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Abstract 

 Delivering services for Internet of Things (IoT) applications that demand real-

time and predictable latency is challenge. Several IoT applications require stringent 

latency requirements due to the interaction between the IoT devices and the physical 

environment through sensing and actuation. The limited capabilities of IoT devices 

require applications to be integrated in cloud computing and fog computing paradigms. 

Fog computing significantly improves on the service latency as it brings resources 

closer to the edge. The characteristics of both fog and cloud computing will enable the 

integration and interoperation of a large number of IoT devices and services in different 

domains. This thesis models the scheduling of IoT service requests as an optimization 

problem using integer programming in order to minimize the overall service request 

latency. The scheduling problem by nature is NP-hard, and hence, exact optimization 

solutions are inadequate for large size problems. Hence, this work uses the genetic 

algorithm (GA) as a heuristic approach to schedule the IoT requests and achieve the 

objective of minimizing the overall latency. The GA is tested in a dynamic simulation 

environment. The performance of the GA is evaluated and compared to the performance 

of waited-fair queuing (WFQ), priority-strict queuing (PSQ), and round robin (RR) 

techniques. The results show that the overall latency for the proposed approach is 21.9% 

to 46.6% better than the other algorithms. The proposed approach also showed 

significant improvement in meeting the requests deadlines by up to 31%. 

 

Search Terms: Internet of Things; cloud computing; fog computing; latency; 

scheduling; optimization; genetic algorithm  
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Chapter 1. Introduction  

1.1 Fog Computing Overview  

 Cisco introduced the concept of fog computing paradigm in 2012 [1]. Fog 

computing is a vision in which the edge of the network is transformed into a distributed 

computing infrastructure by pushing the cloud resources towards the network edge. The 

term ‘fog computing’ is chosen as an analogy where a fog is a cloud close to the ground 

or the edge [2]. Some other sources refer to fog computing as an abbreviation for “From 

cOre to edGe” [3]. In fog computing, computation and storage capabilities empowers 

the networking devices at different layers in the network architecture. These fog devices 

are also equipped with schedulers and decision capabilities that make them able to 

decide whether to serve or allocate a request in fog computing devices or transfer it to 

the cloud computing data centers [3, 4]. Such a decision is typically based on many 

attributes that are related to the requests and the resources available at the fog and cloud 

layers. Fog computing benefits Internet of Things (IoT) applications as it has the 

resources with physical proximity to the edge devices which will allow the applications, 

services and computations to run as close as possible to the data generated from devices, 

things and people (end users) connected to the Internet.   

 The work in [2, 3, 5-13] shared the same view for fog computing that it is a new 

distributed computing paradigm that extends the traditional cloud computing resources 

towards, but not exclusively, the edge of the network. Similar to cloud computing, fog 

computing paradigm provides ubiquitous computation, storage, networking, and 

application services in a highly visualized platform at the edge between end devices 

and traditional cloud computing data centers. Virtualization is a fundamental 

technology for fog computing as it separates physical infrastructures to create various 

dedicated resources that can run multiple operating systems and multiple applications 

at the same time on the same resource.  

 In [14], Cisco introduced fog computing as an extension to the cloud to be closer 

to the devices that produce and act on the data. These extended resources are called fog 

nodes; they can be deployed anywhere with a network connection. Any device with 

computing, storage, and network connectivity can be a fog node [14]. In [11], Yi et al. 

viewed the fog computing nodes as facilities or infrastructures that have the ability to 

cater services using the resources at the edge of the network. These infrastructures exist 
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in many different devices or equipment’s forms, as poor-resources devices such as 

access points, routers, switches, base stations, and end devices, or as resource-rich 

machines such as Cloudlet. Cloudlet is basically a powerful computer connected to the 

Internet with rich resources that are available to host and use by nearby edge devices 

[11, 15]. Although Cloudlet has been given a different terminology, it falls under the 

same umbrella of fog computing [10].  

 E. Baccarelli et al. [16] formally viewed fog computing as a model to 

complement the cloud computing through the distribution of the computing plus 

networking resources from remote data centers towards edge devices. The final goal is 

to save energy and bandwidth, while simultaneously increasing the QoS level provided 

to the users. As a consequence, they defined Fog Nodes as virtualized networked data 

centers, which run atop (typically, wireless) Access Points (APs) at the edge of the 

access network, in order to give rise to a three-tier IoE–Fog–Cloud hierarchical 

architecture where IoE stands for Internet of Everything. In [17], Vaquero et al. 

proposed a formal definition for fog computing: “fog computing is a scenario where a 

huge number of heterogeneous (wireless and sometimes autonomous) ubiquitous and 

decentralized devices communicate and potentially cooperate among them and with the 

network to perform storage and processing tasks without the intervention of third 

parties. These tasks can be for supporting basic network functions (routing and 

switching) or new services and applications that run in a sandboxed (isolated and 

restricted) environment. Users leasing part of their devices to host these services get 

incentives for doing so”. This definition succeeded to point out the proximity, wireless, 

decentralized characteristics of fog computing. The definition also pointed out the 

potential cooperation between fog computing devices which is a significant property 

within fog computing paradigm for load balancing purposes. However, in this 

definition, the authors did not focus on addressing the interplay and interaction between 

the fog layer at the edge and the cloud computing as a centralized platform. Each one 

of these platforms has its own characteristics which are suitable for specific type of use 

cases. The intervention is potential to enable new spectrum of applications.  

