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Abstract 

Adaptive beamforming is an array processing method that can be used for target 

detection. In the absence of clutter signals, this method uses a one-dimensional adaptive 

filter called the space filter in the spatial dimension using a uniformly linear array as a 

receiver that is made of N-channels separated by a distance d. The N-receiver channels 

work on collecting target-free data that can be used as training data for the radar along 

with collecting the target signal with all types of interferences. The training data are 

then used to build the covariance matrix that is used in determining the adaptive 

beamformer filter weights. After that, the received data are projected onto these weights 

to null the jamming signals, minimize noise, and amplify the target signal. Finally, the 

output, after projection, is compared with a measured threshold value to decide upon 

the presence of the target. This conventional method suffers from several problems such 

as target cancellation when the training data collected are not target free. Furthermore, 

the amount of secondary data required is usually not available in such applications. 

Thus, different algorithms must be found or developed to overcome or improve the 

problems of the conventional method. In this report, a target detection system that 

involves direction of arrival estimation and learning based algorithms is proposed. The 

proposed system is assumed to overcome the problem of the jamming signal direction 

of arrival variations between the training and testing stages, signal-to-interference-plus-

noise-ratio variations and the necessity for target free secondary data. Another target 

detection system is also proposed, i.e. the cascade system. This system uses the adaptive 

beamforming method as an unsupervised dimensionality reduction technique in line 

with the learning-based method for target detection, and it shows a comparable 

performance as compared to the original proposed system. 

 

Keywords: Adaptive beamforming; MTI radar; DOA estimation; pattern 

classification. 

 

 

 

 

 



 7   

 

Table of Contents 

Abstract ......................................................................................................................... 6 

List of Figures ............................................................................................................... 9 

List of Tables .............................................................................................................. 10 

List of Abbreviations ................................................................................................. 11 

Chapter 1. Introduction ............................................................................................ 12 

1.1 Target Detection Overview ..................................................................... 12 

1.2 Thesis Objectives .................................................................................... 13 

1.3 Research Contribution ............................................................................ 13 

1.4 Thesis Organization ................................................................................ 13 

Chapter 2. Background and Literature Review ..................................................... 14 

2.1 Problem Definition.................................................................................. 14 

2.2 Signal Types............................................................................................ 15 

2.2.1 Target. .................................................................................................... 15 

2.2.2 Jamming ................................................................................................. 15 

2.2.3 Noise ...................................................................................................... 16 

2.3 Array Processing Techniques ................................................................. 16 

2.3.1 Adaptive beamforming .......................................................................... 16 

2.3.2 Adaptive beamforming recent algorithms ............................................. 19 

2.3.3 Wiener-Hopf filter ................................................................................. 19 

2.3.4 Principle component analysis ................................................................ 20 

2.3.5 Fisher discriminant analysis ................................................................... 20 

2.3.6 Adaptive beamforming as a dimensionality reduction technique .......... 20 

2.3.7 DOA estimation ..................................................................................... 21 

2.3.8 MUSIC DOA estimation algorithm ....................................................... 21 

2.4 Pattern Classification .............................................................................. 22 

2.4.1 Pattern classification systems overview................................................. 22 

2.4.2 Linear Classifier. .................................................................................... 23 

2.4.3 Second-order polynomial classifier. ...................................................... 25 

Chapter 3. Proposed System ..................................................................................... 26 

3.1 DOA Estimation Technique Selection .................................................... 26 

3.2 Classifier Selection ................................................................................. 26 

3.3 Proposed System Methodology .............................................................. 26 



 8   

 

3.4 Proposed Cascade System with Adaptive beamforming as a 

Dimensionality Reduction Technique..................................................... 29 

Chapter 4. Results and Analysis ............................................................................... 31 

4.1 Testing and decision Making Criteria ..................................................... 31 

4.2 MUSIC DOA Estimator Output Evaluation ........................................... 32 

4.3 Conventional Adaptive Beamforming vs. Proposed system................... 34 

4.3.1 Range gate detection test ....................................................................... 34 

4.3.2 Jammer DOA variations and target detection test ................................. 36 

4.4 Proposed Cascade System Evaluation .................................................... 41 

4.5 Computational Complexity Analysis ...................................................... 42 

Chapter 5. Conclusion ............................................................................................... 44 

References ................................................................................................................... 45 

Vita .............................................................................................................................. 47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 9   

 

List of Figures 

Figure 1: ULA receiver geometry ................................................................................ 14 

Figure 2: Pattern classification systems stages summary ............................................ 22 

Figure 3: Example on effect of the feature extraction process on classification ......... 23 

Figure 4: Two-class three-dimensional feature space problem example [24]. ............ 24 

Figure 5: Proposed system training stage .................................................................... 28 

Figure 6: Proposed system testing stage ...................................................................... 29 

Figure 7: Proposed cascade system training stage ....................................................... 30 

Figure 8: Proposed cascade system testing stage ......................................................... 30 

Figure 9: Threshold measurement for the adaptive beamforming technique output ... 32 

Figure 10: Threshold measurement for the linear classification technique output ...... 32 

Figure 11: MUSIC jamming signal DOA estimation confusion ................................. 33 

Figure 12: Adaptive beamforming range gate test (case 1) ......................................... 35 

Figure 13: Linear classification range gate test (case 1) .............................................. 35 

Figure 14: Adaptive beamforming range gate test (case 2) ......................................... 36 

Figure 15: Linear classification range gate test (case 2) .............................................. 36 

Figure 16: Adaptive beamforming target detection accuracy (data with target) ......... 37 

Figure 17: Adaptive beamforming false alarm rate (data with no target) .................... 38 

Figure 18: Proposed systems target detection accuracy for the jamming DOA 

variations test (data with target) ................................................................. 39 

Figure 19: Beam pattern width of the adaptive beamforming and linear classification 

techniques .................................................................................................. 40 

Figure 20: Proposed systems false alarm rate for the jamming DOA variations test 

(data with no target) ................................................................................... 40 

Figure 21: Target detection accuracy / False alarm rate for the jamming DOA 

variations when using PCA projected data in line with the proposed 

system. ....................................................................................................... 41 

Figure 22: Target detection accuracy / False alarm rate for the jamming DOA 

variations in the proposed cascade system................................................. 42 

 

  



 10   

 

List of Tables 

Table 1: Parameters values used to obtain the simulation results ................................ 31 

Table 2: Range gate first and second testing cases DOA values ................................. 34 

Table 3: Running time of each proposed algorithm..................................................... 42 

Table 4: Machine specifications .................................................................................. 43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11   

 

List of Abbreviations 

MTI Moving Target Indicators 

AMTI Airborne Moving Target Indicators   

GMTI Ground Moving Target Indicators 

STI Stationary Target Indicators 

SMTI Stationary and Moving Target Indicators 

SINR Signal-to-Interference-plus-Noise-Ratio 

DOA Direction of Arrival 

ULA Uniformly Linear Array 

RCS Radar Cross Section 

AWGN Additive White Gaussian Noise 

PCA Principle Component Analysis 

SVD Singular Value Decomposition 

LDA Linear Discriminant Analysis 

ESPRIT Estimation of Signal Parameters via Rotational Invariance Tech. 

