

SCHEDULING IOT REQUESTS TO MINIMIZE LATENCY IN FOG

COMPUTING

by

Mazin Abdelbadea Nasralla Alikarar

A Thesis presented to the Faculty of the

American University of Sharjah

College of Engineering

In Partial Fulfillment

 of the Requirements

for the Degree of

Master of Science in

Computer Engineering

Sharjah, United Arab Emirates

June 2017

© 2017 Mazin Abdelbadea Nasralla Alikarar. All rights reserved.

 Approval Signatures

We, the undersigned, approve the Master’s Thesis of Mazin Abdelbadea Nasralla

Alikarar.

Thesis Title: Scheduling IoT Requests to Minimize Latency in Fog Computing.

Signature Date of Signature
 (dd/mm/yyyy)

___________________________ _______________

Dr. Raafat Aburukba

Assistant Professor, Department of Computer Science and Engineering

Thesis Advisor

___________________________ _______________

Dr. Taha Landolsi

Professor, Department of Computer Science and Engineering

Thesis Co-Advisor

___________________________ _______________

Dr. Assim Sagahyroon

Professor, Department of Computer Science and Engineering

Thesis Committee Member

__________________________ _______________

Dr. Malick Ndiaye

Associate Professor, Department of Industrial Engineering

Thesis Committee Member

___________________________ _______________

Dr. Fadi Ahmed Aloul

Head, Department of Computer Science and Engineering

___________________________ _______________

Dr. Ghaleb Husseini

Associate Dean for Graduate Affairs and Research

College of Engineering

___________________________ _______________

Dr. Richard Schoephoerster

Dean, College of Engineering

___________________________ _______________

Dr. Mohamed El-Tarhuni

Vice Provost for Graduate Studies

Acknowledgement

First of all, I am thankful and grateful to Allah for giving me patience, courage

and strength to work towards this graduate degree.

I would like to thank the American University of Sharjah, Computer

Engineering Department, for granting me the Graduate Teaching Assistantship

Scholarship (GTA) to do my master’s degree.

I would also like to express my sincere gratitude and appreciation to my

advisors; Dr. Raafat Aburukba and Dr. Taha Landolsi for their valuable feedback,

effort, guidance, and the long hours of meetings they provided me with to achieve this

work; it would have been almost impossible without their rich and valuable experience

and knowledge.

Many thanks also go to the committee member Dr. Assim Sagahyroon for his

valuable comments and feedback. Special thanks also to the committee member Dr.

Malick Ndiaye who has been providing help and support in major parts of this research.

 Finally, I would like to extend my special thanks to the department of Computer

Engineering, in American University of Sharjah, represented in Dr. Fadi Aloul, the

department head, for his limitless care and support he provided for me and all students

in the department.

Dedication

To my beloved mother for her endless love, care, faith and support.

To my father.

To my brothers.

To my professors Dr. Raafat Aburukba and Dr. Taha Landolsi the most remarkable

and knowledgeable professors.

To my true friends.

6

Abstract

 Delivering services for Internet of Things (IoT) applications that demand real-

time and predictable latency is challenge. Several IoT applications require stringent

latency requirements due to the interaction between the IoT devices and the physical

environment through sensing and actuation. The limited capabilities of IoT devices

require applications to be integrated in cloud computing and fog computing paradigms.

Fog computing significantly improves on the service latency as it brings resources

closer to the edge. The characteristics of both fog and cloud computing will enable the

integration and interoperation of a large number of IoT devices and services in different

domains. This thesis models the scheduling of IoT service requests as an optimization

problem using integer programming in order to minimize the overall service request

latency. The scheduling problem by nature is NP-hard, and hence, exact optimization

solutions are inadequate for large size problems. Hence, this work uses the genetic

algorithm (GA) as a heuristic approach to schedule the IoT requests and achieve the

objective of minimizing the overall latency. The GA is tested in a dynamic simulation

environment. The performance of the GA is evaluated and compared to the performance

of waited-fair queuing (WFQ), priority-strict queuing (PSQ), and round robin (RR)

techniques. The results show that the overall latency for the proposed approach is 21.9%

to 46.6% better than the other algorithms. The proposed approach also showed

significant improvement in meeting the requests deadlines by up to 31%.

Search Terms: Internet of Things; cloud computing; fog computing; latency;

scheduling; optimization; genetic algorithm

7

Table of Contents

Abstract………………………………………………………………………………….………………………..6

Table of Contents ... 7

List of Figures .. 9

List of Tables ... 10

List of Abbreviations ... 11

Chapter 1. Introduction .. 12

1.1 Fog Computing Overview .. 12

1.2 Fog Computing System Architecture ... 14

1.3 Scheduling in Fog Computing .. 14

1.4 Research Objective and Contribution ... 17

1.5 Research Methodology ... 18

1.6 Thesis Organization .. 19

Chapter 2. Literature Review ... 20

2.1 Characteristics of Fog Computing versus Cloud Computing 20

2.2 Other Platforms Similar to Fog Computing: .. 21

2.3 Implementations within Fog Computing .. 22

2.4 Scheduling Techniques ... 24

2.5 Fog Computing and IoT Interconnection ... 26

2.6 Latency Optimization using Genetic Algorithms ... 26

Chapter 3. Modeling the Problem .. 28

3.1 Environment Analysis .. 28

3.2 The Edge-Fog-Cloud Environment Model ... 29

3.3 Model validation using Lingo .. 33

Chapter 4. Proposed Solution .. 37

4.1 Genetic Algorithms .. 37

4.2 The GA Implementation ... 38

4.2.1 Initial Population. .. 41

4.2.2 Selection using Roulette Wheel. ... 41

4.2.3 Crossover. .. 43

4.2.4 Mutation. ... 45

4.2.5 Feasibility Check. .. 46

8

4.2.6 Fitness Calculation. ... 47

4.3 GA Experimentation ... 48

4.3.1 Population Size, U. .. 48

4.3.2 Termination Counter, T. .. 52

4.3.3 Exact and Heuristic Comparison. .. 54

Chapter 5. Simulation and Results ... 57

5.1 GA validation in SimEvents ... 58

5.2 Static Scheduling .. 60

5.3 Average Data Size Breaking Point ... 62

5.4 Dynamic Scheduling .. 64

5.5 Cloud versus Fog Computing Comparison .. 65

5.5.1 The Average Delay Ratio, ,
𝛿̅𝑓

𝛿̅𝑐
. .. 67

5.5.2 The Processing Speed Ratio,
𝑃𝑓

𝑃𝑐
. .. 67

5.5.3 The Number of Servers Ratio,
𝑁𝑓

𝑁𝑐
.. ... 69

Chapter 6. Conclusion and Future Research .. 71

6.1 Conclusion .. 71

6.2 Future Research .. 72

References………………………………………………………………………….….……………………….73

Vita…………………………………………………………………...…………………………………………...76

9

List of Figures

Figure 1: Edge-Fog-Cloud Architecture .. 15

Figure 2: Fog and Cloud Computing Architecture of Service Scheduling 28

Figure 3: Gantt chart for Lingo Optimal Scheduling Solution 36

Figure 4: Chromosome Representation as 2-D Array.. 38

Figure 5: Chromosome Representation as 1-D Array.. 38

Figure 6: GA Implementation Flowchart ... 40

Figure 7: Crossover Operation ... 44

Figure 8: The Cross-Point within a Chromosome ... 45

Figure 9: Mutation Operation .. 45

Figure 10: Request Chunks for Feasibility Check ... 47

Figure 11: Overall Latency versus Population Size ... 51

Figure 12: Runtime versus Population Size ... 52

Figure 13: Overall Latency versus Termination Counter .. 53

Figure 14: Runtime versus Termination Counter .. 53

Figure 15: Overall Latency Convergence through the GA Iterations 54

Figure 16: Overall Latency Comparison between Heuristic and Exact Methods 55

Figure 17: Runtime Comparison between Heuristic and Exact Methods 56

Figure 18: Edge-Fog-Cloud 3-Layered Simulation Setup ... 57

Figure 19: Analyzing the Number of Requests Allocated in Each Resource 60

Figure 20: Overall Latency versus Data Size in Static Scheduling 62

Figure 21: Missed-Deadline Requests versus Data Size in Static Scheduling 63

Figure 22: The GA Breaking Point versus Processing Speed and Average Delay 64

Figure 23: Overall Latency versus Data Size in Dynamic Scheduling 66

Figure 24: Missed-Deadline Requests versus Data Size in Dynamic Scheduling 66

Figure 25: Latency of Fog Compared to Cloud by Varying Average Delay 68

Figure 26: Latency of Fog Compared to Cloud by Varying Processing Power 68

Figure 27: Latency of Fog Compared to Cloud by Varying Number of Resources 69

Figure 28: Break Points of Fog and Cloud Computing Latency 70

file:///Z:/Thesis/Submissions/FogThesis%20v2%20(Sent%20to%20Dr.%20Fadi).docx%23_Toc486760564

10

List of Tables

Table 1: Fog versus Cloud Characteristics .. 20

Table 2: 5 Requests with Their Associated Attributes ... 34

Table 3: 2 Resources With Their Associated Attributes .. 34

Table 4: Lingo Optimal Scheduling Solution – Part 1 ... 36

Table 5: Lingo Optimal Scheduling Solution – Part 2 ... 36

Table 6: GA Implementation Pseudocode ... 41

Table 7: Initial Population Algorithm .. 42

Table 8: Selection using Roulette Wheel ... 43

Table 9: Crossover ... 44

Table 10: Mutation ... 46

Table 11: Feasibility Check ... 47

Table 12: Fitness Calculation... 49

11

List of Abbreviations

GA – Genetic Algorithm

SA – Simulated Annealing

B&B – Branch and Bound

WFQ – Waited Fair Queuing

PSQ – Priority Strict Queuing

RR – Round Robin

FIFO – First In First Out

IoT – Internet of Things

RTT – Round-Trip Time

AP – Access Point

IoE – Internet of Everything

3G – Third Generation

4G – Fourth Generation

LTE – Long Term Evolution

WiFi – Wireless Fidelity

MCC – Mobile Cloud Computing

MEC – Mobile Edge Computing

CPU – Central Processing Unit

IaaS – Infrastructure as a Service

PSO – Particle Swarm Optimization

AHP – Analytic Hierarchy Process

VM – Virtual Machine

EDF – Earliest Deadline First

DCP – Dynamic Critical Path

ACO – Ant Colony Optimization

QoS – Quality of Service

12

Chapter 1. Introduction

1.1 Fog Computing Overview

 Cisco introduced the concept of fog computing paradigm in 2012 [1]. Fog

computing is a vision in which the edge of the network is transformed into a distributed

computing infrastructure by pushing the cloud resources towards the network edge. The

term ‘fog computing’ is chosen as an analogy where a fog is a cloud close to the ground

or the edge [2]. Some other sources refer to fog computing as an abbreviation for “From

cOre to edGe” [3]. In fog computing, computation and storage capabilities empowers

the networking devices at different layers in the network architecture. These fog devices

are also equipped with schedulers and decision capabilities that make them able to

decide whether to serve or allocate a request in fog computing devices or transfer it to

the cloud computing data centers [3, 4]. Such a decision is typically based on many

attributes that are related to the requests and the resources available at the fog and cloud

layers. Fog computing benefits Internet of Things (IoT) applications as it has the

resources with physical proximity to the edge devices which will allow the applications,

services and computations to run as close as possible to the data generated from devices,

things and people (end users) connected to the Internet.

 The work in [2, 3, 5-13] shared the same view for fog computing that it is a new

distributed computing paradigm that extends the traditional cloud computing resources

towards, but not exclusively, the edge of the network. Similar to cloud computing, fog

computing paradigm provides ubiquitous computation, storage, networking, and

application services in a highly visualized platform at the edge between end devices

and traditional cloud computing data centers. Virtualization is a fundamental

technology for fog computing as it separates physical infrastructures to create various

dedicated resources that can run multiple operating systems and multiple applications

at the same time on the same resource.

 In [14], Cisco introduced fog computing as an extension to the cloud to be closer

to the devices that produce and act on the data. These extended resources are called fog

nodes; they can be deployed anywhere with a network connection. Any device with

computing, storage, and network connectivity can be a fog node [14]. In [11], Yi et al.

viewed the fog computing nodes as facilities or infrastructures that have the ability to

cater services using the resources at the edge of the network. These infrastructures exist

13

in many different devices or equipment’s forms, as poor-resources devices such as

access points, routers, switches, base stations, and end devices, or as resource-rich

machines such as Cloudlet. Cloudlet is basically a powerful computer connected to the

Internet with rich resources that are available to host and use by nearby edge devices

[11, 15]. Although Cloudlet has been given a different terminology, it falls under the

same umbrella of fog computing [10].

 E. Baccarelli et al. [16] formally viewed fog computing as a model to

complement the cloud computing through the distribution of the computing plus

networking resources from remote data centers towards edge devices. The final goal is

to save energy and bandwidth, while simultaneously increasing the QoS level provided

to the users. As a consequence, they defined Fog Nodes as virtualized networked data

centers, which run atop (typically, wireless) Access Points (APs) at the edge of the

access network, in order to give rise to a three-tier IoE–Fog–Cloud hierarchical

architecture where IoE stands for Internet of Everything. In [17], Vaquero et al.

proposed a formal definition for fog computing: “fog computing is a scenario where a

huge number of heterogeneous (wireless and sometimes autonomous) ubiquitous and

decentralized devices communicate and potentially cooperate among them and with the

network to perform storage and processing tasks without the intervention of third

parties. These tasks can be for supporting basic network functions (routing and

switching) or new services and applications that run in a sandboxed (isolated and

restricted) environment. Users leasing part of their devices to host these services get

incentives for doing so”. This definition succeeded to point out the proximity, wireless,

decentralized characteristics of fog computing. The definition also pointed out the

potential cooperation between fog computing devices which is a significant property

within fog computing paradigm for load balancing purposes. However, in this

definition, the authors did not focus on addressing the interplay and interaction between

the fog layer at the edge and the cloud computing as a centralized platform. Each one

of these platforms has its own characteristics which are suitable for specific type of use

cases. The intervention is potential to enable new spectrum of applications.

 The fog-cloud intervention is stressed in [18] where the authors developed a

definition that covers all the significant properties of fog computing. Their definition

states: “fog computing is a geographically distributed computing architecture with a

resource pool that consists of one or more ubiquitously connected heterogeneous

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Enzo%20Baccarelli.QT.&newsearch=true

14

devices (including edge devices) at the edge of network and not exclusively, but

seamlessly backed by cloud computing services, to collaboratively provide elastic

computation, storage and communication (and many other new services and tasks) in

isolated (sandboxed) environments to a large scale of clients in proximity”. The

definition succeeded to realize the strong impact of the collaboration between cloud

computing, fog computing and edge devices consistently and intelligently in a very

large scale system. This latter definition has been adopted for this work.

