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Abstract 

In this thesis, the mutants’ elimination problem considered in finite state 

machine (FSM) based mutation testing, fault diagnosis, and in the assessment of the 

effectiveness of test suites is targeted. Given a test suite of some test cases usually 

derived from a specification FSM and a set of mutants (or fault domain), derived from 

the specification with respect to some assumed types of faults, mutants’ elimination 

deals with deleting/killing each mutant of the fault domain that has an output behavior 

different than that of the specification FSM in respect to some test case of the test suite. 

However, this process is time consuming, especially when the number of considered 

mutants is huge. Accordingly, three parallel implementations for the considered 

problem based on the Open Multi-Processing (OpenMP), Message Passing interface 

(MPI) and the Compute Unified Device Architecture (CUDA) parallel technologies are 

presented. Comprehensive experiments are conducted to assess the speedup and 

execution time of the proposed implementations. On average, over all conducted 

experiments with both randomly generated and real application FSMs, the speedup of 

OpenMp, MPI, and GPU against sequential implementation equals 6.4, 22.9, and 569.7 

times, respectively. The relative speedup of MPI and CUDA with respect to OpenMp 

equals 3.5 and 121.5 times, respectively; and the relative speedup of CUDA with 

respect to MPI equals 96.12 times. In addition, the results obtained using real machines 

are compared with random machines with the same attributes. CUDA implementation 

is shown to be scalable in terms of considered number of mutants and FSM size. For 

instance, limited by the used hardware architecture, CUDA easily handled experiments 

with 500 Million mutants and operated on machines with 9.5 Million transitions. 

Experiments are also conducted to determine the experimental setup attributes such as 

test suite length, number of test cases, and attributes related to the parallel 

implementations such as threads number in OpenMP, processes number in MPI and 

number of inputs of a test case that will be applied to the mutants in each GPU 

invocation. 

Search Terms: Model Based Testing, Mutation Testing, Parallel Testing, MPI, 

OpenMP, GPU, CUDA.  
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Chapter 1 : Introduction 

 

Since the beginning of the second half of the last decade, computer 

programming has evolved into a discipline of engineering. In 1968, the principle “the 

establishment and use of sound engineering principles in order to obtain reliable, 

efficient and economically viable software” was introduced and the appliance of quality 

assurance (QA) for products became essential in the designing process [1]. 

Quality assurance and system testing is crucial, yet very expensive, manual, 

prone to error and time consuming process to guarantee reliability and quality of 

software testing [2-5]. In 1970s, approximately 50 percent of the project development 

time spent on the testing, and its cost was more expensive with over than 50 percent of 

the total cost. These percentages did not change till this time [3, 6, 7]. 

The development of the techniques and tools required for the derivation of 

(functional) tests from given models is one of the promising approaches for reducing 

the expensive cost of testing. A state model, usually representing a implementation 

under test (IUT), typically consists of states and transitions between states. Prominent 

state based models include (Mealy) finite state machines (FSMs), labeled transition 

systems (LTSs), finite state automata (FSA). Various versions of these models were 

extended to handle variables, variable update statements, and guards specifying 

enabling conditions of transitions execution.  

In this thesis, systems models are considered as FSMs where  a transition 

between a source and a destination (or next) state of an FSM is labeled by an 

input/output pair illustrating the fact that if the machine is currently at the source state 

and receives the specified input, it produces the specified output while moving to the 

next state. Accordingly, an FSM has a behavior that can be described as traces of pairs 

of input/output sequences. FSMs are extensively used in diverse application domains 

like lexical analysis [8], communication protocols [9] and other reactive systems. 

Furthermore, FSMs are the elemental models for formal description techniques, such 

as Standard Description Language (SDL) [10], Unified Modeling Language (UML) and 

Statecharts. Application areas of FSM-based testing span a vast range of domains; some             

of these domains are testing of web services [11-15], communication protocols [16-18],  
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lexical analysis [8], software design [19], graphical user interfaces [20, 21], sequential 

circuits [22], embedded systems [23-25], industrial projects [26], object oriented 

systems, and properties related to security, timing, performance, reliability, and others. 

Test derivation from a given FSM specification can be done in many ways and 

for various purposes.  In all cases, based on the given FSM specification, one can 

identify some selected types of faults that may exist in a black-box FSM IUT, and 

accordingly enumerate using the specification machine, the set of FSM mutants, called 

the fault domain, according to the selected types of faults. Typical types of faults 

include output and/or transfer faults [27, 28]. For example, a mutant M of a given 

specification S has an output (transfer) if it has a transition with an output (next state) 

different than the corresponding transition of S. Then, starting from an initial set of test 

cases (test suite), one can run the test cases on the mutants of the considered fault 

domain and eliminate/kill those mutants whose behavior, with respect to the considered 

tests, is different from that of the specification machine. An FSM mutant is killed (or 

eliminated) by a test case if the output responses (sequences) of the mutant and the 

specification machines to the input sequence of the test case are different. A test case 

TC is a pair of an input sequence and its corresponding (expected) output sequence. An 

FSM mutant M is distinguishable from another (mutant or the specification) FSM S if 

there exists an input sequence (test case) that when applied to these machines, they 

produce different output sequences; otherwise, if such an input sequence does not exist, 

the machines are not distinguishable [29-33]. This process is called mutation testing. 

The tale of mutation testing goes back to1971 in a student paper by Lipton [34]. 

The field birth can also be determined in published papers in the late 1970s by Hamlet 

[35] and DeMillo et al. [36, 37].  

Mutation testing can be used for testing software at many levels such as, the unit 

level, the integration level, and the specification level. It has been adapted to many 

programming languages as a white box unit test technique. For example, it has been 

adapted to Ada programs [38], FORTRAN programs [39], Java programs [40], C 

programs [41] and SQL code [42]. Furthermore, mutation testing has also been used 

for integration testing, software implementation level and applied at the design level to 

test the specifications or models of a program. For example, at the design level, 

mutation testing has been adapted to network protocols [26, 32, 43, 44], security 
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policies [45], FSMs [11, 46, 47] and Web services [48]. The reader can refer to [37, 49] 

for more surveys and researches about mutation testing. 

Another typical FSM test derivation method is based on finding tests that can 

distinguish the specification machine from one or more mutants in the selected fault 

domain. Then, tests are run to reduce the mutants (mutants’ elimination) of the fault 

domain, and the process is repeated till all mutants of the fault domain that are 

distinguishable from the specification machine are eliminated, and thus a complete test 

suite with respect to the assumed fault domain is derived. This type of test derivation is 

a form of specification FSM-based mutation testing. Specification based mutation 

testing is a common mutation testing approach that has many application areas. For 

more information about mutation and specification based, including FSM-based, 

mutation testing with related methods and tools, the reader may refer to the survey in 

[37]. 

Mutants’ elimination is also used while assessing the fault coverage of many 

types of test suites. Given that many test suites are derived with respect to different test 

coverage derivation criteria or fault models, different categories of mutants are derived 

with respect to some selected mutation operators, and then the test suites are run against 

the mutants. The coverage of the test suites, usually assessed using a considered 

mutation score, is determined. A huge number of papers are proposed in the literature 

for studying the effectiveness of typical types of test suites. Studies on the effectiveness 

of test suites are mostly summarized in [37, 50-58]. It is worth mentioning that FSM-

based mutants’ elimination is used in a recent assessment presented by El-Fakih et al. 

[59]. Many types of FSM test suites and the fault coverage of these test suites are 

assessed with respect to many fault domains (types of faults). In this assessment, tools, 

including the one given by Simao et al. [60], are used to assess the mutation scores of 

the test suites with respect to the considered FSM mutants of the assumed fault domains. 

Another interesting application area of the mutants’ elimination problem is in 

FSM-based fault diagnosis [28, 61-66].  Given a faulty (black-box) IUT, the objective 

of fault diagnosis is identifying the faulty IUT, i.e. locating the faults in the faulty FSM. 

