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Abstract 

 

The development in smart grid technologies will authorize consumers to participate in 

the decision making of their electricity consumption. This participation in decision 

making is the called demand side management (DSM). DSM allows the customers to 

optimally manage their loads and hence reduce their energy bills and overall 

consumption. This work proposes a new real-time energy management system (EMS) 

for smart microgrids (MGs) including DSM with several distributed energy resources 

(DER) technologies, such as photovoltaic panels, dispatchable distributed generation 

(DG), capacitor banks, and battery energy storage systems (BESS). The developed 

EMS consists of three main units that are controlled by the centralized MG controller 

(MGC). The aim of the MGC is to optimally schedule the grid and customers’ assets to 

benefit both the grid operators and the customers. The MGC utilizes the rolling horizon 

concept to manage real-time information and to provide the plug-and-play option for 

all controllable devices such as controllable loads and DER. The three units managed 

by the MGC are the data collection and storage unit, the forecasting unit and the 

optimization unit. The optimization unit receives the current and forecasted information 

from the other units; then, it develops the optimal scheduling decisions for all 

controllable devices with the target of reducing the overall operating costs while 

meeting the customers’ requirements. The MG can either operate in grid-connected 

mode or in islanded mode of operation. In this work, both modes are considered. 

Simulation results on a typical MG system of the proposed approach are compared to 

the results of the traditional day-ahead approach. The proposed approach results show 

same savings as the day-ahead approach. However, unlike the day-ahead approach, the 

proposed approach is more robust to disturbances and fast changes of PV panels’ 

output. Moreover, the proposed approach can accommodate changes in customers’ 

preferences and new connected equipment in a timely manner. 

 

Keywords: Demand side management; distributed energy resources; microgrid; 

smart grids; rolling horizon.   
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Chapter 1. Introduction 

 

In this chapter, a short introduction to the energy management concepts is 

provided. Then, the problem investigated in this study as well as the thesis contribution 

are presented. Finally, the general organization of the thesis is presented. 

1.1. Overview 

Recent advances in smart grids encouraged electric system operators to involve 

more renewable resources in the generation and to introduce the demand side 

management concept to control these new resources and loads.  

The idea of microgrid was first discussed in the technical literature in [1] and 

[2] as a solution for the amalgamation of Distributed Energy Resources (DERs), 

including energy storage units and controllable loads. The microgrid would be seen by 

the main grid as a single entity that makes use of the control signals and responds back 

to them. Yet, there is no one exact definition of microgrids as a technical term, a 

microgrid can be described by its characteristics as a group of loads, Distributed 

Generation (DG) units, and Battery Energy Storage Systems (BESSs) that work 

together to efficiently supply electricity. The adoption of microgrids as the model for 

the engagement of DER  will permit the ability to work in a decentralized manner in 

solving different parts problems [3]. 

Demand Side Management (DSM) is the adjustment of consumer use of energy 

using different strategies. However, commonly demand side management strategies are 

adopted only during peak demands or in cases where the power system reliability is 

jeopardized. The day-ahead fails to address real-time measurements from the grid, 

resulting in nonapplicable strategies, whereas online measurements and calculations are 

more accurate. This is because the day-ahead based approaches are not tailored to deal 

with the intermittent nature of renewable energy resources [4], [5]. Hence, traditional 

offline operational planning studies do not guarantee the desired accuracy level of 

calculations and are currently being replaced with the online planning methods.  

There are two different control schemes, the centralized control scheme where 

a central controller is responsible for all decision making and distributed control in 

which the decisions are taken via distributed local controllers. Despite the advantages 

of the distributed control schemes over the centralized control schemes, grid operators 
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prefer centralized control systems. The centralized control systems proved their 

robustness for decades in managing power systems and they are characterized by 

decreased risk of technological malfunction. Thus, the presented work focuses on 

centralized control schemes.  

1.2.  Thesis Objectives 

Motivated by the environmental compliance and the concerns of the increasing 

greenhouse gas emissions, we will deal with energy management system that makes 

use of environmentally friendly resources. Moreover, the recently introduced 

renewable energies are mainly represented in wind power and photovoltaic systems are 

characterized by high degree of uncertainty and variability in nature, and cannot be 

controlled in terms of their generation amount. These resources depend on the weather 

conditions and hence, their energy can only be used once it is produced or stored for 

later use.   

Smart grids are the new systems who will replace the old existing electric grid. 

The smart grid has the properties of two-way communication and functionalities to 

adapt the high penetrations of renewable energy resources. The objective of this work 

is to introduce a new real-time and day-ahead energy management scheduling algorithm 

for distributed system assets and customers equipment. The algorithm takes into 

consideration the customer preferences and variability of the generation and the loading 

in the system plus the plug-and-play option. 

1.3. Research Contribution 

The contributions of this research work can be summarized as follows:   

• Develop a centralized control scheme for optimal energy management in smart 

microgrids. 

• Develop a new methodology for DSM that takes into consideration the 

interaction between the customers and their appliances.  

• Test the results of applying the proposed energy management control scheme 

on a distribution system with different DER technologies in the grid connected 

mode of operation.  

• Test the results of applying the proposed scheme on a distribution system in the 

islanded mode of operation. 
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1.4.  Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides background 

about the concepts of smart grids, microgrids, demand side management and model 

predictive control. In addition, Chapter 2 provides a brief background to distributed 

energy resources, demand response programs and pricing techniques that will be used 

in the work. Moreover, a detailed literature review related to this research is discussed. 

The employed methods and algorithms are discussed in Chapter 3 along with 

the implementation of the proposed architecture and the mathematical formulation of 

the problem. Chapter 4 presents the test systems. Chapter 5 summarizes the 

performance evaluation of results obtained from the testing systems. Finally, Chapter 6 

concludes the thesis and outlines the future work.  



15 

 

Chapter 2. Background and Literature Review 

 

In this chapter, we discuss the fundamentals and definitions related to the DER, 

modernized electrical grid and the DSM. Then, we present the different techniques used 

in energy management systems. Finally, we discuss the related work in this field of 

research. 

2.1. Background 

2.1.1 Distributed energy resources. According to IEEE, the DG is defined 

as, “The generation of electricity by facilities that are sufficiently smaller than central 

generating plants so as to allow interconnection at nearly any point in a power system” 

[6]. The definition of DERs is more general compared to DG. DER units can produce 

only or produce/absorb energy. DER units can be categorized to energy generation 

DER, energy storage DER or a combination of both, Table 2.1 shows some of the DER 

examples [7]. 

Table 2.1: DER categories 

Energy generation DER Energy storage DER 

• Diesel unit. 

• Natural gas unit. 

• Dual fuel unit. 

• Microturbine. 

• Combustion turbine. 

• Fuel cell. 

• PV 

• Wind turbine. 

• Uninterruptible power supply. 

• Battery system. 

• Flywheel. 

• Superconducting magnetic energy 

storage. 

• Hybrid systems. 

 

The DER ranges from small scale (residential size) to the large scale (utility 

scale). The distributed scheme of the DER has a huge benefit when dealing with only 

part of the grid is needed. Such a distributed scheme and resources provide islanded 

areas [8]. Installing DER units in distribution networks results in many technical and 

economic benefits, such as increasing the system reliability because they can be used 

to overcome supply and demand imbalances. Hence, it is much useful to use a more 
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distributed generation in the network rather than centralized one. Furthermore, the 

overall power flows in the lines are reduced resulting in stress, losses and cost 

reductions [9]. Benefits of the DER are summarized in Table 2.2, the benefits include 

environmental advantages, improvements from an economic point of view, and 

technical benefits [10]. 

Table 2.2: DER benefits 

Environmental 

benefits 

Economic benefits Technical benefits 

• Intensive use of 

friendly energy 

resources. 

• Use of combined 

heat and power 

reduces thermal 

pollution of the 

environment. 

• Reduction of 

greenhouse gas 

emissions. 

• DGs can reduce or avoid 

the need for building new 

transmission and 

distribution lines. 

• DGs can be assembled 

easily anywhere as 

modules; thus, they have 

much less construction 

time compared to central 

generation facilities. 

• Combined heat and power 

DGs can use their waste 

heat for heating or for 

improving their efficiency 

by generating more 

power. 

• DGs can reduce the 

wholesale power price by 

supplying power to the 

grid, which leads to a 

reduction in the effective 

demand.  

• DGs have a positive impact on 

the distribution system 

voltage profile and power 

quality problems. 

• DGs reduce the distribution 

network power losses 

• DGs have the ability to 

respond to fast demand 

changes. 

• DER can improve the 

reliability of the electric 

supply for customers. 