 MUSIC Multiple Signal Classification 

MSE Mean-Squared Error 

SVM Support Machine Vector 

 

 

 

 

 

 



 12   

 

Chapter 1. Introduction 

In this chapter, a short introduction is provided about target detection and the 

encountered problems in this field. The chapter then moves to highlight the problem 

investigated in this study as well as the thesis contribution. Finally, the general 

organization of the thesis is presented. 

1.1 Target Detection Overview 

The need to know if a particular object or condition is present is sometimes 

significant for engineers and scientists. For instance, geophysicists explore the earth for 

oil or water; pilots need to locate other airplanes approaching their aircraft during a 

flight; astronomers search the universe for new planets or stars, etc. These situations 

usually make use of a threshold to be compared with the output of the processed 

received data. The decision of the presence of a target (the object or condition being 

sought) is taken if the threshold is exceeded [1].  

In literature, different types of target indicators are developed and presented 

such as moving target indicators (MTI), airborne moving target indicators (AMTI), 

ground moving target indicators (GMTI), stationary target indicators (STI) and 

combined stationary and moving target indicators (SMTI) [2]. For the different types 

of MTI, the main goal is to differentiate a target against the clutter. In order to do so, 

the most common approaches take advantage of the Doppler’s effect [2]. The moving 

target will change its distance from the radar system for a given sequence of radar 

pulses, hence, the reflection of the radar phase that returns from the target will be 

different for consequent pulses. On the other hand, STI mode of operation takes 

advantage of the fact that the target is moving against a stationary clutter [2]. 

In the process of detecting a target, the received signal is a combination of the 

target signal and all other interferences such as noise and jamming. The probability of 

detection PD depends mainly on the probability of false alarm and the signal-to-

interference-plus-noise-ratio (SINR). Jamming signals are considered the most 

powerful source of interference that may disrupt the received signal. These two 

interferences need to be suppressed in order to maximize the SINR, and as a 

consequence, this will maximize the probability of detection PD. The clutter signals are 

not taken into consideration in this report since our radar platform is assumed to be the 

stationary. 
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1.2 Thesis Objectives 

Due to the observed inefficient performance of the conventional space adaptive 

processing algorithm in detecting targets whenever the jamming signals direction of 

arrival (DOA) and the SINR are different than the training scenario, the interest of 

building a system that overcomes this problem has arisen. DOA estimation and learning 

based techniques were taken as an advantage to build the proposed system.  

1.3 Research Contribution 

The contributions of this research work can be summarized as follows:   

 Propose a target detection algorithm that has greater immunity to noise and 

interference in severe environments compared to the conventional method. The 

proposed method is able to detect targets with a significant accuracy even when 

the noise and target signals are on the same power levels and when the jamming 

signals are much greater than the target signal, which the conventional method 

fails to handle. 

 A new unsupervised method of dimensionality reduction that does not 

incorporate class information and helps in the target detection process is found 

by taking advantage of the adaptive beamforming output. 

1.4 Thesis Organization 

The rest of the thesis report is organized as follows: Chapter 2 states the problem 

definition together with illustrating the different signal types used. It also provides a 

literature review on array processing and pattern classification systems. Chapter 3 

explains the proposed system for target detection and introduces another proposed 

cascade system that has a comparable performance with a significant dimensionality 

reduction in the training and testing data. Simulation results and performance 

evaluation are presented in Chapter 4. Finally, chapter 5 concludes by summarising all 

the findings presented in this thesis. 
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Chapter 2. Background and Literature Review 

In this chapter, the problem architecture adopted in this thesis is presented along 

with all the associated signal types used. Then, the chapter provides a literature review 

on array processing techniques which includes adaptive beamforming, principle 

component analysis, fisher discriminant analysis and direction of arrival (DOA) 

estimation. Finally, the chapter concludes with an overview on pattern classification 

systems followed by two main classification systems which are the linear classifier and 

the second-order polynomial classifier. 

2.1 Problem Definition  

A uniformly linear array (ULA) receiver is used as the antenna pattern in this 

thesis report. This receiver consists of N channels that are separated by a distance d as 

shown in Figure 1. The distance d can be set depending on the expected wavelength 

that will be received by the ULA. The reference point of the ULA is assumed to be at 

the first element. The ULA elements are assumed to have the same radiation pattern. 

All the three algorithms which are the adaptive beamforming, linear classification and 

second-order polynomial classification that are discussed in this thesis report are 

assumed to have the previously mentioned antenna array geometry. These methods are 

considered as learning based methods since they are trained using a certain set of data 

before they are used. 

 

Figure 1: ULA receiver geometry. 



 15   

 

2.2 Signal Types 

This section clarifies all types of signals used throughout this thesis report. Such 

signals include the target, jamming and noise signals that are used to model the received 

signal to the radar system. 

2.2.1 Target. In radar theory, the received target power depends on many 

variables such as the radar cross-section (RCS) of the target, the transmitted power, the 

array power gain, the target range gate, the radiation pattern, the receiver noise, and the 

radar’s frequency of operation [3]. In our case, the target signal is characterized by two 

main parameters: the first parameter is the target DOA, θT, which is used to build the 

target steering vector sT. The steering vector definition is given by: 

s = 

[
 
 
 
 
 
 

1
𝑒−𝑗𝜋𝑠𝑖𝑛𝜃

𝑒−𝑗2𝜋𝑠𝑖𝑛𝜃

.

.

