

 PARALLEL IMPLEMENTATIONS FOR ELIMINATING FINITE STATE

MACHINE MUTANTS

by

Emad Mohammad Badawi

A Thesis presented to the Faculty of the

American University of Sharjah

College of Engineering

In Partial Fulfillment

 of the Requirements

for the Degree of

Master of Science in

Computer Engineering

Sharjah, United Arab Emirates

May 2017

© 2017 Emad Mohammad Badawi. All rights reserved.

Approval Signatures

We, the undersigned, approve the Master’s Thesis of Emad Mohammad Badawi.

Thesis Title: Parallel Implementations for Eliminating Finite State Machine Mutants.

Signature Date of Signature

 (dd/mm/yyyy)

___________________________ _______________

Dr. Khaled El-Fakih

Associate Professor, Department of Computer Science and Engineering

Thesis Advisor

___________________________ _______________

Dr. Gerassimos Barlas

Professor, Department of Computer Science and Engineering

Thesis Co-Advisor

___________________________ _______________

Dr. Raafat Aburukba

Assistant Professor, Department of Computer Science and Engineering

Thesis Committee Member

___________________________ _______________

Dr. Usman Tariq

Assistant Professor, Department of Electrical Engineering

Thesis Committee Member

___________________________ _______________

Dr. Fadi Aloul

Head, Department of Computer Science and Engineering

___________________________ _______________

Dr. Mohamed El-Tarhuni

Associate Dean for Graduate Affairs and Research

College of Engineering

___________________________ _______________

Dr. Richard Schoephoerster

Dean, College of Engineering

___________________________ _______________

Dr. Khaled Assaleh

Interim Vice Provost for Research and Graduate Studies

Acknowledgements

I would like to express my utmost gratitude to my thesis advisors, Dr. Khaled

El-Fakih, and Dr. Gerassimos Barlas, for their guidance and patience at every step

throughout the thesis. I would also like to thank them for sharing their knowledge with

me.

I am grateful to the Department of Computer Engineering and the American

University of Sharjah for giving me the opportunity to pursue my graduate studies by

offering me Graduate Teaching Assistantship.

In the end, I would like to thank my parents, brothers, uncle Dr. Imad Abu-

yousef and friends, for their love, encouragement, and sacrifices. Without their support,

I wouldn’t have been able to carry out my work.

5

Abstract

In this thesis, the mutants’ elimination problem considered in finite state

machine (FSM) based mutation testing, fault diagnosis, and in the assessment of the

effectiveness of test suites is targeted. Given a test suite of some test cases usually

derived from a specification FSM and a set of mutants (or fault domain), derived from

the specification with respect to some assumed types of faults, mutants’ elimination

deals with deleting/killing each mutant of the fault domain that has an output behavior

different than that of the specification FSM in respect to some test case of the test suite.

However, this process is time consuming, especially when the number of considered

mutants is huge. Accordingly, three parallel implementations for the considered

problem based on the Open Multi-Processing (OpenMP), Message Passing interface

(MPI) and the Compute Unified Device Architecture (CUDA) parallel technologies are

presented. Comprehensive experiments are conducted to assess the speedup and

execution time of the proposed implementations. On average, over all conducted

experiments with both randomly generated and real application FSMs, the speedup of

OpenMp, MPI, and GPU against sequential implementation equals 6.4, 22.9, and 569.7

times, respectively. The relative speedup of MPI and CUDA with respect to OpenMp

equals 3.5 and 121.5 times, respectively; and the relative speedup of CUDA with

respect to MPI equals 96.12 times. In addition, the results obtained using real machines

are compared with random machines with the same attributes. CUDA implementation

is shown to be scalable in terms of considered number of mutants and FSM size. For

instance, limited by the used hardware architecture, CUDA easily handled experiments

with 500 Million mutants and operated on machines with 9.5 Million transitions.

Experiments are also conducted to determine the experimental setup attributes such as

test suite length, number of test cases, and attributes related to the parallel

implementations such as threads number in OpenMP, processes number in MPI and

number of inputs of a test case that will be applied to the mutants in each GPU

invocation.

Search Terms: Model Based Testing, Mutation Testing, Parallel Testing, MPI,

OpenMP, GPU, CUDA.

6

Table of Contents

Abstract ... 5

List of Figures ... 8

List of Tables .. 9

List of Abbreviations .. 10

Chapter 1 : Introduction .. 11

Chapter 2 : Preliminaries .. 16

2.1 Finite State Machine (FSM) ... 16

2.2 Open Multi Processing (OpenMP) ... 18

2.3 Message Passing Interface (MPI) ... 18

2.4 Graphical Processing Units (GPUs) ... 19

2.4.1 Compute Unified Device Architecture (CUDA). .. 20

Chapter 3 : Proposed Implementations ... 24

3.1 Sequential Algorithm ... 24

3.2 OpenMP Implementation ... 26

3.3 MPI Implementation .. 28

3.4 CUDA Implementation .. 30

Chapter 4 : Experimental Results ... 35

4.1 Used FSMs, Software and Hardware platforms ... 35

4.1.1 Determining the TS length. ... 37

4.1.2 Determining the number of test cases in the TS. ... 38

4.2 Experiments with Randomly Generated FSMs .. 39

4.2.1 Sequential versus parallel implementations. ... 39

4.2.2 Speedup of MPI and CUDA relative to OpenMP 41

4.2.3 Speedup of CUDA relative to MPI. ... 42

4.2.4 CUDA Scalability. ... 44

4.3 Experiments with Real Application FSMs ... 44

4.3.1 Sequential versus parallel implementations. ... 44

4.3.2 Speedup of MPI and CUDA relative to OpenMP. 46

4.3.3 Speedup of CUDA relative to MPI. ... 48

4.3.4 CUDA Scalability. ... 49

4.4 Analysis .. 50

4.4.1 Execution time considering machine size. .. 50

4.4.2 Number of Threads, Processes and Run Size versus Speedup. 51

7

4.4.3 Randomly generated FSMs versus real applications FSMs 53

Chapter 5 : Related Work and Literature Review ... 58

Chapter 6 : Conclusion.. 61

References……………………………………………………………………………64

Vita .. 70

8

List of Figures

Figure 2-1 Finite State Machine S ... 17

Figure 2-2 CUDA Programming Model .. 23

Figure 3-1 MPI Implementation .. 29

Figure 3-2 CUDA Execution Time versus Block Size .. 31

Figure 3-3 Block Size 256 versus Block Size 512 ... 32

Figure 4-1 Sequential execution time versus TS length .. 37

Figure 4-2 Percentage of killed mutants versus TS length .. 38

Figure 4-3 Sequential execution time versus number of test cases (FSM S1) 39

Figure 4-4 Sequential execution time versus number of test cases (FSM S7) 39

Figure 4-5 Sequential versus parallel implementations execution time (Machine S1) 40

Figure 4-6 Speedup against sequential algorithm (Machine S1) 41

Figure 4-7 Execution time for the parallel implementations (Machine S1 in table 4-1)

.. 41

Figure 4-8 MPI and CUDA speedup against OpenMP (Machine S1 in table 4-1)....... 42

Figure 4-9 Execution time for MPI and CUDA parallel implementations (Machine S7)

.. 43

Figure 4-10 CUDA speedup against MPI (Machine S7) .. 43

Figure 4-11 CUDA massive test (randomly generated machines) 44

Figure 4-12 Sequential versus parallel implementations execution time (Machine

nucpwr) .. 45

Figure 4-13 Machine nucpwr speedup analysis ... 46

Figure 4-14 Parallel implementations execution time (FSM nucpwr in table 4-1) 47

Figure 4-15 MPI and CUDA speedup against OpenMP (FSM nucpwr in table 4-1) .. 47

Figure 4-16 MPI execution time for big real application FSMs 48

Figure 4-17 CUDA speedup against MPI in big real application FSMs 49

Figure 4-18 CUDA massive test (real FSMs application examples) 50

Figure 4-19 Number of transitions versus execution time (Machines S1-S7) 51

Figure 4-20 OpenMP speedup versus number of threads (Machines S1-S7) 52

Figure 4-21 MPI speedup versus number of processes (Machines S1-S7) 52

Figure 4-22 CUDA speedup versus Run size (Machines S1-S7) 53

Figure 4-23 Sequential execution time of real applications FSMs versus. raandom

FSMs with the same attributes ... 54

Figure 4-24 OpenMp speedup of real applications FSMs versus random FSMs with the

same attributes ... 55

Figure 4-25 MPI speedup of real applications FSMs versus random FSMs with the same

attributes ... 55

Figure 4-26 CUDA speedup of real applications FSMs versus random FSMs with the

same attributes ... 56

Figure 4-27 CUDA execution time of real applications FSMs versus. random FSMs

with the same attributes ... 57

9

List of Tables

Table 2-1 Recent NVIDIA GPUs and their configurations ... 21

Table 4-1 Attributes combinations of randomly generated FSMs 35

Table 4-2 Attributes combinations of real application FSMs 36

Table 4-3 System Configuration & Platform Details .. 36

10

List of Abbreviations

ATPG Automatic Test Pattern Generation

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DS Distinguishing Sequence

FORTRAN Formula Translator

FSM Finite State Machine

GPU Graphical Processing Unit

HTD Hard-to-Detect

IUT Implementation Under Testing

KAI Kuck and Associates Inc.

MBT Model Based Testing

MD Mutant Descriptor

MPI Message Passing Interface

MPP Massively Parallel Processing

NoWs Network of Workstations

OpenMP Open Multi-Processing

PRAM Parallel Random Access Memory

QA Quality Assurance

SDL Standard Description Language

SGI Silicon Graphics Inc.

SIMD Single Instruction Multiple Data

SM Streaming Multiprocessors

SMX Collection of Multiprocessors

TC Test Case

TOPTGS Topological Partitioning Test Generation System

TS Test Suite

UIO Unique Input Output Sequence

UML Unified Modeling Language

11

Chapter 1 : Introduction

Since the beginning of the second half of the last decade, computer

programming has evolved into a discipline of engineering. In 1968, the principle “the

establishment and use of sound engineering principles in order to obtain reliable,

efficient and economically viable software” was introduced and the appliance of quality

assurance (QA) for products became essential in the designing process [1].

Quality assurance and system testing is crucial, yet very expensive, manual,

prone to error and time consuming process to guarantee reliability and quality of

software testing [2-5]. In 1970s, approximately 50 percent of the project development

time spent on the testing, and its cost was more expensive with over than 50 percent of

the total cost. These percentages did not change till this time [3, 6, 7].

The development of the techniques and tools required for the derivation of

(functional) tests from given models is one of the promising approaches for reducing

the expensive cost of testing. A state model, usually representing a implementation

under test (IUT), typically consists of states and transitions between states. Prominent

state based models include (Mealy) finite state machines (FSMs), labeled transition

systems (LTSs), finite state automata (FSA). Various versions of these models were

extended to handle variables, variable update statements, and guards specifying

enabling conditions of transitions execution.

In this thesis, systems models are considered as FSMs where a transition

between a source and a destination (or next) state of an FSM is labeled by an

input/output pair illustrating the fact that if the machine is currently at the source state

and receives the specified input, it produces the specified output while moving to the

next state. Accordingly, an FSM has a behavior that can be described as traces of pairs

of input/output sequences. FSMs are extensively used in diverse application domains

like lexical analysis [8], communication protocols [9] and other reactive systems.

Furthermore, FSMs are the elemental models for formal description techniques, such

as Standard Description Language (SDL) [10], Unified Modeling Language (UML) and

Statecharts. Application areas of FSM-based testing span a vast range of domains; some

of these domains are testing of web services [11-15], communication protocols [16-18],

12

lexical analysis [8], software design [19], graphical user interfaces [20, 21], sequential

circuits [22], embedded systems [23-25], industrial projects [26], object oriented

systems, and properties related to security, timing, performance, reliability, and others.