• They provide transmission 

capacity release. 
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2.1.2. Smart grids. There is no one global definition for the smart grid and a 

fair definition could be “A smart grid is a modern electric system. It uses 

communications, sensors, automation and computers to improve the flexibility, 

security, reliability, efficiency, and safety of the electricity system. It offers consumers 

increased choice by facilitating opportunities to control their electricity use and respond 

to electricity price changes by adjusting their consumption” [11]. Old traditional power 

systems have many different problems associated with it, whereas civilized 

communities need the power system to be more credible, scalable and controllable as 

well as being cost dynamic, safe and interoperable. Benefits of smart grids includes, the 

improved reliability; increased physical, operational, and cyber security and resilience 

against attack or natural disasters; ease of repair, particularly remote repair; increased 

information available to consumers regarding their energy use; increased energy 

efficiency along with the environmental benefits gained by such efficiency; the 

integration of a greater percentage of renewable energy sources, which can be 

inherently unpredictable in nature; the integration of plug-in electric vehicles; and, a 

reduction in peak demand [11]. 

Smart grid may include electricity networks equipped with the technologies 

required to facilitate the fluent interaction of all users connected to it [12]. Recent 

growth in communication and sensing technologies enabled the evolution of smart grid, 

this calls for the need of a communication network that is parallel to the present power 

grid which enables the flow and exchange of both communication and control. 

Smart grid technologies enable bidirectional communication between different 

players, such as power supplier and different types of consumers. Such bidirectional 

communication may be used by consumers to optimize their energy consumption 

profiles to minimize their electricity bill. 

With the advancements in smart metering and smart devices technologies and 

the increasing interest in smart grid infrastructure, it is possible to interact between 

generation and load for the benefit of delivering the energy optimally. This increased 

the need for new optimization approaches. In addition to the complexity of controlling 

the renewable energy sources added, which is offered by the smart grid system adding 

management, control and communication capabilities to the existing electrical 

infrastructure [13]. A comparison between both current traditional grid and the future 
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smart grid is tabulated in Table 2.3. The traditional grid is electromechanically operated 

whereas the smart grid is modernized and operated using different technologies. 

Moreover, the smart grid has a two-way flow of both energy and information and it 

depends on sensors for its operation and decision making. The whole network of the 

smart grid can be monitored in screens and we don’t have this privilege in the current 

grid. If any fault happened in the traditional grid it requires some personnel to go to the 

fault place, on the other hand in the smart grids thanks to SCADA systems we will have 

an alarm when such faults happen and its location and maybe the possible causes and 

solutions [14]. 

2.1.3. Microgrids. Traditional distribution systems are passive, i.e. 

characterized by unidirectional power flow. However, when DER units are installed, 

they become active distribution networks (ADN) with bi-directional power flow and 

communication. This results in some parts with a generation capacity that is part of the 

network and can provide all or part of the local load requirements. These are known as 

microgrids (MGs) [15].  

The microgrid has been defined by the US department of energy as “a group of 

interconnected loads and distributed energy resources within clearly defined electrical 

boundaries that act as a single controllable entity with respect to the grid (and can) 

connect and disconnect from the grid to enable it to operate in both grid-connected or 

islanded-mode” [14]. 

Microgrids can operate in two modes, parallel to the grid or grid connected and 

isolated from the grid, where its structure is made specifically to be able to adapt the 

islanded operation. In islanded mode of operation, the local load is completely supplied 

by the microgrid. In this mode, there are many technical issues that must be addressed; 

load matching, power quality, and reliability. In grid-connected mode, the microgrid is 

responsible for supplying all or part of the consumption. In cases of excess or shortage 

of the supply, the main grid can absorb or provide the difference through the point of 

connection with the grid, which is known as the point of common coupling (PCC) [16]. 
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Table 2.3: Comparison between current and smart grids 

             Grid     

Property               

Current grid 

 

Smart grid 

Operation Electromechanical Modernized 

Communication One-way Two-way 

Generation Centralized generation Decentralized generation 

Control structure Hierarchical Lattice structure 

Sensors Limited Throughout 

Monitoring Short sightedness Monitoring capability 

Disconnections Brownouts and blackouts Adaptive and islanding 

Faults In place check and test Distant check and test 

Control Restricted Spreading 

DSM Minimum customer 

involvement 

Involves customer 

participation 

 

The control model of microgrids can be one of three types; centralized, 

distributed or hybrid. The centralized model control receives all data from the microgrid 

and makes decisions according to certain constraints. On the other hand, in distributed 

control scheme, measurements and communications are done through local controllers, 

which then communicate with each other. While this approach facilitates the integration 

of energy resources, it adds more complexity to the system. Lastly, there is the hybrid 

control example which combines both aforementioned models, the distributed energy 

resources are ordered in groups then a centralized control applied to them separately, 

where distributed control model governs the groups [11]. 

The droop control is an effective method to control the generation sources in 

the islanded microgrid to regulate the frequency and the output voltage. The droop 

control permits the generators to engage in the frequency and the voltage control. Thus, 

the droop control fulfills the islanded microgrid reliability condition and accomplishes 

operation management and resource optimization. Frequency is considered a global 

variable. Hence, the real power produced is divided between generators according to 

their active static droop gain. Moreover, the output voltage is count as a regional 
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variable. Therefore, the reactive power distribution is influenced by the reactive static 

droop gain as well as the vicinity of the generator to the load [17].  

Each unit uses the frequency to control the active power flow and on the other 

hand, the voltage output depends on the reactive power. This is summarized by the two 

equations given in (1) and (2). 

𝑓 = 𝑓0 − 𝑘𝑝  (𝑃 − 𝑃0) (1) 

𝑉1 = 𝑉0 − 𝑘𝑣   (𝑄 − 𝑄0) (2) 

where 𝑓0 and 𝑉0 are the base frequency and voltage. 𝑃0 and 𝑄0 are temporary set points 

of real and reactive powers of the unit. Example plots of droop control are shown in 

Figure 2.1 and Figure 2.2, the two figures explain the relation between the active power 

and frequency as well as, reactive power and voltage. The relationship between the 

quanteties is explained as constant slope shown in the figures. 

 

Figure 2.1: Droop control characteristics of real power [18] 

 

Figure 2.2: Droop control characteristics of reactive power [18] 
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2.1.4. Demand side management. DSM is defined as, the process that 

manages energy demand and supply with the goal of users gratification as well as price 

and power savings. The process follows a specific schedule that is updated 

continuously. DSM focuses on the consumer side or as named lately as prosumer. The 

prosumer is defined as, a prospective consumer who is involved in the design, 

manufacture, or development of a product. Prosumer is considered both producer and 

consumer of power. This process involves communication between both the consumers 

and operators [19]. 

DSM is the delineation, realization, and control by grid operators in the form of 

strategies. The aim is to impact the use of electricity and advance or reconstruct the 

load curve by flattening the demand curve or optimize it for a specific desired pattern.  

DSM helps maintain a balance between supply and load to achieve reliable operation 

of the power grid. This provides a mean for the end user and appliances to realize the 

high cost and peak demand times and then, take actions in responses to that. Different 

load shaping objectives include peak clipping, valley filling, load shifting, strategic 

conservation, strategic load growth and flexible load shape [8]. 

Benefits of the DSM can be counted for both users and operators and include; 

attaching discontinuous energy resources at distribution level, demand response, 

incentivizing the customers and hence reducing the peak time consumption, flexible 

power system as the consumers contributes by turning off devices at heavy load and 

savings in energy as consumers aware of their own consumption [20]. 

The main goal of the demand response programs is to encourage the 

participation of demand-side resources in the planning of the grid [21]. Two types of 

control on the load are available; direct load control (DLC) and indirect load control 

(ILC). 

The DLC system is mainly designed to curtail or shed loads. For example, the 

thermostatically controlled loads such as air conditioners and water heaters can be 

controlled during high demand hours based on some previous agreements of specific 

temperature values. In the ILC process, the reliability is on variable prices, economic 

incentives, and/or penalties to encourage customers to schedule their loads. The goal is 

to improve efficiency, reduce peak demand and reduce electricity bills. ILC depends on 
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customer’s cooperation. However, its implementation involves many complicated and 

sophisticated issues in educating the consumers and raise their awareness of such 

programs and equipping or providing the buildings with the suitable tools. Additionally, 

its pattern is hard to be predicted and redistributing the load is not an easy task and may 

introduce conflict to other parts of the grid [22], 

2.1.5. Electric utility rate structure. There are different pricing techniques 

adopted by utilities such as time-of-use pricing (TOU), Critical-Peak Pricing (CPP) and 

Real-Time Pricing (RTP). In the first type, prices depend on the time of day and are set 

in advance. Secondly, in the CPP technique if the demand reaches its peak the price is 

raised. Lastly, in the RTP, the prices are changed continuously on an hourly basis. This 

is explained by the fact that as the demand increases the utility has to include additional 

generation units and hence, the cost increases [23]. In RTP the role of a retailer is to 

buy energy from the electricity markets and sell it back to the consumers at the lowest 

prices as possible. The availability of these types of information practically is the main 

bone of the demand response [24], 

2.1.6. Model predictive control. Model Predictive Control (MPC) or the 

rolling time horizon (RTH), is a popular advanced control technique. The control 

decisions are taken over future trajectories in receding horizon. At each time horizon, 

the decision-making process is applied simultaneously. The process is repeated for the 

next and subsequent time horizons. 

