

be reached with a maximum hop count of 5, either by the direct connection between 

the related 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔0𝑠 via the servers, or through the connected mini switches via 

ring. The similar approach can be used to find the diameter of higher level 𝐷𝑐𝑒𝑙𝑙 −

𝑅𝑖𝑛𝑔𝑘. 

For example, the diameter of   𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔2 is calculated by estimating the 

shortest path between the two farthest hosts as the worst case scenario. The calculation 

is done by estimating the diameter of two  𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔1𝑠 plus one representing the 

connection between them. Therefore, 𝐷2 = 2𝐷1 + 1.  We can extend the same idea to 

find 𝐷𝑘 using lower level 𝐷𝑘−1.                                                                             Q.E.D.  

 

 

Figure 3.3: 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔1 Topology with 𝑛 = 4 

Theorem 2.2: The average shortest path length from one server to all other servers 

when 𝑘 = 1 is 

1+(𝑛−1)(4𝑛+3)

𝑛(𝑛+1)−1
,        𝑓𝑜𝑟 𝑛 < 5                               (3) 
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1+19(𝑛−1)+(𝑛−4)(5𝑛−7)

𝑛(𝑛+1)−1
,   𝑓𝑜𝑟 𝑛 ≥ 5                                     (4) 

 

 

Figure 3.4: 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔2 Topology with 𝑛 = 2 

                             

Proof: 

The mechanism used for calculating the shortest path from one server to all 

other servers in 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 is exactly the same as used in  𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟1, except 

for the last term in equation (2). The last term in equation (2) is replaced with two 

terms as indicated in equation (5) for n <  5. The first term in equation (5) represents 

a path length of 3 for each of (n − 1) destination servers present in one of the 

immediate neighboring  𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔0 connected through the mini switches. The 

second term in equation (5) represents a path length of 4 for each of (n − 2)(n − 1) 

destination servers present in the equally-distant farthest Dcell − Ring0s. Here, (n −

1) represents the number of servers presented in a farthest Dcell − Ring0, and (n − 2) 

indicates the number of equally distant farthest Dcell − Ring0s.  
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For n ≥ 5, the formula for the total shortest path length (as given in equation 

(6)) is similar to the one in equation (5), except for the last term in equation (5). This 

last term is replaced by three terms in equation (6). Term 6 in equation (6) represents 

the path length of 4 of (n − 1) destination servers present in the adjacent Dcell −

Ring0s of the immediate neighbors of the source Dcell − Ring0.  Terms 7 and 8 in 

equation (6) indicate the path lengths of 4 and 5, respectively, for the destination 

servers present in the remaining (n − 4) Dcell − Ring0s including the farthest ones. In 

term 7, the number of destination servers with path length 4 will be 2, as those two 

servers will have a direct connection with the server in the immediate neighbor of the 

source Dcell − Ring0. In term 8, the number of remaining destination servers with 

path length 5 will be (n − 3) by excluding the server with a direct connection with the 

neighboring servers of the source in the same Dcell − Ring0, and by excluding two 

servers as indicated in term 7. 

Thus the total shortest path length from a source host to all other hosts, in case 

of 𝑛 < 5, is:  

 𝑆𝑃𝐿 = 1 + 3(𝑛 − 1) + 2(𝑛 − 1) + 3(𝑛 − 1) + 3(𝑛 − 1) + 4(𝑛 − 1)(𝑛 − 2)       (5) 

= 1 + (𝑛 − 1)(4𝑛 + 3) 

Then the average shortest path length 𝑆𝑎𝑣𝑔 is 

𝑆𝑎𝑣𝑔 =  
𝑆𝑃𝐿

𝑛(𝑛 + 1) − 1
 

             =  
1 + (𝑛 − 1)(4𝑛 + 3)

𝑛(𝑛 + 1) − 1
 

where 𝑛(𝑛 + 1) − 1 is the total number of paths from one host to other hosts in 

 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔1. 

For 𝑛 ≥ 5, one can prove that the total shortest path length from a source host 

to all other hosts is:  

𝑆𝑃𝐿 = 1 + 3(𝑛 − 1) + 2(𝑛 − 1) + 3(𝑛 − 1) + 3(𝑛 − 1) + 4 ∗ 2(𝑛 − 1) + 4(𝑛 − 4)

+ 5(𝑛 − 4)(𝑛 − 3)                                                                                       (6) 

= 1 + 19(𝑛 − 1) + (𝑛 − 4)(5𝑛 − 7) 
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The average shortest path length 𝑆𝑎𝑣𝑔 is 

𝑆𝑎𝑣𝑔 =  
𝑆𝑃𝐿

𝑛(𝑛 + 1) − 1
 

=  
1 + 19(𝑛 − 1) + (𝑛 − 4)(5𝑛 − 7)

𝑛(𝑛 + 1) − 1
 

where 𝑛(𝑛 + 1) − 1  is the total number of paths from one host to all other hosts in 

 𝐷𝑐𝑒𝑙𝑙1.                                                                                                                   Q.E.D. 

3.1.3. Structural Properties of 𝐃𝐜𝐞𝐥𝐥 Topology 

Theorem 3.1: The diameter of the standard 𝐷𝑐𝑒𝑙𝑙𝑘 topology is  

                                             𝐷𝑘 = 3 ∗ 2𝑘 − 1                                                                (7)                                                                                 

Proof: 

Since there is no direct connection in standard 𝐷𝑐𝑒𝑙𝑙 topology among the mini-

switches, the path length between any two servers will be more as compared with 

𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 and 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 . The link between any two devices in the standard 

𝐷𝑐𝑒𝑙𝑙 is considered as one hop count. Hence, the traffic communication between two 

servers in two different 𝐷𝑐𝑒𝑙𝑙0𝑠  will be through the direct link connecting 

those 𝐷𝑐𝑒𝑙𝑙0𝑠. For 𝑘 = 1, the diameter will be 5 representing the longest path of all 

available shortest paths between any pairs of servers. This is due to the fact that the 

longest path occurs when we need to connect two servers present in two different 

𝐷𝑐𝑒𝑙𝑙0𝑠  , and the direct connection between those 𝐷𝑐𝑒𝑙𝑙0𝑠  is not through the source 

and destination servers.  

We can also calculate the diameter recursively from the lower level, given as 

follows: 

                                                            𝐷𝑘 = 2𝐷𝑘−1 + 1                                                    (8)         

For example, the diameter for  𝐷𝑐𝑒𝑙𝑙2 is estimated by calculating the diameter 

of two 𝐷𝑐𝑒𝑙𝑙1s plus one representing the direct connection between them with a total 

of  5 + 5 + 1 = 11. This represents the path length between two farthest servers, as 

the worst case. Similarly, one can prove that the diameter of 𝐷𝑐𝑒𝑙𝑙𝑘  will be two times 

the diameter of 𝐷𝑐𝑒𝑙𝑙𝑘−1 plus one.                                      

From equation (7), we can mathematically prove equation (8) 
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𝐷𝑘−1 = 3 ∗ 2𝑘−1 − 1 

2𝐷𝑘−1 + 1 = 6 ∗ 2𝑘−1 − 2 + 1 

           = 6 ∗ 2𝑘−1 − 1 

                 = 3 ∗ 2 ∗ 2𝑘−1 − 1 

                                                               = 3 ∗ 2𝑘 − 1 

                                                               = 𝐷𝑘                       

                                                                                                                                         

Q.E.D. 