Test derivation from a given FSM specification can be done in many ways and

for various purposes. In all cases, based on the given FSM specification, one can

identify some selected types of faults that may exist in a black-box FSM IUT, and

accordingly enumerate using the specification machine, the set of FSM mutants, called

the fault domain, according to the selected types of faults. Typical types of faults

include output and/or transfer faults [27, 28]. For example, a mutant M of a given

specification S has an output (transfer) if it has a transition with an output (next state)

different than the corresponding transition of S. Then, starting from an initial set of test

cases (test suite), one can run the test cases on the mutants of the considered fault

domain and eliminate/kill those mutants whose behavior, with respect to the considered

tests, is different from that of the specification machine. An FSM mutant is killed (or

eliminated) by a test case if the output responses (sequences) of the mutant and the

specification machines to the input sequence of the test case are different. A test case

TC is a pair of an input sequence and its corresponding (expected) output sequence. An

FSM mutant M is distinguishable from another (mutant or the specification) FSM S if

there exists an input sequence (test case) that when applied to these machines, they

produce different output sequences; otherwise, if such an input sequence does not exist,

the machines are not distinguishable [29-33]. This process is called mutation testing.

The tale of mutation testing goes back to1971 in a student paper by Lipton [34].

The field birth can also be determined in published papers in the late 1970s by Hamlet

[35] and DeMillo et al. [36, 37].

Mutation testing can be used for testing software at many levels such as, the unit

level, the integration level, and the specification level. It has been adapted to many

programming languages as a white box unit test technique. For example, it has been

adapted to Ada programs [38], FORTRAN programs [39], Java programs [40], C

programs [41] and SQL code [42]. Furthermore, mutation testing has also been used

for integration testing, software implementation level and applied at the design level to

test the specifications or models of a program. For example, at the design level,

mutation testing has been adapted to network protocols [26, 32, 43, 44], security

13

policies [45], FSMs [11, 46, 47] and Web services [48]. The reader can refer to [37, 49]

for more surveys and researches about mutation testing.

Another typical FSM test derivation method is based on finding tests that can

distinguish the specification machine from one or more mutants in the selected fault

domain. Then, tests are run to reduce the mutants (mutants’ elimination) of the fault

domain, and the process is repeated till all mutants of the fault domain that are

distinguishable from the specification machine are eliminated, and thus a complete test

suite with respect to the assumed fault domain is derived. This type of test derivation is

a form of specification FSM-based mutation testing. Specification based mutation

testing is a common mutation testing approach that has many application areas. For

more information about mutation and specification based, including FSM-based,

mutation testing with related methods and tools, the reader may refer to the survey in

[37].

Mutants’ elimination is also used while assessing the fault coverage of many

types of test suites. Given that many test suites are derived with respect to different test

coverage derivation criteria or fault models, different categories of mutants are derived

with respect to some selected mutation operators, and then the test suites are run against

the mutants. The coverage of the test suites, usually assessed using a considered

mutation score, is determined. A huge number of papers are proposed in the literature

for studying the effectiveness of typical types of test suites. Studies on the effectiveness

of test suites are mostly summarized in [37, 50-58]. It is worth mentioning that FSM-

based mutants’ elimination is used in a recent assessment presented by El-Fakih et al.

[59]. Many types of FSM test suites and the fault coverage of these test suites are

assessed with respect to many fault domains (types of faults). In this assessment, tools,

including the one given by Simao et al. [60], are used to assess the mutation scores of

the test suites with respect to the considered FSM mutants of the assumed fault domains.

Another interesting application area of the mutants’ elimination problem is in

FSM-based fault diagnosis [28, 61-66]. Given a faulty (black-box) IUT, the objective

of fault diagnosis is identifying the faulty IUT, i.e. locating the faults in the faulty FSM.

This is carried out by the derivation of a set of diagnostic candidates. FSM mutants,

representing the fault domain, based on the observed behavior of the IUT with respect

to an initial test suite, and then on further tests, called diagnostic tests, are derived and

14

run against the diagnostic candidates and the IUT to eliminate the candidates that do

not have the same behavior with respect to the applied tests as the given IUT. This

process of test derivation and mutants’ elimination is repeated until all candidates that

are distinguishable from the given IUT are eliminated; and thus, the faulty

implementation is located.

Parallel machines in the form of multicore CPUs and manycore GPUs have

become widely available in the last 10 years. This has in turn helped solving complex

problems with less time. There are many options that researchers can use to write

parallel code like Open Multiprocessing (OpenMP) which utilizes many cores in the

same machine to execute more than one thread simultaneously [67, 68]. Message

Passing Interface (MPI) which utilizes disrupted memory systems which are usually

clusters of computers Network of Workstations (NoWs) with isolated memory [69, 70].

Also, Compute Unified Device Architecture (CUDA) development toolkit permits

GPU programming in a C-like language, and exploits the computation power of the

Graphical Processing Unit (GPU). But the problem with these tools is that they do not

indicate “what-to” parallelize; rather they specify “how-to” parallelize. Software

development professionals must defy the challenge of developing software that takes

advantage of this hardware [71].

Thus, it is clear from above that the process of eliminating mutants is a major

step in many FSM-based testing related activities as it is the case in mutation testing,

fault diagnosis, and the assessment of the effectiveness of test suites. However, in

general, the number of mutants in a considered fault domain can be extremely huge.

Accordingly, in this thesis, the aim is reducing the execution time (and thus energy) of

mutants’ elimination. To this end, three parallel implementations for reducing the time

efforts of mutants’ elimination utilizing state-of-the-art parallel technologies are

presented and assessed. The first is an Open Multi-Processing (OpenMP)

implementation that utilizes many cores in the same machine. The second

implementation uses a clustered system using Message Passing Interface (MPI)

standard. Finally, the third is based on the Compute Unified Device Architecture

(CUDA) that exploits the computation power of the Graphical Processing Unit (GPU).

A comprehensive assessment is presented where the objective of the assessment

is to determine and compare the performance of the presented implementations in terms

15

of execution time and speed up. The experiments carried out in this thesis show that the

sequential implementation does not scale for big application examples, and

accordingly, the performance of the parallel implementations is assessed for big

examples. The experiments reveal that the GPU implementation using the software

platform CUDA gives the best performance amongst all the parallel implementations,

and the speedup obtained is much more significant than the OpenMP and MPI

implementations. The parallel implementation on the NoW using the MPI gives the

second-best performance, and the parallel implementation on a multi-core CPU gives

the third best performance. Finally, as CUDA performance was extremely better than

the other parallel implementations, the scalability of CUDA to huge application

examples is studied. The assessment also includes some analysis on the attributes

related to the considered mutants’ elimination problem. Namely, the FSM size (i.e.,

number of transitions), and number of considered mutants to eliminate, TS length and

number of test cases of a TS. In addition, an experimental analysis is given to determine

the parallel implementations attributes such as the number of invoked threads in

OpenMP, the number of launched processes in MPI, CUDA block size as well as

CUDA RunSize which is the size of GPU shared memory that is allocated to save the

test case in the elimination process. Last but not least, it is worth mentioning that an

experimental assessment was carried out using both randomly generated FSMs and real

application FSMs.

This thesis is organized as follows; Chapter 2 includes preliminaries related

finite state machines, mutants, and test cases, as well it introduces the considered

parallel technologies. Chapter 3 includes the proposed sequential, OpenMP, MPI and

CUDA parallel implementations used for mutants’ elimination. Chapter 4 includes the

experimental evaluation. Chapter 5 includes related work and Chapter 6 concludes this

thesis.

16

Chapter 2 : Preliminaries

2.1 Finite State Machine (FSM)

A deterministic finite state machine is an initialized complete deterministic

Mealy machine that can formally be defined as a 6-tuple S = (S, I, O, , s0) where S

is a finite set of states, s0 is the initial state, I is a finite set of input symbols, O is a finite

set of output symbols, is a next state (or transition) function: : S × I  S,  is an

output function:  S × I  O. Usually, functions  and  are extended to input

sequences.

For an input sequence  = i1 i2…ik  I* at a state s,  = o1o2…ok  O*

denote the corresponding output sequence obtained by applying at s. The pair  / is

an Input/Output (I/O) sequence at state s.

A transition of an FSM a 4-tuple t = (s, i, o, s) representing the fact that if the

machine is at source state s, upon receiving the input i, it produces the output o while

moving to the next state s. Common types of FSM faults are transfer, output, extra state,

and mixed faults [27]. Given an FSM specification S, a transition t of a mutant M of S

has an output (transfer) fault if it has a transition with an output (next state) different

from that specified at the corresponding transition of S, i.e., for t = (s, i, o, s) of S, M

has an output fault at t if M has the transition (s, i, o , s) where o  o, and M has a

transfer fault (at t) if M has the transition (s, i, o , s) where s  s. A mutant M of S

has multiple faults if has many faulty transitions.

 Given two FSMs, a specification S and a mutant M, defined over the same input

and output alphabets, an input sequence  is a distinguishing sequence for S and M (that

is for the initial states of S and M) if the output responses of S and M to the input

sequence are different. In this case, the input sequence distinguishes S and M or

simply  kills (eliminates) the mutant M. If there is no such an input sequence, S and M

are indistinguishable.

A test case TC is a pair of an input sequence i1 i2…ik of the specification FSM

S and its corresponding (expected) output sequence o1o2…ok , that is, a test case is an

input/output sequence of the initial state of S. A test case might be written using its

17

corresponding input/output pairs, i.e, as i1 /o1 i2 /o2 … ik/ok . Length of a test case TC

is the number of inputs of the test case. A test suite TS is a finite set of test cases. Length

of a test suite TS is the total length of its corresponding test cases. The number of test

cases of a test suite is denoted as |TS|. A set of k mutants, of the specification machine

S, is denoted as  = { M1, ….. Mk }. A test suite of m test cases is denoted as TS = {

TC1, …. TCm }. As the considered sets  has huge number of mutants, in order to reduce

storage space, instead of explicitly saving the mutants in , for each mutant Mi, only

the descriptor Mdi that includes the faulty transition(s) of the mutant in respect to the

specification S is saved. Thus, when needed, the mutant Mi itself can be derived from

both its descriptor Mdi and the specification S.

Figure 2-1 Finite State Machine S

As an example, consider the FSM S in Figure 2-1 defined over the sets of inputs

I = {i1, i2}, outputs O = {o1, o2}, and states S = {s0, s1, s2, s3}, respectively. A mutant

descriptor Md1 that includes the transition (s0, i1, s2, o1) represents the fact that the

18

mutant M1 of S has the transfer fault (s0, i1, s2, o1) where the mutant transfers to the state

s2 instead of s1 as specified in the corresponding transition (s0, i1, s1, o1) in S.

2.2 Open Multi Processing (OpenMP)

OpenMP (Open Multi-Processing) is a standard [57] for shared-memory

parallel programming. OpenMP was the result of joined project between Kuck and

Associates Inc. (KAI) and Silicon Graphics Inc (SGI) in the spring of 1996. The

combining efforts of these two companies gave birth to the idea of an industry

sponsored directive-based symmetric multiprocessor (SMP) programming standard,

soon known as OpenMP [72].

At its most elemental level, OpenMP is a collection of compiler directives and

callable runtime library routines that extend C/C++ and FORTRAN so that programmer

assisted shared-memory parallel programming can be delivered with minimal effort.

OpenMP compiler directives specify how workload is shared among threads, while also

controlling threads synchronization and determining the scope of variables. A parallel

program can be easily developed by the application programmers through

incrementally inserting directives into time critical sequential codes.

2.3 Message Passing Interface (MPI)

Message Passing Interface (MPI) is a standard for distributed memory parallel

programming [70, 73-75]. The MPI standard specifies the names, calling sequences,

and results of the subroutines or functions to be called from C, C++ or FORTRAN

programs. Several implementations are available for MPI such as OpenMPI, pyMPI

(MPI implementation in Python) and MPICH; some of them are commercial and others

are free. These implementations can be executed on both tightly-coupled Massively

Parallel Machines (MPPs), and on Networks of Workstations (NoWs) [69].

MPI specifies the communication among a set of processes composing a

concurrent program. The message passing paradigm is very attractive because it is

portable and scalable. MPI programs can be deployed on both shared-memory and

distributed-memory multiprocessors, and combinations of both of them.