MPC is a good tool for the applications of energy and active load management 

in the systems with renewable energy sources. Also, MPC is suitable for the real-time 

applications that require predictions [25]. 

Figure 2.3 shows a simple concept of the MPC [26]. The present time is tK and 

the prediction is done for the next intervals (tK+1, tK+2, tK+3…,tK+H), where H is the length 

of the prediction horizon or the window size, N is the length of the control horizon, and 

K is the sampling interval or step size. 
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Figure 2.3: Model predictive control concept [29] 

2.1.7. Optimization techniques. Optimization is defined as the procedure of 

obtaining the terms or solution that give the minimum or maximum value of a function. 

An optimization problem has three main components; objective function to be 

minimized or maximized, unknown variables that control the objective function value, 

and constraints that limits the values of the variables [27]. Optimization techniques can 

be classified according to the nature of the solution to exact methods and heuristic 

methods. The exact optimization methods guarantee finding an optimal solution and 

the heuristic optimization methods do not guarantee that an optimal solution is found 

[28]. Some of the exact and heuristic optimization methods are explained briefly as 

follows: 

2.1.7.1.  Optimization methods for linear, continuous problems (linear 

programming). In linear programming (LP), the objective function and the constraints 

depend linearly on the decision variables. One of the known methods to solve LP 

problems is the simplex method. This method relies on the fact that the solution is on 

the border of the feasible region (convex set). Thus, the solution can be obtained by 

examining the vertices of the simplex and select the one that results in an optimal 

solution. 

2.1.7.2.  Optimization methods for linear discrete problems. This 

includes but not limited to: 

• Branch and bound method: this method recursively decomposes a problem into 

subproblems by fixing or introducing additional constraints. The subproblems 
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are solved using linear programming methods. Bounding is done by removing 

any subproblem that resulted in a solution that violates some of the limits [28]. 

• Dynamic programming: this is an exhaustive search method that intelligently 

enumerates all solutions of a combinatorial optimization problem. The idea is 

to start with the last decision and to work backward to the earlier ones [28]. 

2.1.7.3  Optimization methods for nonlinear discrete problems. These 

methods focus on nonlinear functions and include but not limited to: 

• The substitution method: this method considered the simplest for solving 

nonlinear problems. Involves solving constraints equations in terms of other 

variables and later substitute these equations into the objective function [29]. 

• Mixed integer nonlinear programming: some of the decision variables in this 

method are restricted to integer variables. The first step is to solve the MIP 

problem as an ordinary LP problem neglecting the integer restrictions. The 

procedure ends if the values of the basic variables which are constrained to take 

only integer values happen to be integers in this optimal solution [27]. 

2.1.7.4  Heuristic optimization methods. Heuristic optimization 

methods do not guarantee finding an optimal solution but are usually faster than the 

approaches that rely on numerical methods. Heuristic optimization methods do not aim 

at finding an optimal solution but at developing optimum solution procedure. 

• Particle Swarm Optimization algorithm: this is a parallel evolutionary method 

inspired by the demeanor of bird flocking, it begins by having a population of 

nominee solutions and iteratively tries to improve these nominee solutions [30]. 

• Genetic algorithm: this is a search based algorithm that does not use calculus. 

The search starts around particular point and then proceed in one direction that 

is increasing or decreasing, the obtained decision solutions are obeying a 

specific fitness function. With each iteration, there is an improvement of the 

objective function, and the improvements are applied by reproduction, 

crossover, and mutation. This algorithm simulates the human gene operation 

[31]. 

• Simulated annealing algorithm: this method was established from ideas of 

statistical mechanics, stimulated by the physical annealing of a solid. The goal 

is to start from random state and bring the system to the minimum state.  
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2.2. Related Work  

DSM via controlling customers’ equipment is already implemented with many 

grid operators in North America, such as New York independent system operator 

(NYSO) [32] and Ontario independent electricity system operator (IESO) [33]. 

However, DSM strategies have been adopted only during peak demands or in cases 

where the power system reliability is jeopardized. Three strategies can be applied to 

realize the DSM programs [4]: 1) customers can interrupt their equipment consumption, 

2) they can shift their consumption to off-peak periods, and 3) they can use distributed 

energy resources (DER) to manage their demand profiles. In this context, several 

approaches have been proposed in the literature. A centralized control system was 

implemented in [9] to increase the system security. The proposed scheme utilized a 

distributed control for DER units. Reshaping consumption could be made by ways of a 

difference in the price of electricity (Price-Based Programs) or reward and penalty bills 

[34] and [35]. However, this is a very hard task using the existing centralized dispatch 

methods [36], [37], [38] and [39]. 

According to the results obtained by [40], consumers are very susceptible to the 

power prices. Encouragement and mind of consumers to participate in the DR program 

can appear in different ways. For example, the authors in [41] used a factor that is equal 

to one when a rigorous cost reduction is needed, a little higher than one when average 

cost reduction is needed, and way higher than one when a cost reduction is not needed. 

However, this type of exemplification might be a simple way to efficiently reflect the 

link between the reduction in the electricity bill and the economic status of the 

customer. The authors in [42] Proposed a load management scheme that took into 

account the purchase of energy of the customers in a real-time pricing DR program, 

optimized the discussion and agreement between the consumer and retailer. The scheme 

requires prediction of renewable powers production, load, and electricity prices for the 

next day.  

The work in [43] introduced a scheme for the control of energy streams on a 

single house and a large group of houses. The scheme presumed every house has 

microgenerator and controllers. In this scheme, global and local controllers were used 

in three stages. Firstly, a forecast is made for energy production and consumption for 

one day ahead. Then, the local controller defines the aggregated profile and sends it to 
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the global controller. Secondly, the schedule for each house is done for the next day. 

Thirdly, the algorithm determines how the consumption is supplied. Two examples 

were tested, and the results proved that it is possible to schedule for a group of houses 

based on a one-day forecast. However, any forecasting error impacts and changes the 

outcomes of this approach. 

Authors in [44] and [13] introduced approaches that manage loads according to 

their priority, where the customers specify their priorities for different loads according 

to their preferences. Another DSM method was proposed in [13], which relies on 

grouping the loads based on their characteristics. Some loads are considered to be 

thermostatically controlled and others are price dependent.  However, there is no clear 

identification of the real-time management of information from and to the controller 

and it is not a preferable technique for the customers as they have no prior information 

about when their functions will be done, and they do not contribute on deciding a period 

at which they operate.  

The DSM approach proposed in [45] didn’t include customers’ preferences. 

Also, the work proposed in [46] focused on managing the household owned energy 

storage systems  (ESS). The proposed approach aimed at reducing the overall system 

capital and operating costs, the paper could not solve the optimization problem as a 

centralized problem due to the unavailability of complete information. Furthermore, it 

assumed that the demand of each user is known a day ahead which is not true for real 

cases. In addition, the approach proposed in [47] used 24 hours scheduling of the next 

day which is not accurate, although they implemented an operational planning model 

considering multiple demand response programs with the objective function of 

minimizing operation cost and emission. Using a window of 16 hours was implemented 

by [48] focusing on the residential buildings with three different price schemes. A 

simple day-night tariff, a day-ahead dynamic tariff, and a real-time dynamic tariff. 

However, such large time steps will not give a higher accuracy, and there is no clear 

mention of how often the system data updated; moreover, there is no consideration of 

schedules or customers preferences. Another strategy used by [49] concentrated on 

charging the energy storage system when the load curtailments are within the specified 

limits. The action may lead to a more unjustified delay of appliances operations if the 

system is charging. On the other hand, integration of the battery helps reap more benefit 
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from demand response. It does not only reduce the peak load but further flattens the 

entire profile and reduce the demand variation.  

Work represented in [23] and [24] used dynamic pricing strategy to shift the 

loads with fixed demand profile. Both papers did not include any real-time or online 

measurements. So, optimization could not be updated frequently to include the irregular 

pattern of plugging the appliances. Also, the procedure suffers from limiting the supply 

of user appliances to a certain maximum amount of power. The use of a weighted 

average price prediction filter to the actual hourly based price has the benefit of 

assisting the customers in tailoring their response efficiently and automatically [41]. 

Day-ahead based approaches are not tailored to deal with the intermittent nature 

of renewable energy resources; whereas online measurements and calculations are more 

accurate resulting in a nonapplicable strategy (short-sightedness) [4], [5]. In recent 

work, the day-ahead approaches are still proposed as in [50], [51], [52], [53], [54] and 

[55]. In addition, these approaches do not allow decision update; thus, any change in 

customers’ behavior or any new appliance connected will not be accompanied by 

decision update.  On the other hand, real-time approaches can offer more flexibility by 

updating their decisions every short period, which can be defined prior to deploying the 

EMS. In real-time operation, the consumers can change their preferences at any time 

and connect new equipment.  