.
𝑒−𝑗(𝑁−1)𝜋𝑠𝑖𝑛𝜃]

 
 
 
 
 
 

 

 

 

(1) 

where N is the number of the receiver channels. The spacing between the channels, d, 

is assumed to be half of the target wave length λ as shown in (2). This spacing value is 

chosen because it gives the best beam pattern with the number of ULA channels (N) 

chosen in this report as illustrated in [4]. 

d = 
𝜆

2
                                                                     (2) 

 The steering vector definition is the same for all different types of signals used 

in this report; the only difference is in the signal DOA, θ, used to build the steering 

vector. The second parameter is the target relative power, ζT, which is seen at the 

receiver. This relative power is assumed to be constant, i.e. not random. The target 

signal model, T, can then be given by: 

T(θT, ζT) =  ζT sT(θT)                                                              (3) 

2.2.2 Jamming. Jamming signals appear centered at a certain azimuth angle 

and spread over all frequencies. These signals are correlated in the spatial dimension 

but uncorrelated in the temporal dimension. They can be suppressed by simply placing 
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a null in the radar array pattern in the direction of the jammer [5]. Like the target signal, 

the jamming signal can be characterized by its angle of arrival and relative power seen 

at the receiver; however, the jamming signal power is not constant here but random. 

The jamming signal model, J, is given by: 

J(θJ, ζJ) =  ζJ sJ(θJ)                                                              (4) 

where ζJ is the jamming signal relative power, sJ is the jamming steering vector and θJ 

is the jamming signal angle of arrival.  

2.2.3 Noise. In signal processing, noise is a general term for unwanted and 

unknown modifications that a signal may suffer during capture, storage, transmission, 

processing, or conversion [6]. Noise signals cannot be nulled because they are spread 

over all frequencies, and they come from every angle, however, in most cases, 

researchers do not care about the shape of the target signal as long as it can be 

differentiated from the interference signals. In this report, the term “noise” refers to the 

thermal noise seen at each receiver element.  It is assumed to be an additive white 

Gaussian noise (AWGN) that is uncorrelated from one channel to another. The noise 

signal power, ζn, can be determined from the noise power spectral density, No, and the 

bandwidth of the receiver, B, and it is given by [6]: 

ζn =  No B                                                            (5) 

2.3 Array Processing Techniques 

In this section, different array processing techniques are presented. These 

techniques include adaptive beamforming, principle component analysis, fisher 

discriminant analysis and DOA estimation. 

2.3.1 Adaptive beamforming.  In the 1960s, adaptive beamforming was 

initially developed for the military use of sonar and radar [7]. Several modern 

applications exist for adaptive beamforming; one of the most significant applications is 

the commercial wireless networks such as 3GPP, LTE and IEEE 802.16 WiMax. These 

networks depend on adaptive beamforming to enable primary services within each 

standard [8]. In the literature, there are several approaches for designing a beamformer. 

The very first approach was implemented by Applebaum in 1965 where he used the 

maximization of the signal to noise ratio (SNR) in order to maximize the received signal 
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power while minimize noise and all other interference signals such as jamming [7]. 

Another approach which uses the least mean squares (LMS) error was implemented by 

Widrow. The maximum likelihood method (MLM) was also developed by Capon in 

1969. Both algorithms of Applebaum and Widrow are very similar and converge toward 

an optimal solution [9]. However, these techniques have implementation drawbacks. 

Reed proposed a technique known as Sample-Matrix Inversion (SMI) in 1974 which 

obtains the adaptive antenna array weights directly unlike the algorithms of Applebaum 

and Widrow [7]. 

 Adaptive beamforming is a technique that performs adaptive spatial signal 

processing using an array of transmitters or receivers. In principle, it increases the target 

signal strength from a chosen direction while degrading all other signals from undesired 

directions. This technique is used mainly in radar systems to provide directional 

sensitivity without moving the array of receivers or transmitters physically. The way 

this method works is that it estimates the covariance matrix, Re, from a secondary set 

of data that is collected from the N-receiver channels. The secondary (training) data 

used in this process needs to be target-free to avoid what is known as target cancellation. 

In practice, this can be done by carrying out turning on the N-receiver channels when 

there is no target signal in the environment and observing all the interference signals 

that exist in the environment around the radar. The secondary data must also have the 

same statistical properties as the data under test which have target signal included. If 

any of these two conditions is not satisfied, the result will be either a poor estimate of 

the interference covariance matrix, hence a poor filter output, or the loss of the target 

as an outcome of target-cancellation [10]. After processing the received signal through 

the digital signal processing (DSP) unit, the discretized signal seen at the first channel, 

Xd,1, is given by:

Xd,1 = [𝑥11 𝑥12 𝑥13     𝑥14 … 𝑥1𝐾] (6) 

where K refers to the number of samples used to discretize the received signal. Similarly, 

the discretized signal seen at the second channel, Xd,2, is given by: 

Xd,2 = [𝑥21 𝑥22 𝑥23     𝑥24 … 𝑥2𝐾] (7) 
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Then we can write the discretized signal seen from the all N-receiver channels as 

follows: 

Xd = 

[
 
 
 
 
 

𝑥11 𝑥12 𝑥13

𝑥21 𝑥22 𝑥23

𝑥31 𝑥32 𝑥33

      

𝑥14 … 𝑥1𝐾

𝑥24 … 𝑥2𝐾

𝑥34 … 𝑥3𝐾

 

𝑥41 𝑥42 𝑥43

⋮ ⋮ ⋮
𝑥𝑁1 𝑥𝑁2 𝑥𝑁3

      

𝑥44 … 𝑥4𝐾

⋮ ⋱ ⋮
𝑥𝑁4 ⋯ 𝑥𝑁𝐾

 
]
 
 
 
 
 

                                                             

 

(8) 

This discretized received signal form is held true for both training and testing data with 

or without a target signal. The notation used for data with no target in this report will 

be Xd,notar, As for data with no knowledge of whether there is a target or not, the notation 

will be Xd.  After obtaining the discretized received signal, the covariance matrix can 

be estimated using the following equation: 

Re = 
𝟏

𝑲
 𝑋𝑑,𝑛𝑜𝑡𝑎𝑟 𝑋𝑑,𝑛𝑜𝑡𝑎𝑟

𝑇
                                                           (9) 

where Xd,notar
T  is the transpose of the no target discretized received signal matrix. Next, 

the filter weights vector w that is used to suppress the interference signals and amplify 

the target signal can be obtained using the estimated covariance matrix as shown below. 

w = Re
-1 s (10) 

Where s refers to the target space steering vector shown in (1). After building the 

estimated covariance matrix and getting the filter weights vector, the angle of the 

jamming signals and the angle of the target signal can easily be decided on. Our interest 

here is to null the jamming signals, suppress the noise signals, and amplify the target 

signal. This can be done by computing the filter output using the filter weight vector 

and the received signal. The filter output is given by: 

y = w H Xd                                                               (11) 

where wH is the Hermitian transpose of the filter weight vector. The magnitude of the 

output, |𝑦|, is then used to decide on the presence of a target. One way of deciding on 

the presence of a target is to compare the power of the output magnitude at the range 
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gate1 or samples that contain a target with those which do not include a target, and as 

this power difference increases, the performance of the system does also increase. 