19

MPI processes are assumed to reside in disjoint memory spaces. Data exchange

is performed via message exchange. MPI is responsible for process identification,

message routing and buffering.

MPI provides a wide gamut of communication primitives that cater for point-

to-point, collective as well as one-sided communication. Collective operations such as

“MPI_Bcast” ease communications involving more than two processes, i.e.

broadcasting specific information from a particular process to all other processes. Point-

to-point operations like the “MPI_Send”/ “MPI_Recv” pair provide rudimentary

communications between processes using a two-sided model, meaning that both

communicating processes must issue matching calls; one for sending and one for

receiving. One-sided communications were introduced in recent versions of the MPI

standard, decoupling data transfer from synchronization and allowing remote memory

access [74].

2.4 Graphical Processing Units (GPUs)

A Graphical Processing Unit (GPU) is a specialized computing architecture unit

designed to accelerate computer gaming applications graphics operations. A GPU chip

contains a large number of parallel microprocessors, designed to reduce the workload

of the CPU and accelerate 2D or 3D graphic processing. Recent GPUs are composed

of a large number of computing cores that are connected to high-speed memory (DDR5)

with very wide buses (256bit or larger), and they are able to execute multiple threads n

parallel. The multi-thread architecture of the GPU allows execution of many threads in

parallel to attain high speed of execution compared to traditional single or multi-core

CPUs [76].

GPU hardware development started as a single core. Fixed function hardware

pipeline application then evolved to a combination of highly parallel programmable

cores that can be used for general purpose computation and scientific computation.

GPU technology has always progressed by adding more programmability and

parallelism to a GPU core architecture. Individual GPU cores have gained over the

years features common to CPU cores, such as multi-level cache memories and

dedicated floating print co-processors [76].

20

GeForce 3 was released by NVIDIA in 2001; this was the first GPU with a

programmable pipeline and ability to program previously non-programmable parts of

the pipeline. Afterwards, fully programmable graphic cards were introduced. The

introduction of DirectX9, which provided the programmability in the GPU hardware,

started GPU computing wave [76].

In 2006, NVIDIA introduced the GeForce 8 series. This series, which contained

massive parallel processors, was a great evolution in the history of GPUs. NVIDIA’s

Fermi architecture GPU, introduced in 2009, featured a concurrent kernel execution,

true memory cache hierarchy, combined memory address space, better double precision

performance and dual warp schedulers. Since then, breakneck progress in the

development of GPUs has occurred. Readers can refer to Appendix A for more

information on recent GPUs [77, 78].

Some of the recent NVIDIA GPUs and their configurations are described in

Table 2-1, where Streaming Multi-processor (SM) represents a collection of cores with

Cores/SM as the number of cores in each SM. Cores represents individual (single) cores

(computing unit) contained in a GPU card, each core is capable of executing a thread

[79].

As observed in literature results, GPUs offer an enormous performance boost to

scientific computing. This motivated me to implement a GPU version of the mutation

testing algorithm. By applying test cases to kill FSM mutants on a GPU, the execution

time can be reduced and significant speedup can be attained compared to the

corresponding CPU solution.

Various software platforms can be used to execute code on GPUs such as

Thrust, CUDA, OpenCL, etc. [80]. In this thesis, CUDA is used, which is arguably one

of the most mature tools, delivering at the same time maximum performance by

allowing explicit machine control.

2.4.1 Compute Unified Device Architecture (CUDA). Compute Unified

Device Architecture (CUDA) is a parallel computing platform that was introduced by

NVIDIA at the end of 2006. CUDA provides an API and a toolkit (SDK) for harnessing

GPU hardware for general purpose computing. CUDA supports development in C/C++

21

and Fortran. Higher level platforms such as OpenACC and Thrust also work on top of

CUDA [81].

Table 2-1 Recent NVIDIA GPUs and their configurations

Card Cores Cores/SM SM Compute Capability

Nvidia Titan X 3584 128 28 6.1

GeForce GTX 1080 2560 128 20 6.1

GeForce GTX 1070 1920 128 15 6.1

GeForce GTX Titan X 3072 128 24 5.2

GeForce GTX 980 Ti 2816 128 22 5.2

GTX 980 2048 128 16 5.2

GTX 970 1664 128 13 5.2

GTX 960 1024 128 8 5.2

GTX TITAN Z 5760 480 12 3.5

GTX TITAN Black 2880 240 12 3.5

GTX Titan 2688 192 14 3.5

GTX 780 2304 192 12 3.5

GTX 770 1536 192 8 3.0

GTX 760 1152 192 6 3.0

GTX 690 3072 192 16 3.0

At the hardware level, a CUDA-capable GPU processor is a collection of

multiprocessors (SMX); each having a number of cores (processors). Each

multiprocessor has its own shared memory which is common to all its processors. It

22

also has a texture memory (a read only memory for the GPU), constant (a read only

memory for the GPU that has the lowest access latency) memory caches and a set of

32-bit registers. In any given cycle, the same instruction is executed in each SMX core

in a synchronous fashion. Each core can operate on different data hence each SMX is a

Single Instruction Multiple Data (SIMD) processor. GPU card memory (referred to as

global memory) is available to all the available cores, making it suitable for holding

shared data or structures [5]. CUDA provides a set of atomic primitives for operating

on global memory locations without the introduction of race conditions.

The CUDA programming model dictates the use of fine-grained parallelism as

required by massively parallel GPUs. In the CUDA programming model, the host CPU

memory (host memory) and the GPU device memory (global memory) are disjoint,

necessitating the explicit data transfer between the two.

From the programmer’s point of view, the CUDA model is a collection of

threads executing in parallel. All threads run a function called a kernel. Kernel

invocations are asynchronous, i.e. the CPU can continue to operate during GPU

computation; therefore, the CUDA programming model is a hybrid computing model

[82].

The threads are launched as a 3-D grid of 3-D blocks of threads. The maximum

size per dimension and the overall size of the grid and block structures are determined

by the characteristics of the target GPU. Each block is executed on one SMX. As the

block size may exceed the number of cores on an SMX, each block is divided in so

called “warps”. A warp is a set of 32 threads running synchronously on the cores of a

SMX. Multiple warps may be active at the same time in a SMX, depending on the exact

structure and the warp schedulers of the SMX[5]. Applications that require

synchronization between the threads of a block, can use the __syncthreads() primitive

to achieve this. No synchronization is available between different blocks.

The SMX memory architecture incorporates two additional types of on-chip

memory: a register which is a private memory for each thread, and shared memory

which is a common memory for all the threads within a block, as illustrated in Figure 2-2

[82]. Shared memory is significantly faster than global memory, albeit limited in size

(currently 48kB).

23

Figure 2-2 CUDA Programming Model

24

Chapter 3 : Proposed Implementations

In this chapter, a sequential algorithm for eliminating FSM mutants is presented,

followed by three parallel implementations of the algorithm, namely an OpenMP, MPI,

and CUDA implementation. The first is an OpenMP implementation that utilizes many

cores in the same machine. The second is an implementation that targets a cluster using

the MPI standard. Finally, the third is based on CUDA that exploits the computation

power of the GPU.

3.1 Sequential Algorithm

 The input of the algorithm is a complete deterministic FSM S = (S, I, O, , s0),

a test suite TS of m test cases, TS = {TC1, …. TCm}, and set of k mutants descriptors

MD = {Md1, …. Mdk} for the assumed set of mutants  = {M1, …. Mk} of S. The

descriptor Mdi of a mutant Mi represents only the differences between the specification

and the mutants; and thus, when needed, the mutant Mi can be derived using S and the

corresponding descriptor Mdi. The algorithm operates on one mutant at a time. For each

test case, the elimination process starts by feeding the mutant with the inputs of the test

case in sequence, and observe the corresponding outputs. If the observed output differs

from the expected output, applying tests to the mutant is stopped, and the mutant is

marked as killed (or eliminated). Otherwise, if the mutant is not killed by any test case,

then it is labeled a survived mutant and it is added to a list of survived mutants (SMD),

which is a subset of the set MD. The output of the algorithm is the list SMD.

Sequential Algorithm:

For each Mdi in MD, do (Loop-1)

 Modify S to create the mutant Mi using Mdi

 killed = FALSE

 While TS contains a TC not applied to Mi AND killed = FALSE do:

 killed = Eliminate_Mutant(TC, Mi)

 End While

25

 If killed is FALSE

 SMD = SMD  Mi

 End If

End For (Loop-1)

Return SMD

Procedure Eliminate_Mutant(Mi, TC)

While TC sequence is not exhausted AND Mi is not killed, do:

 Obtain output generated by Mi for the next input in TC

 If the obtained output is different than the corresponding output in TC

 Return TRUE

 End If

End While

Return FALSE

Example 1: As an application example of the mutation elimination process,

consider the FSM S in Figure 2-1. Let the set of mutants descriptors (MD) contains three

descriptors Md1, Md2 and Md3. Where transitions t1 = (s0, i1, s1, o1), t2 = (s1, i2, s3, o2)

and t3 = (s0, i2, s2, o2) of S have transfer faults and they change to (s0, i1, s2, o1), (s1, i2,

s1, o2) and (s0, i2, s1, o2) respectively. The initial test suite contains two test cases; TC1

= (i1/o1 i1/o2) and TC2= (i1/o1 i2/o2 i2/o1)

In the sequential algorithm, all the mutants are checked one by one. For each

mutant, the test cases are applied one by one until the mutant is eliminated. If there was

26

no test case capable of discovering and eliminating the mutant, the mutant will be added

to a set of survived mutants for further analysis.

The algorithm can be applied on Md1, Md2 and Md3 as follows: Using Md1, S is

modified to create mutant M1, now TC1 is applied on M1; at source state s0, upon

receiving the input i1, it produces the output o1 while moving to the next state s2. At

source state s2, upon receiving the input i1, it produces the output o1 while moving to

the next state s0. Here, the produced output o1 is not equal to the expected output o2,

hence the mutant is killed and no need to apply TC2 on the mutant.

For Md2 and Md3, the same steps are executed. First, M2 and M3 are created from

S using Md2 and Md3 respectively, then the test cases on both of them are applied. As a

result, M2 will be eliminated by TC2 while M3 will survive and Md3 will be added to

SMD.

3.2 OpenMP Implementation

In this section, a parallel implementation of the sequential algorithm is included

based on a multi-core CPU via multiple threads using OpenMP. Similar to the

sequential algorithm, the test cases are applied on the mutants one by one. However,

different threads are used for applying a test case in parallel to a number of mutants.

The number of mutants that can be checked in parallel depends on the number of

invoked threads, and this can be automatically scheduled by the OpenMP scheduler,

or can be specified by the programmer. In this implementation, the number of threads

equals the number of logical cores. Hyperthreading was enabled in the used test

platforms, maximizing the potential performance extracted from the hardware.

The distribution of mutants among threads depends on the schedule type being

used, static or dynamic. In static scheduling, the mutants are divided evenly among the

threads. In case the mutants cannot be divide evenly between the threads, only the last

thread share may be different than the others. In dynamic scheduling, the mutants are

divided into subsets and each thread works on one subset at a time. When a thread

completes its subset, it takes another available subset. Dynamic scheduling

performance can suffer from the coordination cost of acquiring new workload. Thus,

the results reported in this paper are based on static scheduling.

27

In the OpenMP implementation shown below, the only major difference from

the sequential algorithm is the partitioning of Loop-1, i.e. each of the N threads is

assigned a 1/N-sized subset of the mutant set.

OpenMP Implementation

Let SM be a vector of arrays to save survived mutants in each thread

Do In Parallel: For Each Mdi in MD (Loop-1)

 Let tID be the unique thread identifier

 Modify S to create the mutant Mi using Mdi

 killed = FALSE

 While TS contains a TC not applied to Mi AND killed = FALSE do:

 killed = Eliminate_Mutant(TC, Mi)

 End While

 If killed is FALSE

 SM[tID] = SM[tID]  Mi

 End If

End-For (Loop-1)

SMD = ∪∀ 𝒕𝑰𝑫 𝑺𝑴[𝒕𝑰𝑫]

Return SMD

Example 2: As an application example of OpenMP, considering Machine S in

Figure 2-1. Let the set of mutants descriptors (MD) contains ten thousand descriptors

{Md0, Md1, …, Md9999}. The test suite TS has two test cases and the number of invoked

threads N = 10.