The work in [56] implemented a demand response algorithm to minimize the 

cost of energy usage taking into account the load divergence limits, hourly load, and 

price forecast uncertainty. This algorithm assumed that prices and decisions in the 

previous hour are already known ahead. In the current moment (hour t), the price and 

power demand are known. Prices in the next 24 hour are approximated using an 

autoregressive integrated moving average (ARIMA)-based model with a confidence 

interval. Using this data, the optimization model establishes a ground base for daily 

consumption and ramping down/up limits are solved. This procedure is repeated each 

hour on a scheduling horizon of one day.  The work in [57] suggested a methodology 

for demand response that considered the customers’ preferences for the operation of 

specific appliances during peak hours by means of the Analytic Hierarchy Process. This 

quantification of customer preferences is used to determine which appliances must be 

used during the peak hours. Solving the Knapsack Problem, wherein the numerical 
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preference obtained by the Analytic Hierarchy Process for a specific appliance is 

considered as a measure of the benefit obtained by its use. The authors sealed that this 

method authorizes enhancement in both customers’ bills and the total energy 

consumption on the electrical grid. 

From the perspective of the controller design, all the work in the literature can 

be divided into two categories regarding the location of the controller(s): centralized 

controllers [58], [59], [60] and [61] and decentralized controllers [62], [63] and [64]. 

Despite the advantage of the distributed control schemes over the centralized control 

schemes, which have one point of failure, grid operators prefer centralized control 

systems, as they proved their robustness for decades in managing power systems and 

they are characterized by decreased risk of technological malfunction.  

Based on the aforementioned discussion, this work introduces new centralized 

real-time energy management system (CREMS) for smart MGs. The aim of this work 

is to develop an MG centralized controller, which optimally schedules the system assets 

in real-time to benefit both the grid operators and the consumers. MGs can operate in 

two modes: grid-connected and isolated mode of operation. For the ease of practical 

implementation and real-time information management, a rolling time window (RTW) 

is utilized in this work to control the grid and customers’ assets. The real-time optimal 

energy management problem is formulated as mixed-integer non-linear programming 

(MINLP).  
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Chapter 3. Proposed Methodology 

 

In this chapter, we describe and explain the methodology prevailed in this work. 

A new centralized control scheme including customer participation is proposed. This 

proposed scheme aims to increase security, reliability and consumers satisfaction. The 

next sections describe the proposed centralized control scheme, the problem 

description, and the problem formulation. 

3.1. System Model 

Figure 3.1 shows the proposed centralized real-time energy management system 

(CREMS). The system is composed of three units, controlled by the central MG 

controller (MGC). The real-time process can be explained in six sequential stages, 

which are highlighted in Figure 3.1 and discussed in the next subsections. To manage 

real-time data, RTH is utilized with the structure as shown in Figure 3.2. The Moving 

window parameters are the step size (∆𝑡) and window width (𝑇𝑤). The six stages of the 

MGC full cycle are to be executed within a time step ∆𝑡. To include information about 

future forecasted generation, demand, and energy prices, the MGC solves the energy 

management problem for the duration of the moving time window 𝑇𝑤 in the future. 

After completing a successful cycle of the MGC, the optimal decisions are sent to local 

controllers and information is sent to users, which are stored in their local database 

(DB). These decisions and information should be update in the next cycle after time ∆𝑡. 

However, due to delays in the MGC units or due to communication delays or failure, 

this update might be delayed. In this case, the local controllers should utilize the latest 

information in their local DB till the MGC update their status. The whole cycle, which 

includes the six stages, is repeated every time ∆𝑡. The rolling horizon parameters can 

be adjusted according to the grid operator preferences and subject to the changing 

frequency of the system. If the system changes more frequent then the step size might 

need to be decreased. Reducing the step size and increasing the time window duration 

increases the accuracy but also increases the computational time and processing 

requirements. Thus, it is a trade-off between accuracy and computational time. 

As a secondary backup, the day-head scheduling problem for the next 24-h is 

solved and sent to the system in case of long duration or long delays, communication 

loss, or any element failure. 
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Figure 3.1: The centralized real-time energy management system structure 
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Figure 3.2: Rolling time horizon implementation 

3.1.1. Data collection and storage unit. This unit is responsible for collecting 

data from system sensors or SCADA metering nodes (currents and voltages), local 

controllers of different equipment (generated/consumed power by DER, state-of-charge 

of BESS... etc.), grid operators (price), and consumers preferences for DSM. Collecting 

the required data is denoted as stage one, as illustrated in Figure 3.1. The collected data 

are stored in the database to be used by other units. 
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Moreover, this unit sends the output data to these pre-mentioned units. The 

outputs can be either for controlling equipment or for informing users. Sending the data 

back to the system is denoted as stage six, which is executed at the end of the whole 

process,  

3.1.2. Forecasting unit. A moving window algorithm will be used to manage 

the real-time decision taking in the proposed EMS. The forecasting unit receives 

generation and demand data from the data collection and storage unit; this is denoted 

as stage two in Figure 3.1. Then, it forecasts the generation and demand based on the 

width of the RTH, which is sent by the MGC. Stage three involves sending back the 

forecasted information to the data collection and storage unit,  

3.1.3. Optimization unit. The optimization unit receives the current and 

forecasted information from the data collection and storage unit as stage four. Then, it 

solves the optimization model for the next 𝑇𝑊/∆𝑡 time steps with the target of reducing 

the overall operating costs while maximizing the customers’ satisfaction. Finally, the 

optimization unit sends the optimal decisions back to the data collection and storage 

unit as stage five.  Optimization process includes Comparing the data within the time 

window and try to match the supply with the load subject to some constraints of the 

system and reducing or/and shifting some of the controllable loads if it is the best 

decision (and only if this is allowed by the customer preference). Optimization process 

is repeated each time step 

3.2. Problem Description  

The plug and play option that the algorithm provides suits the home appliances 

pattern. The home appliances depend on consumer’s habits which are unpredictable. 

Each equipment has an ID operation that is assigned to it. This ID is linked to a matrix 

with its consumption profile. Preferred starting and ending times are set by the 

consumer and sent to the local controller to decide the possible schedules for each 

equipment. However, if the consumer didn’t specify starting or ending time this makes 

the load as uncontrollable and should be supplied once it's initiated. The algorithm 

makes sure that once any equipment starts it will never be interrupted and will continue 

for its whole cycle. The CREMS receives the matrix with different equipment possible 

schedules. The optimization unit decides which schedule to be implemented as 
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described in the problem formulation in the next section. Once this decision is made all 

other options should be cleared to zero to prevent any inconvenience or false operations.  

Other optimal decisions are decided based on the updated data received. These 

decisions include the amount of reactive power taken from the capacitors, curtailment 

from the PV units, power from the diesel generator, and the battery charging or 

discharging actions. The flow chart of the complete process is explained by the flow 

chart in Figure 3.3 and the read cycle of the local controllers is shown in Figure 3.4. 

The matrix of possible schedules is generated by the smart meters and sent to 

the optimization unit through the database unit to select the optimum schedule. An 

example of equipment with the time specifications is presented in Table 3.1. Schedules 

generated for this equipment are shown in Table 3.2. There are 10 different options 

based on 10 minutes step sent to the optimization unit and only one option will be 

chosen. If the decision variable corresponding to an option is one this means that this 

option is selected, and zero value for an option means the option is not selected. The 

schedule is fixed only if it will be executed in the current time step, and in this case, all 

the other schedules will be cleared. Otherwise, the equipment operation will be 

rescheduled in the next time window with as a maximum number of schedules as 

permitted by the user deadline.  

Table 3.1: Time specification example 

Duration  2 hours 

Earliest  7:00 pm 

Deadline  10:30 pm 

 

3.3. Grid Connected Mode Mathematical Problem Formulation 

The proposed scheduling problem for the grid connected mode is formulated as an 

MINLP, which is solved by the optimization unit in Figure 3.1. The objective function 

and the constraints are presented in the next subsections. 