This is carried out by the derivation of a set of diagnostic candidates. FSM mutants, 

representing the fault domain, based on the observed behavior of the IUT with respect 

to an initial test suite, and then on further tests, called diagnostic tests, are derived and 
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run against the diagnostic candidates and the IUT to eliminate the candidates that do 

not have the same behavior with respect to the applied tests as the given IUT. This 

process of test derivation and mutants’ elimination is repeated until all candidates that 

are distinguishable from the given IUT are eliminated; and thus, the faulty 

implementation is located.  

Parallel machines in the form of multicore CPUs and manycore GPUs have 

become widely available in the last 10 years. This has in turn helped solving complex 

problems with less time.  There are many options that researchers can use to write 

parallel code like Open Multiprocessing (OpenMP) which utilizes many cores in the 

same machine to execute more than one thread simultaneously [67, 68]. Message 

Passing Interface (MPI) which utilizes disrupted memory systems which are usually 

clusters of computers Network of Workstations (NoWs) with isolated memory [69, 70]. 

Also, Compute Unified Device Architecture (CUDA) development toolkit permits 

GPU programming in a C-like language, and exploits the computation power of the 

Graphical Processing Unit (GPU). But the problem with these tools is that they do not 

indicate “what-to” parallelize; rather they specify “how-to” parallelize. Software 

development professionals must defy the challenge of developing software that takes 

advantage of this hardware [71].  

Thus, it is clear from above that the process of eliminating mutants is a major 

step in many FSM-based testing related activities as it is the case in mutation testing, 

fault diagnosis, and the assessment of the effectiveness of test suites. However, in 

general, the number of mutants in a considered fault domain can be extremely huge. 

Accordingly, in this thesis, the aim is reducing the execution time (and thus energy) of 

mutants’ elimination. To this end, three parallel implementations for reducing the time 

efforts of mutants’ elimination utilizing state-of-the-art parallel technologies are 

presented and assessed. The first is an Open Multi-Processing (OpenMP) 

implementation that utilizes many cores in the same machine. The second 

implementation uses a clustered system using Message Passing Interface (MPI) 

standard. Finally, the third is based on the Compute Unified Device Architecture 

(CUDA) that exploits the computation power of the Graphical Processing Unit (GPU).  

A comprehensive assessment is presented where the objective of the assessment 

is to determine and compare the performance of the presented implementations in terms 
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of execution time and speed up. The experiments carried out in this thesis show that the 

sequential implementation does not scale for big application examples, and 

accordingly, the performance of the parallel implementations is assessed for big 

examples. The experiments reveal that the GPU implementation using the software 

platform CUDA gives the best performance amongst all the parallel implementations, 

and the speedup obtained is much more significant than the OpenMP and MPI 

implementations. The parallel implementation on the NoW using the MPI gives the 

second-best performance, and the parallel implementation on a multi-core CPU gives 

the third best performance. Finally, as CUDA performance was extremely better than 

the other parallel implementations, the scalability of CUDA to huge application 

examples is studied. The assessment also includes some analysis on the attributes 

related to the considered mutants’ elimination problem. Namely, the FSM size (i.e., 

number of transitions), and number of considered mutants to eliminate, TS length and 

number of test cases of a TS. In addition, an experimental analysis is given to determine 

the parallel implementations attributes such as the number of invoked threads in 

OpenMP, the number of launched processes in MPI, CUDA block size as well as 

CUDA RunSize which is the size of GPU shared memory that is allocated to save the 

test case in the elimination process. Last but not least, it is worth mentioning that an 

experimental assessment was carried out using both randomly generated FSMs and real 

application FSMs. 

This thesis is organized as follows; Chapter 2 includes preliminaries related 

finite state machines, mutants, and test cases, as well it introduces the considered 

parallel technologies. Chapter 3 includes the proposed sequential, OpenMP, MPI and 

CUDA parallel implementations used for mutants’ elimination. Chapter 4 includes the 

experimental evaluation. Chapter 5 includes related work and Chapter 6 concludes this 

thesis. 
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Chapter 2 : Preliminaries 

 

2.1 Finite State Machine (FSM) 

A deterministic finite state machine is an initialized complete deterministic 

Mealy machine that can formally be defined as a 6-tuple S = (S, I, O, , s0) where S 

is a finite set of states, s0 is the initial state, I is a finite set of input symbols, O is a finite 

set of output symbols, is a next state (or transition) function: : S × I  S,  is an 

output function:  S × I  O.  Usually, functions  and  are extended to input 

sequences.  

For an input sequence  = i1 i2…ik    I* at a state s,  = o1o2…ok    O* 

denote the corresponding output sequence obtained by applying at s. The pair  / is 

an Input/Output (I/O) sequence at state s. 

A transition of an FSM a 4-tuple t = (s, i, o, s ) representing the fact that if the 

machine is at source state s, upon receiving the input i, it produces the output o while 

moving to the next state s. Common types of FSM faults are transfer, output, extra state, 

and mixed faults [27]. Given an FSM specification S, a transition t of a mutant M of S 

has an output (transfer) fault if it has a transition with an output (next state) different 

from that specified at the corresponding transition of S, i.e., for t = (s, i, o, s ) of S, M 

has an output fault at t if M has the transition (s, i, o , s ) where o  o, and M has a 

transfer fault (at t) if M has the transition (s, i, o , s ) where s  s. A mutant M of S 

has multiple faults if has many faulty transitions.  

 Given two FSMs, a specification S and a mutant M, defined over the same input 

and output alphabets, an input sequence  is a distinguishing sequence for S and M (that 

is for the initial states of S and M) if the output responses of S and M to the input 

sequence are different. In this case, the input sequence distinguishes S and M or 

simply  kills (eliminates) the mutant M. If there is no such an input sequence, S and M 

are indistinguishable.   

A test case TC is a pair of an input sequence i1 i2…ik  of the specification FSM 

S and its corresponding (expected) output sequence o1o2…ok , that is, a test case is an 

input/output sequence of the initial state of S. A test case might be written using its 
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corresponding input/output pairs, i.e, as i1 /o1  i2 /o2  … ik/ok .  Length of a test case TC 

is the number of inputs of the test case. A test suite TS is a finite set of test cases. Length 

of a test suite TS is the total length of its corresponding test cases. The number of test 

cases of a test suite is denoted as |TS|. A set of k mutants, of the specification machine 

S, is denoted as   = { M1, ….. Mk }. A test suite of m test cases is denoted as TS = { 

TC1, …. TCm }. As the considered sets  has huge number of mutants, in order to reduce 

storage space, instead of explicitly saving the mutants in , for each mutant Mi, only 

the descriptor Mdi that includes the faulty transition(s) of the mutant in respect to the 

specification S is saved. Thus, when needed, the mutant Mi itself can be derived from 

both its descriptor Mdi and the specification S. 

 

 

Figure 2-1 Finite State Machine S 

 

As an example, consider the FSM S in Figure 2-1 defined over the sets of inputs 

I = {i1, i2}, outputs O = {o1, o2}, and states S = {s0, s1, s2, s3}, respectively. A mutant 

descriptor Md1 that includes the transition (s0, i1, s2, o1) represents the fact that the 
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mutant M1 of S has the transfer fault (s0, i1, s2, o1) where the mutant transfers to the state 

s2 instead of s1 as specified in the corresponding transition (s0, i1, s1, o1) in S. 

2.2 Open Multi Processing (OpenMP) 

OpenMP (Open Multi-Processing) is a standard [57] for shared-memory 

parallel programming. OpenMP was the result of joined project between Kuck and 

Associates Inc. (KAI) and Silicon Graphics Inc (SGI) in the spring of 1996. The 

combining efforts of these two companies gave birth to the idea of an industry 

sponsored directive-based symmetric multiprocessor (SMP) programming standard, 

soon known as OpenMP [72]. 