Another way is to set a threshold value, Yth, and compare the output magnitude with it. 

The decision will then be identified as: 

𝐷(|𝒚|) = {
|𝒚| ≥ 𝑌𝑡ℎ,       𝐻0

|𝒚| < 𝑌𝑡ℎ,       𝐻1
 

(12) 

where H0 refers to the hypothesis that indicates the presence of a target and H1 is the 

hypothesis that indicates the non-presence of a target. 

2.3.2 Adaptive beamforming recent algorithms. Several recently 

developed adaptive beamforming algorithms exist in the literature. One algorithm is the 

robust adaptive beamforming with precise main beam control which takes into account 

the steering vector uncertainties in the magnitude response of the adaptive beamformer 

and uses the semidefinite relaxation technique as approximate solver [11]. Another 

algorithm is the constant modulus reduced-rank beamforming which uses a generalized 

sidelobe canceller structure for interference suppression [12]. A third adaptive 

beamforming algorithm that is based on conjugate gradient algorithms is introduced in 

[13]. This algorithm offers two different methods of adaptive beamforming. The first 

method takes advantage of the diagonal loading technique [14], while the second 

method uses the regularization technique [15]. 

2.3.3 Wiener-Hopf filter. After building the estimated covariance matrix, Re, 

and getting the filter weights vector w, the direction of arrival (DOA) of the jamming 

signals and the target signal can be determined. Our interest here is to null the jamming 

signals and amplify the target signal. This is done by using the wiener-hopf filter output, 

F, that is given by: 

F = |𝒘𝑻𝒔| (13) 

The angle used to build the steering vector s is swept over all different possible angles, 

and for each one of these angles, the weight vector built using the adaptive 

beamforming method will determine whether this angle corresponds to a jamming 

                                                 
1 Range gate refers to a certain distance on the ground. 
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signal or to a target signal. Based on this, nulling will occur on the direction of the 

jamming signals, and amplification will occur on the direction of the target signal. It is 

important to note here that noise signals cannot be nulled because they are spread over 

all frequencies, and they come from every angle; however, in most cases no much 

attention is given to the shape of the target signal as long as it can be differentiated from 

the interference signal. 

2.3.4 Principle component analysis. Principal component analysis (PCA) is 

an unsupervised multivariate technique that analyzes a data set that consists of a number 

of observations described by several dependent features. The main goal of PCA is to 

project the data into a lower dimensional sub-space in the direction of their maximum 

variances regardless of their classes; thus, it is not always suitable for classification 

purposes as it may mix up the different classes and make the classification job harder. 

Mathematically, PCA depends upon the Eigen-decomposition of positive semidefinite 

matrices and upon the singular value decomposition (SVD) of rectangular matrices 

[16]. PCA is found to be unhelpful for the target detection process using the proposed 

systems mentioned in this thesis.  

2.3.5 Fisher discriminant analysis. Fisher linear discriminant analysis (also 

called linear discriminant analysis (LDA)) is a method used in statistics, pattern 

recognition and machine learning to find a linear combination of features which 

separates two or more classes of events. The resulting combination can be used for 

dimensionality reduction purposes before the classification stage. LDA is closely 

related to PCA since both techniques apply linear transformations on a given data set. 

However, unlike PCA, LDA transformation is based on maximizing the ratio of 

“between-class variance” to “within-class variance” with the goal of reducing data 

variation in the same class and increasing the separation between classes [17]. 

2.3.6 Adaptive beamforming as a dimensionality reduction technique. In 

this thesis, it was found that adaptive beamforming can act as an unsupervised 

dimensionality reduction technique that is useful for target detection (classification) 

purposes. The researcher was able to apply adaptive beamforming on our training and 

testing data sets and reduce their dimensionality significantly along with getting a 

comparable classification output performance. This technique is used in the proposed 

cascade system that is illustrated in Chapter 3. 
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2.3.7 DOA estimation. Direction of arrival (DOA) estimation is a wide and 

significant research area in array signal processing where several engineering 

applications need sufficient algorithms for DOA estimation [18]. Spatial spectrum is a 

major concept in array signal processing theory. It estimates the signal’s distribution in 

every direction in the space, hence, knowing the signal’s spatial spectrum leads to the 

estimation of DOA of a signal. Consequently, spatial spectrum estimation can also be 

referred to as DOA estimation.  

Various kinds of super resolution algorithms are present in the theory such as 

spectral estimation, Bartlett, Capon, ESPRIT, Min-norm and MUSIC [19]. One of the 

most popular subspace-based techniques to estimate the DOA of multiple signal sources 

is the MUSIC algorithm, an acronym that stands for multiple signal classification. Using 

the MUSIC algorithm involves large numbers of computations to search for the spectral 

angle. Therefore, in practical applications, its implementation can be challenging. This 

algorithm can only be used in uniform linear array (ULA) or non-uniform linear array 

whose arrays are restricted to a uniform grid [19].  

2.3.8 MUSIC DOA estimation algorithm. Let’s assume a test signal of the 

form as in (8) is received by the ULA, and no information is available about the 

directions of arrival of each component (target and jamming) of this signal. Then, the 

job of the MUSIC estimator is to estimate the directions of arrival at which the energy 

is concentrated. To do so, the estimated covariance matrix, Re, of the test signal must be 

built using the same expression as in (9) but by using the Xd feature matrix instead of 

Xd,notar. At this point, the eigenvalues of the estimated covariance matrix must be found 

and sorted in a descending order. In theory, there are several ways that may help in 

finding the maximum and the minimum eigenvalue of a system which will aid in the 

sorting job. One of these methods is the direct power method that helps in finding the 

maximum eigenvalue of a system [20]. Another method is the inverse power method 

which finds the minimum eigenvalue of a system [20]. However, once we have the 

eigenvalues of a system, the sorting job becomes easy, which helps in identifying the 

number of eigenvectors needed to build the interference subspace. Next, the 

eigenvectors of the system are sorted according to their associated eigenvalues. Once 

the eigenvalues stop changing and reach to a constant value (reach the elbow), all their 

associated eigenvectors are used to build the interference subspace. After that, the 

MUSIC DOA estimator can be determined by [21]: 
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MUSIC = ((‖𝒔𝑯(𝜃) 𝑬𝒊‖𝟐)
−𝟏)𝟐                                                           (14) 

where sH(θ) refers to the Hermitian transpose of the steering vector at a given angle θ 

and Ei refers to the interference subspace. Finally, to obtain the DOA of a signal at 

which the energy is concentrated, the angle, θ, used in the steering vector must be swept 

among all the possible angles, and the output of the MUSIC estimator must be observed. 