1.2 Fog Computing System Architecture

 Extending the cloud resources to the edge results in a three-layer service model

as shown in Figure 1. The three layers are:

1- Edge layer: this is the lowest layer in the fog computing architecture. It consists

of terminal nodes, embedded systems, and sensors with very limited computation,

energy and bandwidth. Each edge device, with its limited networking capabilities,

is connected to the fog layer.

2- Fog layer: This is the fog computing layer which has dozens of thousands of

intelligent intermediate networking devices such as routers, gateways, switches,

and access points which work on different protocols like 3G, 4G, LTE, and WiFi.

These devices are supported with computational and storage capabilities in this

layer. Fog computing devices can interact with each other for load sharing and

balance purposes, and each single one of them is connected to cloud layer.

3- Cloud layer: This is the top most layer in the architecture. It consists of cloud data

centers that have very rich virtual capabilities in terms of storage and processing

power.

1.3 Scheduling in Fog Computing

 Scheduling is generally defined as the allocation of tasks to capable resources

at a specific time. Usually, a scheduling problem is subject to a number of constraints

and objectives that must be fulfilled. Moreover, optimization concepts are typically

involved when modeling scheduling problems. Scheduling objectives can be, for

instance, system utilization maximization or completion time minimization. Scheduling

problems are not restricted to computer field only; they also exist in other domains such

as manufacturing and airline flights.

15

Figure 1: Edge-Fog-Cloud Architecture

 According to [19], most of the scheduling problems consist of 4 basic elements:

1- Resources: physical/logical devices with the ability to execute or process tasks.

2- Tasks: the physical/logical operations that need to be executed by the resources.

3- Constraints: conditions must be regarded in scheduling the tasks into the

resources. They may be operation-based, task-based, resource-based, or a

combination of these. They could also be hard constraints, meaning constraints

that must be full-filled or soft constraints can be relaxed.

4- Objectives: the evaluation criteria that need to be measured in order to assess

the schedule performance.

 To find an optimal solution to a scheduling problem, there are two broad

categories of methods: Exact methods and heuristic methods. Exact methods find the

absolute optimal solution to the scheduling problem. Examples of exact algorithms

include Simplex and Branch-and-Bound. On the other hand, heuristic techniques do not

guarantee finding the optimal solution. However, they are able to find a solution that

has some degree of optimality in a reasonable computation time compared to the time

required by an exact method to find the optimal solution. Examples of heuristic

algorithms include: simulated annealing, ant colony algorithms and genetic algorithms.

16

1.4 Research Problem and Significance

 The need for fog computing comes from the fact that cloud computing is not

sufficient to satisfy requirements such as latency-sensitivity, mobility and location

awareness [14, 20]. Cloud computing is facing many difficulties and challenges as

mentioned in [3]. The first challenge is the massive growing number of IoT devices.

This creates enormous traffic among cloud computing networks and consequently

affects real-time or low-latency services. By adopting fog computing, less amount of

data needs to be transmitted across the core of the networks which consequently leads

to less bandwidth consumption. This helps in reducing congestion, traffic, cost and

round-trip latency by eliminating the bottlenecks that exist in centralized platforms.

“Milliseconds matter when you are trying to prevent manufacturing line shutdowns or

restore electrical service. Analyzing data close to the device that collected the data can

make the difference between averting disaster and a cascading system failure” [14].

 Second, it is not practical to transport vast amounts of data from thousands or

hundreds of thousands of edge devices to the cloud layer. It is also not necessary

because many critical analyses do not require cloud-scale processing and storage.

Integrating fog computing with cloud computing directs data to the optimum place for

processing depending on the criticality of response and how fast the decision is needed.

Time-sensitive decisions should be made closer to the things producing and acting on

the data. In contrast, big data analytics on historical data needs the computing and

storage resources of the cloud computing.

 Third, the high operational cost of cloud computing data centers as they are

confronted with service requests from IoT applications. Using fog computing, some of

those requests can be served at the edge of the network. In this way, cloud computing

centers get relieved significantly as they don’t have to be running in full power all the

time. Moreover, adopting the concept of edge computing within fog computing also

provides high levels of scalability, reliability and fault tolerance [3].

 In spite of all the challenges faced by cloud computing, fog computing is not a

platform to compete with cloud. This is important as the goal is not to underestimate

the power of cloud computing. Fog and cloud computing create a cooperative and

comprehensive architecture in which each one completes what the other lacks. The

interaction is expected to be a promising paradigm that will enable serving billions of

IoT devices and applications with low latency. It will help significantly in monitoring

17

and managing such massive amounts of data generated from the IoT devices. Examples

of these applications include but not limited to: industrial automation, transportation,

live streaming, real-time and online gaming, augmented reality, connected vehicles,

smart micro grid, and smart traffics [2, 3, 5].

1.5 Research Objective and Contribution

 The objective of this research is to model the problem of scheduling IoT

requests into resources available at both fog and cloud layers. The problem is modeled

using integer programming in order to provide the minimum service time for IoT

requests. The service latency is defined as the Round-Trip Time (RTT) for serving or

processing an IoT request from the moment it gets initiated to the moment it gets

completely processed and the results are returned back to the requesting device. This

latency includes many delay components such as transmission delay, routing or queuing

delay, propagation delay, and processing time, and waiting time as well.

The developed model is solved using Branch-and-Bound as an exact algorithm.

However, Bitran et al. [21] proved that the scheduling problem is NP-Hard. NP-

hardness (non-deterministic polynomial-time hard), in computational complexity

theory, is a complexity class used to describe certain types of decision problems.

Therefore, a heuristic will be developed to obtain a feasible solution with a good quality

in a reasonable computational time. Genetic Algorithm (GA) is used as a heuristic

approach for solving the integer programming model. The GA is studied using different

problems with different sizes in order to evaluate the impact of changing the different

model parameters and how they can be adjusted properly. After developing the GA, a

comprehensive comparison is performed between the exact solution obtained for

Branch-and-Bound algorithm and the heuristic solutions obtained from the GA.

 The GA is then integrated within a real-time simulation environment to help in

scheduling the requests as they arrive. The service latency provided by the hybrid fog-

cloud architecture that implements GA is then compared to other systems with the same

architecture but uses traditional scheduling algorithms, such as waited-fair queuing

(WFQ), priority-strict queuing (PSQ), and round robin (RR).

The main contributions of this research include the following:

18

1. Reviewing the literature and the state-of-the-art research papers about the

challenges of minimizing the service latency for real-time IoT applications and

how fog and cloud computing are involved in solving this problem.

2. Developing an integer program that defines requests with their attributes and

fog and cloud computing resources with their attributes. The model objective is

to minimize the overall service latency. Then Branch-and-Bound algorithm is

used as an exact approach for finding solutions of small size problems.

3. Developing a heuristic solver using Genetic Algorithm to obtain good quality

solutions for large size problems within a reasonable computational time. The

heuristic solutions are then compared with the exact solutions in terms of

solution quality and computational time.

4. Comparing optimized service latency provided by the ILP model to following

scheduling algorithms: WFQ, PSQ, and RR.

1.6 Research Methodology

 The following steps were followed to achieve the outcomes of this research:

Step 1: The literature related to fog computing, cloud computing, scheduling,

service latency optimization, and genetic algorithms is reviewed.

Step 2: An integer programming model is formulated for the scheduling problem

that involves requests and resources with their characteristics called

attributes. The model also includes assumptions, decision variables,

objective function, and constraints.

Step 3: The formulated model is coded using Lingo optimization software for

verification, validation and explanation purposes.

Step 4: The heuristic using Genetic Algorithms for solving large problems and for

comparing the heuristic solutions to the exact solutions is developed.

Step 5: A simulation model is developed from the formulated model using the

discrete event simulator SimEvent from Mathworks. The GA is integrated

with the simulation so that it can be used as a solver to schedule the requests

into the resources in real-time as they arrive.

Step 6: The GA service latency is compared to WFQ, PSQ, and RR algorithms.

19

1.7 Thesis Organization

 In this chapter, an introduction has been given about fog computing, cloud

computing, scheduling, the research significance, and the problem statement. Chapter

2 is dedicated to surveying relevant literature on fog computing, scheduling techniques,

architecture, characteristics and similar concepts. Chapter 3 introduces the proposed

mathematical model that represents the problem mentioned in this research with an

illustrative numerical examples. Chapter 4 presents the Genetic Algorithm, its

implementation, experimentation and comparison to the exact methods solutions.

Chapter 5 contains the developed simulation and its experimentation. Finally, Chapter

6 gives the conclusion and prospect future work.

20

Chapter 2. Literature Review

The literature reviewed in this work will cover many areas that have

interconnection with fog computing. This includes cloud computing, internet of things,

mobile cloud computing and mobile edge computing. A major area that the reviewed

literature will focus on is latency minimization using different types of algorithms.

2.1 Characteristics of Fog Computing versus Cloud Computing

 The main factor that distinguishes fog computing from cloud computing is its

closeness to end users. As in fog layer, the services can be hosted at edge devices such

as access points, routers, switches, base stations, and even end devices. Fog computing,

being at the edge of the network implies a list of characteristics mentioned in [2, 5, 16,

22, 23]. Table 1 recaps these characteristics and presents a cloud-vs-fog computing

comparison.

Table 1: Fog versus Cloud Characteristics

Cloud computing characteristics Fog computing characteristics

Vertical resource scaling Vertical and horizontal resource scaling

Large-size and centralized Small-size and spatially distributed

Multi-hop WAN-based access Single-hop WLAN-based access

High communication latency and service

deployment

Low communication latency and service

deployment

Ubiquitous coverage and fault-resilient Intermittent coverage and fault-sensitive

Context-unawareness Context awareness

Limited support to device mobility Full support to device mobility

Support to computing-intensive delay-

tolerant analytics

Support to real-time streaming

applications

Unlimited power supply (exploitation of

electrical grids)

Limited power supply (exploitation of

renewable energy)

Limited support to the device

heterogeneity

Full support to the device heterogeneity

VM-based resource virtualization Container-based resource virtualization

High inter-application isolation Reduced inter-application isolation

21

 Fog computing devices are provided with ‘Intelligence’ that makes them able

to decide whether a request needs to be served in the fog layer or pushed up to the cloud

layer. This is achieved using smart gateways as in [8]. The jobs that fog nodes are able

to perform include, but not limited to, collecting data, processing, filtering data,

monitoring status of end devices and uploading what needs to be uploaded to the cloud

layer. The purpose of fog computing is delivering services for specific type of

applications or requests that demand real-time and predictable latency (like industrial

automation, transportation, live streaming, online gaming, connected vehicles, and

smart traffics). In contrast, the requests that require cloud computing services rather

than fog computing (like long term storage, analysis, and business intelligence) are

transferred to the cloud layer. Fog computing devices act only as routers or gateways

forwarding these requests.

2.2 Other Platforms Similar to Fog Computing:

 There are many other similar concepts that overlap with fog computing,

however, they are different. These concepts include:

1- Local cloud: Local cloud is a complementary model for the public traditional

cloud computing. Its main purpose is to run specific services in a local network

to essentially strengthen the security of the computing environment. The local

servers will be running cloud-enabling software and in most cases they support

interplay with the public cloud layer.

2- Cloudlet: Cloudlet is “a data center in a box” [18]. It is a secured resource-rich

computer or cluster of computers that is well-connected to distant cloud on the

Internet and these resources can be leveraged by usually-few nearby mobile

devices [15]. The physical proximity of Cloudlet to users is very essential

because it makes the end-to-end service time fast and predictable as it becomes

only one-hop network latency. It also helps meeting the peak bandwidth service

demand of real-time/interactive response for generating and receiving media

such as high-definition video and high-resolution images.

3- Mobile Cloud Computing (MCC): MCC is defined as a model that combines

mobile computing and cloud computing. In MCC the cloud is basically designed

to remotely handle the large data storage and processing requirements for the

mobile devices [11]. The remote cloud computing servers don’t necessarily

22

have to have rich and powerful resources. They could at least cooperate with

mobile devices for storage and processing [24].

4- Mobile Edge Computing (MEC). MEC, like fog computing, has the same

concept of pushing “intelligence” to the edge of the network. It is also very

similar to Cloudlet except that it is primarily located where the data originates

within the range of Radio Access Network such as mobile base stations or

access points [18]. The MEC servers are located at the ultimate edge of the

network to perform specific (business oriented) tasks and jobs that are just not

convenient to be executed on the traditional cloud computing [11]. In [25], the

authors proposed this definition for MEC: “Mobile Edge Computing is a model

for enabling business oriented, cloud computing platform within the radio

access network at the close proximity of mobile subscribers to serve delay

sensitive, context aware applications”. According to [25], the prime objectives

of MEC are: 1) Optimization of mobile resources by offloading the

compute/storage-intensive tasks off the edge devices. 2) Optimization of the

large data before sending to the cloud layer. 3) Reducing the latency by enabling

cloud computing services within physical proximity to mobile subscribers. The

MEC “sits” on the link the data pass through so that it can actively analyze and

respond to user requests. The MEC servers are usual servers equipped with

CPUs, memory, and communicating interfaces. Using MEC paradigm, it helps

achieving less latency performance and less bandwidth consumption.

Application of MEC include smart grids, smart transportation or smart traffic,

video streaming, mobile big data analytics, mobile gaming, edge health care,

and sensor networks application.