At its most elemental level, OpenMP is a collection of compiler directives and 

callable runtime library routines that extend C/C++ and FORTRAN so that programmer 

assisted shared-memory parallel programming can be delivered with minimal effort. 

OpenMP compiler directives specify how workload is shared among threads, while also 

controlling threads synchronization and determining the scope of variables. A parallel 

program can be easily developed by the application programmers through 

incrementally inserting directives into time critical sequential codes.  

2.3 Message Passing Interface (MPI) 

Message Passing Interface (MPI) is a standard for distributed memory parallel 

programming [70, 73-75]. The MPI standard specifies the names, calling sequences, 

and results of the subroutines or functions to be called from C, C++ or FORTRAN 

programs. Several implementations are available for MPI such as OpenMPI, pyMPI 

(MPI implementation in Python) and MPICH; some of them are commercial and others 

are free. These implementations can be executed on both tightly-coupled Massively 

Parallel Machines (MPPs), and on Networks of Workstations (NoWs) [69]. 

MPI specifies the communication among a set of processes composing a 

concurrent program. The message passing paradigm is very attractive because it is 

portable and scalable. MPI programs can be deployed on both shared-memory and 

distributed-memory multiprocessors, and combinations of both of them.  
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MPI processes are assumed to reside in disjoint memory spaces. Data exchange 

is performed via message exchange. MPI is responsible for process identification, 

message routing and buffering.  

MPI provides a wide gamut of communication primitives that cater for point-

to-point, collective as well as one-sided communication. Collective operations such as 

“MPI_Bcast” ease communications involving more than two processes, i.e. 

broadcasting specific information from a particular process to all other processes. Point-

to-point operations like the “MPI_Send”/ “MPI_Recv” pair provide rudimentary 

communications between processes using a two-sided model, meaning that both 

communicating processes must issue matching calls; one for sending and one for 

receiving. One-sided communications were introduced in recent versions of the MPI 

standard, decoupling data transfer from synchronization and allowing remote memory 

access [74]. 

2.4 Graphical Processing Units (GPUs)  

A Graphical Processing Unit (GPU) is a specialized computing architecture unit 

designed to accelerate computer gaming applications graphics operations. A GPU chip 

contains a large number of parallel microprocessors, designed to reduce the workload 

of the CPU and accelerate 2D or 3D graphic processing. Recent GPUs are composed 

of a large number of computing cores that are connected to high-speed memory (DDR5) 

with very wide buses (256bit or larger), and they are able to execute multiple threads n 

parallel. The multi-thread architecture of the GPU allows execution of many threads in 

parallel to attain high speed of execution compared to traditional single or multi-core 

CPUs [76]. 

GPU hardware development started as a single core. Fixed function hardware 

pipeline application then evolved to a combination of highly parallel programmable 

cores that can be used for general purpose computation and scientific computation. 

GPU technology has always progressed by adding more programmability and 

parallelism to a GPU core architecture. Individual GPU cores have gained over the 

years features common to CPU cores, such as multi-level cache memories and 

dedicated floating print co-processors [76]. 
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GeForce 3 was released by NVIDIA in 2001; this was the first GPU with a 

programmable pipeline and ability to program previously non-programmable parts of 

the pipeline. Afterwards, fully programmable graphic cards were introduced. The 

introduction of DirectX9, which provided the programmability in the GPU hardware, 

started GPU computing wave [76]. 

In 2006, NVIDIA introduced the GeForce 8 series. This series, which contained 

massive parallel processors, was a great evolution in the history of GPUs. NVIDIA’s 

Fermi architecture GPU, introduced in 2009, featured a concurrent kernel execution, 

true memory cache hierarchy, combined memory address space, better double precision 

performance and dual warp schedulers. Since then, breakneck progress in the 

development of GPUs has occurred. Readers can refer to Appendix A for more 

information on recent GPUs [77, 78]. 

Some of the recent NVIDIA GPUs and their configurations are described in 

Table 2-1, where Streaming Multi-processor (SM) represents a collection of cores with 

Cores/SM as the number of cores in each SM. Cores represents individual (single) cores 

(computing unit) contained in a GPU card, each core is capable of executing a thread 

[79].  

As observed in literature results, GPUs offer an enormous performance boost to 

scientific computing. This motivated me to implement a GPU version of the mutation 

testing algorithm. By applying test cases to kill FSM mutants on a GPU, the execution 

time can be reduced and significant speedup can be attained compared to the 

corresponding CPU solution.  

Various software platforms can be used to execute code on GPUs such as 

Thrust, CUDA, OpenCL, etc. [80]. In this thesis, CUDA is used, which is arguably one 

of the most mature tools, delivering at the same time maximum performance by 

allowing explicit machine control. 

2.4.1 Compute Unified Device Architecture (CUDA). Compute Unified 

Device Architecture (CUDA) is a parallel computing platform that was introduced by 

NVIDIA at the end of 2006. CUDA provides an API and a toolkit (SDK) for harnessing 

GPU hardware for general purpose computing. CUDA supports development in C/C++ 
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and Fortran. Higher level platforms such as OpenACC and Thrust also work on top of 

CUDA [81]. 

 

Table 2-1 Recent NVIDIA GPUs and their configurations 

Card Cores Cores/SM SM Compute Capability 

Nvidia Titan X 3584 128 28 6.1 

GeForce GTX 1080 2560 128 20 6.1 

GeForce GTX 1070 1920 128 15 6.1 

GeForce GTX Titan X 3072 128 24 5.2 

GeForce GTX 980 Ti 2816 128 22 5.2 

GTX 980 2048 128 16 5.2 

GTX 970 1664 128 13 5.2 

GTX 960 1024 128 8 5.2 

GTX TITAN Z 5760 480 12 3.5 

GTX TITAN Black 2880 240 12 3.5 

GTX Titan 2688 192 14 3.5 

GTX 780 2304 192 12 3.5 

GTX 770 1536 192 8 3.0 

GTX 760 1152 192 6 3.0 

GTX 690 3072 192 16 3.0 

 

At the hardware level, a CUDA-capable GPU processor is a collection of 

multiprocessors (SMX); each having a number of cores (processors). Each 

multiprocessor has its own shared memory which is common to all its processors. It  
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also has a texture memory (a read only memory for the GPU), constant (a read only 

memory for the GPU that has the lowest access latency) memory caches and a set of 

32-bit registers. In any given cycle, the same instruction is executed in each SMX core 

in a synchronous fashion. Each core can operate on different data hence each SMX is a 

Single Instruction Multiple Data (SIMD) processor. GPU card memory (referred to as 

global memory) is available to all the available cores, making it suitable for holding 

shared data or structures [5]. CUDA provides a set of atomic primitives for operating 

on global memory locations without the introduction of race conditions. 

The CUDA programming model dictates the use of fine-grained parallelism as 

required by massively parallel GPUs. In the CUDA programming model, the host CPU 

memory (host memory) and the GPU device memory (global memory) are disjoint, 

necessitating the explicit data transfer between the two.  

From the programmer’s point of view, the CUDA model is a collection of 

threads executing in parallel. All threads run a function called a kernel. Kernel 

invocations are asynchronous, i.e. the CPU can continue to operate during GPU 

computation; therefore, the CUDA programming model is a hybrid computing model 

[82]. 

The threads are launched as a 3-D grid of 3-D blocks of threads. The maximum 

size per dimension and the overall size of the grid and block structures are determined 

by the characteristics of the target GPU. Each block is executed on one SMX. As the 

block size may exceed the number of cores on an SMX, each block is divided in so 

called “warps”. A warp is a set of 32 threads running synchronously on the cores of a 

SMX. Multiple warps may be active at the same time in a SMX, depending on the exact 

structure and the warp schedulers of the SMX[5]. Applications that require 

synchronization between the threads of a block, can use the __syncthreads() primitive 

to achieve this. No synchronization is available between different blocks. 