 The fog-cloud intervention is stressed in [18] where the authors developed a 

definition that covers all the significant properties of fog computing. Their definition 

states: “fog computing is a geographically distributed computing architecture with a 

resource pool that consists of one or more ubiquitously connected heterogeneous 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Enzo%20Baccarelli.QT.&newsearch=true
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devices (including edge devices) at the edge of network and not exclusively, but 

seamlessly backed by cloud computing services, to collaboratively provide elastic 

computation, storage and communication (and many other new services and tasks) in 

isolated (sandboxed) environments to a large scale of clients in proximity”. The 

definition succeeded to realize the strong impact of the collaboration between cloud 

computing, fog computing and edge devices consistently and intelligently in a very 

large scale system. This latter definition has been adopted for this work.  

1.2 Fog Computing System Architecture 

 Extending the cloud resources to the edge results in a three-layer service model 

as shown in Figure 1. The three layers are: 

1- Edge layer: this is the lowest layer in the fog computing architecture. It consists 

of terminal nodes, embedded systems, and sensors with very limited computation, 

energy and bandwidth. Each edge device, with its limited networking capabilities, 

is connected to the fog layer.  

2- Fog layer: This is the fog computing layer which has dozens of thousands of 

intelligent intermediate networking devices such as routers, gateways, switches, 

and access points which work on different protocols like 3G, 4G, LTE, and WiFi. 

These devices are supported with computational and storage capabilities in this 

layer. Fog computing devices can interact with each other for load sharing and 

balance purposes, and each single one of them is connected to cloud layer. 

3- Cloud layer: This is the top most layer in the architecture. It consists of cloud data 

centers that have very rich virtual capabilities in terms of storage and processing 

power.   

1.3 Scheduling in Fog Computing 

 Scheduling is generally defined as the allocation of tasks to capable resources 

at a specific time. Usually, a scheduling problem is subject to a number of constraints 

and objectives that must be fulfilled. Moreover, optimization concepts are typically 

involved when modeling scheduling problems. Scheduling objectives can be, for 

instance, system utilization maximization or completion time minimization. Scheduling 

problems are not restricted to computer field only; they also exist in other domains such 

as manufacturing and airline flights. 
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Figure 1: Edge-Fog-Cloud Architecture 

  

 According to [19], most of the scheduling problems consist of 4 basic elements: 

1- Resources: physical/logical devices with the ability to execute or process tasks. 

2- Tasks: the physical/logical operations that need to be executed by the resources. 

3- Constraints: conditions must be regarded in scheduling the tasks into the 

resources. They may be operation-based, task-based, resource-based, or a 

combination of these. They could also be hard constraints, meaning constraints 

that must be full-filled or soft constraints can be relaxed.  

4- Objectives: the evaluation criteria that need to be measured in order to assess 

the schedule performance.  

 

 To find an optimal solution to a scheduling problem, there are two broad 

categories of methods: Exact methods and heuristic methods. Exact methods find the 

absolute optimal solution to the scheduling problem. Examples of exact algorithms 

include Simplex and Branch-and-Bound. On the other hand, heuristic techniques do not 

guarantee finding the optimal solution. However, they are able to find a solution that 

has some degree of optimality in a reasonable computation time compared to the time 

required by an exact method to find the optimal solution. Examples of heuristic 

algorithms include: simulated annealing, ant colony algorithms and genetic algorithms. 
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1.4 Research Problem and Significance 

 The need for fog computing comes from the fact that cloud computing is not 

sufficient to satisfy requirements such as latency-sensitivity, mobility and location 

awareness [14, 20]. Cloud computing is facing many difficulties and challenges as 

mentioned in [3]. The first challenge is the massive growing number of IoT devices. 

This creates enormous traffic among cloud computing networks and consequently 

affects real-time or low-latency services. By adopting fog computing, less amount of 

data needs to be transmitted across the core of the networks which consequently leads 

to less bandwidth consumption. This helps in reducing congestion, traffic, cost and 

round-trip latency by eliminating the bottlenecks that exist in centralized platforms. 