The higher the output at a certain angle, the more confidence is reached have about the 

DOA of a signal. 

2.4 Pattern Classification 

This section gives an overview on the theory of pattern classification. It 

describes the different stages needed to build a pattern classification system. Two types 

of classifiers are discussed at the end of this section: the linear classifier and the second-

order polynomial classifier. 

2.4.1 Pattern classification systems overview. Pattern recognition 

(classification) is a branch of machine learning that concentrates on the recognition of 

patterns and uniformities in data, although it is in some cases considered to be nearly 

synonymous with machine learning [22]. The main objective of a pattern classification 

system is to classify different objects into groups (classes) based on their different 

properties (features). The different stages needed to build a pattern classification system 

are illustrated in Figure 2.  

 

Figure 2: Pattern classification systems stages summary. 

First, data is collected from the input of the system which could be voice, image, 

or data based input. Second, the pre-processing stage processes the useful data obtained 

through data collection.  Then the different features are extracted from the useful data 
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set, and according to these features the type of the classifier (linear or nonlinear) is 

selected. After that, the classifier is trained using a training data set and then tested 

using a testing data set. If the classifier succeeds in differentiating between the different 

classes, then it is said to be a suitable classifier for that specific application. However, 

if it fails, a different classifier type should be selected, and/or a different feature 

extraction technique should be used. 

The feature extraction process is considered one of the most important stages in 

a pattern classification system. The obtained features are expected to include relevant 

information from the acquired received data so that the classification task can be done 

using this reduced representation instead of using the complete set of the data. To 

illustrate the importance of the feature extraction process, an example is shown in 

Figure 3. Figure 3(a) shows a combination of two features that is able to separate 

different classes efficiently. In Figure 3(b), on the other hand, the selected combination 

of features fails to discriminate between the two classes, hence, the classification task 

will be hard and maybe unobtainable. 

 

Figure 3: Example on effect of the feature extraction process on classification. 

2.4.2 Linear Classifier. A linear classifier helps in reaching a classification 

decision based on the value of a linear combination of the characteristics. The 

characteristics of the object are also known as feature values and are typically presented 

to the machine in a vector called a feature vector. Such classifiers work well for 

practical problems such as document classification, and more generally for problems 

with many variables (features), reaching accuracy levels comparable to non-linear 

classifiers while taking less time to train and use [23]. Linear classifiers assume that the 
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classes can be separated linearly. A linear classifier can be represented by a linear 

discriminant function of the form:  

y(x) = w T x + wo (15) 

where x represents a feature vector, w is the weight vector that will be projected onto 

the testing data to do the classification job and wo is a constant bias value. A two-class 

problem with one, two, or three-dimensional feature space will have a decision 

boundary of a point, line, or plane respectively. Figure 4 shows a two-class problem 

with three-dimensional feature space. As the dimensionality of the feature space goes 

higher, the decision boundary shape gets more complex, but this will not necessarily 

make the classification job harder. 

 

Figure 4: Two-class three-dimensional feature space problem example [24]. 

Many optimization methods can be used to train a linear classifier and determine 

its decision boundary. One of the methods uses a gradient descent algorithm to find the 

weight vector that minimizes the error between the actual output vector of the classifier 

and the target output vector. Another method depends on minimizing the mean-squared 

error (MSE) using the pseudoinverse of the matrix constructed from the feature vectors 

[25]. In this report, the second method is used to design the linear classifier. 

To build the linear classifier, we need first to build the weight vector that will 

be used to map the input (target free or with a target) to the output (0 or 1 respectively). 
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This is done by using the linear classifier discriminant function shown in (15), however, 

to allow for the computation of the constant bias value, wo, a column of ones is added 

to the feature vector x. After building the weight vector, w, we need to test the classifier 

for different target locations and with different noise and jamming power (different 

SINR). 

2.4.3 Second-order polynomial classifier. The polynomial kernel looks not 

only at the given features of input samples to determine their similarity, but also at 

combinations of these [26]. In the context of regression analysis, such combinations are 

known as interaction features. The (implicit) feature space of a polynomial kernel is 

equivalent to that of polynomial regression, but without the combinatorial blowup in 

the number of parameters to be learned [27]. The discriminant function used in 

polynomial classifiers is the same as the one used for linear classifiers, shown in (15). 

The only difference here is that we apply polynomial expansion on the feature vector 

x. To illustrate how polynomial expansion is done, assume the feature matrix, x, is 

given by: 

x = [
𝒙𝟏𝟏 𝒙𝟏𝟐

𝒙𝟐𝟏 𝒙𝟐𝟐
] (16) 

Then, the polynomial expansion of, x, can be written as: 

xp = [
𝟏 𝒙𝟏𝟏 𝒙𝟏𝟐

𝟏 𝒙𝟐𝟏 𝒙𝟐𝟐
     

𝒙𝟏𝟏𝒙𝟏𝟐 𝒙𝟏𝟏
𝟐 𝒙𝟏𝟐

𝟐

𝒙𝟐𝟏𝒙𝟐𝟐 𝒙𝟐𝟏
𝟐 𝒙𝟐𝟐

𝟐 ] 
(17) 

This polynomial expansion is a second-order (quadratic) expansion. After setting the 

desired output vector y, the filter weights vector, w, can be obtained by: 

where 𝒙𝒑
ϯ is the pseudoinverse of the polynomial expansion of the data matrix x. 

 

 

 

w = 𝒙𝒑
ϯ y                                                           (18) 
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Chapter 3. Proposed System 

In this chapter, the proposed system for target detection is presented. First, the 

DOA estimation technique selection and the classifier type adopted are presented. Then, 

the method of operation of the proposed system is described. Finally, another proposed 

cascade system that involves a significant dimensionality reduction in the training and 

testing data with a comparable performance is introduced.  