The SMX memory architecture incorporates two additional types of on-chip 

memory: a register which is a private memory for each thread, and shared memory 

which is a common memory for all the threads within a block, as illustrated in Figure 2-2 

[82]. Shared memory is significantly faster than global memory, albeit limited in size 

(currently 48kB).  
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Figure 2-2 CUDA Programming Model 
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Chapter 3 : Proposed Implementations 

 

In this chapter, a sequential algorithm for eliminating FSM mutants is presented, 

followed by three parallel implementations of the algorithm, namely an OpenMP, MPI, 

and CUDA implementation. The first is an OpenMP implementation that utilizes many 

cores in the same machine. The second is an implementation that targets a cluster using 

the MPI standard. Finally, the third is based on CUDA that exploits the computation 

power of the GPU. 

3.1 Sequential Algorithm  

 The input of the algorithm is a complete deterministic FSM S = (S, I, O, , s0), 

a test suite TS of m test cases, TS = {TC1, …. TCm}, and set of k mutants descriptors 

MD = {Md1, …. Mdk} for the assumed set of mutants  = {M1, …. Mk} of S. The 

descriptor Mdi of a mutant Mi represents only the differences between the specification 

and the mutants; and thus, when needed, the mutant Mi can be derived using S and the 

corresponding descriptor Mdi. The algorithm operates on one mutant at a time. For each 

test case, the elimination process starts by feeding the mutant with the inputs of the test 

case in sequence, and observe the corresponding outputs. If the observed output differs 

from the expected output, applying tests to the mutant is stopped, and the mutant is 

marked as killed (or eliminated). Otherwise, if the mutant is not killed by any test case, 

then it is labeled a survived mutant and it is added to a list of survived mutants (SMD), 

which is a subset of the set MD. The output of the algorithm is the list SMD. 

Sequential Algorithm: 

For each Mdi in MD, do (Loop-1) 

        Modify S to create the mutant Mi using Mdi 

        killed = FALSE 

        While TS contains a TC not applied to Mi AND killed = FALSE do: 

               killed = Eliminate_Mutant(TC, Mi) 

         End While 
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         If killed is FALSE 

                 SMD = SMD  Mi  

         End If 

 

End For (Loop-1) 

Return SMD 

 

Procedure Eliminate_Mutant(Mi, TC) 

While TC sequence is not exhausted AND Mi is not killed, do: 

            Obtain output generated by Mi for the next input in TC 

             If the obtained output is different than the corresponding output in TC 

         Return TRUE 

              End If  

End While 

Return FALSE  

 

Example 1: As an application example of the mutation elimination process, 

consider the FSM S in Figure 2-1. Let the set of mutants descriptors (MD) contains three 

descriptors Md1, Md2 and Md3. Where transitions t1 = (s0, i1, s1, o1), t2 = (s1, i2, s3, o2) 

and t3 = (s0, i2, s2, o2) of S have transfer faults and they change to (s0, i1, s2, o1), (s1, i2, 

s1, o2) and (s0, i2, s1, o2) respectively. The initial test suite contains two test cases; TC1 

= (i1/o1 i1/o2) and TC2= (i1/o1 i2/o2 i2/o1)  

In the sequential algorithm, all the mutants are checked one by one. For each 

mutant, the test cases are applied one by one until the mutant is eliminated.  If there was 
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no test case capable of discovering and eliminating the mutant, the mutant will be added 

to a set of survived mutants for further analysis.  

The algorithm can be applied on Md1, Md2 and Md3 as follows: Using Md1, S is 

modified to create mutant M1, now TC1 is applied on M1; at source state s0, upon 

receiving the input i1, it produces the output o1 while moving to the next state s2. At 

source state s2, upon receiving the input i1, it produces the output o1 while moving to 

the next state s0. Here, the produced output o1 is not equal to the expected output o2, 

hence the mutant is killed and no need to apply TC2 on the mutant. 

For Md2 and Md3, the same steps are executed. First, M2 and M3 are created from 

S using Md2 and Md3 respectively, then the test cases on both of them are applied. As a 

result, M2 will be eliminated by TC2 while M3 will survive and Md3 will be added to 

SMD.   

3.2 OpenMP Implementation  

In this section, a parallel implementation of the sequential algorithm is included 

based on a multi-core CPU via multiple threads using OpenMP. Similar to the 

sequential algorithm, the test cases are applied on the mutants one by one. However, 

different threads are used for applying a test case in parallel to a number of mutants. 

The number of mutants that can be checked in parallel depends on the number of 

invoked threads, and this can be automatically scheduled   by   the   OpenMP scheduler, 

or can be specified by the programmer. In this implementation, the number of threads 

equals the number of logical cores. Hyperthreading was enabled in the used test 

platforms, maximizing the potential performance extracted from the hardware. 

The distribution of mutants among threads depends on the schedule type being 

used, static or dynamic. In static scheduling, the mutants are divided evenly among the 

threads. In case the mutants cannot be divide evenly between the threads, only the last 

thread share may be different than the others. In dynamic scheduling, the mutants are 

divided into subsets and each thread works on one subset at a time. When a thread 

completes its subset, it takes another available subset. Dynamic scheduling 

performance can suffer from the coordination cost of acquiring new workload. Thus, 

the results reported in this paper are based on static scheduling.  
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In the OpenMP implementation shown below, the only major difference from 

the sequential algorithm is the partitioning of Loop-1, i.e. each of the N threads is 

assigned a 1/N-sized subset of the mutant set. 

OpenMP Implementation 

Let SM be a vector of arrays to save survived mutants in each thread 

Do In Parallel: For Each Mdi in MD  (Loop-1) 

         Let tID be the unique thread identifier 

         Modify S to create the mutant Mi using Mdi 

                     killed = FALSE 

                     While TS contains a TC not applied to Mi  AND killed = FALSE do: 

                          killed = Eliminate_Mutant(TC, Mi) 

                     End While 

                     If killed is FALSE 

                             SM[tID] = SM[tID]  Mi  

                     End If 

End-For (Loop-1) 

SMD = ∪∀ 𝒕𝑰𝑫 𝑺𝑴[𝒕𝑰𝑫] 

Return SMD 

Example 2: As an application example of OpenMP, considering Machine S in 

Figure 2-1. Let the set of mutants descriptors (MD) contains ten thousand descriptors 

{Md0, Md1, …, Md9999}. The test suite TS has two test cases and the number of invoked 

threads N = 10. 

The mutants are distributed evenly between the threads; each thread contains 

10000/N = 1000 mutants. Within each thread, the sequential algorithm is applied to  
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eliminate the set of mutants assigned to it. Each thread saves the set of survived mutants 

in a pre-allocated vector dedicated for it. When all the threads complete their work, the 

survived mutants are collected from the dedicated vectors in SMD. 

3.3 MPI Implementation 

Similar to OpenMP, in MPI several mutants are eliminated in parallel, but here 

a test case is applied in parallel to many mutants using different processes rather than 

different threads, where each process has its own isolated memory and the 

communication between processes is done via messages. The number of mutants that 

can be checked in parallel by a process depends on the number of launched processes. 

In the conducted experiments, the number of launched processes equals the total 

number of physical cores in the considered cluster. The used test platform consisted of 

four heterogeneous workstations. 

As in OpenMP, employ two ways for distributing the mutants among the 

processes can be applied. In a static distribution, an equal number of mutants is assigned 

to each process. However, unlike the OpenMP case where all cores are identical, the 

execution time is not the same across all the cluster machines, as they are equipped with 

different CPUs. For this reason, a dynamic distribution based on the master-worker 

pattern is employed. The master process coordinates the distribution of the mutants, 

while the worker processes eliminate the mutants assigned to them. When the master 

process starts, it divides the set of mutant descriptors into smaller subsets. 