Theorem 3.2: The average shortest path length from a server to all other servers for 

standard 𝐷𝑐𝑒𝑙𝑙1 is 

  1+(𝑛−1)(12+5(𝑛−2))

𝑛(𝑛+1)−1
                                                    (9) 

Proof: 

One can use a similar approach as done in 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 and  𝐷𝑐𝑒𝑙𝑙 − Ring  to 

prove the theorem. The path length of the last term used in 𝑆𝑃𝐿 of 𝐷𝑐𝑒𝑙𝑙 −

𝑆𝑡𝑎𝑟 (Equation (2)) increases because there is no direct connection among mini-

switches either by a direct link or an extra central switch joining them. The routing of 

the packets is done through the direct communication of servers in different 𝐷𝑐𝑒𝑙𝑙0s.  

The increase in path length comes from two cases. In the first case, (𝑛 − 1) servers 

have direct connection with the neighbor of server which has direct connection with 

the source server, resulting in a path length of 4. In the second case, we need to 

connect two servers present in two different 𝐷𝑐𝑒𝑙𝑙0s, and the direct connection 

between the 𝐷𝑐𝑒𝑙𝑙0s is through their neighboring servers, with a path length of 5. 

Furthermore, for the last term in equation (10), we have (𝑛 − 1) remaining 𝐷𝑐𝑒𝑙𝑙0s, 

each with (𝑛 − 2) servers, after excluding the one covered in the fourth term of the 

equation and one from the previous case.                                             

The total shortest path length from the source to all other hosts will be:  

 𝑆𝑃𝐿 = 1 + 3(𝑛 − 1) + 2(𝑛 − 1) + 3(𝑛 − 1) + 4(𝑛 − 1) + 5(𝑛 − 1)(𝑛 − 2)     (10) 
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= 1 + (𝑛 − 1)(12 + 5(𝑛 − 2)) 

The average shortest path length 𝑆𝑎𝑣𝑔 is 

𝑆𝑎𝑣𝑔 =  
𝑆𝑃𝐿

𝑛(𝑛 + 1) − 1
 

=  
1 + (𝑛 − 1)(12 + 5(𝑛 − 2))

𝑛(𝑛 + 1) − 1
 

where 𝑛(𝑛 + 1) − 1  is the total number of paths from one host to all other hosts in 

 𝐷𝑐𝑒𝑙𝑙1.                                                                                                                   Q.E.D. 

The average shortest path length is based on the number of ports in a mini-

switch. Figure 3.5 shows the average shortest path length for  𝐷𝑐𝑒𝑙𝑙1, 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔1 

and 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟1 with different number of hosts in 𝑙𝑒𝑣𝑒𝑙0. It is concluded that it is 

better to use 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 in a large network, especially when 𝑛 ≥ 6, and 𝐷𝑐𝑒𝑙𝑙 −

𝑅𝑖𝑛𝑔 in a small network. When 𝑛 ≥ 6, the average shortest path of  𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 

exceeds that of 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 but still less than that in 𝐷𝑐𝑒𝑙𝑙. 

3.2. Proposed GA Path Selection Algorithm 

We present two proposed approaches for selecting the optimal path between 

the hosts using the GA algorithm. The steps applied in the two approaches are the 

same, except in choosing the initial population. We first introduce the general steps of 

GA path selection algorithm, and then we outline the pseudocode of two approaches. 

 

 

Figure 3.5: Average shortest path length vs. number of ports in a mini-switch for  

                   each topology in level − 1 
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3.2.1. Problem description. A network is represented as an undirected 

weighted graph, where N =  {0, … . , n} denotes the set of nodes and E =

 {e1, … , 𝑒𝑚} denotes the communication links between the nodes. Let P =

 {𝑛0,  𝑛1,  𝑛2, … … , 𝑑0} represents the path from the source to the destination node, 

where 𝑛0 is the source node and 𝑑0 is the destination node. The path is chosen 

according to the constraint of minimizing the number of hop counts to get the shortest 

path between any two nodes. There are many paths available between any two nodes, 

especially for multipath graphs. Figure 3.6 represents Fat-Tree graph, as an example, 

with total number of nodes  N =  36. The bandwidth between any two nodes is 

represented by the weight of the link. 

 

 

 Figure 3.6: Weighted Graph of Fat-Tree Topology 

3.2.2. One-to-One path selection algorithm 

3.2.2.1 Chromosome representation. In our case, a chromosome is represented 

as a vector of integers or genes, representing a path from the given source to the given 

destination. Each gene in the chromosome is a node in the network topology. The first 

gene of a chromosome is the source node and the last one is the destination node, 

while the genes in between include the adjacent nodes. Chromosomes may have 

different lengths as there are several different length paths from the source to the 

destination nodes. 

Assume the length of the chromosome (path) is k where the index of Gene 

takes values from 0 to 𝑘 − 1. The Gene [𝑘 =  0] is the source node, Gene [𝑘 −

1] includes the destination node and Gene [𝑘] is an adjacent node of Gene [𝑘 − 1]. As 
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an example, as shown in Figure 3.7, the source and destination nodes are 20 and 24, 

respectively. Node 12 (in Gene [1]) is adjacent to node 20 (in Gene [0]). The length of 

the chromosome is 7. 

 

Figure 3.7: A chromosome from the source node to the destination node 

 

3.2.2.2 Fitness evaluation. The objective is to get the optimal path between the 

source and destination node which satisfies the following fitness (cost) function: 

 𝐵𝑎𝑛𝑑 (𝑃) =  min (𝐻𝑜𝑝_𝐶𝑜𝑢𝑛𝑡(𝑒), 𝑒 ∈  𝐸𝑃), where 𝐻𝑜𝑝_𝐶𝑜𝑢𝑛𝑡(𝑒) represents 

the number of hop counts in the path and 𝐸𝑃 refers to all available paths between any 

two nodes. 

The fitness of each individual is evaluated by calculating the number of hop 

count of the path from the source to the destination nodes represented by the 

individual. This representation is based on the shortest path or the total bandwidth 

utilized between the source and destination node. 

3.2.2.3 Crossover operation. The selection of individuals, from the current 

population, for reproduction is done using the traditional Roulette Wheel Selection 

(RWS) [32] as shown in Figures 3.8 and 3.9. Crossover of two selected individuals is 

done as follows: First, a single cut point is chosen. The position of the cut point is 

chosen from the range 0.3𝑘 𝑡𝑜 0.7𝑘 where 𝑘 represents the chromosome length, then 

we check all adjacent nodes at which cut point occurs in individual 1 (e.g., 𝐺𝑒𝑛𝑒[4]  =

 6 in individual 1). Thereafter, we scan individual 2 in reverse direction 

(from 𝐺𝑒𝑛𝑒[𝑘 − 1] to 𝐺𝑒𝑛𝑒[0]) to find any matching adjacent node to the node in 

individual 1 where the cut point is chosen (e.g., 𝐺𝑒𝑛𝑒 [7]  =  14 in individual 2). If 

found, we swap the part from the point where the matching adjacent node is found in 

individual 2 till the end of the chromosome, as highlighted in Figure 3.10, with the 

part in individual 1 from the chosen cut point till the end of the individual ,as 

highlighted in Figure 3.11. However, if no matching adjacency nodes are found, we do 

not apply crossover to the individual. The similar steps are applied to individual 2. The 
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result of the crossover operation of two individuals is shown in Figures 3.10 and 3.11. 

In this way, we find the shortest path with high speed by reducing the length of the 

resulting chromosome to get the path with the least number of hop counts. 