2.3 Implementations within Fog Computing

 At present, there are only some existing studies in the literature in terms of

design, algorithms or implementations within fog computing. In [26], Cisco has

introduced Cisco IOx. Cisco IOx is a hosting environment for IoT applications. IOx

brings the application execution capability down to the source of IoT data. IOx offers

steady and consistent hosting across multiple network infrastructure devices such as

Cisco routers, switches, and compute modules. In [10], Stojmenovic et al. addressed

Cloudlet as a special case of fog computing. It is an intermediate layer located between

23

the cloud data centers and each mobile device. The edge devices connect wirelessly to

the closest Cloudlet rather than accessing the far cloud data center. The authors also

introduced fog computing within smart grids where each micro-grid can be depicted as

a fog computing node. Customers communicate to nearby fog nodes rather than the

remote cloud. Fog devices will coordinate with cloud data centers and customers in

order to deliver power services. In [4], the authors presented a high level programming

model for future internet applications that are characterized by being geospatially

distributed, large-scale and latency-sensitive. Fog computing resources are allocated

for serving the low-latency services while tolerant larger scope services that need

aggregation are allocated in cloud layer. Reference [23] studied web optimization

within fog computing context. Fog servers connect the end users to the internet so that

all web requests have to pass through the fog servers on their way to the web servers of

the cloud layer. There are two possible process flows for the web requests: (1)

optimizing webpage for its initial request and (2) optimizing webpage for its subsequent

request(s) where all the needed files and web objects are cached and stored locally

within the fog server. In [27], Ottenwälder et al. introduced a placement and migration

method for providers of infrastructures that involved the fog and the cloud computing

resources. It works by planning the migration ahead of time so that it can meet the

defined end-to-end service latency and at the same time it reduces the network

bandwidth consumption. According to [28], mobile cloud is a very similar paradigm

to fog computing in which the resources are shared not only from central data centers

but also from pervasive mobile devices. Although these devices have heterogeneous

resources (e. g. CPUs, bandwidth, content) and support services, they still have the

ability to share these resources. Based on the key concept of service-oriented utility

functions, the authors proposed an architecture and mathematical framework for

heterogeneous resource sharing. The heterogeneous resources are most probably

measured in dissimilar scales/units (e.g. power, bandwidth, latency). For this reason,

the authors adopted a unified framework on their work where all quantities are mapped

to time only. They also formulated their model for optimization and found the optimal

solution using convex optimization approaches.

 In [9, 11, 20], the security and privacy issues within fog computing were

studied. The authors discussed security issues such as authentication, secure data

storage, secure computation, access control, and network security. Fog computing,

24

being at the edge of the network, makes it surrounded by many security threats such as

the Man-in-the-Middle Attack. These threats may not be easily avoided using the

security solutions that exist in the context of cloud computing. They also highlighted

privacy issues such as data privacy, usage privacy, and location privacy. The vicinity

and the physical proximity of fog computing nodes to end users give it the ability to

collect and leak sensitive information like data, location and usage. The same

application code is applied on various devices for different large–scale applications in

the fog and the cloud layers. In terms of real-world applications, Cao et al. in [29]

designed fall detection algorithms and designed and employed a real-time fall detection

system. Basically, they split the fall detection task between the edge devices and the

server (e.g., servers in the cloud layer). The sensor data are transmitted to the fog server

in real-time so that both edge device and fog server perform the computation for fall

accurate detection. While in [30] and [31], the authors presented an intelligent

mechanism that can dynamically choose whether it is beneficial to offload parts of the

computation off the mobile devices or not and where to offload if so. That is achieved

by monitoring all the available fog resources and their runtime configurations (e.g., the

network latency and the bandwidth between the mobile device and the server, the size

of the overhead data, etc.)

2.4 Scheduling Techniques

Simplex [32] as an exact solution technique, operates on what is called

simplicial cones. These simplicial cones are the edge or the neighborhoods of the

vertices of a geometric object called a polytope. The main idea of simplex algorithm is

the replacement of the objectives and constraints set of a formulated problem by an

alternative convex shape of feasible points and extreme rays. The algorithm begins at a

starting vertex and moves along the edges of the polytope targeting the edge of the

optimum solution within the feasible region. Branch-and-Bound (B&B) algorithm is an

approach that works by means of enumeration of all possibilities which are finite in

number [33, 34]. However, explicit enumeration is normally impossible due to the

exponentially increasing number of potential solutions. Sometimes many possibilities

can be implicitly eliminated by domination or feasibility arguments. The use of bounds

for the function to be optimized combined with the value of the current best solution

enables the algorithm to search parts of the solution space only implicitly. This is one

https://en.wikipedia.org/wiki/Vertex_(geometry)

25

of the strong advantages of B&B that it throws out large parts of the search space by

using previous estimates on the objective function under concern. This helps in

eliminating large parts of the search space and reduces the runtime significantly.

On the heuristics side, one of the important algorithms is simulated annealing.

Simulated annealing is based on ideas from statistical mechanics and is inspired by an

analogy to the physical annealing of a solid [35, 36]. To set some material into a low-

energy state it will be heated to a high temperature and then cooled very slowly. This

process allows coming to thermal equilibrium at each temperature. The system is

expected to acquire a low-energy state at freezing temperatures. The algorithm begins

with a randomly generated solution at a high (artificial) temperature and then the

temperature is reduced gradually until it reaches freezing point. The regions in the

solution space are searched at each temperature by an algorithm called the Metropolis

algorithm. An iteration of the Metropolis algorithm starts with implanting random

perturbations to the candidate solutions and evaluating the impact on the solution

quality [36]. Along with simulated annealing, genetic algorithm is also an important

heuristic approach in the literature. The latter is founded based on the natural evolution

mechanism [37-39]. The algorithm simulates the natural populations’ reproduction

operations in the process of achieving efficient optimized solutions. Through different

generations, the algorithm searches for variations to evolve the solutions. The

population consists of chromosomes, also called individuals, and all these

chromosomes represent possible solutions to the problem regardless the feasibility.

Each chromosome is associated with a fitness value to represent how ‘good’ it is

compared to the others. This fitness function depends on the objective of the problem

under concern.

Additionally, ant colony algorithm is also a heuristic algorithm that is taken

from ‘ants’ and how they can manage to find shortest paths from their colony to feeding

sources and backward [40]. These ants communicate using what are called pheromone

trails. A moving ant lays some pheromone in different quantities in order to make the

path it is following by a trail of this substance. Whereas the movement of an isolated

ant is random, an ant encountering a previously laid trail can detect it and decide with

high probability to follow it. The overall behavior that arises is a form of a behavior in

which as more ants follow a trail, that trail becomes most probable of being followed.

This process depicts a positive feedback loop, where the likelihood with which an ant

26

selects a specific path grows up with the number of ants that previously selected to take

the same path.

2.5 Fog Computing and IoT Interconnection

 Fog computing will play a crucial role in upcoming internet of things (IoT)

applications [1, 6, 14]. The huge range of IoT applications that could be built on fog

computing platform makes it a promising paradigm. In IoT, the end devices or “things”

are provided with unique identifiers (for example IP address, RFID, NFC tag, bar code

or QR code) and they are able to transfer data over the network without involving a

human-being during the data transfer process [5]. These “things” are also equipped with

embedded electronic components, software components, sensors, controllers and

networking capabilities in a way that makes it able to communicate and exchange data

with each other. Examples of future scenarios and applications of IoT that can be

developed and built upon fog computing services include Smart Traffic Light System,

Wind Farm, Connected Vehicles, Smart Grid, and Wireless Sensor Networks.

2.6 Latency Optimization using Genetic Algorithms

 In [39], the authors proposed a budget constraint based scheduling model to

minimize execution time while meeting a specified budget for delivering results. They

modeled the workflow application as a Directed Acyclic Graph (DAG). The developed

genetic algorithm is used to solve the scheduling optimization problem with a cost-

fitness and time-fitness. The algorithm was tested in a simulated Grid environment. In

[41], Buyya et al. proposed a genetic algorithm approach for scheduling workflow

applications by either minimizing the monetary cost while meeting users’ budget

constraints, or minimizing the execution time while meeting users’ deadline constraints.

They evaluate the approach for balanced and unbalanced workflow structures. In [42],

different existing approaches were comparatively examined for scheduling of scientific

workflow applications in Grid environments. Three algorithms were evaluated; one of

them is using Genetic algorithms (GA). The authors also studied the incremental

workflow partitioning against the full-DAG-graph scheduling strategy. They

demonstrated experiments using real-world scientific applications covering both

balanced (symmetric) and unbalanced (asymmetric) workflows. In [43], Rodriguez et

al. proposed a resource provisioning and scheduling strategy for scientific workflows

27

on Infrastructure as a Service (IaaS) cloud environments. The authors presented an

algorithm based on the meta-heuristic optimization technique named particle swarm

optimization (PSO). This algorithm aims to minimize the overall workflow execution

cost while meeting deadline constraints. Their heuristic is evaluated using CloudSim

simulation tool and various well-known scientific workflows of different sizes. In [44],

the authors worked on deadline sensitive leases which can be scheduled using

traditional backfilling algorithm. However, in the backfilling algorithm one of the

leases is selected from the best effort queue which will provide the free resources to

schedule the deadline sensitive lease. However, in some scenarios, backfilling

algorithm does not provide better scheduling if there are similar types of leases and

must be in conjugative in sequence. For this reason, the authors used an algorithm called

AHP (Analytic Hierarchy Process) as a decision maker with the backfilling algorithm.

AHP helps in choosing a possible best lease from a given best effort queue in order to

schedule deadline sensitive leases. In [45], Mao et al. presented an auto-scaling

mechanism for cloud computing environments. In their approach, the cloud resources

are considered as virtual machines (VMs) of various sizes/costs. The jobs are specified

as workflows where users specify performance requirements by assigning (soft)

deadlines to jobs. The goal is to ensure all jobs are finished within their deadlines at

minimum financial cost. They used the Earliest Deadline First (EDF) algorithm to

schedule tasks on each VM type. After deadline assignment and instance consolidation,

every task is scheduled to a VM type. They sort the tasks by their deadlines for each

VM type, and schedule the task with the earliest deadline whenever an instance is

available. In [46], the authors proposed a Dynamic Critical Path (DCP) based workflow

scheduling algorithm that determines efficient mapping of tasks by calculating the

critical path in the workflow task graph at every step. It assigns priority to a task in the

critical path which is estimated to complete earlier. They compared the performance of

their proposed approach with other existing heuristic and meta-heuristic based

scheduling strategies for different types and sizes of workflows. In [47], Chen et al.

aimed at proposing an ant colony optimization (ACO) algorithm to schedule large-scale

work-flows with various QoS parameters. This algorithm enables users to specify their

QoS preferences as well as define the minimum QoS thresholds for a certain

application. The objective of this algorithm is to find a solution that meets all QoS

constraints and optimizes the user-preferred QoS parameter.

28

Chapter 3. Modeling the Problem

3.1 Environment Analysis

 As discussed in the literature review (Chapter 2, section 2.2), the integration

between fog computing and cloud computing creates a 3-layered architecture. The edge

devices reside at the edge of the network. Fog computing devices “sit” in the

intermediate layer while cloud resources are in the upper most layer. The 3-layered

architecture with the data flow direction is shown in Figure 2.

 IoT devices, residing in the edge layer, require services from fog and cloud

resources by sending requests that need to be processed. Based on [48], the IoT requests

can be described or defined as data, with specific size, that need to be processed or

analyzed. The analysis or processing stage refers to some computational processes that

have to take place in fog or cloud layer.

Figure 2: Fog and Cloud Computing Architecture of Service Scheduling

 The main objective of the model is to minimize the latency as round-trip time

(RTT) for serving or processing the requests coming from the edge layer. For this

model, the latency of an IoT request is specifically defined as the round trip time from

the moment the request gets initiated at the edge layer to the moment it gets completely

processed or served and the results are returned back to the requester. This latency

includes many delay components.

29

In networking, the latency is generally divided into several components:

1- Transmission delay: this is the time it takes to push the packet's bits onto the

networking or connection link.

2- Queuing or networking delay: this is the time the data packets spend in passing

through the network routers and switches.

3- Propagation delay: this is the time for a signal to propagate or travel through the

networking media and reach its destination. In this work, the propagation delay is

completely neglected as it is insignificant compared to the other delay components.

 Transmission delay is a function of the packet's length and has nothing to do

with the distance between the two nodes. It is calculated from the transmission bit rate

and the size of data to transmit and hence it is uniform and can be evaluated beforehand.

On the contrary, the queuing time is stochastic with a certain average and it cannot be

evaluated beforehand. For this reason, the total delay of summing the transmission and

queuing time will also be stochastic with a certain average. This latter delay can be

written as in equation (1). The Total delay is the summation of the two delay

components, transmission and the queuing time.

 𝛿̅ = 𝛿𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝛿𝑞̅𝑢𝑒𝑢𝑖𝑛𝑔 (1)

 Additionally, there is the actual processing time which is the time it takes to

process the data of each request. Examples of IoT data processing are data storage, data

aggregation and analysis, features extraction, images and video processing, etc. This

processing time is defined by the data size each request has and the processing

capability of the resource that will serve or process the request. The resource capability

is defined in terms of processing speed. Moreover, a request might suffer some

additional delay if the resource is busy serving other requests. The reason behind that

is, it is assumed that a resource can process only one request at a time in the modeling.

3.2 The Edge-Fog-Cloud Environment Model

 The scheduling problem model is built based on the following environment

settings or assumptions:

• There is a set of fog and cloud computing resources (m resources) denoted as set

by 𝑆 = {S1, S2, S3, … , Sm}. Each resource has its own attributes: processing

power and average networking delay.

https://en.wikipedia.org/wiki/Transmission_delay
https://en.wikipedia.org/wiki/Queuing_delay
https://en.wikipedia.org/wiki/Propagation_delay

30

• The processing speed of each resource is measured as the number of packets that

can be processed per unit time.

• No communication or cooperation exists between the processing nodes, at both

fog and cloud layers.

• A resource, at both fog and cloud layers, can process only one request at a time.

• There is a set of n requests that need to be processed individually at fog and cloud

layers. These requests are denoted as a set by 𝑅 = {𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑛}. Each

request has its own attributes: initiation time, data size, priority and deadline.

• A request may get created (initiated) at any instant of time.

• The data size of each request is defined by the number of packets the request has,

assuming that the size of one data packet in all requests is fixed.

• Each request priority is assigned as a normalized fractional weight to signify how

important the request is compared to others. All requests weights are summed

up to an exact 1 as shown in equation (2). The reason behind adopting this

fractional weight is to define the most important requests that need to be served

early even if some other requests with low priority take longer time.

∑ 𝑊𝑗 = 1

𝑛

𝑗=1

(2)

• The deadline requirement of each request is defined as a time duration that starts

from the moment it gets created, not referenced to time 0.

• A request consists of only one operation or one task that needs to be performed

by one resource.

• Each request experiences transmission and queuing delay in the forward journey

moving from edge to fog or cloud layers to get processed. This transmission and

queuing delay is a function of two parameters: the first one is the request data

size in terms of packets, and the second one is the transmission and queuing

delay per packet of the resource the request will be served at. This transmission

and queuing time represents how far the resource is from the edge layer.

• The requests will also suffer the same transmission and queuing delay in the

backward journey from fog or cloud layer to edge layer. This is because it is

assumed that the size of the resulted data after processing is equal to the original

data.

31

• The actual processing time of each request is equal to the request size (in packets)

divided by the processing node speed (in packets per second).

• All requests in the model are independent.

• Preemption is not allowed. If a request starts processing, it must finish without

interruption.