Subsequently, it assigns a subset to each worker process. The master then listens for 

incoming load requests in order to hand-out unprocessed subsets, until set  is 

exhausted. 

On the other hand, upon initiation a worker process works on the initially 

assigned subset. When this is processed, the worker requests a new subset from the 

master. This process continues until the end signal is received from the master. At that 

moment, the survived mutants in the workers are collected by the master process. 

The worker processes work exactly as the sequential algorithm, as each worker 

has a subset of mutant descriptors and works on eliminating these mutants sequentially. 

The master process is only responsible for load balancing, which is,appropriately 

assigning subsets of descriptors to the workers. To improve the implementation 
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efficiency, the master process collects only descriptors indices of the survived mutants. 

MPI algorithm is shown in the form of a flowchart in Figure 3-1. 

 

 

Figure 3-1 MPI Implementation 

 

Example 3: MPI implementation is similar to OpenMp in which the set of 

mutants is divided into N processes {P0, …. PN-1} where P0 is the master process, but, 
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in MPI, dynamic distribution is used through a master-worker arrangement. As an 

application example of the MPI implementation, consider the same FSM S in 

Figure 2-1, let the set of mutants descriptors (MD) contains ten thousand descriptors 

{Md0, Md1… Md9999}. The test suite TS has two test cases and the number of launched 

processes is twenty; one serving as the master and 19 as the workers. 

The 10000 mutants are distributed evenly into several subsets. The number of 

mutants in each subset is calculated in the master process P0 using the formula (|subset| 

= |MD|/ (N*8)). P0 assigns the first N-1 subsets to the worker processes {P1,….,PN-1} 

respectively, then starts listening for requests from them; each time responding with a 

new subset. When all the subsets are distributed, an “end” message is sent to all 

workers.  

Each worker process executes the sequential algorithm on the initial subset 

assigned from P0. When the worker process completes the assigned subset, it asks for a 

new subset to operate on until an “end” signal is received. In response to the “end” 

signal, a worker sends the survived mutants it collected to the master process. 

3.4 CUDA Implementation 

In this section, parallel implementation is presented based on the CUDA 

platform. In CUDA a massive number of threads can be launched at the same time 

allowing the assign of one thread per mutant. 

The GPU is employed as a co-processor for filtering the mutants. The CPU 

transfers to the GPU memory the machine specification, mutant descriptors and test 

suite, and collects the survived mutants once the GPU completes its execution.  

The following notations and variables are used in the implementation: 

 RunSize: represents the number of inputs from a test case (sub-sequence 

length) that will be applied to the set of mutants in each GPU invocation. 

 αc: represent a subsequence of a TC, each TC will be divided into l disjoined 

subsequences    α1 … αl, each with length equal to RunSize. 

 ReachedLoc: array where the state (of the mutant) reached after completing 

the application of subsequence αc is saved. 
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 notKilled: array where the surviving mutant identifiers are saved after each 

kernel invocation. Subsequent kernel launches use this array for mapping 

mutants to threads. Initially, this array contains the indices of all the 

descriptors in MD. 

 ThreadSize: represents the number of launched threads inside the GPU. 

 BlockSize: represents the number of threads inside each block in the GPU. 

To determine the optimum BlockSize, an experiment was executed on FSMs S1, 

S3, S5 and S7 (see Table 4-1). The used TS length equals 2×n× |I| and has n/2 test cases. 

The number of considered mutants is fixed to 2.5 million. And BlockSize ranging from 

32 to 1024 with step equals 32. 

As depicted in Figure 3-2, there were two optimum BlockSize values; 256 was 

optimum in FSMs S1 and S7 while 512 was optimum in FSMs S3 and S5. 

 

 

Figure 3-2 CUDA Execution Time versus Block Size 
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Another Experiment is executed using FSMs S8, S9 and S10 from Table 4-1. In 

this experiment, A massive test with number of considered equals to 500 million is 

executed. TS length that has only 1 test case with length equals to half the average of 

the used FSMs transitions. BlockSize with values 256 and 512. 

As presented in Figure 3-3, for massive experiments BlockSize equals to 256 is 

better than 512. Thus, the used BlockSize in the conducted experiments is 256. 

 

 

Figure 3-3 Block Size 256 versus Block Size 512 
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          Set ThreadSize to the size of the MD set 

          Set reachedState to the state before the start of αc 

          Invoke GPU Kernel to apply αc on each member of MD 

          Set MD to the set of survived mutants  

     End For 

End While 

Copy MD (survived mutants) from global memory to host memory 

 

GPU part (kernel function): 

     Calculate global thread ID, tID 

     Copy αc into shared memory 

     Copy the mutant descriptor MdtID into thread memory (registers) 

     Load reachedState from global memory into thread memory 

     If Eliminate_Mutant (αc, MdtID) is False 

         Copy MdtID to survived mutants 

         Copy reachedState to global memory 

     End if 

 

Example 4: As an application example of the CUDA implementation, consider 

the FSM S in Figure 2-1. Let the set of mutants descriptors (MD) contains ten thousand 

descriptors {Md0, Md1 …Md9999} and the test suite TS has one test case TC1 with length 

6000. 
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CPU Work  

The CPU will copy the FSM S and set of mutants descriptors MD into the GPU 

global memory. After that, TC1 will be divided into into l disjoined subsequences    α1 

… αl, each with length equal to RunSize. For each subsequences αc, ThreadSize is 

initialized to the number of not-killed mutants , then the GPU kernel is invoked to apply 

αc on the mutants set. After each GPU kernel invocation, the ThreadSize will be 

recalculated, thus each time the number of launched threads in the GPU is reduced. 

GPU Work 

GPU kernel is responsible only on applying the subsequence αi  on the set of 

mutants to eliminate them.  
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Chapter 4 : Experimental Results 

 

This chapter presents the experiments conducted to determine the execution 

time and speedup of the parallel implementations in comparison to the sequential 

algorithm. Experiments are conducted using both randomly generated and real 

application FSMs. The experiments goal is to assess both the relative speedup and the 

scalability of the implementation. Furthermore, a thorough analysis is presented to 

assess the impact of the machine size and the number of mutants on the execution time 

4.1 Used FSMs, Software and Hardware platforms 

The attributes of the randomly generated FSMs used in the experiments are 

shown in Table 4-1. These FSMs were derived using the generator used in [83]. 

Table 4-2 shows the attributes of the real application FSMs taken from the 

ACM/SIGDA benchmarks [84]. 

 

Table 4-1 Attributes combinations of randomly generated FSMs 

FSM machine name Number of 

states (n) 

Number of 

inputs (|I|) 

Number of 

outputs (|O|) 

Number of 

transitions 

n×|I| 

S1 500 100 100 50000 

S2 625 120 125 75000 

S3 625 160 160 100000 

S4 625 200 200 125000 

S5 750 200 200 150000 

S6 875 200 200 175000 

S7 1000 200 200 200000 

S8 5000 100 100 500000 

S9 6000 125 125 750000 

S10 10000 100 100 1000000 

Random s208 18 2048 4 36864 

Random Nucpwr 29 8192 20 237568 

Random ram_testO 72 65536 27 4718592 

Random Rs820o 25 262144 22 6553600 
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Table 4-2 Attributes combinations of real application FSMs 

FSM machine 

name 

Number of 

states (n) 

Number of 

inputs (|I|) 

Number of 

outputs (|O|) 

n*|I| 

Nucpwr 29 8192 20 237568 

ram_testO 72 65536 27 4718592 

s820o 25 262144 22 6553600 

s8320 25 262144 22 6553600 

s420O 18 524288 4 9437184 

 

Table 4-3 System Configuration & Platform Details 

Computer 

name 

Kingpenguin Dune-970 Dune-Titan Dune-770 Dune-Frg Setup-T3600 

CPU 

Intel(R) 

Xeon(R) 

CPU E5-2640 

@ 2.50GHz 

Intel(R) 