 

 

Figure 3.8: One of the selected Chromosome (Individual 1) 

 

 

Figure 3.9: One of the selected Chromosome (Individual 2) 

 

 

Figure 3.10: Result after crossover (Offspring 1) 

 

Figure 3.11: Result after crossover (Offspring 2) 

 

3.2.2.4  𝐀𝐩𝐩𝐫𝐨𝐚𝐜𝐡𝟏. Steps applied to find the optimal path between hosts are 

as the follows: First we generate initial population containing all available paths 

between any two hosts. Afterwards, we evaluate the fitness level of each individual in 

the population according to the fitness function which minimizes the hop count of the 

path in our case. Thereafter, we randomly select two individuals using certain 

selection method. After that we apply crossover operation, as discussed in details 

earlier. We then repeat this procedure for every two pair of individuals in the 

population. The result is a new population with the same size as the old one which is 

generated according to the fitness level. Finally, the process is repeated until certain 
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constraints are reached which will be discussed in sub-section 3.2.5. The optimal path 

is the first individual selected from the new population representing the best-so-far 

individual. The algorithm is described in Table 3.1. 

3.2.2.5  𝐀𝐩𝐩𝐫𝐨𝐚𝐜𝐡𝟐. In this approach, we apply the similar steps as described 

in  𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ1. However, after initializing the population, we only select the best 

individuals and apply the remaining steps on these selected individuals. This approach 

increases the speed of finding the optimal path and improves the quality of the 

obtained solution. The second approach is shown in Table 3.2. 

3.2.3. One-to-All path selection algorithm. The above-mentioned GA finds 

the optimal path between two hosts in the One-to-One traffic model. We can extend 

that GA considering the One-to-All traffic model. In this case, the optimal path is 

determined between one (source) host and all other (destination) hosts. At the 

beginning, the above-mentioned GA is applied from the source node to a certain 

destination node as described previously using the One-to-One traffic model and get 

the optimal path from the source to the selected host. Using this optimal path, all 

adjacent nodes of the node besides the destination node (e.g. Gene [𝑘 − 2]) are 

checked. For each of these nodes, if the node is a destination node, the path from the 

source node to this node will be obtained directly from the obtained solution by 

preserving the whole path from Gene [0] to Gene [𝑘 − 2] and replacing the old 

destination node with the new one. Otherwise, the same procedure is repeated to get 

the path from the source node to the remaining destination nodes. 

The proposed method is fast because instead of applying GA between the 

source and every other destination host, the GA for finding the optimal path is only 

applied between the source and one of the destination host, and then by using the 

solution such obtained, the paths for other destination hosts can be obtained, as 

mentioned previously. 

3.2.4. Adaptive path selection algorithm. When applying the previous 

algorithm to all available individuals, the obtained optimal paths will be as the same 

size of the initial populations. These obtained paths are ordered according to the 

fitness function which the first one is only picked as the best optimal path. Due to the 

availability of multiple optimal paths obtained between any two hosts, the proposed 

path selection algorithm becomes a better fault-tolerant path selection algorithm. 
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When any single link or switch failure occurs in the DCN topology, all these obtained 

optimal paths are checked, and all infeasible optimal paths are removed which are 

affected by the failure and then get the first feasible optimal path from the remaining 

ones.  

3.2.5. Parameters. The GA stops searching for a solution when a termination 

criterion is satisfied. According to our experiments, this happens when the fitness of 

the best-so-far individual of all populations does not change for three consecutive 

iterations or when the maximum number of iterations (9) is reached. In addition, we 

have found that a population size (number of individuals in a population) of 10 % of 

all available paths between any two hosts and a crossover ratio of 0.8 yield best 

solutions to the considered problem. 

 

Table 3.1: 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ1, GA Path Selection Algorithm to find the optimal path from a 

single source to a single destination 

  

 

 

 

 

 

 

 

 

 

Table 3.2: 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ2, GA Path Selection Algorithm to find the optimal path from a 

single source to a single destination 

 

 

 

 

 

Algorithm: Genetic algorithm for finding the shortest paths with minimum number of 

hop counts 

Generation of initial population, size POP; 

Evaluate fitness of the individuals; 

Repeat 

            Rank individuals and allocate reproduction trials; 

             for (i =1 to POP step 2) do 

                           Randomly select 2 parents from the list of reproduction trials; 

                            Apply crossover and mutation; 

             endfor 

            Evaluate fitness of offspring; 

           Preserve the fittest –so-far; 

Until (best-so-far fitness is 4 times) 

Solution = Fitness. 
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Table 3.2: 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ1, GA Path Selection Algorithm to find the optimal path from a 

single source to a single destination 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm: Genetic algorithm for finding the shortest paths with minimum number of 

hop counts 

1. Generation of initial population, size POP; 

2. Choose the best ones; 

3. Evaluate fitness of the individuals; 

Repeat 

            Rank individuals and allocate reproduction trials; 

             for (i =1 to POP step 2) do 

                           Randomly select 2 parents from the list of reproduction trials; 

                            Apply crossover and mutation; 

             endfor 

            Evaluate fitness of offspring; 

            Preserve the fittest –so-far; 

Until (best-so-far fitness is 4 times) 

Solution = Fitness. 
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Chapter 4. Experimental Setup   

 

In this chapter, we introduce an overview of the simulation tool (Mininet) used 

in this thesis for evaluating the performance of the DCN topologies by estimating the 

throughput utilization, latency and fault-tolerance capabilities of the topologies under 

various traffic patterns.  the simulation parameters used for each considered topology 

are also presented.  

4.1. Mininet Simulator 

Mininet [21] simulator provides network analysis with a realistic virtual 

network of nodes, switches and links. It can create a network topology with simple 

shell commands (e.g., sudo mn) as shown in Figure 4.1, and a large network topology 

with several parameters (e.g., link bandwidth, link delay, etc.) can be programmed 

using python API. All network elements and flows are controlled by POX controller 

[33]. The controller is initialized in VirtualBox as shown in Figure 4.2. This controller 

helps in communicating switches to each other via OpenFlow protocol [34] which 

controls the forwarding of the routing tables remotely. The selection of this specific 

controller with respect to the other available ones (e.g. RIPLPOX, OpenDaylight, and 

Floodlight) is based on its demonstrated consistency in the network coverage. The 

traffic is transmitted from the sender to the controller which, in turn, sends it to the 

destination according to the information in the flow table. Moreover, STP (Spanning 

Tree Protocol) [29] is enabled in the network to avoid infinite loops in multi-path 

topologies. Figure 4.3 shows the screen snapshot of an example scenario when the Fat-

Tree topology is created and the POX controller is connected.  

In addition, RYU controller [35] can be used for setting static and default 

routes for each router in the network topology to forward the packets among the hosts. 

It has a capability to let a switch with a unique ID to join the topology as a router. This 

is beneficial especially when we want the message to follow a certain path under some 

required specifications like minimum hop count, low latency, shortest path, etc. Figure 

4.4 and 4.5 show the screen snapshots when initializing the RYU controller and 

joining each switch as router, respectively.  

Iperf [36] and Ping [37] commands are used for evaluating the throughput and 

latency, respectively, in Mininet. Iperf estimates the bandwidth consumed between 
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any two hosts using Transmission Control Protocol (TCP) or User Datagram Protocol 

(UDP), while Ping has the capability to measure the latency of packet flow, percentage 

of packet loss, jitter, and to specify the size of transmitted packets. All tests are run on 

Intel ® Core ™ i5-5200U CPU @ 2.20GHz with 6G RAM. 

The Mininet simulation environment depends on the CPU and presently 

running applications. The Mininet emulates the behavior of a network topology; 

therefore, each simulation run is independent of each other. 

 

Figure 4.1: Mininet 

 

 

Figure 4.2: POX Controller             
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Figure 4.3: Creating Topology 

                   

 

Figure 4.4: Initializing the RYU Controller 
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Figure 4.5: Joining the switches as router in RYU Controller 

 

4.2. Simulation Parameters 

Several standard well-known DCN topologies are evaluated via simulation. 