• All the needed scheduling problem parameters are known by the time they will

be solved. The scheduling problem parameters are the number of requests and

resources with their attributes.

• The objective in the model is achieving the least overall latency possible for

serving all requests considering their different priorities or weights as explained

in equation (2).

Time in this model is continuous, not discrete-valued. This way, the latency may

be any positive real-valued number and there is no limit to the time horizon that

the schedule must be performed within. It also means that any request can be

processed at any instant of time.

 These environment characteristics can be translated into the following notations

list:

 𝑳𝑻: Average weighted overall latency.

𝑳𝑻𝒊𝒋: Latency of request 𝑅𝑗 that is served in resource 𝑆𝑖.

𝒏: Number of requests of a set of requests R numbered from 𝑅1 to 𝑅𝑛.

𝑹𝒔𝒊𝒛𝒆𝒋
: Data size of request 𝑅𝑗.

𝑹𝒊𝒏𝒊𝒕𝒋
 : Initiation time of request 𝑅𝑗.

𝑹𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆𝒋
: Deadline of processing request 𝑅𝑗.

𝑹𝒑𝒓𝒊𝒋
: Weighting factor of request 𝑅𝑗 describing its priority.

𝒎: Number of resources exist in both fog and cloud with a set name S, numbered

from 𝑆1 to 𝑆𝑚.

𝑷𝒊: The processing power of resource 𝑆𝑖.

𝜹̅𝒊: The average transmission and queuing delay per packet for reaching

resource 𝑆𝑖.

𝒙𝒊𝒋: A set of 0-1 variables such that 𝑥𝑖𝑗 equals 1 iff request 𝑅𝑗 is allocated in a

resource 𝑆𝑖.

32

Ѳ𝒊𝒋𝒌: A set of 0-1 variables such that Ѳ𝑗𝑘 equals 1 iff request 𝑅𝑗 should be

executed before 𝑅𝑘 in the same resource, 𝑆𝑖.

𝑺𝑻𝒊𝒋: Start time of actual processing of request Rj within resource 𝑆𝑖.

𝑷𝑻𝒊𝒋: Processing time of requests Rj in resource 𝑆𝑖.

𝑻𝑸𝑻𝒊𝒋: Transmission and queuing time of requests Rj to reach resource 𝑆𝑖.

 The objective in the model is minimizing the sum of the RTT for serving all n

requests using m resources available, considering the requests different priorities or

latency costs. Mathematically, the latency, which is the objective function, is the

difference between the initiation time and the end of service which includes the starting

time, the processing time, and the transmission and queuing time. Then the latency of

each request is weighted by its priority in order to evaluate the overall latency, as shown

in equation (3).

min {𝐿𝑇 = ∑ ∑ (𝐿𝑇𝑖𝑗 ∗ 𝑅𝑝𝑟𝑖𝑗
∗ 𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

 }

𝐿𝑇𝑖𝑗 = 𝑆𝑇𝑖𝑗 + 𝑃𝑇
𝑖𝑗

+ 𝑇𝑄𝑇𝑖𝑗 − 𝑅𝑖𝑛𝑖𝑡𝑗

∀𝑅𝑗 ∈ 𝑅, ∀𝑆𝑖 ∈ 𝑆

(3)

Where:

𝑃𝑇𝑖𝑗 =

𝑅𝑠𝑖𝑧𝑒𝑗

𝑃𝑖
⁄ ∀𝑅𝑗 ∈ 𝑅, ∀𝑆𝑖 ∈ 𝑆

(4)

 Equation (4) defines the processing time of request 𝑅𝑗 in resource 𝑆𝑖. The

processing time of each request is equal to the request data size in packets divided by

the resource processing power in packets per second.

𝑇𝑄𝑇𝑖𝑗 = ∑ 𝛿𝑖̅

𝑅𝑠𝑖𝑧𝑒𝑗

1

 ∀𝑅𝑗 ∈ 𝑅 , ∀𝑆𝑖 ∈ 𝑆

(5)

 Equation (5) defines the transmission and queuing time of request 𝑅𝑗 from the

edge layer to fog or cloud resource 𝑆𝑖. A request delay is the summation of its packets

delays that will suffer individual delays distributed around a specific mean. This means

a request cannot start processing unless all its packets reach the resource.

Subject to:

 ∑ 𝑥𝑖𝑗 = 1 𝑚
𝑖=1 ∀𝑅𝑗 ∈ 𝑅 (6)

33

 Equation (6) means request 𝑅𝑗 must be served and served only once by only one

resource.

 𝑆𝑇𝑖𝑗 ≥ 𝑅𝑖𝑛𝑖𝑡𝑗
+ 𝑇𝑄𝑇𝑖𝑗

 ∀𝑅𝑗 ∈ 𝑅 (7)

 Equation (7) means a request 𝑅𝑗 cannot start processing before its initiation time

plus the transmission and queuing time to where fog or cloud resources reside.

 𝑖𝑓 𝑥𝑖𝑗 + 𝑥𝑖𝑘 = 2 𝑡ℎ𝑒𝑛 Ѳ𝑖𝑗𝑘 + Ѳ𝑖𝑘𝑗 = 1

𝑆𝑇𝑖𝑘 ≥ Ѳ𝑖𝑗𝑘 ∗ (𝑆𝑇𝑖𝑗 + 𝑃𝑇𝑖𝑗)

∀(𝑅𝑗 , 𝑅𝑘) ∈ 𝑅, 𝑅𝑗 ≠ 𝑅𝑘, ∀𝑆𝑖 ∈ 𝑆

(8)

 Equation (8) means a resource 𝑆𝑖 can process only one request at a time. If there

are two requests arrive the resource at the same time, one of them should be shifted to

start after the other.

 𝑆𝑇𝑖𝑗 + 𝑃𝑇𝑖𝑗 + 𝑇𝑄𝑇𝑖𝑗 − 𝑅𝑖𝑛𝑖𝑡𝑗
≤ 𝑅𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗

 ∀𝑅𝑗 ∈ 𝑅, ∀𝑆𝑖 ∈ 𝑆 (9)

 Equation (9) means each request 𝑅𝑗 must be served within its deadline

requirement 𝑅𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗
.

3.3 Model validation using Lingo

 In this section, the model described in the previous section is validated using a

software called Lingo. Lingo is an optimization modeling software for linear and

nonlinear integer optimization models. It supports many exact algorithms such as

simplex and Branch-and-Bound (B&B). We adopted B&B as an exact algorithm for

solving the model. The reason behind that is, B&B throws out large parts of the search

space by using previous estimates on the objective function under concern. This helps

in eliminating large parts of the search space and reduces the runtime significantly.

 To validate the model, a small scheduling problem that involves only 5 requests

and 2 resources was built for demonstration purposes. The two resources represent 1

fog processing node and 1 cloud processing node. The attributes of these requests and

resources are shown in Table 2 and Table 3. As seen from Table 2, all 5 requests are

assumed to be initiated at the same time and they have the same data size for

demonstration purposes. However, they have different priorities and deadline

requirements. The 2 resources attributes are shown in Table 3. One of them represents

a fog resource with lower delay and lower processing power compared to the other one

with higher delay and higher processing power representing a cloud resource.

34

Table 2: 5 Requests with Their Associated Attributes

Requests,

Rj

Initiation

time, 𝑹𝒊𝒏𝒊𝒕𝒋

Data size,

𝑹𝒔𝒊𝒛𝒆𝒋

Priority,

𝑹𝒑𝒓𝒊𝒋

Deadline,

𝑹𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆𝒋

R1 15 5000 0.2 1000

R2 15 5000 0.38 1500

R3 15 5000 0.01 2000

R4 15 5000 0.4 600

R5 15 5000 0.01 2000

Table 3: 2 Resources with Their Associated Attributes

Resource,

Si

Processing power,

𝑷𝒊

Average delay,

𝜹̅𝒊

S1 (Fog) 20 0.001

S2 (Cloud) 100 0.1

 Lingo software gives the absolute optimal solution for the scheduling problem

using the objective function given in equation (3). Table 4 and Table 5 show this

optimal solution with its associated parameters. The solution parameters are the

allocation of the requests (𝑥𝑖𝑗) within the 2 resources with 1’s and 0’s. The starting time

of each request (𝑆𝑇𝑗), the processing time (𝑃𝑇𝑖𝑗), and the transmission and queuing

delay (𝑇𝑄𝑇𝑖𝑗), the latency (𝐿𝑇𝑖𝑗) of each request which must be less than deadline

(𝑅𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗
) and the overall weighted latency (𝐿𝑇). Table 5 shows the other part of the

solution in terms of the order of execution (Ѳ𝑖𝑗𝑘) for each two requests allocated to the

same resource as the resource can execute only one request at a time (refer to the

constraint in equation (8)).

 As the latency of each request, 𝐿𝑇𝑖𝑗, is given in Table 4, their summation can be

simply obtained 4070 as shown in the table. However, that is not the actual objective

function described by equation (3). Equation (3) defines the overall weighted latency

considering requests’ different weights. This latter one can be calculated as 627.5 as

shown in the last column. The total non-weighted latency is just the summation of 𝐿𝑇𝑖𝑗

while the weighted latency is the summation of multiplying 𝐿𝑇𝑖𝑗 by 𝑅𝑝𝑟𝑖𝑗
. This way,

35

the model will give less delay to the requests that have higher priority in order to

minimize the overall weighted latency. This difference between the latency and the

weighted latency is a core concept in the formulated model.

 In the allocation column in Table 4, it can be noticed that R1 (request 1) and R4

are allocated in S1 (resource 1) while the rest R2, R3, and R5 are allocated in S2. The

order of processing requests that are allocated in the same resource is given in Table 5.

Be reminded that in the model, it is assumed that each resource can process only one

request at a time. For instance, it can be seen that Ѳ4,1is equal to 1 which means R4

precedes R1 in the execution phase. This means, the opposite parameter, Ѳ1,4 should

equal to zero according to equation (8), as shown in Table 5. This also applies for the

other 3 requests R2, R3 and R5 allocated in S2.

 To make the scheduling clear, Table 4 and Table 5 are mapped into a Gantt chart

shown in Figure 3. It can be seen from the graph that, while R1 and R4 are allocated in

the same resource S1, R4 gets executed first, as Table 5 also stated. The moment R4

finished processing, the resource is released and R1 starts executing because it was kept

waiting. On the other hand, R2, R3 and R5 as they are allocated in S2, the resource will

process R2 followed by R3 followed by R5, as Table 5 stated.

 What can be concluded from the results shown in Table 4 and Table 5 is that,

the allocation of the requests within the resources and their execution order gets affected

directly by the requests priorities (weights). We can see that the highest prioritized

request R4 is scheduled in S1 (which is a fog resource with less

𝛿̅ compared to S2) and it gets executed before R1 (which is allocated in the same

resource S1). The main reason for that is having the weight factor in the overall weighted

latency given in equation (3). As R4 has more weight (priority), the optimizer will try

to give the least latency possible for this specific request in order to minimize the overall

latency.

36

Table 4: Lingo Optimal Scheduling Solution – Part 1

Requ

-ests,

Ri

Allocation, 𝒙𝒊𝒋 Start

time,

𝑺𝑻𝒊𝒋

Proc.

time,

𝑷𝑻𝒊𝒋

Trans.

time,

𝑻𝑸𝑻𝒊𝒋

Requests

latency,

𝑳𝑻𝒊𝒋 <

𝑹𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆𝒋

Weighted

overall

latency,

𝑳𝑻𝒊𝒋 *𝑹𝒑𝒓𝒊𝒋

S1

(Fog)

S2

(Cloud)

R1 1 0 270 250 5 510 < 1000 510 * 0.2

R2 0 1 515 50 500 1050 < 1500 1050 * 0.38

R3 0 1 615 50 500 1150 < 2000 1150 * 0.01

R4 1 0 20 250 5 260 < 600 260 * 0.4

R5 0 1 565 50 500 1100 < 2000 1100 * 0.01

 ∑ = 4070 ∑ = 627.5

Table 5: Lingo Optimal Scheduling Solution – Part 2

Resource,

Si

Allocated

requests,

Rj

Ѳ𝒊𝒋𝒌

Order of

processing,

Rj → Rk

S1 R1, R4 Ѳ141 = 1, Ѳ114 = 0 R1 → R4

S2 R2, R3, R5 Ѳ223 = 1, Ѳ232 = 0

Ѳ225 = 1, Ѳ252 = 0

Ѳ235 = 1, Ѳ253 = 0

R2 → R3 → R5

Figure 3: Gantt chart for Lingo Optimal Scheduling Solution

37

Chapter 4. Proposed Solution

4.1 Genetic Algorithms

 In this thesis, the GA is adopted for solving the large size scheduling problems.

The main reason behind using the GA as a heuristic approach is the complexity of the

scheduling problem in general. It is not efficient to use an exact method for solving

large scheduling problems that have hundreds or thousands of requests and resources

as the time it takes to find the optimal solution grows significantly. In this section,

before looking into solving the model, the GA and its implementation will be

introduced.

 GA is a meta-heuristic inspired by the process of natural selection that belongs

to the larger class of evolutionary algorithms. In a GA, a population of candidate

chromosomes to an optimization problem is evolved toward better ones. The evolution

usually starts from a population of randomly generated chromosomes, and is

an iterative process, with the population in each iteration called a generation. The GA

iterates towards getting better chromosomes in terms of the objective. In each

generation, the fitness of every chromosome in the population is evaluated. The GA

fitness is the value of the objective function in the optimization problem being solved.

The chromosomes also get evaluated for any feasibility conditions that exist in the

optimization problem. The fitter chromosomes get stochastically selected from the

current population, and each chromosome is modified (using the so called GA

operators) to form a new generation. The new generation of chromosomes is then used

in the next iteration of the algorithm.

 The GA algorithm terminates when either a maximum number of generations

has been produced, or a satisfactory fitness level has been reached, or there is no

improvement in the fitness for a certain number of generations. A typical genetic

algorithm requires a full representation or description to the optimization problem under

concern. It requires a definition of the fitness function and all the constraints exist in

the problem in order to evaluate the solution domain.

 For a scheduling problem, the chromosome actually represents a candidate

solution to the problem whether it is feasible or not. A candidate solution to the

scheduling problem can be the allocation array of requests within resources, 𝑥𝑖𝑗, as

shown in Figure 4. What is shown in Figure 4 is just an example of allocating N requests

https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Population
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Fitness_(biology)
https://en.wikipedia.org/wiki/Objective_function
https://en.wikipedia.org/wiki/Stochastics
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Genetic_representation
https://en.wikipedia.org/wiki/Fitness_function

38

within M resources. The 0 means not allocated and the 1 means allocated. The 0’s and

1’s are “Genes”. For instance, it is clear that R1 (request 1) is allocated in S3 (resource

3) and R2 is allocated in S2. This 2- dimensional array can be stretched vertically in

order to get a 1-dimensional solution array that represents the chromosome for the GA.