The mutants are distributed evenly between the threads; each thread contains

10000/N = 1000 mutants. Within each thread, the sequential algorithm is applied to

28

eliminate the set of mutants assigned to it. Each thread saves the set of survived mutants

in a pre-allocated vector dedicated for it. When all the threads complete their work, the

survived mutants are collected from the dedicated vectors in SMD.

3.3 MPI Implementation

Similar to OpenMP, in MPI several mutants are eliminated in parallel, but here

a test case is applied in parallel to many mutants using different processes rather than

different threads, where each process has its own isolated memory and the

communication between processes is done via messages. The number of mutants that

can be checked in parallel by a process depends on the number of launched processes.

In the conducted experiments, the number of launched processes equals the total

number of physical cores in the considered cluster. The used test platform consisted of

four heterogeneous workstations.

As in OpenMP, employ two ways for distributing the mutants among the

processes can be applied. In a static distribution, an equal number of mutants is assigned

to each process. However, unlike the OpenMP case where all cores are identical, the

execution time is not the same across all the cluster machines, as they are equipped with

different CPUs. For this reason, a dynamic distribution based on the master-worker

pattern is employed. The master process coordinates the distribution of the mutants,

while the worker processes eliminate the mutants assigned to them. When the master

process starts, it divides the set of mutant descriptors into smaller subsets.

Subsequently, it assigns a subset to each worker process. The master then listens for

incoming load requests in order to hand-out unprocessed subsets, until set  is

exhausted.

On the other hand, upon initiation a worker process works on the initially

assigned subset. When this is processed, the worker requests a new subset from the

master. This process continues until the end signal is received from the master. At that

moment, the survived mutants in the workers are collected by the master process.

The worker processes work exactly as the sequential algorithm, as each worker

has a subset of mutant descriptors and works on eliminating these mutants sequentially.

The master process is only responsible for load balancing, which is,appropriately

assigning subsets of descriptors to the workers. To improve the implementation

29

efficiency, the master process collects only descriptors indices of the survived mutants.

MPI algorithm is shown in the form of a flowchart in Figure 3-1.

Figure 3-1 MPI Implementation

Example 3: MPI implementation is similar to OpenMp in which the set of

mutants is divided into N processes {P0, …. PN-1} where P0 is the master process, but,

30

in MPI, dynamic distribution is used through a master-worker arrangement. As an

application example of the MPI implementation, consider the same FSM S in

Figure 2-1, let the set of mutants descriptors (MD) contains ten thousand descriptors

{Md0, Md1… Md9999}. The test suite TS has two test cases and the number of launched

processes is twenty; one serving as the master and 19 as the workers.

The 10000 mutants are distributed evenly into several subsets. The number of

mutants in each subset is calculated in the master process P0 using the formula (|subset|

= |MD|/ (N*8)). P0 assigns the first N-1 subsets to the worker processes {P1,….,PN-1}

respectively, then starts listening for requests from them; each time responding with a

new subset. When all the subsets are distributed, an “end” message is sent to all

workers.

Each worker process executes the sequential algorithm on the initial subset

assigned from P0. When the worker process completes the assigned subset, it asks for a

new subset to operate on until an “end” signal is received. In response to the “end”

signal, a worker sends the survived mutants it collected to the master process.

3.4 CUDA Implementation

In this section, parallel implementation is presented based on the CUDA

platform. In CUDA a massive number of threads can be launched at the same time

allowing the assign of one thread per mutant.

The GPU is employed as a co-processor for filtering the mutants. The CPU

transfers to the GPU memory the machine specification, mutant descriptors and test

suite, and collects the survived mutants once the GPU completes its execution.

The following notations and variables are used in the implementation:

 RunSize: represents the number of inputs from a test case (sub-sequence

length) that will be applied to the set of mutants in each GPU invocation.

 αc: represent a subsequence of a TC, each TC will be divided into l disjoined

subsequences α1 … αl, each with length equal to RunSize.

 ReachedLoc: array where the state (of the mutant) reached after completing

the application of subsequence αc is saved.

31

 notKilled: array where the surviving mutant identifiers are saved after each

kernel invocation. Subsequent kernel launches use this array for mapping

mutants to threads. Initially, this array contains the indices of all the

descriptors in MD.

 ThreadSize: represents the number of launched threads inside the GPU.

 BlockSize: represents the number of threads inside each block in the GPU.

To determine the optimum BlockSize, an experiment was executed on FSMs S1,

S3, S5 and S7 (see Table 4-1). The used TS length equals 2×n× |I| and has n/2 test cases.

The number of considered mutants is fixed to 2.5 million. And BlockSize ranging from

32 to 1024 with step equals 32.

As depicted in Figure 3-2, there were two optimum BlockSize values; 256 was

optimum in FSMs S1 and S7 while 512 was optimum in FSMs S3 and S5.

Figure 3-2 CUDA Execution Time versus Block Size

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

Block Size

FSM S1

FSM S3

FSM S5

FSM S7

32

Another Experiment is executed using FSMs S8, S9 and S10 from Table 4-1. In

this experiment, A massive test with number of considered equals to 500 million is

executed. TS length that has only 1 test case with length equals to half the average of

the used FSMs transitions. BlockSize with values 256 and 512.

As presented in Figure 3-3, for massive experiments BlockSize equals to 256 is

better than 512. Thus, the used BlockSize in the conducted experiments is 256.

Figure 3-3 Block Size 256 versus Block Size 512

CUDA

CPU part

Copy machine S specification, MD set to GPU global memory

While TS contains a test case TCi not applied to M AND MD is not empty, do:

 Copy TCi to GPU global memory

 Divide TCi into l disjoint subsequences α = α1… αl of length (|TCi|/ RunSize),

 For each subsequence αc of α, and as long as MD not empty, do:

0

15

30

45

60

0 100 200 300 400 500

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

Number of Mutants (Millions)

FSM S8 BS256

FSM S8 BS512

FSM S9 BS256

FSM S9 BS512

FSM S10 BS256

FSM S10 BS512

33

 Set ThreadSize to the size of the MD set

 Set reachedState to the state before the start of αc

 Invoke GPU Kernel to apply αc on each member of MD

 Set MD to the set of survived mutants

 End For

End While

Copy MD (survived mutants) from global memory to host memory

GPU part (kernel function):

 Calculate global thread ID, tID

 Copy αc into shared memory

 Copy the mutant descriptor MdtID into thread memory (registers)

 Load reachedState from global memory into thread memory

 If Eliminate_Mutant (αc, MdtID) is False

 Copy MdtID to survived mutants

 Copy reachedState to global memory

 End if

Example 4: As an application example of the CUDA implementation, consider

the FSM S in Figure 2-1. Let the set of mutants descriptors (MD) contains ten thousand

descriptors {Md0, Md1 …Md9999} and the test suite TS has one test case TC1 with length

6000.

34

CPU Work

The CPU will copy the FSM S and set of mutants descriptors MD into the GPU

global memory. After that, TC1 will be divided into into l disjoined subsequences α1

… αl, each with length equal to RunSize. For each subsequences αc, ThreadSize is

initialized to the number of not-killed mutants , then the GPU kernel is invoked to apply

αc on the mutants set. After each GPU kernel invocation, the ThreadSize will be

recalculated, thus each time the number of launched threads in the GPU is reduced.

GPU Work

GPU kernel is responsible only on applying the subsequence αi on the set of

mutants to eliminate them.

35

Chapter 4 : Experimental Results

This chapter presents the experiments conducted to determine the execution

time and speedup of the parallel implementations in comparison to the sequential

algorithm. Experiments are conducted using both randomly generated and real

application FSMs. The experiments goal is to assess both the relative speedup and the

scalability of the implementation. Furthermore, a thorough analysis is presented to

assess the impact of the machine size and the number of mutants on the execution time

4.1 Used FSMs, Software and Hardware platforms

The attributes of the randomly generated FSMs used in the experiments are

shown in Table 4-1. These FSMs were derived using the generator used in [83].

Table 4-2 shows the attributes of the real application FSMs taken from the

ACM/SIGDA benchmarks [84].

Table 4-1 Attributes combinations of randomly generated FSMs

FSM machine name Number of

states (n)

Number of

inputs (|I|)

Number of

outputs (|O|)

Number of

transitions

n×|I|

S1 500 100 100 50000

S2 625 120 125 75000

S3 625 160 160 100000

S4 625 200 200 125000

S5 750 200 200 150000

S6 875 200 200 175000

S7 1000 200 200 200000

S8 5000 100 100 500000

S9 6000 125 125 750000

S10 10000 100 100 1000000

Random s208 18 2048 4 36864

Random Nucpwr 29 8192 20 237568

Random ram_testO 72 65536 27 4718592

Random Rs820o 25 262144 22 6553600

36

Table 4-2 Attributes combinations of real application FSMs

FSM machine

name

Number of

states (n)

Number of

inputs (|I|)

Number of

outputs (|O|)

n*|I|

Nucpwr 29 8192 20 237568

ram_testO 72 65536 27 4718592

s820o 25 262144 22 6553600

s8320 25 262144 22 6553600

s420O 18 524288 4 9437184

Table 4-3 System Configuration & Platform Details

Computer

name

Kingpenguin Dune-970 Dune-Titan Dune-770 Dune-Frg Setup-T3600

CPU

Intel(R)

Xeon(R)

CPU E5-2640

@ 2.50GHz

Intel(R)

Core(TM)

i7-5820K

CPU @

3.30GHz

Intel(R)

Core(TM)

i7-5930K

CPU @

3.50GHz

Intel(R)

Core(TM)

i7-4820K

CPU @

3.70GHz

Intel(R)

Core(TM)

i7-5820K

CPU @

3.30GHz

Intel(R)

Xeon(R)

CPU E5-1620

0 @ 3.60GHz

CPU

Cores
12 12 6 4 6

4

Threads /

Core
2 2 2 2 2

2

RAM 64 GB 32 GB 64 GB 32 GB 32 GB 16 GB

GPU -
GeForce

GTX 970

GeForce

GTX

TITAN X

GeForce

GTX 770
-

Quadro 2000

GPU

Cores
- 1664 3072 1536 -

192

GPU

RAM
- 4GB 12GB 2GB -

1GB

Compute

Capability
- 5 5 3 -

2

Number of

GPUs
- 2 1 2 -

1

The software environment is the same for all the test beds in Table 4-3 and is

mentioned below:

 Operating System: Ubuntu 16.04.1 LTS (64 bit)

 The GNU C++ 4.9.3 compiler was used with CUDA SDK 8.0.44

37

The sequential and OpenMP implementations were executed on Dune-970; the

CUDA implementation was executed on Dune-Titan, and the MPI parallel

implementation was tested on a NoW formed by the six machines Kingpenguin, Dune-

770, Dune-Frg and Setup-T3600 shown in Table 4-3.

4.1.1 Determining the TS length. The sequential implementation was used to

determine the impact of TS length over execution time and over the percentage of killed

mutants. These corresponding experiments were conducted using the small and

medium size FSMs S1 and S7 (see Table 4-1), respectively. In these experiments, test

suites with length ranging from 0.5×(n×|I|) to 10×(n×|I|) were used against a number of

test cases in a test suite equals n and fixed number of 0.5 million mutants.

Figure 4-1 and Figure 4-2 depict the execution time and the percentage of killed

mutants respectively, as TS length increases. As Figure 4-1 illustrates, the execution

time of the sequential algorithm increases at a rate which is analogous to log(TS). In

fact, beyond a TS length of 4×(n×|I|), there is hardly any increase in execution time.

Figure 4-1 Sequential execution time versus TS length

Figure 4-2 shows that for TS with length 2×(n×|I|), the percentage of killed

mutants reached 86.5%, and no major increase in this percentage is observed when TS

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

TS Length (Millions)

FSM S1 FSM S7

38

length is bigger than or equals 4×(n×|I|). Thus, in the conducted experiments test suites

of length 2×(n×|I|) is used.