The Google Fat-Tree topology used for simulation consists of three levels: core, 

aggregate and edge; while at the fourth level we have hosts connected. Each edge 

switch connects to two hosts with a total of 16 hosts. We can extend the number of 

hosts to any number, which is limited by the number of ports in the switch.  

The 𝐷𝑐𝑒𝑙𝑙 topology is implemented for 𝑙𝑒𝑣𝑒𝑙 − 1 (𝐷𝑐𝑒𝑙𝑙1). It consists of five 

switches with four hosts connected to each switch. There is one link between two 

hosts present in different 𝐷𝑐𝑒𝑙𝑙0s. We encounter a problem in forwarding the packets 

from a host having two different network interfaces (ports) in Mininet. Using an 

approach used in [38], we solve this problem by introducing a combo-switch 

connected to each host. This switch allows the two interfaces attached to the server to 

send packets simultaneously. In addition, the two proposed topologies (e.g., 𝐷𝑐𝑒𝑙𝑙 −

𝑆𝑡𝑎𝑟 and  𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔) are simulated with the same set of parameters. 
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The 𝐵𝑐𝑢𝑏𝑒 topology is implemented for 𝑙𝑒𝑣𝑒𝑙 − 1 with core and edge 

switches. Each edge switch is attached to 4 hosts with a total 16 hosts. As each host 

has two interfaces, the similar packet forwarding problem mentioned above for 𝐷𝑐𝑒𝑙𝑙 

topology exists, and the problem is solved using similar approach as in [38].   

The Facebook Fat-Tree topology is implemented using 4 fabric switches and 

16 TORs. Each TOR switch connects to only one host, and we have a total of 16 hosts. 

4.3. Traffic Patterns 

Different traffic models are used to inject data traffic into the DCN topologies 

in order to evaluate their performance. The same traffic models described in [39] are 

used, and these models are representatives of intra-data center traffic scenarios. The 

following traffic models are used: 

• Uniform Random Traffic: In this model, each host sends traffic to any 

random host with the same probability. 

• Stride Traffic: In this model, any host with an index i send packets to a host 

with an index  ( 𝑖 +
𝑁−1

2
 ) 𝑚𝑜𝑑 𝑁 where N is the total number of hosts. 

• Bit Complement Traffic: Here, each node forwards the traffic to another 

node with an index of bitwise inversion of the sender node. 

• One-to-All: Here, one host sends packets to all other hosts and the results 

are averaged. 

• All-to-All: Here, all hosts send packets to all other hosts. This traffic model 

represents the highest traffic loads applied to the network. 
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Chapter 5. Results and Analysis 

 

In this chapter, the simulation results achieved on well-known DCN topologies 

and the two proposed topologies are prsented, and then evaluate and compare different 

metrics (such as throughput and latency with and without failures) for each one. 

Finally, the GA path selection algorithm is applied on the standard and proposed 

topologies to measure the enhancement or the gain after applying GA and selecting the 

optimal path. 

5.1. Comparisons among Fat-Tree, Facebook, 𝑩𝒄𝒖𝒃𝒆, and 𝑫𝒄𝒆𝒍𝒍 

Now, a comparison among four standard DCN topologies is introduced in 

terms of three known metrics; throughput, latency and fault-tolerance. 

5.1.1. Throughput. Figure 5.1 depicts the simulation results for the 

normalized throughputs of the four standard topologies under different traffic models.  

The normalized throughput for a certain type of traffic workload in each topology is 

measured by averaging over ten independent runs. From the figure, we can conclude 

that Facebook Topology has the highest throughput followed by Fat-Tree, 𝐵𝑐𝑢𝑏𝑒 

and 𝐷𝑐𝑒𝑙𝑙. This is mainly due to the larger number of disjoint paths among hosts, in 

the Facebook and Fat-Tree topologies that could potentially reduce the traffic 

congestions. Moreover, both 𝐵𝑐𝑢𝑏𝑒 and 𝐷𝑐𝑒𝑙𝑙 get relatively close results.  As 

expected, All-to-All traffic gets the smallest throughput compared to all other types of 

traffic. 

5.1.2. Latency. Statistics for average packet latency for different standard 

topologies are gathered via simulation. We use various packet sizes for the All-to-All 

traffic model where all hosts send packets to every other host in the network in 

parallel. The results are summarized in Figure 5.2. The Maximum Transmission Unit 

(MTU) represents the largest packet size (1500 bytes) used, while the default value is 

56 bytes. Facebook Fat-Tree topology has the lowest latency which is mainly due to 

its smallest diameter, despite the complexity of the topology. The latency for the Fat-

Tree topology is slightly higher as compared to the Facebook Fat-Tree, due to its 

slightly higher diameter. Although both 𝐷𝑐𝑒𝑙𝑙 and 𝐵𝑐𝑢𝑏𝑒 topologies have lower 

diameters than the Fat-Tree topology, both of them have higher values for latency. 

This is due to the fact that the way we are simulating those topologies, it is not 

allowed to have two interfaces for a server/ host in the Mininet simulation 
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environment. As mentioned in Section 4.2, we have added a dummy combo-switch to 

facilitate packet forwarding on both interfaces on a server. This dummy switch, in 

fact, increases the number of switches in the topology which, in turn, increases the 

diameter of the simulated topology as compared to the original 𝐷𝑐𝑒𝑙𝑙 and 𝐵𝑐𝑢𝑏𝑒 

topologies. As a result, 𝐷𝑐𝑒𝑙𝑙 and 𝐵𝑐𝑢𝑏𝑒 topologies produce higher latencies when we 

increase the packet size, especially in bottleneck links and switches. Figure 5.3 shows 

the simulation results for the topologies for the One-to-One traffic model. 

 

 

Figure 5.1: Throughput comparison for the standard topologies under different traffic 

types  

 

 

Figure 5.2 Latency comparison for the standard topologies with different 

packet size (All-to-All traffic) 
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Figure 5.3: Latency comparison for the standard topologies with different packet size 

(One-to-One traffic) 

 

5.1.3. Fault-Tolerance. To evaluate the effect of failures in the network 

topology, we simulate the topology and estimate the throughput under two types of 

failures: transient (failure present for a certain short fixed time period) and the 

permanent failure (failure lasting during the entire simulation time). We simulate a 

link and a switch failure. The failure region indicates the place of failure such that the 

failure in low level (edge level) will totally drop the packets because there is only one 

gateway for the packet; whereas in case of failure at upper levels, the packet may 

possibly find an alternative path to the destination server. Figures 5.4 and 5.5, 

respectively, show the behavior of 𝐷𝑐𝑒𝑙𝑙 topology with transient and permanent 

failure in upper level in case of One-to-One traffic between the two hosts located at 

the largest possible distance away in the network. The behavior is monitored at the 

interface (switch port) connected towards the lower level (for example, aggregation 

level) in the topology while the failure occurs at the link connected to a switch port 

towards the higher level (for example, core level). In Figure 5.4, the first drop in 

average throughput is due to the link failure whereas the second one is due to the 

switch shutdown. The transient failure is simulated to be present in the system for 5 

msec. The simulation of permanent failure, as shown in Figure 5.5, indicates how the 

network will recover from the failure by finding out another alternate path, if it exists, 

for forwarding the packets. The behaviors of both 𝐷𝑐𝑒𝑙𝑙 and Fat-Tree topologies are 

relatively the same, except for the achievable throughput in a topology as discussed 

earlier. Fat-Tree topology outperforms 𝐷𝑐𝑒𝑙𝑙 topology in the throughput metric as 
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more paths are available between any given pair of hosts. When simulating for All-to-

All traffic, we find the degradation in the performance with time. Figures 5.6 and 5.7 

represent the performance of the network with All-to-All traffic with large packet size 

(5G bytes) being transmitted for Fat-Tree and 𝐷𝑐𝑒𝑙𝑙 topologies, respectively. 