Core(TM) 

i7-5820K 

CPU @ 

3.30GHz 

Intel(R) 

Core(TM) 

i7-5930K 

CPU @ 

3.50GHz 

Intel(R) 

Core(TM) 

i7-4820K 

CPU @ 

3.70GHz 

Intel(R) 

Core(TM) 

i7-5820K 

CPU @ 

3.30GHz 

Intel(R) 

Xeon(R) 

CPU E5-1620 

0 @ 3.60GHz 

CPU 

Cores 
12 12 6 4 6 

4 

Threads / 

Core 
2 2 2 2 2 

2 

RAM 64 GB 32 GB 64 GB 32 GB 32 GB 16 GB 

GPU - 
GeForce 

GTX 970 

GeForce 

GTX 

TITAN X 

GeForce 

GTX 770 
- 

Quadro 2000 

GPU 

Cores 
- 1664 3072 1536 - 

192 

GPU 

RAM 
- 4GB 12GB 2GB - 

1GB 

Compute 

Capability 
- 5 5 3 - 

2 

Number of 

GPUs 
- 2 1 2 - 

1 

 

The software environment is the same for all the test beds in Table 4-3 and is 

mentioned below: 

 Operating System: Ubuntu 16.04.1 LTS (64 bit) 

 The GNU C++ 4.9.3 compiler was used with CUDA SDK 8.0.44 
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The sequential and OpenMP implementations were executed on Dune-970; the 

CUDA implementation was executed on Dune-Titan, and the MPI parallel 

implementation was tested on a NoW formed by the six machines Kingpenguin, Dune-

770, Dune-Frg and Setup-T3600 shown in Table 4-3. 

4.1.1 Determining the TS length. The sequential implementation was used to 

determine the impact of TS length over execution time and over the percentage of killed 

mutants. These corresponding experiments were conducted using the small and 

medium size FSMs S1 and S7 (see Table 4-1), respectively. In these experiments, test 

suites with length ranging from 0.5×(n×|I|) to 10×(n×|I|) were used against a number of 

test cases in a test suite equals n and fixed number of 0.5 million mutants.  

Figure 4-1 and Figure 4-2 depict the execution time and the percentage of killed 

mutants respectively, as TS length increases. As Figure 4-1 illustrates, the execution 

time of the sequential algorithm increases at a rate which is analogous to log(TS). In 

fact, beyond a TS length of 4×(n×|I|), there is hardly any increase in execution time. 

  

 

Figure 4-1 Sequential execution time versus TS length 

 

Figure 4-2 shows that for TS with length 2×(n×|I|), the percentage of killed 

mutants reached 86.5%, and no major increase in this percentage is observed when TS 

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10

E
x
ec

u
ti

o
n

 T
im

e 
(s

ec
)

TS Length (Millions)

FSM S1 FSM S7



38 
 

length is bigger than or equals 4×(n×|I|). Thus, in the conducted experiments test suites 

of length 2×(n×|I|) is used. 

 

Figure 4-2 Percentage of killed mutants versus TS length 
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Figure 4-3 Sequential execution time versus number of test cases (FSM S1) 

 

 

Figure 4-4 Sequential execution time versus number of test cases (FSM S7) 
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current state-of-the-art. In this section, the performance obtained by the sequential 

algorithm is compared against the parallel OpenMP, MPI and CUDA implementations.  

Because of the extremely large execution time required by the sequential 

algorithm for medium and above sized FSMs, the testing is limited on FSM S1.  

Figure 4-5 depicts the execution time for the sequential algorithm as well as the 

parallel implementations as the number of mutants increases. According to these 

experiments, the execution time of the sequential algorithm increases almost 

exponentially as the number of considered mutants increases. When the execution time 

of the sequential algorithm reaches 2 hr and 10 minutes, OpenMP, MPI and CUDA 

execution times does not exceed 940, 252 and 10.6 seconds, respectively. 

Figure 4-6 represents the speedup achieved by the OpenMP, MPI and CUDA 

implementations. On average, the OpenMP speedup is 8.3x, the MPI speedup is 30.9x 

while the CUDA one was significantly higher at 637.5x. 

 

 

Figure 4-5 Sequential versus parallel implementations execution time (Machine S1) 
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Figure 4-6 Speedup against sequential algorithm (Machine S1) 
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show that the parallel implementations can scale more than the sequential algorithm as 

the number of considered mutants increases. 

 

 

Figure 4-7 Execution time for the parallel implementations (Machine S1 in table 4-1) 
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Figure 4-7 depicts the execution time as the number of mutants increases. 

According to this figure, the CUDA implementation is much faster than the OpenMP 

one. When the number of mutants equals 50 million, the execution time of OpenMP is 

52.2 minutes while that of MPI and CUDA is only 841 and 28.7 seconds, respectively. 

The speedup analysis for this experiment is presented in Figure 4-8. On average, 

the achieved speedup of MPI and CUDA over OpenMP is 3.7x and 87.7x, respectively.  

 

 

Figure 4-8 MPI and CUDA speedup against OpenMP (Machine S1 in table 4-1) 

 

4.2.3 Speedup of CUDA relative to MPI. In this section, the execution time of 

MPI and CUDA is assessed. In the conducted experiments, FSM S7 from Table 4-1 is 

used. The testing expanded to larger FSM since FSM S1 is small and can’t assess the 

power of MPI parallel implementation. 

Figure 4-9 depicts the execution time as the number of mutants increases. 

According to this figure, the CUDA implementation is much faster than the MPI one. 

When the number of mutants equals 50 million, the execution time of MPI is 152 

minutes while that of CUDA is only 2.6 minutes, i.e. CUDA is 58.6x faster than MPI. 
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Figure 4-9 Execution time for MPI and CUDA parallel implementations (Machine S7) 

 

 

Figure 4-10 CUDA speedup against MPI (Machine S7) 
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4.2.4 CUDA Scalability. In this section, the CUDA solution is analyzed relative 

to how it can scale in terms of handling bigger FSMs and larger number of mutants. 

Accordingly, S8, S9, and S10 (see Table 4-1) are utilized. In these experiments, test suites 

of only 1 test case are used, each of length 750,000. TS was calculated as the average 

number of transitions of the considered FSMs. 

According to the results depicted in Figure 4-11, the CUDA implementation 

scales almost linearly. The number of mutants tested, reach the limit on what is 

currently possible to fit on the majority of GPU accelerators’ memory. The 500 million 

mutants require a total of approximately 8GB of RAM for storage. 

 

 

Figure 4-11 CUDA massive test (randomly generated machines) 
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Because of the extremely large execution time required by the sequential 

algorithm for medium and above sized FSMs, the testing is limited on FSM nucpwr 

(see Table 4-2).  

 

 

Figure 4-12 Sequential versus parallel implementations execution time (Machine 

nucpwr) 

 

Figure 4-12 depicts the execution time for the sequential algorithm as well as 

the parallel implementations as the number of mutants increases. According to these 

experiments, the execution time of the sequential algorithm increases almost 

exponentially as the number of considered mutants increases. When the execution time 

of the sequential algorithm reaches 40.7 minutes, OpenMP, MPI and CUDA execution 

times does not exceed 509, 162 and 3.2 seconds, respectively. 

Figure 4-13 represents the speedup achieved by the OpenMP, MPI and CUDA 
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while the CUDA one was significantly higher at 502x. 