3.3.1. Objective function. The objective function of the CREMS is to 

minimize the total sum of the costs shown in (3). The operating costs for this system 

are the costs of purchased energy from the grid and the dispatchable DGs operation as 
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illustrated in (4). The cost of the DGs is specified by the amount of fuel consumed, 

which in turns depends on the real power produced 
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Figure 3.3: Proposed algorithm flow chart 
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Figure 3.4: Read cycle of the local controllers 

Table 3.2: Generated schedules 

 

Time Schedule1 Schedule2 Schedule3 Schedule4 Schedule5 Schedule6 Schedule7 Schedule8 Schedule9 Schedule10

7:00 PM 0.181 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7:10 PM 0.170 1.181 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7:20 PM 0.159 1.170 0.181 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7:30 PM 0.150 1.159 0.170 0.181 0.000 0.000 0.000 0.000 0.000 0.000

7:40 PM 0.142 1.150 0.159 0.170 0.181 0.000 0.000 0.000 0.000 0.000

7:50 PM 0.135 1.142 0.150 0.159 0.170 0.181 0.000 0.000 0.000 0.000

8:00 PM 0.129 1.135 0.142 0.150 0.159 0.170 0.181 0.000 0.000 0.000

8:10 PM 0.123 1.129 0.135 0.142 0.150 0.159 0.170 0.181 0.000 0.000

8:20 PM 0.118 1.123 0.129 0.135 0.142 0.150 0.159 0.170 0.181 0.000

8:30 PM 0.114 1.118 0.123 0.129 0.135 0.142 0.150 0.159 0.170 0.181

8:40 PM 0.110 1.114 0.118 0.123 0.129 0.135 0.142 0.150 0.159 0.170

8:50 PM 0.106 1.110 0.114 0.118 0.123 0.129 0.135 0.142 0.150 0.159

9:00 PM 0.102 1.106 0.110 0.114 0.118 0.123 0.129 0.135 0.142 0.150

9:10 PM 0.000 1.102 0.106 0.110 0.114 0.118 0.123 0.129 0.135 0.142

9:20 PM 0.000 0.000 0.102 0.106 0.110 0.114 0.118 0.123 0.129 0.135

9:30 PM 0.000 0.000 0.000 0.102 0.106 0.110 0.114 0.118 0.123 0.129

9:40 PM 0.000 0.000 0.000 0.000 0.102 0.106 0.110 0.114 0.118 0.123

9:50 PM 0.000 0.000 0.000 0.000 0.000 0.102 0.106 0.110 0.114 0.118

10:00 PM 0.000 0.000 0.000 0.000 0.000 0.000 0.102 0.106 0.110 0.114

10:10 PM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.102 0.106 0.110

10:20 PM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.102 0.106

10:30 PM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.102
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The array of the decision variables 𝑍 in (5) includes decisions related to the 

capacitor banks switching, curtailment power from PV units, generated active and 

reactive powers from diesel generators, the binary decision to select optimum schedule 

and BESS charging/discharging actions. 

min
𝑍

∑ 𝐶𝑡
𝑡𝑜𝑡𝑎𝑙

𝑡

 
 

(3) 

𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 = (∆t 60⁄ )𝑆𝑏𝑎𝑠𝑒 (𝑃𝑡

𝑔𝑟𝑖𝑑 
𝐶𝑡

𝑔𝑟𝑖𝑑
+ ∑(𝑃𝑖,𝑡

𝐷𝐺𝐶𝑖,𝑡
𝐷𝐺)

𝑖

) 
 

(4) 

Z= [𝑋𝑖,𝑡
𝐵𝐴𝑇 , 𝑋𝑖,𝑡

𝐶𝐴𝑃 , 𝑋𝑖,𝑡
𝑃𝑉 , 𝑋𝑖,𝑡

𝐷𝐺 ,d i,e,ts  ] (5) 

 

Table 3.3: Objective function notations 

Notation Description 

Z Array of decision variables to be minimized 

t Index of time slot 

Sbase Base power in kVA 

𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 Total sum of the costs 

∆𝑡 Time resolution in minutes 

𝑃𝑡
𝑔𝑟𝑖𝑑 

 Real power supplied from the grid (p.u.) 

𝐶𝑡
𝑔𝑟𝑖𝑑

 Cost of power from the grid ($/kWh) 

𝑃𝑖,𝑡
𝐷𝐺  Total real power from dispatchable DGs at bus i (p.u.) 

𝐶𝑖,𝑡
𝐷𝐺  Cost of the dispatchable DG at bus i ($/kWh) 

 

3.3.2. Constraints. The objective function of the system is minimized subject 

to constraints, which compromise the model and are specified by the problem. There 

are two types of constraints; equality constraints and inequality constraints. 

3.3.2.1 Equality constraints. The near optimal developed decisions must satisfy 

the active and reactive power balance constraints in (6) and (7). 

𝑃𝑖,𝑡
𝐺 +𝑃𝑖,𝑡

𝑃𝑉+𝑃𝑖,𝑡
𝐷𝐺+𝑃𝑖,𝑡

𝐵𝐴𝑇 − 𝑃𝑖,𝑡
𝐿𝑜𝑎𝑑= ∑ 𝑉𝑖,𝑡𝑉𝑗,𝑡𝑌𝑖,𝑗cos(𝜃𝑖,𝑗+𝛿𝑗,𝑡 − 𝛿𝑖,𝑡)

j

 
(6) 
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𝑄𝑖,𝑡
𝐺 +𝑄𝑖,𝑡

𝐷𝐺+𝑄𝑖,𝑡
𝐵𝐴𝑇+𝑄𝑖,𝑡

𝐶𝐴𝑃 − 𝑄𝑖,𝑡
𝐿𝑜𝑎𝑑= − ∑ 𝑉𝑖,𝑡𝑉𝑗,𝑡𝑌𝑖,𝑗sin(𝜃𝑖,𝑗+𝛿𝑗,𝑡 − 𝛿𝑖,𝑡)

j

 
(7) 

Table 3.4: Power balance constraints notations 

Notation Description 

𝑃𝑖,𝑡
𝑃𝑉 Injected real power from photovoltaic(p.u.) 

𝑄𝑖,𝑡
𝐷𝐺 Dispatchable DGs reactive power (p.u.) 

𝑄𝑖,𝑡
𝐵𝐴𝑇 Reactive power transferred from the battery energy storage 

system (p.u.) 

𝑃𝑖,𝑡
𝐵𝐴𝑇 Active power transferred from the battery energy storage 

system (p.u.) 

𝑄𝑖,𝑡
𝐶𝐴𝑃 Capacitor reactive power (p.u.) 

𝑃𝑖,𝑡
𝐿𝑜𝑎𝑑 Active power of normal load (p.u.) 

𝑄𝑖,𝑡
𝐿𝑜𝑎𝑑 Reactive power of normal load (p.u.) 

𝑃𝑖,𝑡
𝐺  Generated active power at bus i (p.u.) 

𝑄𝑖,𝑡
𝐺  Generated reactive power at bus i (p.u.) 

i , j Buses indices 

𝑌𝑖,𝑗 Admittance matrix element (i,j) magnitude (p.u.) 

𝜃𝑖,𝑗 Admittance matrix element (i,j)angle (radiance) 

𝑉𝑖,𝑡 Voltage magnitude (p.u.) 

𝛿𝑖,𝑡 Voltage angle (radians) 

 

Moreover, the capacitor bank injected reactive power is proportional to the 

squared voltage magnitude as in (8), where the decision variable 𝑋𝑖,𝑡
𝐶𝐴𝑃 ∈ [0,1]  controls 

the capacitor switching. The injected active power from the PV units can be curtailed 

according to (9), where 𝑋𝑖,𝑡
𝑃𝑉 ∈ [0,1] represents the allowed fraction of the maximum 

generated active power to be injected to the grid. For the BESS, the decision variable for 

charging/discharging is 𝑋𝑖,𝑡
𝐵𝐴𝑇 ∈ [−1,1]. The amount of active power injected by the 

different DGs is controlled by the decision variable 𝑋𝑖,𝑡
𝐷𝐺 ∈ [0,1] as introduced in (10). 

The stored energy is updated as in (11), while the charging/discharging power is 

represented in terms of the kW capacity as in (12). The possible schedules of the 
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controlled equipment are multiplied by a binary variable to select a single option. Hence, 

this binary variable should sum to one for each equipment at each bus as shown in (13) 

and (14). 

𝑄𝑖,𝑡
𝐶𝐴𝑃 = 𝑋𝑖,𝑡

𝐶𝐴𝑃(𝑉𝑖,𝑡)
2

𝑄𝑖
𝐶𝐴𝑃−0/𝑆𝑏𝑎𝑠𝑒                          ∀𝑡, 𝑖 ∈ ℐ𝐶𝐴𝑃 (8) 

𝑃𝑖,𝑡
𝑃𝑉 = 𝑋𝑖,𝑡

𝑃𝑉𝑃𝑖,𝑡
𝑃𝑉−𝑀𝐴𝑋/𝑆𝑏𝑎𝑠𝑒                                     ∀𝑡, 𝑖 ∈ ℐ𝑃𝑉 (9) 

𝑃𝑖,𝑡
𝐷𝐺 = 𝑋𝑖,𝑡

𝐷𝐺𝑃𝑖,𝑡
𝐷𝐺−𝑀𝐴𝑋/𝑆𝑏𝑎𝑠𝑒                                     ∀𝑡, 𝑖 ∈ ℐ𝐷𝐺  (10) 

𝐸𝑖,𝑡
𝐵𝐴𝑇 = 𝐸𝑖,𝑡−1

𝐵𝐴𝑇 + 𝑋𝑖,𝑡
𝐵𝐴𝑇𝑃𝑖,𝑡

𝐵𝐴𝑇−𝑀𝐴𝑋   ∆𝑡 60⁄                 ∀𝑡, 𝑖 ∈ ℐ𝐵𝐴𝑇  (11) 