 

 

Figure 5.4: 𝐷𝑐𝑒𝑙𝑙 transient failure (One-to-One traffic) 

 

 

Figure 5.5: 𝐷𝑐𝑒𝑙𝑙 permanent failure (One-to-One traffic) 
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Figure 5.6: Fat-Tree topology permanent failure (All-to-All traffic) 

 

 

Figure 5.7: 𝐷𝑐𝑒𝑙𝑙 topology permanent failure (All-to-All traffic) 

 

5.2. Comparisons among 𝑫𝒄𝒆𝒍𝒍, 𝑫𝒄𝒆𝒍𝒍 − 𝑺𝒕𝒂𝒓 and 𝑫𝒄𝒆𝒍𝒍 − 𝑹𝒊𝒏𝒈 

In this subsection, we compare the standard 𝐷𝑐𝑒𝑙𝑙 topology with the two 

proposed topologies with varieties of parameters such as throughput, latency, fault-

tolerance, diameter, and average shortest path length. 



 

52 

 

5.2.1. Throughput. Figure 5.8 shows the simulation results for the 

normalized throughputs of the two proposed topologies (𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 and 𝐷𝑐𝑒𝑙𝑙 −

𝑅𝑖𝑛𝑔) and the results are compared with the original 𝐷𝑐𝑒𝑙𝑙 topology under different 

traffic models. We can conclude, from the figure, that 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 and 𝐷𝑐𝑒𝑙𝑙 −

𝑅𝑖𝑛𝑔 topologies have the higher throughput compared to the standard 𝐷𝑐𝑒𝑙𝑙 topology. 

In addition, 𝐷𝑐𝑒𝑙𝑙 and 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 topologies get relatively close results. Increase in 

throughput in the proposed topologies is mainly due to the larger number of the 

shortest paths that could potentially reduce the traffic congestions by transmitting the 

traffic in parallel. 

 

 

Figure 5.8: Throughput comparison for 𝐷𝑐𝑒𝑙𝑙, 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 and 𝐷𝑐𝑒𝑙𝑙 −
𝑅𝑖𝑛𝑔 topologies under different traffic types with  𝑛 = 4 

 

As increasing 𝑛, the total number of hosts in the topology increases, and we 

observe higher percentage improvements in the throughput results for both proposed 

topologies compared with the standard 𝐷𝑐𝑒𝑙𝑙. As an example, for 𝑛 = 16, 𝐷𝑐𝑒𝑙𝑙 −

𝑆𝑡𝑎𝑟 and 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 exhibits an improvement of about 5% and 3% for the 

throughput results, respectively, in One-to-One traffic pattern. Moreover, an 

improvement of about 3% and 2.5% in throughput for the All-to-All traffic model is 

achieved for 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 and 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔, respectively, as compared with 𝐷𝑐𝑒𝑙𝑙 

topology. As shown in Figure 5.9, the throughput achieved in two proposed topologies 

exceeds that in the standard 𝐷𝑐𝑒𝑙𝑙 topology for almost all traffic models. However, the 
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increase in the throughput in 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 is higher than the 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 for all 

traffic scenarios. 

 

 

Figure 5.9: Throughput comparison for 𝐷𝑐𝑒𝑙𝑙, 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 and 𝐷𝑐𝑒𝑙𝑙 −
𝑅𝑖𝑛𝑔 topologies under different traffic types with 𝑛 = 9 

 

5.2.2. Latency. Figure 5.10 summarizes the simulation results for the latency 

for the standard 𝐷𝑐𝑒𝑙𝑙 and the two proposed topologies. The proposed topologies have 

smaller latencies as compared to the original 𝐷𝑐𝑒𝑙𝑙 due to their lower diameters. It is 

to be noted that the combo-switch approach is also used when simulating the two 

proposed topologies. 

5.2.3. Fault-Tolerance. In order to study the effect of failures in two new 

proposed network topologies compared with the standard 𝐷𝑐𝑒𝑙𝑙 topology, we simulate 

each topology and monitor the behavior of the topology under two types of failure: 

transient and permanent failure. We simulate a link and a switch failure. Due to the 

presence of the parallel shortest paths in 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 and 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 topologies, 

both achieve better fault-tolerance characteristics as compared to the original 𝐷𝑐𝑒𝑙𝑙 

topology. Transient and permanent failures generate similar behavior, as shown in 

Figure 5.11 in case of One-to-One traffic between the two hosts located at the largest 

possible distance away in the network for the proposed topologies. The transient 

failure is simulated to be present in the system for 5 msec and the behavior is 

monitored at the interface (switch port) connected towards the lower level in the 
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topology. When the controller notices any failure in the link or switch, it chooses the 

next shortest path available between any two hosts. The standard 𝐷𝑐𝑒𝑙𝑙 topology gets 

similar results, as shown in Figure 5.12, but with a slightly lower throughput. The 

proposed topologies outperform 𝐷𝑐𝑒𝑙𝑙 topology in the utilization of most links. In the 

standard 𝐷𝑐𝑒𝑙𝑙, there are more ripples (sudden changes) in the throughput over time as 

compared to the proposed topologies, as shown in Figure 5.11.  

 

 

Figure 5.10: Latency comparison for 𝐷𝑐𝑒𝑙𝑙, 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 and 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔  

topologies with different packet sizes in All-to-All traffic model 

 

 

Figure 5.11: 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 and 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 transient failure 

(One-to-One traffic) 
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Figure 5.12: 𝐷𝑐𝑒𝑙𝑙 transient failure 

(One-to-One traffic) 

 

5.2.4. Diameter. Figure 5.13 depicts the diameter of each topology with the 

same number of servers in 𝑙𝑒𝑣𝑒𝑙 − 0 (𝑛 = 4). 𝐷𝑐𝑒𝑙𝑙 topology has the largest diameter 

at all topology levels followed by 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔, and then 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟. By 

increasing the number of servers in  𝑙𝑒𝑣𝑒𝑙 − 0, the diameters for both 𝐷𝑐𝑒𝑙𝑙 

and 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 do not change, while the diameter of the  𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 diameter 

increases when 𝑛 < 5 and then becomes constant for  𝑛 >  5 , as shown in Figure 

5.14. 

𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 shows the lowest value of the diameter among the three 

topologies. For example, when 𝑘 = 5, the diameter of 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 is only 12 as 

compared to 95 in the standard 𝐷𝑐𝑒𝑙𝑙, and 79 in 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔. Therefore, one can 

expect lower values for delays in routing packets in 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟. 