The latter one is shown in Figure 5 and it represents the exact same 2 dimensional array

in Figure 4.

 It is important to note that there is also another dimension in the scheduling

problem solution which is the execution order of requests that are allocated to the same

resource (refer to equation (8) or Table 5). This is an important parameter because it

gives the time dimension to the scheduling problem and distinguishes it for a traditional

allocation problem. This parameter is not considered as part of the chromosome.

However, it is considered in the latency evaluation of each chromosome.

Figure 5: Chromosome Representation as 1-D Array

4.2 The GA Implementation

 The GA is developed as described in the implementation flowchart given in

Figure 6. The GA starts by setting the values for major parameters such as the

population size, the termination counter, the GA maximum number of iterations, and

the number of requests and the number of resources. This is followed by assigning these

requests and resources attributes from the user. The requests attributes are: data size,

 Figure 4: Chromosome Representation as 2-D Array

39

priority, initiation time, and deadline. While the resources attributes are: processing

power and average transmission and queuing delay.

 A pseudocode is provided for the GA implementation in Table 6. The GA

initially generates a certain number of candidate solutions (chromosomes) randomly to

represent the initial population for the first generation. The number of chromosomes in

the population is defined by the population size in the problem. The next step is to

evaluate these chromosomes individually based on the feasibility constraints and the

fitness function available in the model. Note that since the problem is a minimizing

problem, the fitness is inversely proportionate to the latency in equation (3) and this is

shown is equation (10). This means the less latency the better fitness value and the more

latency the worse fitness value for each chromosome.

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 1/𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (10)

 The following step is to sort the chromosomes according to their fitness. The

algorithm scans all the chromosomes looking for the best chromosome that is better

than the “best-so-far” one. If a better chromosome is found, the “best-so-far” will be

replaced and a counter will be reset to zero. This counter is called the “trials counter”

and it is used for holding the number of iterations the GA loops without finding a better

solution. If this counter reaches the GA termination counter, the algorithm breaks.

 After that, the GA implements what is known as the “GA operators”. The GA

operators are 3 operations; selection, crossover, and mutation. These operations are

used to evolve the current population and produce a new population that can have fitter

chromosomes. After implementing the GA operators on the current population, the

chromosomes’ fitness will be re-evaluated and they will be re-sorted to get a new

generation. The GA keeps iterating, implementing the GA operators, generating newer

generations, and sorting the chromosomes while looking for a better chromosome than

the “best-so-far”. At the end, it terminates either by consuming the termination counter

(as explained in the previous paragraph) or by consuming the maximum number of

iterations.

40

Figure 6: GA Implementation Flowchart

41

Table 6: GA Implementation Pseudocode

Algorithm: GA Implementation

Set population size, scheduling problem size, termination counter

Define requests and resources attributes

Create initial population

Evaluate fitness and check feasibility

repeat

 Sort chromosomes based on their fitness

 for (i=1 to population size) do

 if A better chromosome than best-so-far is found then

 Replace best-so-far and reset trials counter

 endif

 endfor

 if A better chromosome not found then

 Increment trials counter

 if (trials counter = termination counter) then

 exit

 endif

 endif

 Crossover

 Mutation

 Evaluate fitness and check feasibility

until (maximum number of iterations)

print best-so-far chromosome

 4.2.1 Initial Population. As mentioned in section 4.2, the GA creates the first

population or generation randomly. The function implementation is given in Table 7.

The algorithm scans the chromosomes and for each chromosome it loops through the

requests and the resources. For each request, the algorithm selects a resource randomly

for execution.

 4.2.2 Selection using Roulette Wheel. In order to implement the crossover

and the mutation operators, the chromosomes that will be crossed over or mutated need

to be selected. An algorithm called “roulette-wheel” has been adopted for selecting the

chromosomes. Roulette-wheel is a selection algorithm based on the fitness value. It

uses the fitness value as a probability to select the fitter chromosomes (the ones with

better objective function or less latency). The probability of selecting any chromosome

out of the whole population is calculated by normalizing the fitness as shown in

42

equation (11) and hence it is called the normalized fitness. It is calculated from the

fitness of each chromosome divided by the summation of fitness for all the

chromosomes. This way, the fitter chromosomes will have a high chance to be selected

than the less fit ones. The summation of the normalized fitness of all the chromosomes

in the population is equal to an exact one, hence it represents probability.

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 =

𝐹𝑖

∑ 𝐹𝑖

(11)

 The roulette wheel algorithm is implemented as shown in Table 8. After

normalizing the chromosomes fitness, the population is sorted by descending fitness

values. Then accumulated normalized fitness values are calculated. The accumulated

fitness value of a chromosome is the sum of its own fitness value plus the fitness values

of all the previous chromosomes after sorting. This means, the accumulated normalized

fitness of the last chromosome should be 1. Then, a random number between 0 and 1 is

chosen. The selected chromosome is the last one whose accumulated normalized value

is smaller than this random number.

Table 7: Initial Population Algorithm

Algorithm: Initial Population

Inputs: Population Size (pop_size), Number of Requests (num_requests), Number of Resources

(num_resources)

Outputs: Initial Population (pop)

for (k = 1 to pop_size) do

 for (i = 1 to num_resources) do

 for (j = 1 to num_requests) do

 For each request, select a resource randomly

 Assign the request into the selected resource, x[i][j]

 endfor

 endfor

endfor

43

Table 8: Selection using Roulette Wheel

Algorithm: Selection using Roulette Wheel

Inputs: Population Size (pop_size), Population (pop)

Outputs: Index of a Selected Chromosome with the Population (index)

for (i=1 to pop_size) do

 Calculate normalized fitness

endfor

Sort chromosomes based on fitness

Choose a small random number, R

for (i=1 to pop_size) do

 Calculate accumulated normalized fitness

 if (accumulated normalized fitness > R) then

 Choose this chromosome and return its index within pop

 endif

endfor

4.2.3 Crossover. The crossover, also called recombination, is an operator that

is used to generate new chromosomes from the current population. It works by selecting

two chromosomes and recombining them as shown in Figure 7 to produce two new

chromosomes. The first selected pair of chromosomes is called “Parent Chromosomes”

while the second recombined one is called “Children Chromosomes”. The idea behind

the crossover operator is crucial for the GA evolvement. If the parent chromosomes are

fit or have better objective values within the population, the children chromosomes are

also more likely to have better level of fitness compared to other chromosomes.

 In terms of implementation, the crossover is implemented as shown in Table 9.

Two parent chromosomes get selected using roulette-wheel algorithm. Then, the

crossover-point over the two chromosomes is selected randomly between 1 and 60% of

the chromosome length represented by the number of requests. The two selected

chromosomes get crossed over the selected cross point by swapping their opposite parts

(as shown in Figure 7). The two generated children chromosomes are copied to a new

population which is called the new offspring or the new generation. This process is

repeated until the number of generated children chromosomes in the new generation is

equal to the number of chromosomes in the current generation.

44

 It is important to note that, although the crossover point is selected randomly, it

is chosen delicately at a point (as shown in Figure 8) in order not to mix up the requests

allocation. These points are referred to “requests chunks”. It maps each request to an

only one resource. If the cross point is not chosen as shown in Figure 8, a request might

be allocated to more than one resource which validates the constraint in equation (6).

This is the reason behind representing the chromosome length by the number of

requests only, not by the actual chromosome length, when selecting the cross point.

This way, it is easier to avoid allocating a request to more than one resource after the

crossover.

Figure 7: Crossover Operation

Table 9: Crossover

Algorithm: Crossover

Inputs: Population Size (pop_size), Population (pop), Number of Requests (num_requests), Number

of Resources (num_resources)

Outputs: New Population (pop)

for (i=1 to pop_size, step 2) do

 select first chromosome using roulette wheel

 select second chromosome using roulette wheel

 Choose a cross point from 1 to 60%*num_requests as an integer number

 for (j=1 to cross point) do

 cross first chromosome genes with second chromosome genes

 Place children chromosome in the new pop

 endfor

endfor

45

Figure 8: The Cross-Point within a Chromosome

4.2.4 Mutation. The mutation operator in the GA is used to implant small changes

within the chromosomes after the crossover. This mutation operation is performed on

the chromosomes by simply changing the allocation of a request from one resource to

another one, as shown in Figure 9. In this case, the mutation shown in Figure 9 is

changing the allocation of request 2 (R2) from resource 2 (S2) to resource 3 (S3).

Figure 9: Mutation Operation

 The mutation is the GA is implemented as shown in Table 10. It is important to

note that the changes are not performed at the population level, i.e. the population is

not mutated as a single 2-D array in different multiple locations. The mutation is

performed at the chromosome level which means all chromosomes are scanned and

each chromosome is selected and mutated individually and independently. Each

chromosome is mutated based on a probability of 25% which means not every

chromosome in the population will get mutated. If a chromosome is selected for

mutation, the GA implants a number of changes defined by NUM_MUTATIONS. For

each mutation operation, a random request is selected and re-allocated into another

resource that is also selected randomly. The mutation algorithm repeats this process by

the number of mutations defined by NUM_MUTATIONS.

46

Table 10: Mutation

Algorithm: Mutation

Inputs: Population Size (pop_size), Population (pop), Number of Requests (num_requests), Number

of Resources (num_resources)

Outputs: Mutated Population (pop)

for (i = 1 to pop_size) do

 if ((rand() % 4)=0) then

 for (j = 1 to NUM_MUTATIONS) do

 Chose a request randomly from the pool

 Deallocate the selected request from all resources

 Chose a resource randomly from the pool

 Re-allocate the selected request to the selected resource

 endfor

 endif

endfor

4.2.5 Feasibility Check. After each mutation and crossover, the GA needs to

check the feasibility of all chromosomes in the population. To do that, the GA examine

for two constraints. The first constraint is to make sure that each request must be

allocated into one and only one resource and the second constraint is satisfying the

deadline requirements modeled in equation (6) and equation (9). To test the first

constraint, as show in Table 11, the GA sums each request chunk. The request chunks

are divided as shown in Figure 10. A request chunk is a vector that maps each request

to an only one resource as stated in the model formulation. This means a request chunk

vector must be all zeros with a single one if the request is allocated in one resource and

hence the summation should equal to 1. In case a request is allocated into more than 1

resource, the summation will not be equal to 1.

If a request is allocated into more than one resource, the chromosome will be

flagged as infeasible and the algorithm continues checking for another chromosome.

For testing the deadline requirement, the algorithm compares the service latency

assigned to each request to its deadline. If the service latency is greater than the deadline

requirement, the chromosome will be flagged as infeasible and the algorithm continues

to check another chromosome. The latency and the fitness of each chromosome is

evaluated in section 4.2.6.

47

Table 11: Feasibility Check

Algorithm: Feasibility Check

Inputs: Population Size (pop_size), Population (pop), Number of Requests (num_requests), Number

of Resources (num_resources)

Outputs: Population with Feasibility Check (pop)

for (i=1 to pop_size) do

 for (j=1 to num_requests) do

 Calculate the request chunk sum

 if (request chunk sum = 1) then

 Feasibility of the selected request is positive

 else

 Feasibility of the selected request is negative and continue

 endif

 endfor

 for (j=1 to num_requests) do

 if (latency of request <= deadline of request) then

 Feasibility of the selected request is positive

 else

 Feasibility of the selected request is negative and continue

 endif

 endfor

endfor

Figure 10: Request Chunks for Feasibility Check

4.2.6 Fitness Calculation. In this function, the GA considers calculating the

fitness values for each chromosome. This part of the algorithm is implemented as

shown in Table 12. The GA starts by scanning all chromosomes within the population.

For each chromosome, it loops through the requests and the resources while it calculates

the processing time, the transmission and queuing time, and the starting time for each

request (refer to equation (4), equation (5), and equation (7)). Then, the GA looks into

48

the resources one by one and it extracts the requests indices that are allocated in each

resource and their count. This is followed by the execution phase where the algorithm

executes the requests in sequence in a random order. This is to consider the assumption

in the model that states each resource can process only one request at a time (refer to

equation (6)). After execution, each request latency is calculated individually and used

to calculate the overall weighted latency by multiplying each request latency by its

priority (refer to equation (3)).

4.3 GA Experimentation

 Before using the genetic algorithm in a real-time simulation environment,

different GA parameters within the implementation were studied. The most important

two parameters within the GA implementation are: population size (U) and termination

counter (T). These two parameters have a direct impact on the solution quality and

runtime. The runtime is the time the algorithm keeps running to come up with a

solution. The solutions quality of the GA is also studied in this section by comparing

it to the exact optimal solution obtained from Lingo.

4.3.1 Population Size, U. The GA population size, U, is one of the most

important parameters of almost every GA implementation. Optimizing the population

size is crucial because increasing it has a direct impact on the algorithm solution quality

and runtime as well.

 In this experiment, the objective is to study the population size versus solution

quality which is the overall latency, LT, and runtime, RT. Different scheduling problem

sizes were experimented to insure that the population size that will be selected is

suitable to solve different size problems. The scheduling problem size, referred to as N,

is defined as the number of requests and resources, regardless their parameters. The

problems’ sizes experimented namely are: 40 requests and 10 resources (40/10), 60

requests and 20 resources (60/20), 80 requests and 30 resources (80/30), 100 requests

and 50 resources (100/50), as shown in Figure 11 and Figure 12. It is very important to

note that these scheduling problems are totally independent and they are not related to

each other. The parameters of these scheduling problems are set as follows: requests

generation is in Poisson distribution with an inter-arrival rate mean of 2 seconds, data

size is normally distributed with a mean of 1000 and a variance of 100, deadline is

relaxed, and priority is uniformly distributed from 1 to 10. On the other hand, the

49

Table 12: Fitness Calculation

Algorithm: Fitness Calculation

Inputs: Population Size (pop_size), Population (pop), Number of Requests (num_requests), Number

of Resources (num_resources)

Outputs: Population with Fitness Values (pop)

for (k=1 to pop_size) do

 for (j=1 to num_requests) do

 for (i=1 to num_resources) do

 if (x[i][j]=1) then

 request[j].PT = request[j].size / resource[i].speed;

 request[j].TQT = resource[i].delta * request[j].size;

 request[j].ST = request[j].init_time + request[j].TQT;

 break;

 endif

 endfor

 endfor

 for (i=1 to num_resources) do

 Collect the count of requests assigned to each resource and their indices to req_cnt

 & req_array respectively

 for (j=1 to req_cnt) do

 Select a request from req_array randomly

 Eliminate the selected request from req_array

 if (request[j].ST < sTime_next) then

 request[j].ST = sTime_next;

 endif

 sTime_next = request[j].ST + request[j].PT;

 request[j].LT=request[j].ST+request[j].PT+request[j].TT-

 request[j].init_time;

 endfor

 endfor

 for (j = 1 to num_requests) do

 LT += (request[j].LT * request[j]. priority);

 endfor

 Each chromosome fitness = 1/LT;

endfor

50

resources processing power is normally distributed with a mean of 200 and a variance

of 25. Their average delays are also normally distributed with a mean of 50 milliseconds

and a variance of 10 milliseconds. The deadline requirements are relaxed because the

objective of this experiment is to study the objective value only. The number of missed

deadline requests is not a concern in this experiment.