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

E
x
ec

u
ti

o
n

 T
im

e 
(s

ec
)

Number of Mutants (Millions)

Sequential OMP MPI CUDA



46 
 

 

Figure 4-13 Machine nucpwr speedup analysis 

 

4.3.2 Speedup of MPI and CUDA relative to OpenMP. In this section, the 

execution time of OpenMP, MPI and CUDA, and the relative speedup of MPI and 
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Table 4-2 is used to show that the parallel implementations can scale more than the 

sequential algorithm as the number of considered mutants increases. 
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Figure 4-14 Parallel implementations execution time (FSM nucpwr in table 4-1) 

 

 

Figure 4-15 MPI and CUDA speedup against OpenMP (FSM nucpwr in table 4-1) 
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4.3.3 Speedup of CUDA relative to MPI. In this section, the execution time of 

MPI and CUDA is assessed. In the conducted experiments, FSMs ram_testO, s820o, 

s8320 and s420O from Table 4-2 were used. The testing expanded to larger FSMs since 

FSM nucpwr is small and can’t assess the power of MPI parallel implementation. In 

these experiments, TS with fixed length equals to the (average number of transitions for 

these FSMs over 16) is used. This TS is used since the considered FSMs are relatively 

extra-large with average machine size equal to 6.5 million transitions. 

 

 

Figure 4-16 MPI execution time for big real application FSMs 

 

Figure 4-16 depicts the execution time as the number of mutants increases. 

According to this figure, the MPI implementation can work on large and extra-large 

FSMs with a reasonable execution time. 

The speed up analysis for this experiment is presented in Figure 4-17. On 

average, the achieved speed for CUDA over MPI is 134.8x, 27.9x, 27.8x and 109.8x 

for FSMs ram_testO, s820o, s8320 and s420O, respectively. It can be seen from the 

graph that increasing the number of mutants will increase the CUDA speedup. 
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Figure 4-17 CUDA speedup against MPI in big real application FSMs 

 

4.3.4 CUDA Scalability. In this section, the CUDA solution is analyzed relative 

to how it can scale in terms of handling bigger FSMs and larger number of mutants. 

Accordingly, FSMs ram_testO, s820o, s8320 and s420O from Table 4-2 are utilized. 

As illustrated above (see 4.3.3), test suites of only 1 test case are used, each of length 

425,984. TS was calculated as (the average number of transitions of the considered 

FSMs/16). 

Figure 4-18 the CUDA implementation scales almost linearly. The number of 

mutants tested, reach the limit on what is currently possible to fit on the majority of 

GPU accelerators’ memory. The 250 million mutants require a total of approximately 

4GB of RAM for storage, without considering the memory needed for the biggest of 

the test FSMs which reach a size of 9.7 million transitions.   
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Figure 4-18 CUDA massive test (real FSMs application examples) 

 

4.4 Analysis  

In this section, attributes related to the considered mutants’ elimination problem 

are assessed. More precisely, the impact of machine size on execution time, the impact 
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impact of CUDA RunSize on speedup. This analysis is conducted using randomly 
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implementation was used to determine the impact of the machine size as well as the 
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 Figure 4-19 depicts the execution time as machine size increase. According to 

the obtained results, the execution time of the sequential algorithm increases 

exponentially as the machine size increases. 

 

 

Figure 4-19 Number of transitions versus execution time (Machines S1-S7) 

 

4.4.2 Number of Threads, Processes and Run Size versus Speedup. The 
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The number of considered mutants is fixed to 1 million 

Figure 4-20 depicts the execution time as the number of invoked threads 

increases. According to this figure, the OpenMP speedup increases as the number of 

invoked threads increases. However, as the machine size increases, increasing the 
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Figure 4-20 OpenMP speedup versus number of threads (Machines S1-S7) 

 

 

Figure 4-21 MPI speedup versus number of processes (Machines S1-S7) 
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Figure 4-21 depicts the execution time as the number of launched processes 

increases. According to this figure, the MPI speedup increases as the number of 

launched processes increases. However, as the number of launched processes exceeds 

42 and approaches the number of logical cores in the used NoW the speedup starts to 

drop for large machines. The number of available logical cores in the used test platform 

is 52 cores, and the number of launched processes is 42 processes. 

 

 

Figure 4-22 CUDA speedup versus Run size (Machines S1-S7) 

 

Figure 4-22 depicts the execution time as CUDA RunSize increases. According 

to this figure, the CUDA speedup increases as the RunSize increases. However, as 

RunSize starts approaching 2000, the speedup starts to decline. In the conducted 

experiments, a RunSize equal to 1000 is used. 
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generated FSM with the same attributes (number of states, inputs, outputs) is derived. 

Then, an analysis similar to the ones described above using the derived FSM is 

conducted to compare the obtained results with those of the real application FSMs. In 

these experiments the attributes of the real application FSMs s208, nucpwr, ram_testO 

and s820o (see Table 4-2), are used to derive corresponding randomly generated FSMs 

with the same attributes, hereafter named Random-s208, Random nucpwr, Random 

ram_testO and Random-s820o, respectively. 

 

 

Figure 4-23 Sequential execution time of real applications FSMs versus. raandom 

FSMs with the same attributes 

 

Figure 4-23 depicts the execution time for the sequential algorithm for FSMs 

s208, nucpwr, Random-s208 and Random-nucpwr as the number of mutants increases. 

According to this figure, real application FSMs execution time has the same pattern as 

the randomly generated FSMs. However, real application FSMs execution time is less 

than that of the randomly generated FSMs. On average, the execution time for FSMs 

s208 and nucpwr is 0.776x and 0.599x of that of Random-s208 and Random-nucpwr, 

respectively. This difference in the execution time happens since the real application 

FSMs has a unique output and next state pattern, in which the used randomly generator 

cannot mimic to derive similar random FSMs. 
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Figure 4-24 OpenMp speedup of real applications FSMs versus random FSMs with 

the same attributes 

 

 

Figure 4-25 MPI speedup of real applications FSMs versus random FSMs with the 

same attributes 
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Figure 4-26 CUDA speedup of real applications FSMs versus random FSMs with the 

same attributes 

 

Figure 4-24, Figure 4-25 and Figure 4-26 include the speedup analysis. 

According to these figures, both real application FSMs and randomly generated FSMs 

have the same speedup pattern. In OpenMP and MPI, nucpwr speedup is higher than 

that of Random-nucpwr, while s208 speedup is less than that of Random-s208. In 

CUDA, both randomly generated FSMs obtained better speedup than the real 

application FSMs.  
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Figure 4-27 CUDA execution time of real applications FSMs versus. random FSMs 

with the same attributes 
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Chapter 5 : Related Work and Literature Review 

 

 As described in the Introduction of this work, i.e. the process of eliminating 

mutants, can be used in various FSM-based testing problems such as in mutation 

testing, fault diagnosis, and studying the effectiveness of test suites.  

In general, methods, tools, application areas, and summaries, related to mutation 

testing and studying the effectiveness of test suites, are covered in the traditional 

textbooks by Mathur [55], Ammann and Offutt [50], and in Jia and Harman [37] survey. 

In particular, for FSMs, Fabri et al. [85] proposed FSM related mutation operators and 

Febri et al. [86] and Simao et al. [60] described tools used in this context.  

 Ghedamsi et al. proposed many FSM based fault diagnosis methods. They 

proposed diagnostic tests for systems represented as FSMs in [61, 64-66] , as well as 

for communicating FSMs [62, 63]. These methods are used in El-Fakih et al. [59] in 

the context of extended FSM based fault diagnosis. El-Fakih et al. [28] presented a 

method to determine if it is possible to locate faulty component FSM, and derive tests 

for locating faults if it is possible to locate them. El-Fakih et al. [87] also followed a 

similar approach for deriving an adaptive diagnostic test suite for a single Extended 

FSM (EFSM). Pap et al. [88] studied diagnosis of a single transition or output fault in 

an FSM. 

For studying the effectiveness of extended FSM test suites, recently El-Fakih et 

al. [59] used the FSM-based mutation testing tools, such as those in Simao et al. [60], 

in studying the effectiveness of extended FSM test suites. El-Fakih et al. [89] also 

presented a fault coverage assessment of several EFSM based test suites. Habib in [90], 

worked on assessing extended finite state machine (EFSM)-based and random TS fault 

coverage as well as extended FSM-based fault localization capabilities. It is clear that 

the proposed implementations used in this work, can be used to enhance the time 

performance which thus enhance scalability (in terms of considering bigger fault 

domains) of the previous related work.   