5.2.5. Performance evaluation. Extensive simulations are conducted in order 

to evaluate the properties of average path length in case of two models of failure: 

random link and random server failures. In the random link failure model, there will 

be no packets transmitted through the affected links, while a fraction of servers is not 

able to transmit packets in case of random server failure model. Finally, we also 

evaluate the effect of failure on the network topologies when increasing the total 

number of hosts. The results are reported by averaging over 15 simulation runs.   
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Figure 5.13: Diameter of the three topologies with 𝑛 = 4 

 

 

Figure 5.14: Diameter of 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 topology with varying number of servers in 

𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔0 

 

Although the diameter measure in a topology indicates the longest among the 

shortest paths between any pair of servers, it cannot give an overview about the 

lengths of other shortest paths present in the topology. The metric, average shortest 

path length, gives better estimate of several available shortest path lengths in the 

topology.  
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In a simulation run, we assume that the switching nodes and links do not 

experience congestion; hence there are no discarded packets. In other words, there is 

no reason of dropping packets, except in the event of a failure when there is no 

surviving path between the source and destination host. We also assume that when one 

(or more) paths are available between a pair of hosts, the traffic is routed through the 

shortest path available between the hosts at that time. Figure 5.15 shows the 

performance results of  𝐷𝑐𝑒𝑙𝑙, 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟, and 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 topologies in the 

event of  link failure. The link failure is applied randomly in the network with 

independent and equal probability for each link. The same setting of the network 

topology, as described in Section 4.2, is used. The simulation is conducted to estimate 

the average path length from one server to all other servers with link failure ratio from 

0 to 0.3. As shown in Figure 5.15, the average shortest path length in 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 

topology increases with the slowest ratio followed by 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 , for link failure 

ratio ranging from 0 to 0.3. The increase in the average shortest path length is from 

4.05 to 4.44 in 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 and from 4.21 to 4.65 in 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟. However, the 

average shortest path length increases from 4.52 to 5.05 in 𝐷𝑐𝑒𝑙𝑙.  

Figure 5.16 shows the results of the average shortest path length as the server 

failure ratio increases. The server failure is also chosen randomly with independent 

and equal probability. The simulation results are shown for the average shortest path 

length against the server failure ratio ranging from 0 to 0.3 when traffic is routed from 

a single server to only reachable servers. The same network configuration and 

parameters, as mentioned previously in Section 4.2, are used. From Figure 5.16, it can 

be observed that the 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 topology has the smallest increase on average 

shortest path length taking values from 4.05 to 4.2 when the server failure ratio 

increases from 0 to 0.3. The average shortest path length of 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 topology 

increases from 4.21 to 4.4; while the 𝐷𝑐𝑒𝑙𝑙 topology has the largest increase in the 

average shortest path length from 4.5 to 4.8 for the server failure ratio ranging from 0 

to 0.3. 

The main reason behind the lower average shortest path lengths in the proposed 

topologies is that due to the addition of additional central switch and extra links, there 

are many parallel paths with the same or near-equal path lengths available in the 

topologies. These features provide graceful degradation in the performance in the 
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event of link or server failures when an alternate path of relatively equal length is most 

probably available. Therefore, both average throughput and packet latency will not be 

impacted severely in the event of a failure. While a variety of paths length between 

two servers is available in the standard 𝐷𝑐𝑒𝑙𝑙 topology, the average path lengths are 

longer as compared with the two proposed topologies. Therefore, any link or server 

failure in 𝐷𝑐𝑒𝑙𝑙 will have a large effect on the increase of the path length which, in 

turn, will affect the overall performance. One can say that the effect of failure on the 

overall performance in 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 and 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 topologies is less severe as 

compared to the standard 𝐷𝑐𝑒𝑙𝑙.  

 

 

Figure 5.15: Average path length vs. link failure ratio with 𝑛 = 4 under One-to-All 

traffic model 

For the performance measurement of the three topologies in the event of 

failure as the total number of hosts increase, we set the same parameters for the 

topologies, as discussed in Section 4.2, except that number of hosts in a mini-switch is 

increased to 6 (i.e.,  𝑛 = 6). In this case, the total number of hosts increases to 42. 

Figure 5.17 and 5.18, respectively, shows the performance of the three topologies in 

the event of link and server failure. From the two figures, we find that the average 

shortest path length in 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 topology exceeds that in 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 but 

remains less than 𝐷𝑐𝑒𝑙𝑙 topology. In general, the average shortest path length of the 

three topologies increases with increasing the link or server failure ratio. However, the 
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𝐷𝑐𝑒𝑙𝑙 topology has the largest average shortest path length, while 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 shows 

the smallest one over the failure ratio ranging from 0 to 0.3.  These results are 

analyzed and compared with the results from mathematical equations ((1) to (10)), 

with and without link/ server failures. It is found that results from the simulation 

validate the one with analytical models.  

 

 

Figure 5.16: Average path length vs. server failure ratio with 𝑛 = 4 under One-to-All 

traffic model 

 

 

Figure 5.17: Average path length vs. link failure ratio with 𝑛 = 6 under One-to-All 

traffic model 

 

5.3. Simulation Results for the Proposed GA Path Selection Algorithm 

When the optimal path(s) generated by the GA algorithm are used, the path(s) 

is/are deployed in the RYU controller in the Mininet simulator in order to route the 
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packets from a certain source to a certain destination or from one source server to all 

other hosts. 

 

Figure 5.18: Average path length vs. server failure ratio with 𝑛 = 6 under One-to-All 

traffic model 

 

Figure 5.19 and 5.20 show the result of throughput utilization and latency, 

respectively, for the standard topologies under different traffic models using the 

optimal path obtained from GA path selection algorithm. The results show good 

improvement in both throughput and latency, especially for 𝐷𝑐𝑒𝑙𝑙 topology. 𝐷𝑐𝑒𝑙𝑙 

and 𝐵𝑐𝑢𝑏𝑒  topologies outperform Fat-Tree topology with respect to throughput in 

most of the traffic models. Moreover, an increase in throughput, in general, for all 

topologies is observed especially in One-to-All traffic model compared to the previous 

results from the Mininet POX controller shown in Figure 5.1. The same configuration 

settings are used as mentioned in Section 4.2. 

As shown in Figure 5.2, 𝐷𝐶𝑒𝑙𝑙 topology has the highest latency followed by 

𝐵𝐶𝑢𝑏𝑒 topology, and then the Fat-Tree topology. As shown in Figures 5.19 and 5.20, 

the proposed path selection algorithm using GA results in higher throughput and 

reduction in latency for both 𝐷𝑐𝑒𝑙𝑙 and 𝐵𝑐𝑢𝑏𝑒 topologies, despite the fact that the 

same configuration is used and a combo-switch is connected to each host. 

In addition, we apply the proposed GA path selection algorithm to the two 

proposed topologies, 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 and 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔  to compute the optimal paths. 

Figure 5.21 shows the normaized throughgput results for different traffic models. We 



 

61 

 

can conclude that both proposed topologies produce better results for all traffic 

patterns as compared to the standard 𝐷𝑐𝑒𝑙𝑙. Furthermore, there is an improvement in 

the throughput utlization for the three topologies compared to the results shown in 

Figure 5.8. 

 

 

Figure 5.19: Throughput comparison for different topologies with different 

traffic types using the proposed GA path selection algorithm  

 

 

 

Figure 5.20: Latency comparison for the topologies with different packet size 

under All-to-All traffic model using the proposed GA path selection algorithm 
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Figure 5.21: Throughput comparison for standard 𝐷𝑐𝑒𝑙𝑙 and the two proposed 

topologies with various traffic types using the proposed GA path selection 

algorithm with 𝑛 = 4 

 

 

5.4. Comparison and Discussion 

In this subsection, we compare the performance results from the two proposed 

architectures with well-known, standard, network topologies. Additionally, we present 

how the use of GA algorithm in selecting the optimal path affects the performance of 

DCN topologies. 