 In this experiment, the objective is to study the population size versus solution

quality which is the overall latency, LT, and runtime, RT. Different scheduling problem

sizes were experimented to insure that the population size that will be selected is

suitable to solve different size problems. The scheduling problem size, referred to as N,

is defined as the number of requests and resources, regardless their parameters. The

problems’ sizes experimented namely are: 40 requests and 10 resources (40/10), 60

requests and 20 resources (60/20), 80 requests and 30 resources (80/30), 100 requests

and 50 resources (100/50), as shown in Figure 11 and Figure 12. It is very important to

note that these scheduling problems are totally independent and they are not related to

each other. The parameters of these scheduling problems are set as follows: requests

generation is in Poisson distribution with an inter-arrival rate mean of 2 seconds, data

size is normally distributed with a mean of 1000 and a variance of 100, deadline is

relaxed, and priority is uniformly distributed from 1 to 10. On the other hand, the

resources processing power is normally distributed with a mean of 200 and a variance

of 25. Their average delays are also normally distributed with a mean of 50 milliseconds

and a variance of 10 milliseconds. The deadline requirements are relaxed because the

objective of this experiment is to study the objective value only. The number of missed

deadline requests is not a concern in this experiment.

 The experimented population size starts from 1 up to 10, then it jumps to 15 and

steps by 5 up to 100. We tried to be accurate within the range from 1 to 10 because the

change is dramatic in this range. Since GA has a stochastic nature for finding the

heuristic solutions, each experiment is repeated 5 times and the average is taken. The

termination counter for this experiment is set to 50 (the termination counter is an

important parameter and it will be studied in more details in section 4.2.2).

 Figure 11 shows the fitness or latency versus the population size while Figure

12 shows the runtime versus the population size. Be reminded that, the objective is

minimizing the latency. It can be noticed in Figure 11 that as the population size is

increased, better minimized latency solutions are obtained, for all different scheduling

51

problem sizes. The drop can be seen very clearly in the curve starting, between

population size 1 and 10. It can also be observed that all solutions stabilize (to a great

extent) in around a population size of 60. It is also essential to note that the objective

solutions or the objective latencies for these different sizes problems are not related to

each other because they are different in size and they have different or independent

attributes. In other words, the larger scheduling problem does not mean larger latency

value. As can be seen in Figure 11, the problem with N=100/50 has less latency than

the one with N=60/20.

 Figure 12 shows the runtime versus the population size. It can be noticed that,

as the population size increases, the runtime also increases. At this point, it can be

understood that increasing the population size gives better and fitter solutions, however,

at the expense of runtime. This indicates the importance of choosing a population size

that gives fitter solutions and at the same time doesn’t take long runtime. The second

observation in Figure 12 is, as the problem size increases, the times it takes to find the

best solution increases. As can be seen, the problem with N=100/50 has the largest

runtime compared to the others, while the one with N=40/10 has the smallest.

Increasing the problem size directly increases the number of loops and iterations within

the GA implementation.

Figure 11: Overall Latency versus Population Size

30

40

50

60

70

80

90

100

110

0 20 40 60 80 100 120

O
v
er

al
l

L
at

en
cy

,
L

T
(S

ec
o

n
d

s)

Population Size, U

N = 100/50

N = 80/30

N = 60/20

N = 40/10

52

Figure 12: Runtime versus Population Size

4.3.2 Termination Counter, T. The termination counter, referred to as T, is

the number of iterations the GA performs looking for better solutions before it

terminates. If the GA consumes the number of iterations without finding a better

solution than the best so far, it terminates. If it finds a better solution, it resets the

counter to zero. This parameter has a direct impact on the algorithm solution refinement

and runtime. This means, increasing the termination counter refines and improves the

solution as it gives the algorithm more space and number of trials to find better

solutions. However, it increases the runtime as it iterates more.

 In this experiment, the objective is study the termination counter versus the

solution quality and runtime as well. The same 4 different sizes scheduling problems

used in section 4.2.1 are again used for this experiment. The experimented termination

counter starts from 1 up to 40. Since the GA has a stochastic nature for finding the

heuristic solutions, each experiment is repeated 5 times and the average is taken. The

population size is set to 60 for this experiment as concluded in the last experiment.

 Figure 13 shows the fitness function or latency versus the termination counter

while Figure 14 shows the runtime versus the termination counter. From Figure 13, it

can be noticed that, increasing the termination counter refines the solution for all

different scheduling problems. It can also be seen that after 25 or 30 iterations, the

solution stabilizes to a great extent. This means the objective value is not improving

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120

R
u

n
ti

m
e,

 R
T

(S
ec

o
n

d
s)

Population Size, U

N = 100/50

N = 80/30

N = 60/20

N = 40/10

53

anymore. Figure 14 shows that increasing the termination counter directly increases the

runtime of the algorithm. This is intuitive as increasing the termination counter gives

the algorithm extra more iterations and hence more runtime before termination.

Figure 13: Overall Latency versus Termination Counter

Figure 14: Runtime versus Termination Counter

30

40

50

60

70

80

90

100

0 10 20 30 40 50

O
v
er

al
l

L
at

en
cy

,
L

T
(S

ec
o

n
d

s)

Termination Counter, T

N = 100/50

N = 80/30

N = 60/20

N = 40/10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50

R
u
n
ti

m
e,

 R
T

(S
ec

o
n
d

s)

Termination Counter, T

N = 100/50

N = 80/30

N = 60/20

N = 40/10

54

 After studying the population size and the termination counter of the GA

algorithm, the population size is set to 60 and the termination counter is set to 20 as

seen in Figure 11, Figure 12, Figure 13, and Figure 14. After these chosen values, the

objectives stop improving and any extra iterations are not useful. Then the actual

solutions convergence are plotted for the same 4 scheduling problems as shown in

Figure 15.

Figure 15: Overall Latency Convergence through the GA Iterations

4.3.3 Exact and Heuristic Comparison. In this section, the objective is to

compare between the exact solutions and the heuristic solutions using two criteria. The

first one is the solution quality (minimized latency) which represents how good the

heuristic solution compared to the absolute optimal solution. The second criterion is the

runtime which will show how much time the exact solution takes to come up with the

optimal solution compared to the GA. Branch-and-bound algorithm (B&B) has been

adopted on Lingo software as an exact solution algorithm and Generic Algorithm as a

heuristic algorithm.

 To do the comparison, Different scheduling problems with different sizes were

experimented. However, small size scheduling problems were chosen for the

experiment. Lingo, being an exact solution tool, takes very long time to come up with

33

43

53

63

73

83

93

103

113

0 10 20 30 40 50 60

O
v
er

al
l

L
at

en
cy

,
L

T
(S

ec
o

n
d

s)

GA Iterations

N = 100/50

N = 80/30

N = 60/20

N = 40/10

55

an optimal solution. Moreover, the problem is modeled to be non-linear in the integer

programming modeling. The objective functions and some constraints are non-linear.

The model being non-linear means that there are variables that are multiplied with each

other in the ILP model. Lindo, Lingo software developer company, is stating “In

general, Integer Nonlinear models are very difficult to solve for all but the smallest

cases” [49].

 The sizes of the experimented scheduling problems in terms of the number of

requests and resources (N) are: 4/2, 6/2, 8/2, 12/2, 8/3, and 10/3, as shown in Figure 16

and Figure 17. The parameters of these problems are chosen randomly and not based

on any distribution or pattern. Figure 16 shows the solution quality (latency in

milliseconds) for both B&B and GA. It can be noticed that the exact solution and

heuristic solution are very close to each other. Figure 17 shows the runtime for the

experimented problems.

Figure 16: Overall Latency Comparison between Heuristic and Exact Methods

0

20

40

60

80

100

120

140

160

180

Lingo GA Lingo GA Lingo GA Lingo GA Lingo GA Lingo GA

4,2 6,2 8,2 12,2 8,3 10,3

18.97 18.97

166.05166.97

90.29 94.1

12.11 14.95

63.6 64.71

20.42 21.66O
v
er

al
l

L
at

en
cy

,
L

T
(S

ec
o

n
d

s)

Scheduling Problems Size N (# of Requests , # of Resources)

56

Figure 17: Runtime Comparison between Heuristic and Exact Methods

57

Chapter 5. Simulation and Results

 A simulation model from the formulated model is developed using the discrete

event simulator SimEvent. SimEvents provides a discrete-event simulation engine and

components library for analyzing event-driven system models.

 The simulation is built based on edge-fog-cloud 3-layered architecture as can

be seen in Figure 18. At the edge layer, requests get generated in a specific distribution

and inter-arrival time. Each generated request is associated with its attributes defined

in the model. Then, the requests move from edge layer heading towards the upper two

layers, fog and cloud, where they experience some small delay. This small delay

represents the network gap between the edge layer and the upper two layers.

Figure 18: Edge-Fog-Cloud 3-Layered Simulation Setup

 The upper two layers contain the cloud and fog resources or servers. All

requests, on their way to these servers, get received in the GA scheduling algorithm.

The GA scheduling algorithm developed in the previous chapter is rewritten in C

language and integrated with SimEvents environment to help scheduling requests as

they arrive. The GA scheduler receives requests within specific defined time frames

and it runs the GA to find the scheduling solutions and dispatches the requests

58

accordingly. Within any time frame the GA scheduler can receive any number of

requests as long as it does not exceed the maximum number the GA can handle.

Requests arrival distribution and rate define the number of requests that get received in

a time frame.

 Initially, the resources in the simulation start as free resources, but as time

proceeds and requests get processed or served, the resources are not assumed to be free

anymore. This means, the GA has to be provided with the number of resources available

and their attributes defined in the model. The GA runs and finds scheduling solutions

and it keeps information and predictions about the resources status. The status is used

to describe the time in which the resource will be busy processing other requests. For

instance, if a resource is busy executing a request for 1 hour long, it will be more

beneficial to take that into consideration and utilize other free resources that can provide

less latency. However, the predicted status is not guaranteed to be true. The resources

status is very important, because it is taken as an input to the GA algorithm alongside

with the resources and requests attributes. It makes sense to not allocate requests within

a resource that will be busy processing some other requests. Be reminded that

preemption is not allowed in the model.

 The resources attributes defined in the model are the processing power or speed

and the average delay. The GA solver assumes all requests packets will be delayed by

only the average value as it evaluates the delay and hence the latency beforehand within

the algorithm. However, in the simulation environment, the actual delay per packet can

be the same as the average value or different based on the distribution used. The

transmission and queuing delay distribution is set to be Gaussian with specific mean

and variance. When a request is sent to a specific resource to get served and it reaches

the resource, if the resource is free and the waiting queue is empty, the request gets

served or processed right away, otherwise it gets pushed into a waiting queue and served

as soon as the resource becomes free.

5.1 GA validation in SimEvents

In this experiment, the GA scheduling algorithm is validated or verified to make

sure that it works properly in optimizing the latency. To do that, the GA optimizer is

observed for a simple and easy-to-follow resources setup. In other words, the GA is

tested for a resources setup that have attributes (processing speed and average delay)

59

going in ascending or descending order. In this way, the GA behavior can be observed

and judged by monitoring the number of requests allocated and served in each resource.

The validation involves a system that has 16 servers numbered from 1 to 16. Server

number 1 is set to be the slowest server and server 16 is set to be the fastest one. The

processing speed is started by 100 packets per second for server 1 and gets increased

by 100 for the rest of the servers. This means server 2 speed is 200, server 3 speed is

300, up to server 16 which has a speed of 1600 packets per second. The processing

speed setup is fixed throughout this experiment.

On the other hand, the average delay (𝛿𝑖) for each server at the beginning is set to

be equal for all the 16 servers as 1 millisecond, for the first experiment. The first

experiment is followed by other 2 experiments in which the average delays are changed.

In experiment 2 and 3, the average delays are changed with a “common difference” of

10% and 80% respectively in an arithmetic series fashion. The common difference

percentage is referred to by α. This means, for experiment 2, as an example, server 1

average delay is 1 millisecond, server 2 average delay is 1.1 milliseconds, and server 3

average delay is 1.2 milliseconds, up to server 16 with an average delay of 2.5

milliseconds. Server 1 will be the closest while server 16 will be the furthest. In

experiment 3, the average delays are changed in the same manner but using a common

difference of 80%.

The purpose of having such setup is to observe the number of requests allocated in

each one of the 16 servers, in each experiment. As the server’s attributes are set in

ascending order, the optimizer behavior can be judged if it works properly as the

powerful and closest servers are known. A total of 500 requests is used in the 3

experiments with an average size of 3000 packets with the same priority level. The

deadline requirements are relaxed as the objective is not to evaluate the latency. The

requests arrival rate is 1 request per second in a Poisson distribution. The GA optimizer

receives requests and schedules them within a time frame of 5 seconds.

Figure 19 shows the number of requests allocated or served in each of the 16

servers as percentages. As can be seen, in experiment 1 where the average delay

common difference is 0%, the optimizer looks into accommodating more requests in

the higher 8 resources since they are more powerful. In experiment 2, as the average

delays for servers are increased in an ascending order by a common difference of 10%,

the higher 8 resources become a little far, despite their high processing speed. In this

60

case, the optimizer tends to accommodate more requests in the middle region where

there are servers with moderate processing speed and average delays. In the third case,

the higher 8 servers become too far and it becomes not feasible anymore to use them

for serving requests. In this case, the optimizer tends to allocate more requests in the

closer lower resources as they have less delays. It deserves mentioning in this last case,

experiment 3, the average delays are set deliberately using a high common difference

of 80% so that the high average delays for the higher 8 servers overcome their high

processing speed.