As a result, for the advancement of parallel programming machines and the 

publication of easy-to-use libraries that support the parallel software development, 

many researchers used the aforementioned technique to speed up their testing process. 
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Recently, many researches, including this research, worked on utilizing the execution 

power of recent parallel technologies in the context of solving some FSM-based testing 

problems. For example, El-Fakih et al. [91] considered systems specified as non-

deterministic FSMs, and proposed and assessed implementations based on multicore 

CPUs and many-core GPUs for the derivation of all the successors of all pairs of states 

of an FSM. This is done in order to reduce the time and efforts for deriving sequences 

for distinguishing nondeterministic FSMs. Haddad et al. [92] also considered non-

deterministic FSMs, and proposed a parallel multithreaded implementation, using Open 

Multi-Processing, for deriving distinguishing states of an FSM. 

Hierons and Turker in [93] worked on improving the computational complexity 

of previous existed algorithm for generating Characterizing Sets (CSs) which is a set of 

input sequences that distinguishes all pairs of states, and Harmonized State Identifiers 

(HSIs) which allow different sets of input sequences for different states is an 

improvement on CSs- from partial FSMs which have exponential worst case time 

complexity. In their work, they tackled the scalability from two directions; the invention 

of new polynomial time sequential algorithm for generating CSs with massively parallel 

implementation of their algorithm and devising a parallel HSI construction algorithm. 

Moreover, they paralyzed the brute-force algorithms for generating CSs and HSIs 

(based on previous work done in [94]). By exploiting the GPU power to paralyze CSs 

and HSIs generation, they invented new faster and more scalable algorithm. Also, they 

found that the parallel version of the previous brute force algorithm outperformed the 

newly developed polynomial one. As for the parallel version of their new algorithm, it 

was the best in terms of time complexity, but it did not scale very well like the brute 

force due to its memory requirements.  

Hierons and Turker [5] also employed GPUs to automatically derive Unique 

Input Output sequences (UIOs) which is an input sequence that can distinguish a state 

s0 from the rest of inputs in FSM S from Finite State Machines. They addressed the 

scalability problem that may arise while constructing UIOs for completely specified 

FSMs through the use of massively parallel GPU technology. The new parallel UIO 

algorithm utilizes the capability of more than GPU and distributes the workload 

between them.  
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At the end, it is worth mentioning that many researchers used parallel testing in 

different fields than ours. In the late 80’s and early 90’s, many researches were 

conducted on parallelizing test pattern generation for digital circuits and very large 

integrated circuits (VLSI). Bollinger and Midkiff [95] conducted an investigation of the 

theoretical available amount of parallelism in topologically partitioned parallel 

automatic test patterns generation (ATPG), which aims to find an upper bound of the 

parallelism amount present in conflict-& test generation. Chandra and Patel [96] 

introduced the concept of heuristic parallelization which includes ATPG. Also, 

Motohara  in [97] used functional partitioning in which an algorithm is divided into 

independent sub tasks that can be executed in parallel. Klenke et al. [98, 99], presented 

a parallel architecture of a topologically ATPG on a distributed memory 

multiprocessor. Another parallel test generation method which tries to achieve high 

fault coverage for hard-to-detect (HTD) faults in a reasonable amount of time was 

proposed by Patil and Banerjee in [100]. 

 



61 
 

Chapter 6 : Conclusion 

 

Given a test suite of test cases usually from a given specification finite state 

machine (FSM) and fault domain, compromising mutants derived of the specification 

derived with respect to selected types of faults. The process of mutants’ elimination 

deals with removing/killing mutants, of the fault domain, that have different behavior 

than the specification machine with respect to some test case of the test suite. Mutants’ 

elimination is an essential step in FSM-based mutation testing, fault diagnosis, and in 

the assessment of the effectiveness of test suites. However, this process is time 

consuming especially with a huge number of considered mutants. Accordingly, three 

parallel implementations for reducing the time efforts of mutants’ elimination are 

presented and assessed in this thesis. The first is an Open Multi-Processing (OpenMP) 

implementation that utilizes many cores in a single machine. The second uses a 

clustered system using Message Passing Interface (MPI) standard and the third is based 

on the Compute Unified Device Architecture (CUDA) that exploits the computation 

power of the Graphical Processing Unit (GPU).  

Comprehensive experiments are conducted to assess the presented work using 

both randomly and real application FSMs. According to the obtained results the 

following holds: 

 For the randomly generated machines, the speedup of OpenMP, MPI, and GPU 

against the sequential implementation equals 8.3, 30.9, and 637.5 times, 

respectively; while for the real application machines, this speedup equals 4.6, 

15.0, and 502, respectively.  

 For the experiments conducted using real application machines and randomly 

generated machines with the same attributes (i.e., number of states, inputs, and 

outputs) the following is obtained. For the randomly generated machines, the 

speedup of OpenMP, MPI, and GPU against the sequential implementation 

equals 5.8, 21.4, and 405, respectively; while for the corresponding real 

application machines, this speedup equals 5.4, 20.7, and 302, respectively. The 

difference is due to the fact that the execution time of the real application       

machines is less than that of the corresponding random machines since many 
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states of the real machines have the same output and next state pattern. However, 

it is worth mentioning that both the real and corresponding random machines 

have the same pattern in terms of an increase in execution time due to the increase 

in the number of mutants. 

 The relative speedup of MPI and CUDA with respect to OpenMP, assessed using 

randomly generated machines, equals 3.7 and 87.7 times, respectively, while this 

speedup equals 3.43, and 156 for real application machines.  

 For the experiments conducted using real application machines and randomly 

generated machines with the same attributes the following holds: The relative 

speedup of MPI and CUDA with respect to OpenMP, assessed using randomly 

generated machines, equals 3.69, and 69.7 times, respectively, while this speedup 

equals 3.8 and 55.9 for real application machines. This is due to the fact 

mentioned above. Here again, the same pattern in terms of an increase in 

execution time due to the increase in number of mutants is obtained for both 

types of machines. 

 The relative speedup of CUDA with respect to MPI, assessed using randomly 

generated and real application machines equals 57.4 and 75.0 times, respectively. 

 For the experiments conducted using real application machines and randomly 

generated machines with the same attributes the following holds: the relative 

speedup of CUDA with respect to MPI, assessed using randomly generated and 

real application machines equals 18.8 and 14.5 times, respectively. This is due 

to the fact mentioned above. Here again, the same pattern in terms of an increase 

in execution time due to the increase in number of mutants is obtained for both 

types of machines. 

 CUDA implementation is scalable in terms of machine size and the number of 

considered mutants to eliminate. Limited by the used hardware architecture, 

CUDA easily handled experiments with 500 Million mutants and operated on 

machines with 9.5 Million transitions. 

 In OpenMp, as the number of invoked threads increases, the speed up increases. 

As the number of threads approaches and exceeds the number of logical cores of 
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the used computer, the obtained speedup starts to decline for large machines size. 

Based on this, the number of threads used in the conducted experiments equals 

the number of logical cores (automatically determined by OpenMP) of the used 

computer. 

  In MPI, as the number of launched processes increases, the speed up increases till 

the number of processes approaches the number of logical cores of the used 

NoW. At that moment, the obtained speedup starts to decline, especially with an 

increase in the machine size. Based on this, the number of processes used in the 

conducted experiments is less than the number of logical cores. In the conducted 

experiments, they were 42 processes. 

 In CUDA, dividing the test case into l disjoined subsequences each with length 

equals RunSize utilizes the GPU shared memory by invoking the kernel l times 

when applying the test case. This is shown to increase the speedup. According 

to conducted experiments, RunSize of 1000 inputs is used in the assessment as 

this number provided the best results. 
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