By comparing different DCN topologies using the simulation tool (Mininet), 

we conclude that 𝐷𝑐𝑒𝑙𝑙 topology performs the worst in terms of throughput and 

latency metrics. However, the main advantages of using 𝐷𝑐𝑒𝑙𝑙 topology over the 

others are better scalability and fault-tolerance. We can improve the performance of 

standard 𝐷𝑐𝑒𝑙𝑙 architecture with respect to fault-tolerance by either modifying the 

architecture to support multiple shortest paths between any two servers, and/or 

implement a better fault-tolerant path selection algorithm for choosing the best path 

for routing the packets. For the two proposed topologies, 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 and 𝐷𝑐𝑒𝑙𝑙 −

𝑅𝑖𝑛𝑔, the simulation results show an improvement in the throughput utilization 

compared with the standard 𝐷𝐶𝑒𝑙𝑙, and the percentage of improvement increases as 

we increase 𝑛. The proposed topologies show an improvement in the throughput in the 

range of 3% to 5% (depending upon traffic model) for 𝑛 = 16 with respect to the 

standard 𝐷𝐶𝑒𝑙𝑙. This is mainly due to provisioning and utilization of multiple alternate 
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paths between any pair of servers. In addition, the proposed topologies provide a 

graceful degradation in the performance in the presence of link or server failures.  

For further reduction in latency and increase in the throughput, we can use GA 

algorithm as an optimization mechanism for selecting the optimal path with minimum 

number of hop counts between two hosts in One-to-One and One-to-All traffic 

models. We have observed an enhancement from 1% to 2% in the throughput 

compared to that obtained with POX controller when the GA algorithm is applied to 

find the optimal path between hosts for  𝑛 = 6, depending upon the traffic model used. 

We can expect higher percentage of enhancement when 𝑛 is increased. Tables 5.1 and 

5.2 compare the throughputs in the topologies when RYU controller is used instead of 

the POX controller for the two traffic models (Stride and One-to-All) for  𝑛 = 6.  

Table 5.1: Improvement in the throughput using RYU controller over the POX 

controller for the Stride traffic model with 𝑛 = 6 

 

Topology Normalized 

Throughput from 

RYU Controller  

Normalized 

Throughput from 

POX Controller  

% percentage of 

Improvement 

Dcell 0.943 0.927 ~2% 

Dcell − Star 0.944 0.934 ~1.1% 

Dcell − Ring 0.9436 0.932 ~1.3% 

 

Table 5.2: Improvement in the throughput using RYU controller over the POX 

controller for One-to-All traffic model with 𝑛 = 6 

 

Topology Normalized 

Throughput from 

RYU Controller  

Normalized 

Throughput from 

POX Controller  

% percentage of 

Improvement 

Dcell 0.945 0.929 ~2% 

Dcell − Star 0.95 0.934 ~2% 

Dcell − Ring 0.948 0.933 ~2% 
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Chapter 6. Conclusion and Future Work 

 

Due to the tremendous increase in the use of cloud-based services, the volume 

of data traffic to the data centers is on constant rise. Data center network (DCN) 

topologies provide a network within a datacenter connecting a huge number (~10,000) 

of servers with several switches and other networking devices. The most important 

features that a network topology must have are scalability, fault-tolerance, and QoS 

support for the desired applications. The provision of fault-tolerance is becoming even 

more critical as the number of servers and devices increase so does the probability of 

failures. Therefore, there is a strong need to have the support for fault-tolerance in the 

DCN architecture. 

In this thesis, we propose two new DCN topologies, called 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 

and  𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔. The proposed topologies are derived from the standard 𝐷𝑐𝑒𝑙𝑙 

topology with slight modifications in the original architecture. The modifications add 

a set of alternate shortest paths between any two servers in the topologies. The 

proposed topologies provide higher throughputs and lesser latencies as compared to 

the standard 𝐷𝑐𝑒𝑙𝑙 topology. The improvement in the throughput ranges from 2.5% to 

5% (depending upon the traffic model used) for  𝑛 = 16. For large values of  𝑛, one 

can expect higher percentage of improvements in throughput. Furthermore, as 

compared to the standard 𝐷𝑐𝑒𝑙𝑙, the 𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟 topology has lesser diameter and 

lesser average shortest path length which makes it superior for using it in a large 

network with a large number of servers in  𝑙𝑒𝑣𝑒𝑙 − 0. 𝐷𝑐𝑒𝑙𝑙 − 𝑅𝑖𝑛𝑔 topology can be 

used for small-scale network, especially when 𝑛 ≤ 5.  Reduction in the diameter 

metrics, especially in  𝐷𝑐𝑒𝑙𝑙 − 𝑆𝑡𝑎𝑟,  results in low-latency for routing packets, even 

with large number of servers. In addition, the proposed topologies offer graceful 

performance degradation in case of a link or server failure. We also present a new 

mechanism using GA algorithm for selecting the optimal paths with minimum number 

of hop counts in the two traffic models, One-to-One and One-to-All. When GA is 

applied to the standard topologies, it is found that the performance of 𝐷𝐶𝑒𝑙𝑙 topology 

improves in terms of throughput and latency. Finally, we compare the results after 

applying the GA path selection algorithm to the proposed topologies with the results 

produced by the Mininet simulations. It is concluded that there is an improvement of 
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about 2% in throughput utilization when GA algorithm is applied for selecting the 

optimal routes.                

Since energy consumption in datacenters is a serious problem, the work 

presented in this thesis can be extended to investigate new DCN energy-efficient 

topologies. Moreover, investigating efficient algorithms to migrate Virtual Machines 

in the proposed topologies in order to save energy could be researched. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

66 

 

References 

 

[1]       M. Al-Fares, A. Loukissas and A. Vahdat, "A Scalable, Commodity Data 

Center Network Architecture," ACM SIGCOMM Computer Communication 

Review, vol. 38, no. 4, p. 63, 2008. 

[2]       R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. 

Radhakrishnan, V. Subramanya and A. Vahdat, "PortLand: A Scalable Fault-

tolerant Layer2 Data Center Network Fabric," ACM SIGCOMM Computer 

Communication Review, vol. 39, no. 4, p. 39, 2009. 

[3]       C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang and S. Lu, "Dcell: A Scalable and      

Fault-tolerant Network Structure for Data Centers," ACM SIGCOMM 

Computer Communication Review, vol. 38, no. 4, p. 75, 2008.           

[4]       C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang and S. Lu, 

"BCube: A High Performance, Server-centric Network Architecture for 

Modular Data Centers," ACM SIGCOMM Computer Communication Review, 

vol. 39, no. 4, p. 63, 2009. 

[5]       G. Wang, D. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng, M. Kozuch and 

M. Ryan, "C-Through: Part-time Optics in Data Centers," ACM SIGCOMM 

Computer Communication Review, vol. 40, no. 4, p. 327, 2010. 

[6]      Y. Liu, J. Muppala, M. Veeraraghavan, D. Lin and M. Hamdi,  Data Center 

Networks: Topologies, Architectures and Fault-tolerance Characteristics, 1st 

ed. Cham: Springer International Publishing, 2013. 

[7]       C. Leiserson, "Fat-trees: Universal Networks for Hardware-efficient 

Supercomputing," IEEE Transactions on Computers, vol. -34, no. 10, pp. 892-

901, 1985. 

[8]       R. Harris, "Fat trees and skinny switches," Storagemojo.com, 2008. [Online]. 

Available: https://storagemojo.com/2008/08/24/fat-trees-and-skinny-switches. 

[Accessed: 12- Nov- 2016]. 

[9]      R. Chirgwin, "Which data centre network topology's best? Depends on what 

you want to break," Theregister.co.uk, 2015. [Online]. Available: 

http://www.theregister.co.uk/2015/10/13/which_data_centre_topology_is_best

_depends_on_what_you_want_to_break/. [Accessed: 12- Nov- 2016]. 

[10] A. Andreyev, "Introducing data center fabric, the next-generation Facebook 

data center network," Facebook Code, 2014. [Online]. Available: 

https://code.facebook.com/posts/360346274145943/. [Accessed: 12- Nov- 

2016]. 