𝑃𝑖,𝑡
𝐵𝐴𝑇 = 𝑋𝑖,𝑡

𝐵𝐴𝑇𝑃𝑖,𝑡
𝐵𝐴𝑇−𝑀𝐴𝑋/𝑆𝑏𝑎𝑠𝑒                                   ∀𝑡, 𝑖 ∈ ℐ𝐵𝐴𝑇 (12) 

𝑃𝑖,𝑡
𝑣𝑎𝑟 𝐿𝑜𝑎𝑑= ∑ ∑ d i,e,ts Var i,e,t,ts

𝑒𝑡𝑠

 (13) 

∑ d i,e,ts = 1

𝑡𝑠

 (14) 

Table 3.5: Equality constraints notation 

Notation Description  

𝑄𝑖
𝐶𝐴𝑃−0 Nominal reactive power injected from the capacitor bank 

(kVAR) 

ℐ𝐶𝐴𝑃 Sets of buses for the capacitor banks 

𝑃𝑖,𝑡
𝑃𝑉−𝑀𝐴𝑋 Maximum possible generated power from PV unit (kW) 

𝑃𝑖,𝑡
𝐷𝐺−𝑀𝐴𝑋 Maximum possible generated power from DG unit (kW) 

ℐ𝑃𝑉 Sets of buses for the PV units 

ℐ𝐷𝐺  Set of DGs buses 

𝐸𝑖,𝑡
𝐵𝐴𝑇 Stored energy at time 𝑡 in the BESS (kWh) 

𝑃𝑖,𝑡
𝐵𝐴𝑇−𝑀𝐴𝑋 Capacity of the BESS in kW 

ℐ𝐵𝐴𝑇 Sets of buses for the BESS 

𝑃𝑖,𝑡
𝑣𝑎𝑟 𝐿𝑜𝑎𝑑 Controllable load consumption (p.u.) 

Var i,e,t,ts Matrix of the appliances consumption profile including all 

options 

d i,e,ts Binary decision variable to select one option 

𝑡𝑠 Number of possible schedules allowed 
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3.3.2.2 Inequality constraints. These constraints are used to limit the active, 

reactive, and apparent powers for the diesel generator and BESS as in (15) and (16). 

Moreover, the stored energy in the BESS is limited to the maximum allowable storage 

energy as in (17) and the amount of power transferred to or from the battery is limited 

by (18). 

(𝑆𝑖
𝐷𝐺−𝑀𝐴𝑋/𝑆𝑏𝑎𝑠𝑒)

2
≥ (𝑃𝑖,𝑡

𝐷𝐺)
2

+ (𝑄𝑖,𝑡
𝐷𝐺)

2
                              ∀𝑡, 𝑖 ∈ ℐ𝐷𝐺  (15) 

(𝑆𝑖
𝐵𝐴𝑇−𝑀𝐴𝑋/𝑆𝑏𝑎𝑠𝑒)

2
≥ (𝑃𝑖,𝑡

𝐵𝐴𝑇)
2

+ (𝑄𝑖,𝑡
𝐵𝐴𝑇)

2
           ∀𝑡, 𝑖 ∈ ℐ𝐵𝐴𝑇 (16) 

𝐸𝑖,𝑡
𝐵𝐴𝑇 ≤ 𝐸𝑖

𝐵𝐴𝑇−𝑀𝐴𝑋                                                       ∀𝑡, 𝑖 ∈ ℐ𝐵𝐴𝑇  (17) 

|𝑃𝑖,𝑡
𝐵𝐴𝑇| ≤ 𝑃𝑖,𝑡

𝐵𝐴𝑇−𝑀𝐴𝑋                                              ∀𝑡, 𝑖 ∈ ℐ𝐵𝐴𝑇 (18) 

 

Different sets of inequality constraints are required to limit the voltage and 

thermal limit. (19) and (20) shows the allowed tolerance of the voltage and the current 

limit to maintain the thermal boundaries. 

𝑉𝑚𝑖𝑛 ≤  𝑉𝑖,𝑡 ≤ 𝑉𝑚𝑎𝑥 (19) 

𝐼𝑖,𝑗,𝑡 ≤ 𝐼𝑖,𝑗,𝑡
𝑀𝐴𝑋 (20) 

 

Table 3.6: Inequality constraints notations 

Notation Description 

𝑆𝑖
𝐷𝐺−𝑀𝐴𝑋 Rated apparent power of the DGs (kVA) 

𝑆𝑖
𝐵𝐴𝑇−𝑀𝐴𝑋 Rated apparent power of the battery (kVA) 

𝐸𝑖
𝐵𝐴𝑇−𝑀𝐴𝑋 Allowable maximum stored energy in kWh for the BESS unit 

𝑃𝑖,𝑡
𝐵𝐴𝑇−𝑀𝐴𝑋   Allowable maximum power transfer for the BESS unit (p.u.) 

𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 Minimum and maximum voltage limits respectively. 

𝐼𝑖,𝑗,𝑡 System current (Amp) 

𝐼𝑖,𝑗,𝑡
𝑀𝐴𝑋 Maximum system current (Amp) 

 

3.4 Islanded Mode Mathematical Problem Formulation 

The proposed optimal scheduling problem for the islanded mode is formulated 

as an MINLP as well. The problem is solved by the same optimization unit in Figure 

3.1.  The objective function and the constraints are presented in the next subsections. 
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3.4.1 Objective function. The objective function of the CREMS is to 

minimize the total sum of the costs shown in (3). The operating costs for this system in 

the islanded mode of operation are the costs of energy from the dispatchable DGs 

operation as illustrated in (21). The array of the decision variables 𝑍 in (22) includes 

decisions related to the capacitor banks switching, curtailment power from PV units, 

generated active and reactive powers from diesel generators, BESS 

charging/discharging actions, the binary decision to select optimum schedule and the 

no load characteristics that decide the amount of the active and reactive powers from 

the generation units in the droop control. 

𝐶𝑡
𝑡𝑜𝑡𝑎𝑙 = (∆t 60⁄ )𝑆𝑏𝑎𝑠𝑒 (∑(𝑃𝑖,𝑡

𝐷𝐺𝐶𝑖,𝑡
𝐷𝐺)

𝑖

) 
 

   (21) 

Z= [𝑋𝑖,𝑡
𝐵𝐴𝑇 , 𝑋𝑖,𝑡

𝐶𝐴𝑃 , 𝑋𝑖,𝑡
𝑃𝑉 , 𝑋𝑖,𝑡

𝐷𝐺 ,d i,e,ts  , 𝑓𝑜
𝑖,𝑡

 , 𝑉𝑜𝑖,𝑡] (22) 

  

3.4.2 Constraints. 

3.4.2.1 Equality constraints. The scheduling problem must satisfy the power 

mismatch constraints in (23) and (25), which are the same as (6) and (7) with the two 

terms related to the grid energy eliminated. In addition, the scheduling problem is 

subject to all the constraints in (8-14). 

𝑃𝑖,𝑡
𝑃𝑉+𝑃𝑖,𝑡

𝐷𝐺+𝑃𝑖,𝑡
𝐵𝐴𝑇 − 𝑃𝑖,𝑡

𝐿𝑜𝑎𝑑= ∑ 𝑉𝑖,𝑡𝑉𝑗,𝑡𝑌𝑖,𝑗cos(𝜃𝑖,𝑗+𝛿𝑗,𝑡 − 𝛿𝑖,𝑡)

j

 
(23) 

𝑄𝑖,𝑡
𝐷𝐺+𝑄𝑖,𝑡

𝐵𝐴𝑇+𝑄𝑖,𝑡
𝐶𝐴𝑃 − 𝑄𝑖,𝑡

𝐿𝑜𝑎𝑑= − ∑ 𝑉𝑖,𝑡𝑉𝑗,𝑡𝑌𝑖,𝑗sin(𝜃𝑖,𝑗+𝛿𝑗,𝑡 − 𝛿𝑖,𝑡)

j

 
(24) 

Two equality constraints of droop controlled characteristics are added in the 

islanded mode and shown in (25) and (26). The two equations control the admissible 

frequency and voltage ranges. Values of the droop gains and frequency are selected 

according to the desired power sharing among different units. 

𝑃𝑖,𝑡
𝐷𝐺 = 𝑚𝑝𝑖,𝑡(𝑓𝑜𝑖,𝑡 − 𝑓𝑡)                ∀𝑡, 𝑖 ∈ ℐ𝐷𝐺  (25) 

𝑄𝑖,𝑡
𝐷𝐺 = 𝑛𝑞𝑖,𝑡(𝑉𝑜𝑖,𝑡 − 𝑉𝑖,𝑡)                 ∀𝑡, 𝑖 ∈ ℐ𝐷𝐺  (26) 
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Table 3.7: Droop control notations 

Notation Description  

𝑚𝑝𝑖,𝑡 Active static droop gain (kW/Hz) 

𝑛𝑞𝑖,𝑡 Reactive static droop gain (kVAR/Hz) 

𝑓𝑜𝑖,𝑡 DG unit output frequency at no load (Hz) 

𝑓𝑡 System frequency (Hz) 

𝑉𝑜𝑖,𝑡 DG unit output voltage at no load (p.u.) 