Figure 4-2 Percentage of killed mutants versus TS length

4.1.2 Determining the number of test cases in the TS. A test sequence can be

broken into smaller subsequences that can be used in turn to reduce the number of

mutants that have to be examined as testing progresses. This can be beneficial for

execution time as it promotes better cache locality.

For this experiment, FSMs S1 and S7 were used. The number of subsequences

was set to 1, 0.125n, 0.25n, 0.5n, n to 2n, while the overall TS length was set to 2×(n×|I|)

as per the results of the previous section.

Figure 4-3 and Figure 4-4 depicts the execution time as the number of

subsequent increases for FSM S7. According to the results, the least execution time is

obtained when a TS is broken into n/2 test cases. The same pattern was observed for

FSM S1. For both machines, a minor difference of 0.003% is obtained between the

percentages of killed mutants among the different numbers of used test cases. Given

the above results, in the experiments described below, the overall input length 2×(n×|I|)

is n/2 test cases.

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

P
e

rc
e

n
ta

ge
 o

f
K

ill
e

d
 M

u
ta

n
ts

TS Length (Millions)

FSM S1 FSM S7

39

Figure 4-3 Sequential execution time versus number of test cases (FSM S1)

Figure 4-4 Sequential execution time versus number of test cases (FSM S7)

4.2 Experiments with Randomly Generated FSMs

4.2.1 Sequential versus parallel implementations. The experiments with

randomly generated FSMs are designed to illustrate what can be achieved with the

255

260

265

270

275

280

285

0 100 200 300 400 500 600 700 800 900 1000

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

Number of Test Cases

FSM S1

1470

1480

1490

1500

1510

1520

1530

1540

0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

Number of Test Cases

FSM S7

40

current state-of-the-art. In this section, the performance obtained by the sequential

algorithm is compared against the parallel OpenMP, MPI and CUDA implementations.

Because of the extremely large execution time required by the sequential

algorithm for medium and above sized FSMs, the testing is limited on FSM S1.

Figure 4-5 depicts the execution time for the sequential algorithm as well as the

parallel implementations as the number of mutants increases. According to these

experiments, the execution time of the sequential algorithm increases almost

exponentially as the number of considered mutants increases. When the execution time

of the sequential algorithm reaches 2 hr and 10 minutes, OpenMP, MPI and CUDA

execution times does not exceed 940, 252 and 10.6 seconds, respectively.

Figure 4-6 represents the speedup achieved by the OpenMP, MPI and CUDA

implementations. On average, the OpenMP speedup is 8.3x, the MPI speedup is 30.9x

while the CUDA one was significantly higher at 637.5x.

Figure 4-5 Sequential versus parallel implementations execution time (Machine S1)

1

10

100

1000

10000

2.5 5 7.5 10 12.5 15

E
x
eu

ti
o
n

 T
im

e
(s

ec
)

Number of Mutants (Millions)

Sequential OMP MPI CUDA

41

Figure 4-6 Speedup against sequential algorithm (Machine S1)

4.2.2 Speedup of MPI and CUDA relative to OpenMP. In this section, the

execution time of OpenMP, MPI and CUDA, and the relative speedup of MPI and

CUDA over OpenMP are assessed. As in the previous subsection, FSM S1 is used to

show that the parallel implementations can scale more than the sequential algorithm as

the number of considered mutants increases.

Figure 4-7 Execution time for the parallel implementations (Machine S1 in table 4-1)

1

10

100

1000

2.5 5 7.5 10 12.5 15

S
p

ee
d

u
p

Number of Mutants (Millions)

OMP MPI CUDA

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

Number of Mutants (Million)

OMP MPI CUDA

42

Figure 4-7 depicts the execution time as the number of mutants increases.

According to this figure, the CUDA implementation is much faster than the OpenMP

one. When the number of mutants equals 50 million, the execution time of OpenMP is

52.2 minutes while that of MPI and CUDA is only 841 and 28.7 seconds, respectively.

The speedup analysis for this experiment is presented in Figure 4-8. On average,

the achieved speedup of MPI and CUDA over OpenMP is 3.7x and 87.7x, respectively.

Figure 4-8 MPI and CUDA speedup against OpenMP (Machine S1 in table 4-1)

4.2.3 Speedup of CUDA relative to MPI. In this section, the execution time of

MPI and CUDA is assessed. In the conducted experiments, FSM S7 from Table 4-1 is

used. The testing expanded to larger FSM since FSM S1 is small and can’t assess the

power of MPI parallel implementation.

Figure 4-9 depicts the execution time as the number of mutants increases.

According to this figure, the CUDA implementation is much faster than the MPI one.

When the number of mutants equals 50 million, the execution time of MPI is 152

minutes while that of CUDA is only 2.6 minutes, i.e. CUDA is 58.6x faster than MPI.

1

10

100

1000

0 10 20 30 40 50

S
p

ee
d

u
p

Number of Mutants (Million)

MPI

CUDA

43

Figure 4-9 Execution time for MPI and CUDA parallel implementations (Machine S7)

Figure 4-10 CUDA speedup against MPI (Machine S7)

The speed up analysis for this experiment is presented in Figure 4-10. On

average, the achieved speedup of CUDA over MPI is 57.4x.

0.1

1

10

100

1000

10 20 30 40 50 60

E
x
ec

u
ti

o
n

 T
im

e
 (

m
in

)

Number of Mutants (Millions)

MPI CUDA

55

56

57

58

59

10 20 30 40 50 60

S
p

ee
d

 u
p

Number of Mutants (Millions)

CUDA

44

4.2.4 CUDA Scalability. In this section, the CUDA solution is analyzed relative

to how it can scale in terms of handling bigger FSMs and larger number of mutants.

Accordingly, S8, S9, and S10 (see Table 4-1) are utilized. In these experiments, test suites

of only 1 test case are used, each of length 750,000. TS was calculated as the average

number of transitions of the considered FSMs.

According to the results depicted in Figure 4-11, the CUDA implementation

scales almost linearly. The number of mutants tested, reach the limit on what is

currently possible to fit on the majority of GPU accelerators’ memory. The 500 million

mutants require a total of approximately 8GB of RAM for storage.

Figure 4-11 CUDA massive test (randomly generated machines)

4.3 Experiments with Real Application FSMs

4.3.1 Sequential versus parallel implementations. The experiments with

randomly generated FSMs are designed to illustrate what can be achieved with the

current state-of-the-art. In this section, the performance obtained by the sequential

algorithm is compared against the parallel OpenMP, MPI and CUDA implementations.

0

20

40

60

0 100 200 300 400 500

E
x
ec

u
ti

o
n

 T
im

e
(m

in
)

Number of Mutants (Millions)

FSM S8

FSM S9

FSM S10

45

Because of the extremely large execution time required by the sequential

algorithm for medium and above sized FSMs, the testing is limited on FSM nucpwr

(see Table 4-2).

Figure 4-12 Sequential versus parallel implementations execution time (Machine

nucpwr)

Figure 4-12 depicts the execution time for the sequential algorithm as well as

the parallel implementations as the number of mutants increases. According to these

experiments, the execution time of the sequential algorithm increases almost

exponentially as the number of considered mutants increases. When the execution time

of the sequential algorithm reaches 40.7 minutes, OpenMP, MPI and CUDA execution

times does not exceed 509, 162 and 3.2 seconds, respectively.

Figure 4-13 represents the speedup achieved by the OpenMP, MPI and CUDA

implementations. On average, the OpenMP speedup is 4.6x, the MPI speedup is 15x

while the CUDA one was significantly higher at 502x.

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

Number of Mutants (Millions)

Sequential OMP MPI CUDA

46

Figure 4-13 Machine nucpwr speedup analysis

4.3.2 Speedup of MPI and CUDA relative to OpenMP. In this section, the

execution time of OpenMP, MPI and CUDA, and the relative speedup of MPI and

CUDA over OpenMP are assessed. As in the previous subsection, FSM nucpwr from

Table 4-2 is used to show that the parallel implementations can scale more than the

sequential algorithm as the number of considered mutants increases.

Figure 4-14 depicts the execution time as the number of mutants increases.

According to this figure, the CUDA implementation is much faster than the OpenMP

one. When the number of mutants equals 10 million, the execution time of OpenMP is

2 hr and 18 minutes while that of MPI and CUDA is only 41.6 minutes and 34.6

seconds, respectively.

The speed up analysis for this experiment is presented in Figure 4-15. On

average, the achieved speedup of MPI and CUDA over OpenMP is 3.4x and 156x,

respectively.

1

10

100

1000

0 0.2 0.4 0.6 0.8 1

S
p

ee
d

u
p

Number of Mutants (Millions)

OMP MPI CUDA

47

Figure 4-14 Parallel implementations execution time (FSM nucpwr in table 4-1)

Figure 4-15 MPI and CUDA speedup against OpenMP (FSM nucpwr in table 4-1)

1

10

100

1000

10000

0 2 4 6 8 10

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

Number of Mutants (Millions)

OMP MPI CUDA

1

10

100

1000

0 2 4 6 8 10

S
p
ee

d
u
p

Number of Mutants (Millions)

MPI CUDA

48

4.3.3 Speedup of CUDA relative to MPI. In this section, the execution time of

MPI and CUDA is assessed. In the conducted experiments, FSMs ram_testO, s820o,

s8320 and s420O from Table 4-2 were used. The testing expanded to larger FSMs since

FSM nucpwr is small and can’t assess the power of MPI parallel implementation. In

these experiments, TS with fixed length equals to the (average number of transitions for

these FSMs over 16) is used. This TS is used since the considered FSMs are relatively

extra-large with average machine size equal to 6.5 million transitions.

Figure 4-16 MPI execution time for big real application FSMs

Figure 4-16 depicts the execution time as the number of mutants increases.

According to this figure, the MPI implementation can work on large and extra-large

FSMs with a reasonable execution time.

The speed up analysis for this experiment is presented in Figure 4-17. On

average, the achieved speed for CUDA over MPI is 134.8x, 27.9x, 27.8x and 109.8x

for FSMs ram_testO, s820o, s8320 and s420O, respectively. It can be seen from the

graph that increasing the number of mutants will increase the CUDA speedup.

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2

E
x
ec

u
ti

o
n

 T
im

e
(m

in
)

Number of Mutants (Millions)

ram_testO s820o s8320 s420O

49

Figure 4-17 CUDA speedup against MPI in big real application FSMs

4.3.4 CUDA Scalability. In this section, the CUDA solution is analyzed relative

to how it can scale in terms of handling bigger FSMs and larger number of mutants.

Accordingly, FSMs ram_testO, s820o, s8320 and s420O from Table 4-2 are utilized.

As illustrated above (see 4.3.3), test suites of only 1 test case are used, each of length

425,984. TS was calculated as (the average number of transitions of the considered

FSMs/16).

Figure 4-18 the CUDA implementation scales almost linearly. The number of

mutants tested, reach the limit on what is currently possible to fit on the majority of

GPU accelerators’ memory. The 250 million mutants require a total of approximately

4GB of RAM for storage, without considering the memory needed for the biggest of

the test FSMs which reach a size of 9.7 million transitions.

0

20

40

60

80

100

120

140

160

180

0 0.5 1 1.5 2 2.5

S
p

ee
d

u
p

Number of Mutants (Millions)

ram_testO s820o s8320 s420O

50

Figure 4-18 CUDA massive test (real FSMs application examples)

4.4 Analysis

In this section, attributes related to the considered mutants’ elimination problem

are assessed. More precisely, the impact of machine size on execution time, the impact

of number of threads in OpenMP, the impact of number of processes in MPI and the

impact of CUDA RunSize on speedup. This analysis is conducted using randomly

generated machines. Also, the obtained analysis using real application FSMs is

confirmed on randomly generated machines with the same attributes.

4.4.1 Execution time considering machine size. The sequential

implementation was used to determine the impact of the machine size as well as the

number of mutants over execution time. These corresponding experiments were

conducted using the FSMs S1 to S7 from Table 4-1.In these experiments, the used test

suites length equals 125,000 calculated as the average number of transitions of the

considered FSMs. As before, each test suite includes n/2 test cases. The number of

mutants fixed to 4 million.