3.1 DOA Estimation Technique Selection 

In this report, the MUSIC estimator is adopted as a part of the proposed system. 

It was found that this algorithm has a sufficient estimation of the DOA of the jamming 

signals since it mainly depends on the interference subspace to estimate the DOA of a 

given signal. Knowing an estimation of the DOA of the jamming signals will help us 

in choosing the appropriate classifier needed to detect the presence of a target.  

3.2 Classifier Selection 

Different types of classifiers such as the linear classifier, second-order 

polynomial classifier and support vector machine (SVM) were tested to be included in 

the proposed system. Our selection criteria are based on three different factors which 

are: (A) Computational Complexity, (B) Time Consumption, and (C) Classification 

Performance (accuracy). The linear classifier was found to achieve a significant 

performance as opposed to the other two classification techniques since it does not 

apply any feature processing before building the classifier weight vector. Linear 

classification also involves less computational complexity and consumes less time; 

therefore, it is selected to do the target classification task in both the proposed system 

and the proposed cascade system. 

3.3 Proposed System Methodology 

After studying the conventional adaptive beamforming method and applying it 

as a target detection technique, the following limitations are observed:  

1. The amount of secondary data (that are target free) needed to train the 

weight vector online for different scenarios of SINR and DOA of the target 

and jamming signals is usually unavailable in practice. 

2. The ability of handling variations in the DOA of the target and jamming 

signals between the training and testing stages is inefficient. 
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3. The ability to differentiate between the target and the jamming signal when 

that jamming DOA is close to the target DOA is somehow weak. 

Therefore, a new system that can improve the previously mentioned weaknesses is 

introduced in this report. The proposed system consists of two stages: A) Training stage. 

B) Testing stage. In the training stage, first there is need for collecting different training 

data sets that represent the target at a certain DOA and an overlapping range of jamming 

DOAs. The maximum range of jamming DOAs that can be injected in each data set 

while keeping the system performance at its maximum was studied and found to be up 

to 6 different jamming DOAs. Data collected in this step is balanced, which means that 

50% of the samples must contain information about the target, and the other 50% must 

be target free to allow the classifiers built using such data sets to differentiate between 

the target and no target cases. Since such data is complex by  nature, the researcher 

preferred to split each feature vector into a real and imaginary component and 

concatenate them in one features’ matrix, as shown in (19), where each features’ matrix 

will hold information about a certain target DOA and a range of 6 jamming DOAs. This 

step takes place due to the need for reducing the computational complexity and time 

consumption as opposed to using the original complex received data without affecting 

the output performance of the system.  

Xd = 

[
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(19) 

where xr43 represents a data point from the real component that belongs to the 4th feature 

and to the 3rd sample. While xi43 represents a data point from the imaginary component 

that belongs to the 4th feature and to the 3rd sample. 

Second, linear classification is used to build different weight vectors 

(classifiers) using the different features’ matrices mentioned before. Each classifier 
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built will hold information about a certain target DOA and a range of jamming DOAs. 

Each range of jamming DOAs overlaps its adjacent ranges and consists of 6 different 

angles with a linear spacing of 2 degrees which allow up to 10 degrees DOA deviation. 

This is done to account for any inaccurate estimations taken by the MUSIC DOA 

estimator. If work is done in the range of angles in the first quadrature, i.e. angles 

between 0 and 90 degrees, there will be need for 17 different classifiers to account for 

the information of all the possible jamming DOAs. Luckily, the training stage can be 

done offline, and the 17 different classifiers can be saved for later use (testing stage). 

The training stage can be summarized as shown in Figure 5. 

 

Figure 5: Proposed system training stage. 

In the testing stage, the testing data must first be processed in the same manner 

as the training data; however, the restriction of balanced data mentioned in the training 

stage does not apply here. The testing data may have a target present at all samples; no 

target at any sample or target present at a certain range of samples (range gate). Second, 

the processed testing data will be passed to the MUSIC DOA estimator to get an 

estimation of the jamming DOA. Based on this estimation, the processed testing data 

will be directed to all suitable classifiers that have the estimated jamming DOA in their 

ranges. We can describe this step as a classifier selector step where all the suitable 

selected classifiers will be tested against the processed testing data, and the classifier 

that gives the best target detection accuracy is chosen. The testing stage can be 

summarized as shown in Figure 6. 
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Figure 6: Proposed system testing stage. 

3.4 Proposed Cascade System with Adaptive beamforming as a 

Dimensionality Reduction Technique 

The proposed cascade system refers to the use of adaptive beamforming in line 

with the linear classification technique. The training stage in this system consists of 

collecting balanced training data sets that have the same specifications as in the 

previous proposed system. The only difference is that real components are used, and 

they are separate from the imaginary components of the training features’ matrix to 

reduce the computational complexity and time consumption as mentioned earlier. Next, 

the processed training data will be projected onto the adaptive beamforming weights 

that have been trained on target free secondary data. After that, the real and imaginary 

components of the adaptive beamforming output will be used to train the different linear 

classifier weight vectors (classifiers). This step reduces the training data dimensionality 

for each component to be 1×K where K is the number of samples used. This means that 

the overall dimensionality used to train the linear classifier will be 3×K, which 

represents one feature vector for the real components of the training features’ matrix, 

one feature vector for the imaginary components and one feature vector for the constant 

bias value needed for the linear classification step. This method of dimensionality 

reduction is considered as an unsupervised method since the adaptive beamforming 

which is used to reduce the dimensionality does not include class labels in its weight 

calculation process. Figure 7 shows a summary of the proposed cascade system training 

stage. 
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Figure 7: Proposed cascade system training stage. 

In the testing stage, the same testing data specifications used in the previous 

proposed system are considered. Next, the processed testing data is passed to the 

MUSIC DOA estimator to get an estimation of the jamming signal DOA. Based on this 

estimation, an appropriate adaptive beamforming weight vector will be chosen to 

project the testing data real and imaginary separated components on. After that, the 

output of the adaptive beamforming step will be passed to all suitable linear classifiers, 

and the one that gives the best target detection accuracy will be chosen to contribute in 

the output of this system. Figure 8 shows a summary of the proposed cascade system 

testing stage. 

 

Figure 8: Proposed cascade system testing stage. 
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Chapter 4. Results and Analysis 

In this chapter, the simulation results obtained for all the target detection 

systems mentioned in this thesis are presented. The first part is devoted to the decision 

making criteria used for target detection. The second part is dedicated to an output 

evaluation for the MUSIC DOA estimator. Next, a comparison between the 

conventional adaptive beamforming method and the proposed system is conducted. 