 

3.4.2.2 Inequality constraints. In addition to the constraints presented 

in the grid connected mode, i.e. (15-20), limits on the no-load characteristics 

are added in (27-29), those values are decided from experience to be able to 

output the maximum generation from the units. 

 

𝑉𝑜𝑚𝑖𝑛  ≤ 𝑉𝑜𝑖,𝑡 ≤ 𝑉𝑜𝑚𝑎𝑥 (27) 

𝑓𝑜𝑚𝑖𝑛  ≤ 𝑓𝑜𝑖,𝑡 ≤ 𝑓𝑜𝑚𝑎𝑥 (28) 

𝑓𝑚𝑖𝑛 ≤  𝑓𝑡 ≤ 𝑓𝑚𝑎𝑥   (( (29) 

 

Table 3.8: Islanded mode inequality constraints notations 

Notation Description  

𝑚𝑝𝑚𝑖𝑛 and 

𝑚𝑝𝑚𝑎𝑥 

Minimum and maximum active static droop gain limits 

respectively (kW/Hz) 

𝑛𝑝𝑚𝑖𝑛 and 𝑛𝑝𝑚𝑎𝑥 Minimum and maximum reactive static droop gain limits 

respectively (kVAR/Hz) 

𝑉𝑜𝑚𝑖𝑛 and 𝑉𝑜𝑚𝑎𝑥 Minimum and maximum DG unit output voltage at no load 

respectively (p.u.) 

𝑓𝑜𝑚𝑖𝑛 and 𝑓𝑜𝑚𝑎𝑥 Minimum and maximum DG unit output frequency at no load 

respectively (Hz) 

𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 Minimum and maximum frequency limits respectively (Hz). 
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Chapter 4. Case Studies 

 

In this chapter, the case studies are presented and discussed. Two case studies 

are presented: grid connected case and islanded case. In each case, three scenarios are 

presented. The first scenario represents the base case with no control. The second 

scenario is the day-ahead scheduling problem adopted in literature, where the 

forecasted generation/demand is assumed to be known day-ahead. In addition, the 

energy prices are assumed to be known day-ahead, which is a reasonable assumption 

from the energy market perspective. The third scenario represents the proposed 

CREMS. The proposed CREMS is tested on a 38-bus system with components on the 

next subsections and data in [59]. Planning the location of DER is a complicated process 

that requires detailed technical and economic models, which is out of the scope of the 

presented work. Thus, the DER units are located arbitrarily in the system. 

4.1. System Structure 

 4.1.1 Grid connected mode. Figure 4.1 shows the 38-bus system under test. 

This microgrid system is connected to the main grid (grid connected mode) to 

compensate for system balance and ensure continuity of the operation. One BESS units 

of 1 MW and 3 MWh ratings is located on bus 25, as shown in Figure 4.1. One diesel 

DG is located on bus 34 with 1 MVA rating and 0.5 MW PV unit is located on bus 10. 

The diesel DG operating cost is assumed to be 0.03 $/kWh. Finally, 1 MVAR nominal 

rated capacitor bank is located on bus 18, details of connected components are listed in 

Table 4.1. 

Table 4.1: System components for grid connected mode 

Bus 

number  

Device  Specifications  

25 Battery  3 MWh capacity, 1 MW power rating 

18 Capacitor  1 MVAR capacity 

34 DG 1 MW, 0.03$/kWh 

10 PV Depending on weather (Figure 4.2) 
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Figure 4.1: Modified 38-bus IEEE system connected to the grid 

 

Figure 4.2: PV profile 

The pricing scheme adopted for the energy prices from the grid is shown in 

Figure 4.3. The energy price is known day-ahead. A typical profile for the load curve 

that has been used is the case study is shown in Figure 4.4. Price and load curves have 

the same manner, two maxima’s accruing at 1:00 am and 8:00 am. The load is light and 

the price is low at the first hours in the morning till around 9:00 am and also at 3:00 

pm. The PV power output starts at the morning around 5:00 am with very low energy. 

Then, the output power starts to increase during the day and reaches the maximum at 

noon and after that starts to decrease again, as shown in  Figure 4.2. 
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Figure 4.3: pricing scheme adopted 

 

Figure 4.4: load profile 

4.1.2 Islanded mode. Figure 4.5 shows the system while it is disconnected 

from the grid (islanded mode). List of devices attached to this system is shown in Table 

4.2. Two BESS units of 1 MW and 3 MWh ratings is located on buses 25 and 33. Five 

diesel DGs are located on buses 8, 12, 22, 25, and 29 with ratings and operating costs 

details in Table 4.2. Two 1 MW PV units are located on buses 10 and 37. Finally, 1 

MVAR nominal rated capacitor bank is located on bus 18. The islanded mode is the 

main feature of the microgrid, which enables it to operate in remote areas or areas with 

an unstable grid. Droop control technique is used to control the DGs output power 

(droop-controlled units), in order to have stable frequency and voltage. The frequency 

allowed to have only 1% tolerance of the nominal frequency. The voltage has limits of 

0.9 to 1.1 p.u. range. The battery energy storage system is a critical part of such a 

system. Batteries help preserve the power balance in the system with the renewable 

resources. It can absorb the excess power in the system and also recompense the 
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generation shortage. Settings of the droop gain values used in this work are shown in 

Table 4.3. 
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Figure 4.5: Modified 38-bus IEEE system islanded from grid 

Table 4.2: System components for islanded mode 

Bus 

number 

Device  Specifications 

25, 33 2 Batteries  3 MWh each capacity 

18 Capacitor  1 MVAR maximum output 

8 DG#1 0.5 MW, (0.024) $/kWh 

12 DG#2 2.5 MW, (0.058) $/kWh 

22 DG#3 2 MW, (0.054) $/kWh 

25 DG#4 2 MW, (0.051) $/kWh 

29 DG#5 0.5 MW, (0.022) $/kWh 

10, 37 PV 1 MW capacity each (Figure 4.2) 

 

Table 4.3: Active and reactive droop gain settings 

DG number Active droop gain 

(𝒎𝒑𝒊,𝒕) (kW/Hz) 

Reactive droop gain 

(𝒏𝒒𝒊,𝒕) (kVAR/Hz) 

DG#1 10 0.2 

DG#2 2 0.04 

DG#3 2.5 0.05 

DG#4 2.5 0.05 

DG#5 10 0.2 
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4.2 Optimization Solvers  

4.2.1 Exact solution solver. The solver used in this optimization problem to 

find the exact solution was KNITRO. KNITRO is characterized by finding local 

solutions to both continuous smooth optimization problems, with or without 

constraints, and discrete optimization problems with integer or binary variables. 

KNITRO performs both state-of-the-art interior-point and active-set methods in solving 

nonlinear optimization problems. 

 The interior method or the barrier method replaces the nonlinear programming 

problem by a series of barrier sub-problems determined by a barrier parameter. The 

approach employs trust regions and a merit function to enhance the convergence. The 

algorithm carries out one or more minimization steps on each barrier problem, then 

reduce the barrier parameter, and iterates the operation until the original problem has 

been solved to the desired accuracy.  

In the active-set sequential linear-quadratic programming (SLQP), the 

algorithm uses linear programming subproblems to estimate the active-set at each 

iteration. This active-set code may be preferable when a good initial point can be 

provided, for example, when solving a sequence of related problems [65] and [66]. 

4.2.2 Heuristic solution solver. A heuristic solution for the islanded mode 

was obtained in this work using the genetic algorithm. The genetic algorithm starts by 

generating random starting solution. Then, it makes a series of new solutions. At each 

stage, the genetic makes use of the existing generation to develop a new solution. 

The production of new solutions is done by different steps. The fitness values 

of each existing population are calculated and those values are then transformed to more 

applicable values. After that, some members are chosen as parents based on their fitness 

values, other individuals with the lowest fitness are taken to the next population and 

those are called elite individuals. Children are generated by ways of mutation or 

crossover and the new children replace the existing population. The process is repeated 

till the stop criterion is met [67]. 

 

 

 



46 

 

Chapter 5. Results and Analysis 

 

This chapter presents and discusses the simulation results achieved by the 

implementation of the proposed control scheme on the case studies described in Chapter 

4. We also evaluate the performance of the three scenarios on the two modes of 

operation.  

The proposed control scheme is implemented using GAMS and MATLAB 

environments. In this work, GAMS was used as the optimization unit. MINOS solver 

has been used to solve the MINLP problem introduced in Chapter 3. The MINLP 

variables are given initial values and bounding conditions to speed the optimization. 

MATLAB is used to host database unit and the forecasting unit. MATLAB also hosts 

the MGC that controls the optimization unit and then send the desired data to GAMS. 