0

5

10

15

20

25

0 50 100 150 200 250 300

E
x
ec

u
ti

o
n

 T
im

e
(m

in
)

Number of Mutants (Millions)

CUDA

FSM ram_testO

FSM s820o

FSM s8320

FSM s420O

51

 Figure 4-19 depicts the execution time as machine size increase. According to

the obtained results, the execution time of the sequential algorithm increases

exponentially as the machine size increases.

Figure 4-19 Number of transitions versus execution time (Machines S1-S7)

4.4.2 Number of Threads, Processes and Run Size versus Speedup. The

parallel implementations were used to determine the impact of the parallel

implementations attributes overs execution time. Namely, the number of invoked

threads in OpenMP, the number of launched process in MPI and CUDA RunSize |αc|.

These corresponding experiments were conducted using FSMs S1 to S7. illustrated

above (see 4.4.1), test suites of length equal 125,000 each has n/2 test cases is used.

The number of considered mutants is fixed to 1 million

Figure 4-20 depicts the execution time as the number of invoked threads

increases. According to this figure, the OpenMP speedup increases as the number of

invoked threads increases. However, as the machine size increases, increasing the

number of invoked threads will cause a speedup drop. The number of invoked threads

in the conducted experiments is the number of logical cores in the used computer.

2000

3000

4000

5000

6000

7000

50 70 90 110 130 150 170 190

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

Number of Transitions (Thousands)

Sequential Algorithm

4 million mutant

52

Figure 4-20 OpenMP speedup versus number of threads (Machines S1-S7)

Figure 4-21 MPI speedup versus number of processes (Machines S1-S7)

4

5

6

7

8

9

10

50 70 90 110 130 150 170 190

S
p

ee
d

u
p

Number of Transitions (Thousands)

OpenMP Speedup

6 Threads 8 Threads 10 Threads 12 Threads 14 Threads

0

5

10

15

20

25

30

35

40

50 70 90 110 130 150 170 190

S
p

ee
d

u
p

Number of Transitions (Thousands)

MPI Speedup

6 Processes 18 Processes 30 Processes

42 Processes 54 Processes 66 Processes

53

Figure 4-21 depicts the execution time as the number of launched processes

increases. According to this figure, the MPI speedup increases as the number of

launched processes increases. However, as the number of launched processes exceeds

42 and approaches the number of logical cores in the used NoW the speedup starts to

drop for large machines. The number of available logical cores in the used test platform

is 52 cores, and the number of launched processes is 42 processes.

Figure 4-22 CUDA speedup versus Run size (Machines S1-S7)

Figure 4-22 depicts the execution time as CUDA RunSize increases. According

to this figure, the CUDA speedup increases as the RunSize increases. However, as

RunSize starts approaching 2000, the speedup starts to decline. In the conducted

experiments, a RunSize equal to 1000 is used.

4.4.3 Randomly generated FSMs versus real applications FSMs. The

sequential and parallel implementations were used to confirm the obtained analysis over

randomly generated FSMs described in the previous section. To this end, some real

application FSMs are considered and then for each considered FSM, a randomly

500

600

700

800

900

1000

50 100 150 200

S
p

ee
d

u
p

Number of Transitions (Thousands)

CUDA Speedup

250 Inputs

500 Inputs

750 Inputs

1000 Inputs

1500 Inputs

2000 Inputs

54

generated FSM with the same attributes (number of states, inputs, outputs) is derived.

Then, an analysis similar to the ones described above using the derived FSM is

conducted to compare the obtained results with those of the real application FSMs. In

these experiments the attributes of the real application FSMs s208, nucpwr, ram_testO

and s820o (see Table 4-2), are used to derive corresponding randomly generated FSMs

with the same attributes, hereafter named Random-s208, Random nucpwr, Random

ram_testO and Random-s820o, respectively.

Figure 4-23 Sequential execution time of real applications FSMs versus. raandom

FSMs with the same attributes

Figure 4-23 depicts the execution time for the sequential algorithm for FSMs

s208, nucpwr, Random-s208 and Random-nucpwr as the number of mutants increases.

According to this figure, real application FSMs execution time has the same pattern as

the randomly generated FSMs. However, real application FSMs execution time is less

than that of the randomly generated FSMs. On average, the execution time for FSMs

s208 and nucpwr is 0.776x and 0.599x of that of Random-s208 and Random-nucpwr,

respectively. This difference in the execution time happens since the real application

FSMs has a unique output and next state pattern, in which the used randomly generator

cannot mimic to derive similar random FSMs.

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

E
x
ec

u
ti

o
n

 T
im

e
 (

se
c)

Number of Mutants (Millions)

 nucpwr

Random nucpwr

s208

Random s208

55

Figure 4-24 OpenMp speedup of real applications FSMs versus random FSMs with

the same attributes

Figure 4-25 MPI speedup of real applications FSMs versus random FSMs with the

same attributes

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1

S
p

ee
d

u
p

Number of Mutants (Millions)

 nucpwr Random nucpwr s208 Random s208

10

12

14

16

18

20

22

24

26

28

30

0 0.2 0.4 0.6 0.8 1 1.2

S
p

ee
d

u
u

p

Number of Mutants (Millions)

 nucpwr Random nucpwr s208 Random s208

56

Figure 4-26 CUDA speedup of real applications FSMs versus random FSMs with the

same attributes

Figure 4-24, Figure 4-25 and Figure 4-26 include the speedup analysis.

According to these figures, both real application FSMs and randomly generated FSMs

have the same speedup pattern. In OpenMP and MPI, nucpwr speedup is higher than

that of Random-nucpwr, while s208 speedup is less than that of Random-s208. In

CUDA, both randomly generated FSMs obtained better speedup than the real

application FSMs.

Extra experiments using CUDA implementation were conducted using the large

and X-large FSMs ram_testO, s820o, Random-ram_testO, and Random-s820o. In these

experiments test suites of only 1 test each of length 425,984 calculated as the average

number of transitions of the considered FSMs over 16 were used. The number of

considered mutants ranges from 2.5 to 22.5 million.

According to the results depicted in Figure 4-27, large and X-large real application

FSMs have the same pattern as the randomly generated FSMs. Moreover, the execution

time of ram_testO and Random-ram_testO are approximately the same.

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

S
p

ee
d

u
p

Number of Mutants (Millions)

 nucpwr

Random nucpwr

s208

Random s208

57

Figure 4-27 CUDA execution time of real applications FSMs versus. random FSMs

with the same attributes

0

40

80

120

160

2.5 7.5 12.5 17.5 22.5

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

Number of Mutants (Millions)

ram_testO

Random ram_testO

s820o Real

Random s820o

58

Chapter 5 : Related Work and Literature Review

 As described in the Introduction of this work, i.e. the process of eliminating

mutants, can be used in various FSM-based testing problems such as in mutation

testing, fault diagnosis, and studying the effectiveness of test suites.

In general, methods, tools, application areas, and summaries, related to mutation

testing and studying the effectiveness of test suites, are covered in the traditional

textbooks by Mathur [55], Ammann and Offutt [50], and in Jia and Harman [37] survey.

In particular, for FSMs, Fabri et al. [85] proposed FSM related mutation operators and

Febri et al. [86] and Simao et al. [60] described tools used in this context.

 Ghedamsi et al. proposed many FSM based fault diagnosis methods. They

proposed diagnostic tests for systems represented as FSMs in [61, 64-66] , as well as

for communicating FSMs [62, 63]. These methods are used in El-Fakih et al. [59] in

the context of extended FSM based fault diagnosis. El-Fakih et al. [28] presented a

method to determine if it is possible to locate faulty component FSM, and derive tests

for locating faults if it is possible to locate them. El-Fakih et al. [87] also followed a

similar approach for deriving an adaptive diagnostic test suite for a single Extended

FSM (EFSM). Pap et al. [88] studied diagnosis of a single transition or output fault in

an FSM.

For studying the effectiveness of extended FSM test suites, recently El-Fakih et

al. [59] used the FSM-based mutation testing tools, such as those in Simao et al. [60],

in studying the effectiveness of extended FSM test suites. El-Fakih et al. [89] also

presented a fault coverage assessment of several EFSM based test suites. Habib in [90],

worked on assessing extended finite state machine (EFSM)-based and random TS fault

coverage as well as extended FSM-based fault localization capabilities. It is clear that

the proposed implementations used in this work, can be used to enhance the time

performance which thus enhance scalability (in terms of considering bigger fault

domains) of the previous related work.

As a result, for the advancement of parallel programming machines and the

publication of easy-to-use libraries that support the parallel software development,

many researchers used the aforementioned technique to speed up their testing process.

59

Recently, many researches, including this research, worked on utilizing the execution

power of recent parallel technologies in the context of solving some FSM-based testing

problems. For example, El-Fakih et al. [91] considered systems specified as non-

deterministic FSMs, and proposed and assessed implementations based on multicore

CPUs and many-core GPUs for the derivation of all the successors of all pairs of states

of an FSM. This is done in order to reduce the time and efforts for deriving sequences

for distinguishing nondeterministic FSMs. Haddad et al. [92] also considered non-

deterministic FSMs, and proposed a parallel multithreaded implementation, using Open

Multi-Processing, for deriving distinguishing states of an FSM.

Hierons and Turker in [93] worked on improving the computational complexity

of previous existed algorithm for generating Characterizing Sets (CSs) which is a set of

input sequences that distinguishes all pairs of states, and Harmonized State Identifiers

(HSIs) which allow different sets of input sequences for different states is an

improvement on CSs- from partial FSMs which have exponential worst case time

complexity. In their work, they tackled the scalability from two directions; the invention

of new polynomial time sequential algorithm for generating CSs with massively parallel

implementation of their algorithm and devising a parallel HSI construction algorithm.

Moreover, they paralyzed the brute-force algorithms for generating CSs and HSIs

(based on previous work done in [94]). By exploiting the GPU power to paralyze CSs

and HSIs generation, they invented new faster and more scalable algorithm. Also, they

found that the parallel version of the previous brute force algorithm outperformed the

newly developed polynomial one. As for the parallel version of their new algorithm, it

was the best in terms of time complexity, but it did not scale very well like the brute

force due to its memory requirements.

Hierons and Turker [5] also employed GPUs to automatically derive Unique

Input Output sequences (UIOs) which is an input sequence that can distinguish a state

s0 from the rest of inputs in FSM S from Finite State Machines. They addressed the

scalability problem that may arise while constructing UIOs for completely specified

FSMs through the use of massively parallel GPU technology. The new parallel UIO

algorithm utilizes the capability of more than GPU and distributes the workload

between them.

60

At the end, it is worth mentioning that many researchers used parallel testing in

different fields than ours. In the late 80’s and early 90’s, many researches were

conducted on parallelizing test pattern generation for digital circuits and very large

integrated circuits (VLSI). Bollinger and Midkiff [95] conducted an investigation of the

theoretical available amount of parallelism in topologically partitioned parallel

automatic test patterns generation (ATPG), which aims to find an upper bound of the

parallelism amount present in conflict-& test generation. Chandra and Patel [96]

introduced the concept of heuristic parallelization which includes ATPG. Also,

Motohara in [97] used functional partitioning in which an algorithm is divided into

independent sub tasks that can be executed in parallel. Klenke et al. [98, 99], presented

a parallel architecture of a topologically ATPG on a distributed memory

multiprocessor. Another parallel test generation method which tries to achieve high

fault coverage for hard-to-detect (HTD) faults in a reasonable amount of time was

proposed by Patil and Banerjee in [100].