Finally, the proposed cascade system simulation results with adaptive beamforming as 

a dimensionality reduction technique are demonstrated. All the training and testing 

parameters used in this chapter are illustrated in Table 1 unless it is mentioned 

otherwise. 

Table 1: Parameters values used to obtain the simulation results. 

 

Parameter  

 

Parameter definition 

 

Value used 

N Number of the ULA channels. 16 

Ktr Number of samples used for training (offline). 300,000 

Kts Number of samples used for testing (online). 200,000 

ΘT Target DOA. 40 degrees 

 

ΘJ 

 

Jammer DOA. 

All possible angles in 

the first quadrature 

with a linear spacing 

of 2 degrees. 

 

SINR 

Signal to interference plus noise ratio for both 

training and testing data. 

 

-26 dB 

 

4.1 Testing and decision Making Criteria 

In the process of testing each proposed system, a threshold value is measured 

using the intersection point of the target and no target output of each technique. The 

output at each sample location of each target detection method is then compared to that 

threshold value. If the output exceeds the threshold value, the target is said to be present 

at that specific location, and it is given a new label equal to 1; otherwise, it is said to be 

not present and given a new label equal to 0.  After that, the new predicted labels are 

compared with the actual labels (that includes information about the presence of the 

target and its range gate location), and an accuracy value is calculated. The threshold 
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value measured for each of the adaptive beamforming technique and the linear 

classification technique is shown in Figure 9 and Figure 10 respectively. For the 

adaptive beamforming technique, the threshold value is found to be equal to 24.5 μVolts 

while for the linear classifier it is found to be 0.5. It is worth to mention that the linear 

classifier output is dimensionless, hence, its threshold value is dimensionless. 

 

Figure 9: Threshold measurement for the adaptive beamforming technique output. 

 

Figure 10: Threshold measurement for the linear classification technique output. 

4.2 MUSIC DOA Estimator Output Evaluation  

The jamming signal DOA estimation is considered as the first step in the testing 

stage after processing the received data. Therefore, steps must be taken to ensure that 
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this estimation process leads to all the suitable classifiers that come in the second step 

of the testing process. Any wrong estimation of the jamming signal DOA will lead to a 

wrong classifier selection which will affect the target detection process negatively. 

From here, the idea of training different classifiers using an overlapping range of the 

jamming signal DOA was adopted to tolerate any inaccurate estimations. Figure 11 

shows the jamming signal DOA estimation confusion of the MUSIC estimator. 

 

Figure 11: MUSIC jamming signal DOA estimation confusion. 

As shown in Figure 11, the maximum inaccuracy in the jamming signal DOA 

estimation is detected at angle 82◦ where it is estimated to be equal to 90◦ which means 

that the estimation is 8 degrees apart from the actual jamming DOA. Hence, the range 

of jamming signal DOAs injected in each classifier is determined to be up to 6 angles, 

as mentioned before, that are apart from each other by 2 degrees. This means that these 

selected overlapping ranges can tolerate up to a 10 degrees’ difference between the 

actual and estimated jamming signal DOA without affecting the overall performance 

of the target detection process. That accuracy of the MUSIC DOA estimator against the 

selected overlapping ranges for each of the jamming signal DOA when selecting the 

classifier that gives the best target detection accuracy among all the other suitable 

classifiers selected by the MUSIC DOA estimator is ensured to give a 100% 
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performance all the time which means that the correct classifier will be chosen 

everytime to contribute in the overall performance of the system. 

4.3 Conventional Adaptive Beamforming vs. Proposed system 

 In this section, the proposed system for target detection is evaluated against the 

conventional adaptive beamforming technique using two different tests illustrated in 

the following sub-sections.  

4.3.1 Range gate detection test. This test measures the ability of each target 

detection technique to detect the range gate bins which correspond to a certain distance 

on the ground at which the target signal appears. This test is applied in two different 

cases: the first case is when the jammer DOA is fairly apart from the target DOA, while 

in the second case, the jammer DOA is relatively close to the target DOA. For both 

cases, the target signal is present in the range gate bins between 100,000 and 150,000. 

Both the conventional adaptive beamforming and the proposed system are trained using 

the parameters values mentioned in Table 1 while the SINR is kept constant in both 

training and testing stages. For testing, Table 2 shows the DOA values chosen for the 

two different testing cases. Figure 12 and Figure 13 show the first case output of this 

test for both the adaptive beamforming technique and the proposed system respectively. 

As we can see, both techniques perform well when that jammer DOA is fairly apart 

from the target DOA. 

Table 2: Range gate first and second testing cases DOA values. 

Parameter 

symbol 

Value used 

First case: 

ΘT 40 degrees 

ΘJ 20 degrees 

Second case: 

ΘT 40 degrees 

ΘJ 32 degrees 
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Figure 12: Adaptive beamforming range gate test (case 1). 

 

Figure 13: Linear classification range gate test (case 1). 

On the other hand, Figures 14 and 15 show the second case output for both the adaptive 

beamforming technique and the proposed system respectively. Here, the adaptive 

beamforming technique performs worse and shows less immunity to interference as 

compared to the target detection proposed system. In the adaptive beamforming case, 

the target range gate bins can be barely differentiated from the other range gate bins; 

however, in the proposed system case, the target range gate bins can be fairly located. 
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Figure 14: Adaptive beamforming range gate test (case 2). 

 

Figure 15: Linear classification range gate test (case 2). 

4.3.2 Jammer DOA variations and target detection test. In some scenarios 

where the jamming signal location is not stationary, the jammer DOA keeps changing 

continuously. For such scenarios, the target detection process is affected by the jammer 

DOA depending on how close it is to the target DOA. Hence, this test measures the 

capability of each system to handle variations in the jammer DOA between the training 
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and testing stages. To perform this test, the target DOA is chosen to be at 40 degrees 

for all data points while the jammer DOA is swept over all possible angles in the first 

quadrature as mentioned in Table 1.  

Figure 16 shows the target detection accuracy of the adaptive beamforming 

technique that is trained on one jamming DOA scenario, which is at 20 degrees, and 

tested over all other jamming DOA scenarios with the existence of the target signal at 

all testing data points. As illustrated by Figure 16, whenever the jammer DOA used for 

testing is not the same as the one used for training, the target detection accuracy is 

worthless except for few other jamming DOAs. This result is considered as the base 

line from which the target detection output starts improving. 