5.1. Grid Connected Mode 

Three scenarios are presented in this case study as described in Chapter 4. 

5.1.1. Base case without control. For this case, the total load of fixed and 

variable equipment is supplied once it is initiated, regardless of the system loading 

condition. The only sources of energy are the grid and the PV unit. The total cost of 

consumption per day is $1,523. Hence, no coordination with the batteries is introduced 

and all the loads are considered fixed, i.e. no options available. 

5.1.2. Day ahead control. In this case, the injected active powers from 

dispatchable DG, PV units, and from the grid is shown in Figure 5.1. As shown in the 

figure, the dispatchable DG operation is controlled through the MGC to reduce the 

overall operating costs; thus, the dispatchable DG is operated during high energy prices 

around 11:00 am and 7:00 pm to reduce the purchased energy from the grid. Figure 5.2 

shows two charging/discharging cycles for the BESS operation. As shown in Figure 

5.2, the BESS is charged during low energy prices around 6:00 am and 4:00 pm; then, 

it is discharged during high energy prices around 11:00 am and 7:00 pm. Moreover, it 

can be seen in Figure 5.2 that the battery actions of charging or discharging also 

coincide with the load consumption. 
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In the day-ahead case, the controller is aware of the whole day data and develops 

perfect matching result for it; however, this is not the practical case. The total cost of 

consumption from the grid and the dispatchable DG is $1,297. 

 

Figure 5.1: Generation from different sources for the grid connected day-ahead case 

 

Figure 5.2: BESS and load profiles for the grid connected day-ahead case 

5.1.3. Real time control. The rolling time horizon parameters settings is 10 

mints for ∆𝑡 and three hours for the window width. The weather condition changes 

every moment, and the load increases or decreases randomly. This needs fast and 

accurate actions to be sent to local controllers. The RTW actions are sent and 

implemented immediately. Then, every period ∆𝑡, they are updated continuously to 

tune the decision with the latest available forecast.  
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As shown in Figure 5.3, by utilizing the RTW, the dispatchable DG operation 

duration is longer compared to the day-ahead case to serve the battery requirements. 

The battery charging/discharging actions are more sensitive to the prices variations. 

This is reflected in Figure 5.4 by three charging/discharging cycles. This is due to the 

short-sightedness of the controller, i.e. the length of the time window, which is a trade-

off between accuracy and computational time, as mentioned earlier. In this figure, the 

system had a third charging cycle without a final discharge, this is due to the nature of 

the folding time window. The total cost of consumption is $1,299. 

 

Figure 5.3: Generation from different sources for the grid connected real-time control 

 

 

Figure 5.4: BESS and load profiles for the grid connected real-time control 
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5.2. Islanded Mode 

5.2.1.  Base case without control. The sources of energy are the DGs and the 

PV only. Also, no coordination with the batteries is involved and all the appliances 

require an immediate operation, i.e. options provided by the local controller are not 

available. The DGs are working according to the droop control parameters setting to 

reduce the cost and keep the voltage and frequency levels. The total cost of the energy 

consumption in this situation per day is $2,178. 

5.2.2. Day ahead control. In this case, the injected active powers from 

dispatchable DG and PV units are shown in Figure 5.5. The dispatchable DGs operation 

controlled by the MGC with the specified droop control characteristics, the insertion is 

done by the cheapest DG. As the load increase, more DGs are inserted according to 

their ratings. In this mode, we don’t have the price of grid energy as a controlling 

element for the DGs insertion and battery decisions. However, the system should satisfy 

the load at all times. Figure 5.6 shows also two charging/discharging cycles with slow 

charging at the beginning between 12:00 am and 10:00 am when the load is light. Most 

of the power discharged during the time of high demand between 6:00 pm and 10:00 

pm. The total energy cost represented by the generators cost is $2127.152. 

Results of the frequency and voltage limits for the day ahead scenario obtained 

by the droop settings are shown in Figure 5.7 and Figure 5.8. Although these values are 

not constant, they successfully stayed within their specified limits. 

5.2.3 Real time control. The cheapest DG serves as a base for the generation 

with its full power output rating as shown in Figure 5.9. The output generation follows 

the load cycle as well. In Figure 5.10 charging and discharging process is being nearly 

random. Many small charging and discharging cycles are shown, because of the lack of 

the generation and load information of the times beyond the moving window width. 

Also, the charging/discharging pattern is affected by the slight variations of 

consumption. However, the charging decisions are still performed during the light load 

and discharges during peak load. The total daily cost for the consumption is $2090.92. 
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Figure 5.5: Generation from different sources for the islanded day-ahead case 

 

Figure 5.6: BESS and load profiles for the islanded day-ahead case 

Figure 5.11 and Figure 5.12 show the system frequency and the voltage values 

respectively. Many frequent changes in the frequency appear in Figure 5.11which are 

due to the moving window nature. All the values maintained within the specified 

boundary values. 

Two types of solution for the islanded mode were obtained; MINLP exact 

solution and genetic algorithm heuristic solution. The exact solution obtained gives the 

minimum cost of consumption but at the expense of long computational time. On the 

other hand, the heuristic solution obtained does not guarantee minimum cost. However, 

the reduction in the computational time is extremely enormous. The summary of 
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computational time and cost for the two types of solution are listed in Table 5.1. 

 

Figure 5.7: Day ahead frequency 

 

Figure 5.8: Day ahead maximum and minimum voltage 

 

Evidently, from our experiments and previous results, we can notice that the 

base case scenario has the highest cost. Then, both the day-ahead and real-time cases 

have near costs, a summary of the costs for both cases are given in Figure 5.13 and 

Figure 5.14. Table 5.2 also shows a detailed comparison between the different cases 

and the reduction in the daily cost compared to the base case without control.  
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Figure 5.9: Generation from different sources for the islanded real-time control 

 

 

Figure 5.10: BESS and load profiles for the islanded real-time control 

Table 5.1: Islanded mode exact and heuristic solutions 

 

Solution 

Exact solution Heuristic solution 

Day ahead Real-time Day ahead Real-time 

Cost ($) 2127.15 2090.92 2197.573 2175.757 

Computational 
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Figure 5.11: Real-time frequency values 

 

 

 

Figure 5.12: Real-time maximum and minimum voltages 
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Figure 5.13: Comparison of three cases cost for grid connected mode 

 

 

 

Figure 5.14: Comparison of three cases cost for islanded mode 
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Table 5.2: comparison of the daily costs with base case 

Case Grid connected mode Islanded mode 

Base case Day 

ahead 

Real-

time 

Base case Day 

ahead 

Real-

time 

Cost ($) 1523 1297 1299 2177.97 2127.15 2090.92 

Reduction 

compared 

to base 

- 14.8% 14.7% - 2.33% 4% 
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Chapter 6. Conclusion and Future Work 

 

This thesis proposes a centralized energy management scheme for microgrids 

that efficiently coordinates the grid and customers’ assets to reduce the operating cost. 

The proposed approach relies on rolling time horizon to manage real-time data 

exchange and to update the control decisions based on the real-time and the forecasted 

information.  

Although day-ahead based approaches are more commonly used in literature, 

they fail to address the customers’ preferences changes, new connected appliance, and 

intermittent nature of renewable resources. On the other hand, the proposed real-time 

approach offers more flexibility by updating the control decisions every short period 

according to the most recent information; thus, allowing the plug-and-play option. 

The problem was modeled as mixed-integer non-linear programming and is not 

convex in nature, as a result, the proposed solution does not guarantee finding the global 

optimal solution at all times. The solution could be trapped with a local optimal solution 

only. To develop the real-time optimal decisions, the proposed approach utilizes three 

units: data storage unit, forecasting unit, and optimization unit. 

Simulation results on a typical smart microgrid prove the effectiveness and 

robustness of the proposed approach, which results in almost the same saving as the 

ideal day-ahead approach. Although, the proposed approach utilizes the system assets 

more than the day-ahead approach; the real-time approach presents a more practical 

case. The variable parameters of the time step and moving horizon are decided 

depending on how often the loads are plugged. Either it needs a fast adoption or not, 

and the controller must compromise between having high accuracy and computational 

time. In addition, choosing the time window and step durations have a significant 

impact on the results. A longer duration of the time window and a shorter duration of 

the time step would provide more accurate results, but on the expenses of a longer 

computational time. Thus, it is a trade-off between accuracy and computational time. 

On the other hand, the heuristic solution obtained using the genetic algorithm saves 

more computational time and the obtained results are close to the exact solution and 

hence, could be implemented for real time measurements.  
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As a future work, the proposed control scheme could be implemented as a 

hardware unit. We need a communication media between the control unit and all the 

components that we need to read/write from or to. The forecasting unit that was not 

designed in this work will need to be implemented to have the future data.  

The work presented here is centralized control where all the decisions are 

decided through the microgrid controller. However, the problem could be implemented 

in a different way with the local controllers at the consumer side contribute in the 

control process. This is realized by a decentralized control scheme that manages 

different objectives of the consumer. 
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