Figure 19: Analyzing the Number of Requests Allocated in Each Resource

5.2 Static Scheduling

 In this experiment, the performance of the GA is evaluated in static scheduling

mode in terms of two metrics: The overall average service latency and the number of

missed-deadline requests. In static mode, the inter-arrival time between requests is

removed and all requests are assumed to be generated at time 0 as one batch. In this

experiment, the GA scheduler performance is compared to other traditional scheduling

algorithms. These algorithms namely are WFQ, PSQ, and RR.

 Waited-fair queuing and priority-strict queuing algorithms classify requests into

priority classes at the output queue. Each priority class has its own queue. PSQ chooses

requests from the highest priority class that has a nonempty queue. The choice among

requests in the same priority class is typically done in a First-In-First-Out (FIFO)

manner. On the other hand, WFQ uses a round robin scheduler to alternate selection

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
u
m

b
er

 o
f

A
ll

o
ca

te
d

 R
eq

u
es

ts
 (

%
)

16 Resouces, S1 to S16

α = 0%

α = 10%

α = 80%

Common

Difference

Between

Average

Delays, α

61

among the classes using a defined weight for each class. Since both WFQ and PSQ are

priority based algorithm, the allocation in both of them is carried out based on priority,

with high requests going to more powerful servers. The implementation for Round

Robin algorithm is just allocating requests within resources in a Round Robin fashion.

 This experiment involves a set of 16 servers with an average processing speed

of 500 packets per second, but very widely distributed from 50 to 1000. The servers’

average delays are set to an average of 5 milliseconds per packet. It is also very widely

distributed from 1 millisecond up to 9.7 millisecond.

 A total of 100 requests is used in the experiment. These requests are generated

at time 0 with no inter-arrival time as mentioned earlier. The priorities are set to be

uniformly distributed from 1 to 16. The deadline requirements are set to be 400 seconds

on average with a variance of 50.

 The objective of this experiment is to study the overall average service latency

and the number of missed-deadline requests using different scheduling algorithms, GA,

WFQ, PSQ, and RR. These two aspects are studied versus requests average data size

while other attributes are not changed. Initially, the average data size starts from a small

value in a way that makes requests deadline requirements very loose and zero requests

miss their deadlines. Then, the average data size is increased to observe the impact on

the overall latency and number of missed-deadline requests.

 Figure 20 and Figure 21 show the average overall latency and the number of

missed-deadline requests versus requests average size, respectively. As can be seen in

Figure 20, the GA achieved better overall latency than the rest of the algorithms. WFQ

and PSQ results are very close to each other since the allocation of requests within

resources in both of these algorithms is achieved based on priority, however the

dispatching is different. RR achieved the highest latency time and the reason behind

that is the way requests get allocated in an RR fashion as without considering requests

priorities. In Figure 21, it can be seen, the GA keeps the record clean of missed-deadline

requests for longer time than the other algorithms. However, at an average size of 6500

the amount of data within each request becomes so heavy and the GA cannot guarantee

meeting all requests deadlines as their service latency increases and their deadlines

become very critical.

 As shown in Figure 20 and Figure 21, it is important to mention that, within all

the experimented data sizes using the GA, the latter was able to come up with a feasible

62

schedule solution in which all requests deadlines should be met. However, the

simulation results show that it is not guaranteed that all requests will be met even if the

evaluated GA scheduling solution is feasible. This can be seen in Figure 21 between

6000 and 8000 average data size. After a data size of 8000, the problem becomes

infeasible and hence the GA cannot find a feasible schedule. This is true in the

simulation because the actual delay per packet can be different from the average delay

the algorithm assumes.

Figure 20: Overall Latency versus Data Size in Static Scheduling

5.3 Average Data Size Breaking Point

 The objective of this experiment is to study requests average data size in which

the GA will not be able to meet all requests deadlines using a specific setup of resources.

As seen in the previous experiment, the resources available in the experiment could not

meet all requests deadline requirements after an average size of almost 6000 packets.

This data size breaking point is defined as the average data size after which the GA

scheduler starts losing the ability to meet all requests deadlines.

0

50

100

150

200

250

300

350

400

0 2000 4000 6000 8000 10000

O
v
er

al
l

L
at

en
cy

,
L

T
(S

ec
o

n
d

s)

Requests Average Datasize, Rsize

RR

WFQ

PSQ

GA

63

Figure 21: Missed-Deadline Requests versus Data Size in Static Scheduling

 The experiment involves the same requests and resources setup used in the

previous experiment. The breaking point is studied versus the resource attributes in

terms of processing speed and average delay. P0 is set to be 250 while 𝛿 0̅̅ ̅̅ is set to be

0.005. These two attributes will be increased and decreased in ratios in order to see their

impact on the breaking point.

 Figure 22 shows the average data size breaking point versus the processing

speed and the average delay. As can be seen, increasing the processing speed allows

processing more data as they will experience less latency. It can also be seen that

decreasing the average delay will rise the breaking point higher because less average

delays provide less latency. However, from the figure, it can be noticed that the

algorithm is more sensitive to the average delay than the processing capacity. This

means for a specific average delay, at some point increasing the processing speed will

not be beneficial as much as decreasing the average delay. This is true because the

average delay is a bottleneck in the model.

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000

M
is

se
d

-D
ea

d
li

n
e

R
eq

u
es

ts
 (

%
)

Requests Average Datasize, Rsize

GA

WFQ

PSQ

RR

64

Figure 22: The GA Breaking Point versus Processing Speed and Average Delay

5.4 Dynamic Scheduling

 In this experiment, the performance of the GA is evaluated in dynamic

scheduling for the same two metrics studied in the static; the overall average service

latency and the number of missed-deadline requests. In dynamic scheduling, requests

are generated using a specific distribution and inter-arrival rate. On top of that,

rescheduling feature has been also added into this experiment setup. As requests get

received in time frames to get scheduled, any requests that are not dispatched yet will

be rescheduled or reconsidered in the new schedule. The GA performance is compared

to the other networking scheduling algorithms, WFQ, PSQ, and RR.

 This experiment involves the same resources setup from the previous

experiment. However, the number of requests is increased to 500 requests since the

scheduling is dynamic and the objective is to evaluate the latency in a real-time manner.

The requests are generated in a Poisson distribution with an inter-arrival mean of 1

second. The priorities are set to be between 1 and 16 in a uniform distribution. The

deadline requirements on average are set to 200 seconds with a variance of 50. The time

frame in which the resources get scheduled in is 10 seconds. The average request data

size will be changed in the experiment from 1000 up to 10000 packets.

 Figure 23 and Figure 24 show the overall average latency and the number of

missed-deadline requests versus the average data size, respectively. As can be seen in

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1 2 3 4 5 6 7

R
eq

u
es

ts
 A

v
er

ag
e

D
at

as
iz

e,
 R

si
ze

Processing Power Ratio, P/Po

𝛿/𝛿o = 0.5

𝛿/𝛿o = 1

𝛿/𝛿o = 2

𝛿/𝛿o = 4

Average

Delay Ratio

65

Figure 23, the GA achieved the best overall latency compared to the other algorithms.

WFQ and PSQ results are very close to each other, however, the difference increases

by increasing the average data size. On the other hand, Figure 24 shows that the GA

achieved 0 missed-deadline requests if requests data size is less than 5000 packets on

average. At an average size of 5000, while GA achieved 0 missed requests, WFQ and

PSQ lost almost 10% and RR lost 6% missed requests. After this point, most of the

requests deadline requirements become very critical and some of them even infeasible.

For this reason, the GA also starts missing requests.

5.5 Cloud versus Fog Computing Comparison

In this experiment, the objective is to evaluate the service latency provided by

resources setup that have cloud characteristics and fog computing characteristics. In

general, cloud resources are powerful with high processing capabilities, but at the same

time they have large average transmission and networking delay. Conversely, fog

resources do not have rich processing power but they provide smaller average delay

since they exist closer to the edge. This experiment gives a clear notion about cloud

and fog resources from a design perspective, whether it is more beneficial to put very

powerful resources at cloud layer or to put much less powerful resources closer to

requests sources in fog layer.

In order to design a resource set that is able to serve a set of requests with a

minimized latency, there are three parameters on the formulated model that need to be

taken into consideration:

1- The average delay, 𝛿̅.

2- The processing speed, P.

3- The number of resources, m.

The impact of each one of these 3 parameters on the service latency is studied

independently. In other words, they are studied separately by fixing two of them and

varying only one. For instance, to study the average delay impact, the processing power

and number of resources are fixed.

The latency that can be achieved by varying these parameters is evaluated against

a system that has a cloud characteristic. This cloud setup has a set of 4 super cloud

servers with a very high processing capability of 5000 packets per second. However,

66

Figure 23: Overall Latency versus Data Size in Dynamic Scheduling

Figure 24: Missed-Deadline Requests versus Data Size in Dynamic Scheduling

the average delays for these servers set to be relatively high as 10 milliseconds per

packet for each one.

0

100

200

300

400

500

600

0 2000 4000 6000 8000 10000 12000

O
v
er

al
l

L
at

en
cy

,
L

T
(S

ec
o

n
d

s)

Requests Average Datasize, Rsize

WFQ

PRI

RR

GA

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000

M
is

se
d

-D
ea

d
li

n
e

R
eq

u
es

ts
 (

%
)

Requests Average Datasize, Rsize

WFQ

PRI

RR

GA

67

 To evaluate the latency, a total of 500 requests is used in this set of experiments.

Their arrival is in Poisson distribution with an inter-arrival mean of 1 second. Requests

priorities are set to be equal. The deadline requirements are relaxed in this experiment

since the objective is to evaluate the service latency, not the number of missed requests.

The latency is studied versus the average data size which will be changed from 1000

packets to 10000 packets.

5.5.1 The Average Delay Ratio,
𝛿̅𝑓

𝛿̅𝑐
. In this experiment, the latency of a set

of fog computing servers is studied and compared to the latency provided by the Cloud

setup described in this section. The fog servers’ average delay is varied while their

number and processing power are fixed. The number of fog servers is set to be 4 times

the number of cloud server,
𝑁𝑓

𝑁𝑐
= 4. Their processing power is only 10% or their cloud

peers,
𝑃𝑓

𝑃𝑐
= 10%. The average delay,

δ̅𝒇

δ̅𝒄

, will be changed to 1%, 10%, 20%, 50% and

85%. Figure 25 shows the latency results of fog computing compared to cloud

computing for different average delays. As can be seen, reducing the average delay has

a significant impact on the service latency even if the resources processing capability

is poor. It can be noticed also that increasing the average delay of fog computing at

some point breaks the cloud computing latency since fog computing has lower

processing speed. For instance, for an average data size of 5000, fog computing latency

crosses cloud computing latency when ,
δ̅𝒇

δ̅𝒄

 = 85% for the specified
𝑁𝑓

𝑁𝑐
 and

𝑃𝑓

𝑃𝑐
. This

breaking point will be studied in more details in the next experiment.

5.5.2 The Processing Speed Ratio,
𝑃𝑓

𝑃𝑐
. The objective of this experiment is to

study the impact of the processing capability of fog computing on the service latency.

To do that, fog servers processing power is varied while their number and average delay

are fixed. The number of fog servers is set to be 4 times the number of cloud servers,

𝑁𝑓

𝑁𝑐
= 4. Their average delay is 10%,

𝛿̅𝒇

𝛿̅𝒄

= 10%. The processing power,
𝑃𝑓

𝑃𝑐
, will be

changed to 3%, 5%, 7%, 10% and 20%. Figure 26 shows the latency results of fog

computing compared to cloud computing for different processing power ratios. The

figure shows that if fog computing has 4 times the number of resources of cloud

computing and their average delay is reduced by 10 times, the processing capability can

68

be reduced and slowed down up to 5% and it will still provide better latency than cloud

computing does.

Figure 25: Latency of Fog Compared to Cloud by Varying Average Delay

Figure 26: Latency of Fog Compared to Cloud by Varying Processing Power

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000

O
v
er

al
l

L
at

en
cy

,
L

T
(S

ec
o

n
d

s)

Requests Average Datasize, Rsize

Cloud

Fog - 𝛿f/𝛿c = 85%

Fog - 𝛿f/𝛿c = 50%

Fog - 𝛿f/𝛿c = 20%

Fog - 𝛿f/𝛿c = 10%

Fog - 𝛿f/𝛿c = 1%

Average Delay

Ratio

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000

O
v
er

al
l

L
at

en
cy

,
L

T
(S

ec
o

n
d

s)

Requests Average Datasize, Rsize

Cloud

Fog - Pf/Pc=3%

Fog - Pf/Pc=5%

Fog - Pf/Pc=7%

Fog - Pf/Pc=10%

Fog - Pf/Pc=20%

Prosessing

Power Ratio

69

5.5.3 The Number of Servers Ratio,
𝑁𝑓

𝑁𝑐
. The objective of this experiment is

to study the impact of the number of fog servers on the service latency. To do that, the

number of fog servers is varied while their processing power and average delay are

fixed. Their average delay is set to 10% of cloud computing average delay,
δ̅𝒇

δ̅𝒄

= 10%.

Their processing power,
𝑃𝑓

𝑃𝑐
, is set to 10% as well. Their number,

𝑁𝑓

𝑁𝑐
, is varied to 1, 1.5,

2, 3, 4, 6, and 8. Figure 27 shows the latency results for this experiment. It is evident

that the minimum
𝑁𝑓

𝑁𝑐
 ratio can achieve better latency than cloud computing is 1.5.

From the last three experiments, it can be seen that the latency performance of

fog computing at some point crosses the cloud computing latency line. This happens in

all the three cases, where fog computing average delay is increased much or processing

power is decreased much or the number of servers is reduced significantly. In this

experiment, the objective is to find these breaking points in terms of the 3 ratio

parameters
δ̅𝐟

δ̅𝐜

,
Pf

Pc
, and

Nf

Nc
 for a specific average size of 5000 packets. Figure 28 shows

the results of the experiment.

Figure 27: Latency of Fog Compared to Cloud by Varying Number of Resources

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000

O
v
er

al
l

L
at

en
cy

,
L

T
(S

ec
o

n
d

s)

Requests Average Datasize, Rsize

Cloud

Fog - Nf/Nc=1

Fog - Nf/Nc=1.5

Fog - Nf/Nc=2

Fog - Nf/Nc=3

Fog - Nf/Nc=4

Fog - Nf/Nc=6

Fog - Nf/Nc=8

of Resouces

Ratio

70

In conclusion, this work focused on modeling the edge-fog-cloud 3-layered

architecture using ILP concepts. ILP has been involved in order to deliver optimal

solutions and not just random solutions for scheduling the IoT requests within fog and

cloud computing resources. The optimized service latency obtained from the GA is

compared to non-optimized scheduling algorithms (WFQ, PRI, and RR) and the results

showed the improvement in different scheduling scenarios with respect to service

latency and satisfying deadline requirements. The experiments in section 5.5 show the

significance of integrating fog computing with cloud computing. Fog computing is

generally characterized by having small communication delay and wide spatial

coverage. This allows using small-size low-power fog computing resources and it

provides even better service latency than using cloud computing only. The experiments

results give to what limit exactly fog computing with such characteristics can provide

the better latency when it crosses the service latency of cloud computing.