61

Chapter 6 : Conclusion

Given a test suite of test cases usually from a given specification finite state

machine (FSM) and fault domain, compromising mutants derived of the specification

derived with respect to selected types of faults. The process of mutants’ elimination

deals with removing/killing mutants, of the fault domain, that have different behavior

than the specification machine with respect to some test case of the test suite. Mutants’

elimination is an essential step in FSM-based mutation testing, fault diagnosis, and in

the assessment of the effectiveness of test suites. However, this process is time

consuming especially with a huge number of considered mutants. Accordingly, three

parallel implementations for reducing the time efforts of mutants’ elimination are

presented and assessed in this thesis. The first is an Open Multi-Processing (OpenMP)

implementation that utilizes many cores in a single machine. The second uses a

clustered system using Message Passing Interface (MPI) standard and the third is based

on the Compute Unified Device Architecture (CUDA) that exploits the computation

power of the Graphical Processing Unit (GPU).

Comprehensive experiments are conducted to assess the presented work using

both randomly and real application FSMs. According to the obtained results the

following holds:

 For the randomly generated machines, the speedup of OpenMP, MPI, and GPU

against the sequential implementation equals 8.3, 30.9, and 637.5 times,

respectively; while for the real application machines, this speedup equals 4.6,

15.0, and 502, respectively.

 For the experiments conducted using real application machines and randomly

generated machines with the same attributes (i.e., number of states, inputs, and

outputs) the following is obtained. For the randomly generated machines, the

speedup of OpenMP, MPI, and GPU against the sequential implementation

equals 5.8, 21.4, and 405, respectively; while for the corresponding real

application machines, this speedup equals 5.4, 20.7, and 302, respectively. The

difference is due to the fact that the execution time of the real application

machines is less than that of the corresponding random machines since many

62

states of the real machines have the same output and next state pattern. However,

it is worth mentioning that both the real and corresponding random machines

have the same pattern in terms of an increase in execution time due to the increase

in the number of mutants.

 The relative speedup of MPI and CUDA with respect to OpenMP, assessed using

randomly generated machines, equals 3.7 and 87.7 times, respectively, while this

speedup equals 3.43, and 156 for real application machines.

 For the experiments conducted using real application machines and randomly

generated machines with the same attributes the following holds: The relative

speedup of MPI and CUDA with respect to OpenMP, assessed using randomly

generated machines, equals 3.69, and 69.7 times, respectively, while this speedup

equals 3.8 and 55.9 for real application machines. This is due to the fact

mentioned above. Here again, the same pattern in terms of an increase in

execution time due to the increase in number of mutants is obtained for both

types of machines.

 The relative speedup of CUDA with respect to MPI, assessed using randomly

generated and real application machines equals 57.4 and 75.0 times, respectively.

 For the experiments conducted using real application machines and randomly

generated machines with the same attributes the following holds: the relative

speedup of CUDA with respect to MPI, assessed using randomly generated and

real application machines equals 18.8 and 14.5 times, respectively. This is due

to the fact mentioned above. Here again, the same pattern in terms of an increase

in execution time due to the increase in number of mutants is obtained for both

types of machines.

 CUDA implementation is scalable in terms of machine size and the number of

considered mutants to eliminate. Limited by the used hardware architecture,

CUDA easily handled experiments with 500 Million mutants and operated on

machines with 9.5 Million transitions.

 In OpenMp, as the number of invoked threads increases, the speed up increases.

As the number of threads approaches and exceeds the number of logical cores of

63

the used computer, the obtained speedup starts to decline for large machines size.

Based on this, the number of threads used in the conducted experiments equals

the number of logical cores (automatically determined by OpenMP) of the used

computer.

 In MPI, as the number of launched processes increases, the speed up increases till

the number of processes approaches the number of logical cores of the used

NoW. At that moment, the obtained speedup starts to decline, especially with an

increase in the machine size. Based on this, the number of processes used in the

conducted experiments is less than the number of logical cores. In the conducted

experiments, they were 42 processes.

 In CUDA, dividing the test case into l disjoined subsequences each with length

equals RunSize utilizes the GPU shared memory by invoking the kernel l times

when applying the test case. This is shown to increase the speedup. According

to conducted experiments, RunSize of 1000 inputs is used in the assessment as

this number provided the best results.

64

References

[1] T. Repasi, "Software testing - State of the art and current research challanges,"

International Symposium on Applied Computational Intelligence and

Informatics, Timisoara, 2009, pp. 47-50.

[2] L. B. R. Oliveira and E. Y. Nakagawa, "A service-oriented reference

architecture for software testing tools," In Proceedings of the 5th European

Conference on Software Architecture, Essen, Germany, 2011.

[3] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing. John Wiley

and Sons, 2013.

[4] M. J. Harrold, "Testing: a roadmap," In Proceedings of the Conference on The

Future of Software Engineering, Limerick, Ireland, 2000, pp. 61-72.

[5] R. M. Hierons and U. C. Turker, "Parallel Algorithms for Testing Finite State

Machines: Generating UIO sequences," IEEE Transactions on Software

Engineering, vol. 42, no. 99, pp. 1077-1091, 2016.

[6] P. C. Jorgensen, Software Testing: A Craftsman’s Approach,4th ed. Auerbach

Publications, 2013 , p. 494.

[7] J. Pan. (1999, Oct, 19). Software Testing. Available:

https://users.ece.cmu.edu/~koopman/des_s99/sw_testing/

[8] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Principles, Techniques, 2ed.

Addison wesley, 1986.

[9] R. Lai, "A survey of communication protocol testing," Journal of Systems and

Software, vol. 62, no. 1, pp. 21-46, 2002.

[10] A. Rockstrom and R. Saracco, "SDL-CCITT specification and description

language," IEEE Transactions on Communications, vol. 30, no. 6, pp. 1310-

1318, 1982.

[11] A. Benharref, R. Dssouli, M. A. Serhani, A. En-Nouaary, and R. Glitho, "New

approach for EFSM-based passive testing of web services," Testing of Software

and Communicating Systems, pp. 13-27,2007.

[12] S. Hallé and R. Villemaire, "Runtime monitoring of web service choreographies

using streaming XML," in Proceedings of the ACM symposium on Applied

Computing, pp. 2118-2125, 2009.

[13] M. Haydar, A. Petrenko, and H. Sahraoui, "Formal verification of web

applications modeled by communicating automata," in International

Conference on Formal Techniques for Networked and Distributed Systems,

2004, pp. 115-132.

[14] G. Morales, S. Maag, A. Cavalli, W. Mallouli, E. M. De Oca, and B. Wehbi,

"Timed extended invariants for the passive testing of web services," in IEEE

International Conference on Web Services (ICWS), 2010, pp. 592-599.

[15] J. Simmonds, "Dynaamic analysis of web services," Ph.D. dissertation,

University of Toronto, 2011.

[16] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko, "FSM-

based conformance testing methods: a survey annotated with experimental

evaluation," Information and Software Technology, vol. 52, no. 12, pp. 1286-

1297, 2010.

[17] K. Sabnani and A. Dahbura, "A protocol test generation procedure," Computer

Networks and ISDN systems, vol. 15, no. 4, pp. 285-297, 1988.

https://users.ece.cmu.edu/~koopman/des_s99/sw_testing/

65

[18] D. P. Sidhu and T.-K. Leung, "Formal methods for protocol testing: A detailed

study," IEEE Transactions on Software Engineering, vol. 15, no. 4, pp. 413-

426, 1989.

[19] T. S. Chow, "Testing software design modeled by finite-state machines," IEEE

Transactions on Software Engineering, vol. 4, no. 3, pp.178-187, 1978.

[20] F. Belli, "Finite state testing and analysis of graphical user interfaces," in

Proceedings of the 12th International Symposium on Software Reliability

Engineering, 2001 , pp. 34-43.

[21] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon,

"MobiGUITAR: Automated Model-Based Testing of Mobile Apps," IEEE

Software, vol. 32, no. 5, pp. 53-59, 2015.

[22] A. D. Friedman and P. R. Menon, Fault Detection in Digital Circuits. Prentice

Hall, 1971.

[23] Y. Dong, Z. Li, Y. Cheng, and H. Zhao, "A Model DrivenTesting Solution for

Embedded System with Simulink/Stateflow Model," in Second International

Conference on Trustworthy Systems and Their Applications (TSA), 2015, pp.

24-29.

[24] M.-C. Qu, N.-G. Cui, Y.-N. Zhang, X.-H. Wu, and B.-S. Zou, "Embedded

Software Testing Requirements Modeling and Automatic Test Case Generation

Based on Multiple Graphs," Advanced Science Letters, vol. 21, no. 11, pp. 3530-

3535, 2015.

[25] K. El-Fakih and N. Yevtushenko, "Test translation for embedded finite state

machine components," The Computer Journal, vol. 59, pp. 1805-1816, 2016.

[26] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman, "Model‐based quality

assurance of protocol documentation: tools and methodology," Software

Testing, Verification and Reliability, vol. 21, no. 1, pp. 55-71, 2011.

[27] G. V. Bochmann and A. Petrenko, "Protocol testing: review of methods and

relevance for software testing," in Proceedings of the 1994 ACM SIGSOFT

International Symposium on Software Testing and Analysis, 1994, pp. 109-124.

[28] K. El-Fakih, N. Yevtushenko, and G. v. Bochmann, "Diagnosing multiple faults

in communicating finite state machines," in Formal Techniques for Networked

and Distributed Systems, 2002, pp. 85-100.

[29] J.-h. Li, G.-x. Dai, and H.-h. Li, "Mutation analysis for testing finite state

machines," in Second International Symposium on Electronic Commerce and

Security, 2009. ISECS'09, 2009, vol. 1, pp. 620-624: IEEE.

[30] F. Belli, C. J. Budnik, A. Hollmann, T. Tuglular, and W. E. Wong, "Model-

based mutation testing—Approach and case studies," Science of Computer

Programming, vol. 120, pp. 25-48, 2016.

[31] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar, "An optimization technique

for protocol conformance test generation based on UIO sequences and rural

Chinese postman tours," IEEE Transactions on Communications, vol. 39, no.

11, pp. 1604-1615, 1991.

[32] X. Zhang, W. Luo, X. Li, and B. Yan, "A Transfer Fault Diagnosing Method

for Protocol Conformance Test Based on FSMs," in Asia-Pacific Conference on

Information Processing, vol. 1, 2009, pp. 173-177.

[33] D. Lee and M. Yannakakis, "Principles and methods of testing finite state

machines-a survey," Proceedings of the IEEE, vol. 84, no. 8, pp. 1090-1123,

1996.

[34] R. Lipton, "Fault diagnosis of computer programs," Student Report, Carnegie

Mellon University, 1971.

66

[35] R. G. Hamlet, "Testing programs with the aid of a compiler," IEEE

Transactions on Software Engineering, vol. SE-3, no. 4, pp. 279-290, 1977.

[36] R. J. Lipton, R. A. DeMillo, and F. Sayward, "Hints on test data selection: Help

for the practicing programmer," IEEE Computer, vol. 11, no. 4, pp. 34-41, 1978.

[37] Y. Jia and M. Harman, "An analysis and survey of the development of mutation

testing," IEEE Transactions on Software Engineering, vol. 37, no. 5, pp. 649-

678, 2011.

[38] A. J. Offutt, J. Voas, and J. Payne, "Mutation operators for Ada," Technical

Report ISSE-TR-96-09, Information and Software Systems Engineering,

George Mason University1996.

[39] A. Offutt VI and K. N. King, "A Fortran 77 interpreter for mutation analysis,"

in ACM SIGPLAN Notices, vol. 22, no. 7, pp. 177-188, 1987.

[40] S. Kim, J. A. Clark, and J. A. McDermid, "Class mutation: Mutation testing for

object-oriented programs," in Proc. Net. ObjectDays, 2000, pp. 9-12.

[41] H. Shahriar and M. Zulkernine, "Mutation-based testing of buffer overflow

vulnerabilities," in 32nd Annual IEEE International Computer Software and

Applications Conference, 2008, pp. 979-984.

[42] H. Shahriar and M. Zulkernine, "MUSIC: Mutation-based SQL injection

vulnerability checking," in The Eighth International Conference on Quality

Software, 2008, pp. 77-86.

[43] C. Jing, Z. Wang, X. Shi, X. Yin, and J. Wu, "Mutation testing of protocol

messages based on extended TTCN-3," in 22nd International Conference on

Advanced Information Networking and Applications, 2008, pp. 667-674.