[11] Y. Sun, J. Chen, Q. Liu and W. Fang, "Diamond: An Improved Fat-tree 

Architecture for  Large-scale Data Centers," Journal of Communications, vol. 

9, no. 1, pp. 91-98, 2014.   

[12] Z. Li, Z. Guo and Y. Yang, "BCCC: An Expandable Network for Data 

Centers," IEEE/ACM Transactions on Networking, vol. 24, no. 6, pp. 3740-

3755, 2016. 



 

67 

 

[13] "Survival of the fittest", En.wikipedia.org, 2014. [Online]. Available: 

https://en.wikipedia.org/wiki/Survival_of_the_fittest. [Accessed: 12- Nov- 

2016].  

[14] N. Mansour and K. El-Fakih, "Simulated Annealing and Genetic Algorithms 

for Optimal Regression Testing," Journal of Software Maintenance: Research 

and Practice, vol. 11, no. 1, pp. 19-34, 1999. 

[15] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani, Q. 

Zhang and M. Zhani, "Data Center Network Virtualization: A Survey," IEEE 

Communications Surveys & Tutorials, vol. 15, no. 2, pp. 909-928, 2013. 

[16] L.Brian, M.Aman, and T.Niharika. "A Survey and Evaluation of Data Center 

Network Topologies," Available: https://arxiv.org/abs/1605.01701, 2016. 

[17] K. Bilal, S. U. Khan, J. Kolodziej, L. Zhang, K. Hayat, S. A. Madani, N. Min-

Allah, L. Wang and D. Chen, "A Comparative Study of Data Center Network 

Architectures," European Conference on Modeling and Simulation (ECMS), 

pp. 526-532,  2012.  

[18] Y. Liu, D. Lin, J. Muppala and M. Hamdi, "A Study of Fault-tolerance 

Characteristics of Data center networks," Dependable Systems and Networks 

Workshops (DSN-W), 2012 IEEE/IFIP 42nd International Conference on. IEEE 

, pp. 1-6, 2012. 

[19] Y. Liu and J. Muppala, "Fault-tolerance Characteristics of Data Center 

Network Topologies Using Fault Regions," Dependable Systems and Networks 

(DSN), 2013 43rd Annual IEEE/IFIP International Conference on, Budapest, 

Hungary, 2013. 

[20] F. Yao, J. Wu, G. Venkataramani and S. Subramaniam, "A Comparative 

Analysis of Data Center Network Architectures," Communications (ICC), 2014 

IEEE International Conference on. IEEE, 2014.  

[21] M. Team, "Mininet: An Instant Virtual Network on your Laptop (or other PC) 

– Mininet," Mininet.org, 2015. [Online]. Available: http://mininet.org/. 

[Accessed: 12- Nov- 2016]. 

[22] T. Chen, X. Gao and G. Chen, "The features, Hardware, and Architectures of 

Data Center Networks: A survey," Journal of Parallel and Distributed 

Computing, vol 96, pp. 45–74, 2016. 

[23] K. Miettinen, Evolutionary Algorithms in Engineering and Computer Science: 

Recent Advances in Genetic Algorithms, Evolution Strategies, Evolutionary 

Programming, Genetic Programming, and Industrial Applications, 1st ed. 

Chichester: Wiley, 1999. 

[24] M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization. 

New York: Wiley, 2000. 

[25] S. C.Abraham and G. Dutt Shukla, "Shortest Path Computation in Large 

Graphs using Bidirectional Strategy and Genetic Algorithms," International 

Journal of Computer Applications, vol. 109, no. 13, pp. 27-30, 2015. 

[26] A. Hamed, "A Genetic Algorithm for Finding the k Shortest Paths in A 

Network," Egyptian Informatics Journal, vol. 11, no. 2, pp. 75-79, 2010. 



 

68 

 

[27] A. Chaudhary and N. Kumar, "Genetic algorithm for Shortest Path in Packet 

Switching Networks," Journal of Theoretical and Applied Information 

Technology, vol 29, no. 2, pp. 107-117, 2011. 

[28] L. Ferraz, D. Mattos and O. Duarte, "A Two-phase Multipathing Scheme 

Based on Genetic Algorithm for Data Center Networking," Global 

Communications Conference (GLOBECOM), 2014 IEEE. IEEE, 2014.  

[29] J. Touch and R. Perlman, “Transparent Interconnection of Lots of Links 

(TRILL): Problem and Applicability Statement,” no. 5556. IETF, 2009 

[Online]. Available: http://www.ietf.org/ 

[30] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” no. 2992. IETF, 

2000 [Online]. Available: http://www.ietf.org/ 

[31] Kim, M. Caesar and J. Rexford, "Floodless in Seattle: A Scalable Ethernet   

Architecture for Large Enterprises," ACM SIGCOMM Computer 

Communication Review, vol. 38, no. 4, p. 3, 2008. 

[32] J. Khalid and M. Mohammed, "Selection Methods for Genetic 

Algorithms," International Journal of Emerging Sciences, vol 3.4, pp. 333-

344, 2013. 

[33] "POX Controller Tutorial | SDN Hub," Sdnhub.org, 2011. [Online]. Available: 

http://sdnhub.org/tutorials/pox/. [Accessed: 22- Nov- 2016]. 

[34] "OpenFlow Tutorial - OpenFlow Wiki," Archive.openflow.org, 2011. 

[Online].Available:http://archive.openflow.org/wk/index.php/OpenFlow_Tutor

ial. [Accessed: 12- Nov- 2016]. 

[35] "Router — Ryubook 1.0 documentation," Osrg.github.io, 2014. [Online]. 

Available: https://osrg.github.io/ryu-book/en/html/rest_router.html#setting-

static-routes-and-the-default-route. [Accessed: 25- Apr- 2017]. 

[36] V. GUEANT, "iPerf - The TCP, UDP and SCTP network bandwidth 

measurement tool," Iperf.fr, 2013. [Online]. Available: https://iperf.fr/. 

[Accessed: 12- Nov- 2016]. 

[37] T. Fisher, "How to Use the Ping Command in Windows," Lifewire, 2016. 

[Online]. Available: https://www.lifewire.com/ping-command-2618099. 

[Accessed: 12- Nov- 2016]. 

[38] J. Pandey and R. Subramanian, "DCell: A Scalable and Fault-Tolerant 

Network Structure for Data Centers," Reproducing Network Research, 2012. 

[Online].Available:https://reproducingnetworkresearch.wordpress.com/2012/0

6/04/dcell-fault-tolerant-routing/. [Accessed: 12- Nov- 2016]. 

[39] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang and A. Vahdat, 

"Hedera: Dynamic Flow Scheduling for Data Center Networks," NSDI, vol. 

10, pp. 19-19,  2010. 

 

 

 

 



 

69 

 

Vita 

 

Heba Helal was born in 1989, in Jizan, Saudi Arabia. She received her 

secondary education in Mansoura, Egypt. She received her B.Sc. degree in Computer 

Engineering from the Mansoura University in 2011. From 2011 to 2015, she worked 

as a demonstrator at Mansoura University. 

In September 2015, she joined the Computer Engineering master's program at 

the American University of Sharjah as a graduate teaching assistant. She was involved 

in lab supervision and conducting research in the area of data center network 

topologies. During her master's study, she co-authored three papers which were 

presented in international conferences. Her research interests are in Computer 

Networks, Software Engineering and IoTs. Her work on datacentre topologies has 

been presented in the Seventh International Conference on Modeling, Simulation and 

Applied Optimization (ICMSAO ‘17) held in April 2017 in Sharjah, UAE. 

 

 

 

 

 

 

 

 

 

 

 

 