Figure 28: Break Points of Fog and Cloud Computing Latency

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35

A
v
er

ag
e

D
el

ay
 R

at
io

,
𝛿

f
/𝛿

c
(%

)

Processing Power Ratio, Pf /Pc (%)

Nf/Nc=8

Nf/Nc=6

Nf/Nc=4

Nf/Nc=3

Nf/Nc=2

Nf/Nc=1.5

Nf/Nc=1

of Resources

Ratio

71

Chapter 6. Conclusion and Future Research

6.1 Conclusion

 This research addressed the scheduling of Internet of Things (IoT) requests into

resources available at both fog and cloud computing layers. The problem is modeled

using integer programming where the objective is to optimize the service latency and

provide minimum service time for the IoT requests. The service latency is defined as

the Round-Trip Time (RTT) for serving or processing an IoT request from the moment

it gets initiated to the moment it gets completely processed and the results are returned

back to the requesting device. This latency includes many delay components such as

transmission delay, routing or queuing delay, propagation delay, processing time, and

waiting time in case the resources are busy. The IoT requests are characterized by

having attributes such as creation time, data size, priority, deadline, and dependency

constraints. On the other hand, the resources are defined in terms of the processing

capability and the average delay per packet to reach the resource. The objective function

in the scheduling problem is to find the schedule that can give the least weighted overall

latency. The weighted latency is calculated by the summation of multiplying each

request weight by its latency component. This way, the model will give the least latency

possible for requests with high weights represented in their priorities.

The model is solved and validated using Lingo software to illustrate its solution

and behavior. Lingo is set to use Branch-and-Bound as an exact algorithm for solving

the model. All scheduling problems that are solved using Lingo are small-sized

problems since the scheduling problem is proved to be an NP-hard problem [49]. For

this reason, using exact methods is not efficient to solve large size problems. Therefore,

Genetic Algorithms (GA) is developed as a heuristic approach to find feasible solutions

with a good quality in a reasonable computational time. The GA is studied and

evaluated on different problems with different sizes in order to estimate the effects of

the model’s different parameters and how they can be tuned properly. After developing

the GA, a comprehensive comparison is performed between the exact solutions

obtained from Lingo and the heuristic solutions obtained from the GA.

 As a methodology to prove the efficiency of the GA algorithm in a real-time

environment, the Edge-Fog-Cloud 3-layered architecture in a Matlab tool named

Simevents is developed. The GA scheduler is integrated with SimEvents environment

72

to help scheduling requests as they arrive. The service latency provided by the GA is

then compared to other traditional scheduling algorithms in computer networking.

These algorithms namely are waited-fair queuing (WFQ), priority-strict queuing (PSQ),

and round robin (RR).

6.2 Future Research

This work can be improved by extending the model in order to consider other

attributes and characteristics in edge, fog and cloud computing environments. For

instance, the resources attributes can be extended to cover attributes such as resource

speed and architecture, storage capacity, storage speed, memory capacity, and types of

operating systems. The resources might be modified to have the ability to process more

than one request at a time. Preemption might be allowed also in order to be able to

modify schedule solutions with more flexibility. Requests can also be extended to have

more than one operation or task per request. As it is in this model, each request has only

one task to perform. Requests can also have location constraints that a request must be

served in a specific resource. The objective function can also be extended to include

objectives like resource utilization, network utilization, and energy consumption.

Generally, fog computing paradigm and its relevance to IoT and cloud

computing is a promising technology in the future. Its paradigms integration can foster

a number of computing and network-intensive pervasive applications under the

incoming realm of the future internet [16].

73

References

[1] S. Antonio, “Cisco Delivers Vision of Fog Computing to Accelerate Value from

Billions of Connected Devices,” Internet: https://newsroom.cisco.com/press-

release-content?type=webcontent&articleId=1334100, Jan. 29, 2014 [Jan. 24,

2017].

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in

the internet of things,” in Proc. of 1st Edition of MCC Workshop on Mobile

Cloud Comput., 2012, pp. 13-16.

[3] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the Suitability of Fog

Computing in the Context of Internet of Things,” in IEEE Trans. on Cloud

Comput., vol. 99, Oct. 2015, pp. 1-1.

[4] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Koldehofe,

“Mobile fog: A programming model for large-scale applications on the internet

of things,” in Proc. of 2nd ACM SIGCOMM workshop on Mobile cloud comput.,

2013, pp. 15-20.

[5] P. V. Patil, “Fog Computing,” in IJCA Proc. on Nat. Conf. on Recent Trends in

Mobile and Cloud Comput., 2015, pp. 1-6.

[6] M. Abdelshkour, “IoT, from Cloud to Fog Computing,” Internet:

http://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing, Mar. 25,

2015 [Feb. 18, 2017].

[7] S. K. Datta, C. Bonnet, and J. Haerri, “Fog Computing architecture to enable

consumer centric Internet of Things services,” in Int. Symp. on Consum.

Electron., 2015, pp. 1-2.

[8] M. Aazam and E. N. Huh, “Fog computing and smart gateway based

communication for cloud of things,” in Int. Conf. on Future Internet of Things

and Cloud, 2014, pp. 464-470.

[9] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing: A

survey,” in Int. Conf. on Wireless Algorithms, Syst., and Applicat., 2015, pp.

685-695.

[10] I. Stojmenovic, “Fog computing: A cloud to the ground support for smart things

and machine-to-machine networks,” in Telecommun. Networks and Applicat.

Conf., 2014, pp. 117-122.

[11] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts, applications and

issues,” in Proc. of 2015 Workshop on Mobile Big Data, 2015, pp. 37-42.

[12] C. Dsouza, G. Ahn, and M. Taguinod, “Policy-driven security management for

fog computing: Preliminary framework and a case study,” in IEEE 15th Int.

Conf. on Inform. Reuse and Integr., 2014, pp. 16-23.

[13] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero, and M. Nemirovsky,

“Key ingredients in an IoT recipe: Fog Computing, Cloud computing, and more

Fog Computing,” in IEEE 19th Int. Workshop on Comput. Aided Modeling and

Design of Commun. Links and Networks, 2014, pp. 325-329.

[14] Cisco, “Fog Computing and the Internet of Things: Extend the Cloud to Where

the Things Are,” Internet: https://www.cisco.com/c/dam/en_us/solutions/

trends/iot/docs/computing-overview.pdf, Jun. 11, 2015 [Mar. 17, 2017].

[15] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based

cloudlets in mobile computing,” in IEEE pervasive Comput., vol. 8, Oct. 2009,

pp. 14-23.

https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1334100
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1334100
http://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing

74

[16] E. Baccarelli, P. Naranjo, M. Scarpiniti, M. Shojafar, J. Abawajy, “Fog of

Everything: energy-efficient networked computing architectures, research

challenges, and a case study,” in IEEE Access, May 2017, pp. 9882-9910.

[17] L. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards a

comprehensive definition of fog computing,” in ACM SIGCOMM Computer

Commun. Review, 2014, pp. 27-32.

[18] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and applications,”

in 3rd IEEE Workshop on Hot Topics in Web Syst. and Technol., 2015, pp. 73-

78.

[19] R. Aburukba, H. Ghenniwa, and W. Shen, “Agent-based approach for dynamic

scheduling in content-based networks,” in IEEE Int. Conf. on e-Bus. Eng., 2006,

pp. 425-432.

[20] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios and

security issues,” in Federated Conference on Comput. Sci. and Informat. Syst.,

2014, pp. 1-8.

[21] G. Bitran and H. Yanasse, “Computational complexity of the capacitated lot

size problem,” in Manage. Sci., vol. 28, Oct. 1982, pp. 1174-1186.

[22] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A platform for

internet of things and analytics,” in Big Data and Internet of Things: A Roadmap

for Smart Environments, 2014, pp. 169-186.

[23] J. Zhu, D. Chan, M. Prabhu, P. Natarajan, H. Hu, and F. Bonomi, “Improving

web sites performance using edge servers in fog computing architecture,” in

IEEE 7th Int. Symp. on Service Oriented Syst. Eng., 2013, pp. 320-323.

[24] Y. Wang, R. Chen, and D. Wang, “A survey of mobile cloud computing

applications: perspectives and challenges,” in Wireless Personal Commun., vol.

80, Feb. 2015, pp. 1607-1623.

[25] A. Ahmed and E. Ahmed, “A survey on mobile edge computing,” in 10th Int.

Conf. on Intell. Syst. and Control., 2016, pp. 1-8.

[26] Cisco, “Cisco IOx,” Internet: http://www.cisco.com/c/en/us/pro ducts/cloud-

systems-management/iox/index.html [Apr. 8, 2017].

[27] B. Ottenwälder, B. Koldehofe, K. Rothermel, and U. Ramachandran, “MigCEP:

operator migration for mobility driven distributed complex event processing,”

in Proc. of 7th ACM Int. Conf. on Distrib. Event-Based Syst., 2013, pp. 183-

194.

[28] T. Nishio, R. Shinkuma, T. Takahashi, and N. Mandayam, “Service-oriented

heterogeneous resource sharing for optimizing service latency in mobile cloud,”

in Proc. of the 1st Int. Workshop on Mobile Cloud Comput. & Networking,

2013, pp. 19-26.

[29] Y. Cao, P. Hou, D. Brown, J. Wang, and S. Chen, “Distributed analytics and

edge intelligence: Pervasive health monitoring at the era of fog computing,” in

Proc. of the 2015 Workshop on Mobile Big Data, 2015, pp. 43-48.

[30] M. A. Hassan, M. Xiao, Q. Wei, and S. Chen, “Help your mobile applications

with fog computing,” in 12th Annu. IEEE Int. Conf. of Sensing, Commun., and

Networking Workshops, 2015, pp. 1-6.

[31] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “Towards

wearable cognitive assistance,” in Proc. of 12th Annu. Int. Conf. on Mobile

Syst., Applicat., and Services, 2014, pp. 68-81.

[32] I. Maros, “Computational Techniques of the Simplex Method,” 1st ed, New

York: Springer, vol. 61, Dec. 2002.

75

[33] J. Clausen, “Branch and bound algorithms-principles and examples,” in Dept.

of Comput. Sci. in Univ. of Copenhagen, 1999, pp. 1-30.

[34] E. Lawler and D. Wood, “Branch-and-bound methods: A survey,” in

Operations research, vol. 14, Aug. 1966, pp. 699-719.

[35] N. Mansour and K. El-Fakih, “Simulated annealing and genetic algorithms for

optimal regression testing,” Journal of Software Maintenance, vol. 11, Jan.

1999, pp. 19-34.

[36] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated

annealing,” in Science, vol. 220, May 1983, pp. 671-680.

[37] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,”

in Machine learning, vol. 3, Oct. 1988, pp. 95-99.

[38] F. D. Croce, R. Tadei, and G. Volta, “A genetic algorithm for the job shop

problem,” in Computers & Operations Research, vol. 22, Jan. 1995, pp. 15-24.

[39] J. Yu and R. Buyya, “A budget constrained scheduling of workflow applications

on utility grids using genetic algorithms,” in Workflows in Support of Large-

Scale Sci. Workshop, 2006, pp. 1-10.

[40] M. Dorigo, V. Maniezzo, and A. Colorni, “Positive feedback as a search

strategy," in Tech. Rep., Politecnico di Milano, 1991, pp. 91-016.

[41] J. Yu and R. Buyya, “Scheduling scientific workflow applications with deadline

and budget constraints using genetic algorithms,” in Scientific Programming,

vol. 14, 2006, pp. 217-230.

[42] M. Wieczorek, R. Prodan, and T. Fahringer, “Scheduling of scientific

workflows in the ASKALON grid environment,” in ACM SIGMOD Record,

vol. 34, 2005, pp. 56-62.

[43] M. A. Rodriguez and R. Buyya, “Deadline based resource provisioningand

scheduling algorithm for scientific workflows on clouds,” in IEEE Trans. on

Cloud Comput., vol. 2, Apr. 2014, pp. 222-235.

[44] S. C. Nayak and C. Tripathy, “Deadline sensitive lease scheduling in cloud

computing environment using AHP,” Journal of King Saud University-

Computer and Informat. Sci., 2016.

[45] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet

application deadlines in cloud workflows,” in Int. Conf. of High Performance

Comput., Networking, Storage and Anal., 2011, pp. 1-12.

[46] M. Rahman, S. Venugopal, and R. Buyya, “A dynamic critical path algorithm

for scheduling scientific workflow applications on global grids,” in IEEE Int.

Conf. of E-Sci. and Grid Comput., 2007, pp. 35-42.

[47] W. N. Chen and J. Zhang, “An ant colony optimization approach to a grid

workflow scheduling problem with various QoS requirements,” in IEEE Trans.

on Syst., Man, and Cybern., vol. 39, Jan. 2009, pp. 29-43.

[48] S. Dey, A. Mukherjee, H. S. Paul, and A. Pal, “Challenges of Using Edge

Devices in IoT Computation Grids,” in Int. Conf. of Parallel and Distrib. Syst.,

2013, pp. 564-569.

[49] Lingo, “Solver Status Window,” Internet: http://www.lindo.com/doc/

online_help/lingo15_0/solver_status_window.htm, [Apr. 04, 2017].

76

Vita

 Mazin Abdelbadea Nasralla Alikarar was born in 1991, in Tabuk, Saudi Arabia.

He moved to Sudan in 1999 where he studied in public schools and graduated as the

top student in Sudan high school exams from El-Siekh Yousif El-Degair high school in

2008.

 In 2013, he graduated from University of Khartoum. His degree was a Bachelor

of Science in Electronics and Computer Systems. After Graduation he worked for two

years as a software developer in a private company in Khartoum. In 2015, he joined the

Computer Engineering Program at the American University of Sharjah where he was a

Graduate Teaching Assistant.

Engineer mazin participated in “IEEE International Conference On

Communication, Control, Computing, and Electronic Engineering” (ICCCCEE 2017)

in Khartoum, Sudan, where he presented a paper titled “DSP-Based Dispersion

Compensation: Survey and simulation”. He also participated in “Embedded Security

Challenge” organized by New York University, Abu Dhabi (NYUAD) in 2016 where

he won the 2nd place.