[44] W. Grieskamp, N. Kicillof, D. MacDonald, A. Nandan, K. Stobie, and F.

Wurden, "Model-Based Quality Assurance of Windows Protocol

Documentation," in 1st International Conference on Software Testing,

Verification, and Validation, 2008, pp. 502-506.

[45] T. Mouelhiv, F. Fleurey, and B. Baudry, "A generic metamodel for security

policies mutation," in IEEE International Conference on Software Testing

Verification and Validation Workshop, ICSTW'08, 2008, pp. 278-286.

[46] R. M. Hierons and M. G. Merayo, "Mutation Testing from Probabilistic Finite

State Machines," in Testing: Academic and Industrial Conference Practice and

Research Techniques - MUTATION (TAICPART-MUTATION), Windsor, 2007,

pp. 141-150.

[47] S. S. Batth, E. R. Vieira, A. Cavalli, and M. Ü. Uyar, "Specification of timed

EFSM fault models in SDL," in International Conference on Formal

Techniques for Networked and Distributed Systems, 2007, pp. 50-65.

[48] S. Lee, X. Bai, and Y. Chen, "Automatic mutation testing and simulation on

OWL-S specified Web services," in 41st Annual Simulation Symposium, 2008,

pp. 149-156.

[49] R. A. DeMillo, "Completely validated software: test adequacy and program

mutation (panel session)," in Proceedings of the 11th International Conference

on Software Engineering, 1989, pp. 355-356.

[50] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge

University Press, 2016.

[51] A. Abdurazik, P. Ammann, W. Ding, and J. Offutt, "Evaluation of three

specification-based testing criteria," in Proceedings of the Sixth IEEE

International Conference on Engineering of Complex Computer Systems, 2000,

pp. 179-187.

67

[52] P. G. Frankl, S. N. Weiss, and C. Hu, "All-uses vs mutation testing: an

experimental comparison of effectiveness," Journal of Systems and Software,

vol. 38, no. 3, pp. 235-253, 1997.

[53] A. P. Mathur and W. E. Wong, "An empirical comparison of data flow and

mutation‐based test adequacy criteria," Software Testing, Verification and

Reliability, vol. 4, no. 1, pp. 9-31, 1994.

[54] N. Li, U. Praphamontripong, and J. Offutt, "An experimental comparison of

four unit test criteria: Mutation, edge-pair, all-uses and prime path coverage,"

in International Conference on Software Testing, Verification and Validation

Workshops, 2009, pp. 220-229.

[55] A. P. Mathur, Foundations of Software Testing, 2/e. Pearson Education India,

2008.

[56] A. Vincenzi, M. Delamaro, E. Höhn, and J. C. Maldonado, "Functional, control

and data flow, and mutation testing: Theory and practice," in Testing

Techniques in Software Engineering, 2010, pp. 18-58.

[57] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang, "An experimental evaluation of

data flow and mutation testing," Software, Practice and Experience, vol. 26, no.

2, pp. 165-176, 1996.

[58] W. E. Wong, A. P. Mathur, and J. C. Maldonado, "Mutation versus all-uses: An

empirical evaluation of cost, strength and effectiveness," in Software Quality

and Productivity, 1995, pp. 258-265.

[59] K. El-Fakih, A. Simao, N. Jadoon, and J. C. Maldonado, "An assessment of

extended finite state machine test selection criteria," Journal of Systems and

Software, vol. 123, pp. 106-118, 2017.

[60] A. da Silva Simao, A. M. Ambrósio, S. C. Fabbri, A. S. M. S. do Amaral, E.

Martins, and J. C. Maldonado, "Plavis/FSM: an environment to integrate FSM-

based testing tools," in Tool Session of XIX Brazilian Symposium on Software

Engineering, 2008, pp. 1-6.

[61] A. Ghedamsi and G. V. Bochmann, "Test result analysis and diagnostics for

finite state machines," in Proceedings of the 12th International Conference on

Distributed Computing Systems, 1992, pp. 244-251.

[62] A. Ghedamsi, G. v. Bochmann, and R. Dssouli, "Diagnosis of single transition

faults in communicating finite state machines," in Proceedings of the 13th

International Conference on Distributed Computing Systems, 1993, pp. 157-

166.

[63] A. Ghedamsi, G. V. Bochmann, and R. Dssouli, "Diagnostic tests for

communicating finite state machines," in Proceedings of Phoenix Conference

on Computers and Communications, 1993, pp. 254-260.

[64] A. Ghedamsi, R. Dssouli, and G. v. Bochmann, "Diagnostic tests for single

transition faults in non-deterministic finite state machines," in Proceedings of

the IFIP TC6/WG6.1 Fifth International Workshop on Protocol Test Systems V,

1992, pp. 105-116.

[65] A. Ghedamsi, G. Bochmann, and R. Dssouli, "Multiple fault diagnosis for finite

state machines," in INFOCOM'93. Proceedings. Twelfth Annual Joint

Conference of the IEEE Computer and Communications Societies. Networking:

Foundation for the Future, 1993, pp. 782-791.

[66] R. Belhassine-Cherif and A. Ghedamsi, "Diagnostic tests for communicating

nondeterministic finite state machines," in Proceedings pf the Fifth IEEE

Symposium on Computers and Communications, 2000, pp. 424-429.

68

[67] L. Dagum and R. Menon, "OpenMP: an industry standard API for shared-

memory programming," IEEE Computational Science and Engineering, vol. 5,

no. 1, pp. 46-55, 1998.

[68] K. Yang-Suk, K. Jin-Soo, and H. Soonhoi, "ParADE: An OpenMP

Programming Environment for SMP Cluster Systems," in Supercomputing

ACM/IEEE Conference, 2003, pp. 6-6.

[69] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, "An introduction to the MPI

standard," Technical Report, University of Tennessee Knoxville, 1995.

[70] P. S. Pacheco, Parallel programming with MPI. Morgan Kaufmann, 1997.

[71] R. P. Tan, P. Nagpal, and S. Miller, "Automated black box testing tool for a

parallel programming library," in International Conference on Software Testing

Verification and Validation, 2009, pp. 307-316.

[72] J. Throop, "OpenMP: shared-memory parallelism from the ashes," Computer,

vol. 32, no. 5, pp. 108-109, 1999.

[73] J. Dongarra et al., Sourcebook of Parallel Computing. Morgan Kaufmann

Publishers San Francisco, 2003.

[74] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel

Programming with the Message-Passing Interface. MIT press, 1999.

[75] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced Features of the

Message-Passing Interface. MIT press, 1999.

[76] C. McClanahan, "History and evolution of GPU architecture," A Survey Paper,

College of Computing, Georgia Tech, 2010.

[77] M. Ali and T. Ozkul, "Review of Memory/Cache Management Technologies

used on Heterogeneous Computing Systems," International Journal of

Computer and Information Technology, vol. 3, no. 3, pp. 515-522, 2014.

[78] G. D. Barlas, "Collection-aware optimum sequencing of operations and closed-

form solutions for the distribution of a divisible load on arbitrary processor

trees," IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 5,

pp. 429-441, 1998.

[79] (November 15th). List of Nvidia graphics processing units. Available:

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units

[80] (November 15th). Graphical Processing Units. Available:

http://en.wikipedia.org/wiki/Graphics_processing_unit

[81] C. Andres, N. Yevtushenko, and A. Cavalli, "Modeling and testing the

European train control system," Technical Report TechRca, Telecom Sudparis,

2013.

[82] M. Ali "Parallel algorithms for distinguishing nondeterministic finite state

machines," M.S. thesis, American University of Sharjah, Sharjah, United Arab

Emirates, 2015.

[83] N. Shabaldina, K. El-Fakih, and N. Yevtushenko, "Testing nondeterministic

finite state machines with respect to the separability relation," in Testing of

Software and Communicating Systems, 2007, pp. 305-318.

[84] F. Brglez. (2017, Jan. 15). ACM/SIGMOD benchmark dataset. Available:

http://www.cbl.ncsu.edu/benchmarks/Benchmarks-upto-1996.html

[85] S. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado, and P. C. Masiero, "Mutation

analysis testing for finite state machines," in Proceedings of the 5th

International Symposium on Software Reliability Engineering, 1994, pp. 220-

229.

[86] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, and M. E.

Delamaro,“Proteum/FSM: A Tool to Support Finite State Machine Validation

https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://www.cbl.ncsu.edu/benchmarks/Benchmarks-upto-1996.html

69

Based on Mutation Testing,” in Proceedings of the 19th International

Conference of the Chilean Computer Science Society (SCCC’99), Talca, Chile,

1999, pp. 96-104.

[87] K. El-Fakih, S. Prokopenko, N. Yevtushenko, and G. v. Bochmann, "Fault

diagnosis in extended finite state machines," in IFIP International Conference

on Testing of Software and Communicating Systems, 2003, pp. 197-210.

[88] Z. Pap, G. Csopaki, and S. Dibuz, "On FSM-based fault diagnosis," in IFIP

International Conference on Testing of Communicating Systems, 2005, pp. 159-

174.

[89] K. El-Fakih, T. Salameh, and N. Yevtushenko, "On Code Coverage of Extended

FSM Based Test Suites: An Initial Assessment," in IFIP International

Conference on Testing Software and Systems, 2014, pp. 198-204.

[90] M. H. Hassoun "Fault coverage and diagnosis of protocols and systems modeled

as extended finite state machines," M.S. thesis, American University of Sharjah,

Sharjah, United Arab Emirates, 2015.

[91] K. El-Fakih, G. Barlas, M. Ali, and N. Yevtushenko, "Parallel algorithms for

reducing derivation time of distinguishing experiments for nondeterministic

finite state machines," International Journal of Parallel, Emergent and

Distributed Systems, pp. 1-14, 2017.

[92] A. Haddad, K. El-Fakih, and G. Barlas, "Parallel Implementation for Deriving

Preset Distinguishing Experiments of Nondeterministic Finite State Machines,"

Seventh International Conference on Modeling, Simulation, and Applied

Optimization, Sharjah, UAE, 2017.

[93] R. Hierons and U. Turker, "Parallel algorithms for generating harmonised state

identifiers and characterising sets," IEEE Transactions on Computers, vol. 65,

no. 11, pp. 3370-3383, 2016.

[94] G. Luo, A. Petrenko, and G. v. Bochmann, "Selecting test sequences for

partially-specified nondeterministic finite state machines," in Protocol Test

Systems, 1995, pp. 95-110.

[95] S. W. Bollinger and S. F. Midkiff, "An investigation of circuit partitioning for

parallel test generation," IEEE VLSI Test Symposium, Atlantic City, NJ, USA,

1992, pp. 119-124

[96] S. J. Chandra and J. H. Patel, "Test generation in a parallel processing

environment," in Proceedings of the IEEE International Conference on

Computer Design: VLSI in Computers and Processors. ICCD'88., 1988, pp. 11-

14.

[97] A. Motohara, "A parallel scheme for test pattern generation," in Proccedings og

the IEEE Int'l Confnference in Computer-Aided Design, 1986, pp. 156-159.

[98] R. H. Klenke, R. D. Williams, and J. H. Aylor, "Parallelization methods for

circuit partitioning based parallel automatic test pattern generation," in VLSI

Test Symposium, 1993, pp. 71-78.

[99] R. H. Klenke, R. D. Williams, and J. H. Aylor, "Parallel-processing techniques

for automatic test pattern generation," Computer, vol. 25, no. 1, pp. 71-84, 1992.

[100] S. Patil and P. Banerjee, "A parallel branch and bound algorithm for test

generation," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 9, no. 3, pp. 313-322, 1990.

70

Vita

Emad Badawi was born on March 15, 1991, in Aqqaba, Palestine. He studied at

Arab American University (AAUJ) in Jenin, Palestine, from which he graduated in

2010 and obtained a Bachelor’s Degree in Computer Systems Engineering.

Mr. Badawi worked as WebSphere system administrator for almost one year.

After that, he moved to the United Arab Emirates in 2015 where he joined the Master’s

program in Computer Engineering at the American University of Sharjah.