 

Figure 16: Adaptive beamforming target detection accuracy (data with target). 

Figure 17 shows the same test with the same training and testing conditions 

except that the target signal does not exist in any of the testing data points. Similarly, 

the system is sure that no target exists whenever the training and testing conditions 

match; however, it appears uncertain whenever the conditions are different. 
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Figure 17: Adaptive beamforming false alarm rate (data with no target). 

The proposed system improved the target detection accuracy for this test 

significantly, since it uses multiple classifiers trained on all possible scenarios of 

jamming signal DOA. The same exact testing conditions are applied on the proposed 

system. The first is achieved by using a linear classifier to do the classification job, as 

mentioned in section 3.3. The second is maintained by using an adaptive beamformer 

instead of the linear classifier. The result of this test for both systems, when the target 

signal exists at all testing data points, is shown in Figure 18.  

As shown in Figure 18, both systems perform in the same way whenever the 

jammer DOA is approximately 10 degrees or more apart from the target DOA; 

however, when they are less than 10 degrees apart, the proposed system with linear 

classification outperforms the proposed system with adaptive beamforming by a 

maximum accuracy difference of 18%, which occurs at 38 degrees of jamming DOA, 

and a minimum accuracy difference of 4% which occurs at 44 degrees of jamming 

DOA. The minimum target accuracy dip, in the proposed system with linear 

classification, happens when the target and the jammer DOAs are exactly the same 

which makes the target classification job nearly impossible, yet, it gives us the 

information about the target DOA which is in this case equal to 40 degrees. 
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Figure 18: Proposed systems target detection accuracy for the jamming DOA variations test 

(data with target). 

In contrast, the proposed system with adaptive beamforming minimum target 

detection accuracy dip is not clear. Therefore, it cannot be used to specify the target 

DOA. This comes from the fact that the adaptive beamforming beam pattern is wider 

than the linear classification beam pattern. This fact can be proven by training both 

methods on a single target DOA and testing them on all possible target DOAs as shown 

in Figure 19 which illustrates that the adaptive beamforming method doesn’t only suffer 

from a wider beam pattern, as compared to the linear classification method, but also 

from undesirable side lobes.  

Figure 20 shows the other side the jamming DOA variations test, which is when 

all the testing data points do not include a target signal. We can notice from Figure 20 

that the proposed system with adaptive beamforming is doing slightly better than the 

proposed system with linear classification.  However, since this test is for the no target 

case, the false alarms here are insignificant as compared to the false alarms in the target 

existence case. Generally, from the test results obtained in this section, the proposed 

system with linear classification is considered the best proposed system for target 

detection among all the other systems discussed in this thesis. The assumption that any 
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target detection accuracy that is above 50% is an indication of the presence of a target 

and anything below it is an indication of the absence of the target leads to the conclusion 

that the  proposed system is superior for jamming DOA variations. 

 

Figure 19: Beam pattern width of the adaptive beamforming and linear classification techniques. 

 

Figure 20: Proposed systems false alarm rate for the jamming DOA variations test (data with no 

target). 
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4.4 Proposed Cascade System Evaluation 

Although the dimensionality dealt with in this paper is not relatively high, it is 

always preferable to deal with a lower dimensional data as long as the performance is 

not affected. The result of using PCA, for dimensionality reduction, in line with the 

proposed system for both target and no target cases is shown in Figure 21. As we can 

see, PCA projected data are useless since they put the classifier into a confusion mode 

between the target and other interferences. This result is expected since PCA does not 

incorporate class information as mentioned earlier. 

 

Figure 21: Target detection accuracy / False alarm rate for the jamming DOA variations when 

using PCA projected data in line with the proposed system.    

 Figure 22 shows the target detection accuracy for target and no target cases of 

the proposed cascade system, discussed in section 3.4, which uses the adaptive 

beamforming output to reduce the dimensionality of the original data. This will make 

the followed linear classification step faster and reduce its computational complexity. 

As shown in Figure 22, the performance of the proposed cascade system (target and no 

target case) is approximately the same as the performance of the proposed system with 

linear classification, shown previously in Figures 18 and 20, with relatively 

insignificant accuracy drops (in the target case) and an increase (in the no target case) 

at the jamming angles around 40 degrees where the target is located. 
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Figure 22: Target detection accuracy / False alarm rate for the jamming DOA variations in the 

proposed cascade system. 

4.5 Computational Complexity Analysis 

To measure the computational complexity of each system, the running time is 

measured and recorded in Table 3. The training stage running time is not taken into 

consideration for the measurements recorded in Table 3 since this stage is done offline 

and do not have to be repeated everytime a test is done. The software used to perform 

all the simulation results is MATLAB R2014a and the machine specifications are listed 

in Table 4. 

Table 3: Running time of each proposed algorithm. 

 

Algorithm used 

 

Running time (sec) 

Proposed system with adaptive beamforming. 1.4374 

Proposed system with linear classification. 0.8511 

Proposed cascade system. 45.0944 
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Table 4: Machine specifications. 

 

Specification 

 

Value 

Processor Intel® Core™ i7-4500U 

@ 1.80 GHz – 2.40 GHz 

RAM 8 GB 

Operating system Windows 8.1 Single 

Language 

System type 64-bit operating system 
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Chapter 5. Conclusion 

A new target detection algorithm based on jamming signal DOA estimation and 

learning based techniques was introduced in this thesis. It was shown that this proposed 

algorithm was able to improve several problems that the conventional method suffers 

from. These problems include the jammer DOA variations between the training and 

testing stages and the necessity for target-free secondary data for training.  

Also, a new unsupervised method of dimensionality reduction through the use 

of the adaptive beamforming output was introduced. Like PCA, this method does not 

incorporate the different class information (labels). However, it helps in classification 

purposes as opposed to PCA which is not always good for such applications. This 

technique of dimensionality reduction was used in the proposed cascade system which 

showed approximately an equivalent output performance to the proposed system with 

linear classification.  

It must be said that the proposed system is not considered superior in all 

situations. As shown using the simulation results, the target DOA is assumed to be fixed 

due to the assumption of a stationary radar platform that is always directed to the 

expected target DOA. However, in many practical cases, the target DOA is not fixed 

but is rather changing continuously. The proposed system can overcome this problem 

if the training stage is done online, yet, this will increase the computational complexity 

of the system. 
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