“Milliseconds matter when you are trying to prevent manufacturing line shutdowns or 

restore electrical service. Analyzing data close to the device that collected the data can 

make the difference between averting disaster and a cascading system failure” [14]. 

 Second, it is not practical to transport vast amounts of data from thousands or 

hundreds of thousands of edge devices to the cloud layer. It is also not necessary 

because many critical analyses do not require cloud-scale processing and storage. 

Integrating fog computing with cloud computing directs data to the optimum place for 

processing depending on the criticality of response and how fast the decision is needed. 

Time-sensitive decisions should be made closer to the things producing and acting on 

the data. In contrast, big data analytics on historical data needs the computing and 

storage resources of the cloud computing.  

 Third, the high operational cost of cloud computing data centers as they are 

confronted with service requests from IoT applications. Using fog computing, some of 

those requests can be served at the edge of the network. In this way, cloud computing 

centers get relieved significantly as they don’t have to be running in full power all the 

time. Moreover, adopting the concept of edge computing within fog computing also 

provides high levels of scalability, reliability and fault tolerance [3].  

 In spite of all the challenges faced by cloud computing, fog computing is not a 

platform to compete with cloud. This is important as the goal is not to underestimate 

the power of cloud computing. Fog and cloud computing create a cooperative and 

comprehensive architecture in which each one completes what the other lacks. The 

interaction is expected to be a promising paradigm that will enable serving billions of 

IoT devices and applications with low latency. It will help significantly in monitoring 
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and managing such massive amounts of data generated from the IoT devices. Examples 

of these applications include but not limited to: industrial automation, transportation, 

live streaming, real-time and online gaming, augmented reality, connected vehicles, 

smart micro grid, and smart traffics [2, 3, 5]. 

1.5 Research Objective and Contribution  

 The objective of this research is to model the problem of scheduling IoT 

requests into resources available at both fog and cloud layers. The problem is modeled 

using integer programming in order to provide the minimum service time for IoT 

requests. The service latency is defined as the Round-Trip Time (RTT) for serving or 

processing an IoT request from the moment it gets initiated to the moment it gets 

completely processed and the results are returned back to the requesting device. This 

latency includes many delay components such as transmission delay, routing or queuing 

delay, propagation delay, and processing time, and waiting time as well.  

The developed model is solved using Branch-and-Bound as an exact algorithm. 

However, Bitran et al. [21] proved that the scheduling problem is NP-Hard. NP-

hardness (non-deterministic polynomial-time hard), in computational complexity 

theory, is a complexity class used to describe certain types of decision problems. 

Therefore, a heuristic will be developed to obtain a feasible solution with a good quality 

in a reasonable computational time. Genetic Algorithm (GA) is used as a heuristic 

approach for solving the integer programming model. The GA is studied using different 

problems with different sizes in order to evaluate the impact of changing the different 

model parameters and how they can be adjusted properly. After developing the GA, a 

comprehensive comparison is performed between the exact solution obtained for 

Branch-and-Bound algorithm and the heuristic solutions obtained from the GA.  

 The GA is then integrated within a real-time simulation environment to help in 

scheduling the requests as they arrive. The service latency provided by the hybrid fog-

cloud architecture that implements GA is then compared to other systems with the same 

architecture but uses traditional scheduling algorithms, such as waited-fair queuing 

(WFQ), priority-strict queuing (PSQ), and round robin (RR).  

The main contributions of this research include the following:  
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1. Reviewing the literature and the state-of-the-art research papers about the 

challenges of minimizing the service latency for real-time IoT applications and 

how fog and cloud computing are involved in solving this problem. 

2. Developing an integer program that defines requests with their attributes and 

fog and cloud computing resources with their attributes. The model objective is 

to minimize the overall service latency. Then Branch-and-Bound algorithm is 

used as an exact approach for finding solutions of small size problems.   

3. Developing a heuristic solver using Genetic Algorithm to obtain good quality 

solutions for large size problems within a reasonable computational time. The 

heuristic solutions are then compared with the exact solutions in terms of 

solution quality and computational time.  

4. Comparing optimized service latency provided by the ILP model to following 

scheduling algorithms: WFQ, PSQ, and RR.  

1.6 Research Methodology  

 The following steps were followed to achieve the outcomes of this research:  

Step 1: The literature related to fog computing, cloud computing, scheduling, 

service latency optimization, and genetic algorithms is reviewed. 

Step 2: An integer programming model is formulated for the scheduling problem 

that involves requests and resources with their characteristics called 

attributes. The model also includes assumptions, decision variables, 

objective function, and constraints.  

Step 3: The formulated model is coded using Lingo optimization software for 

verification, validation and explanation purposes. 

Step 4: The heuristic using Genetic Algorithms for solving large problems and for 

comparing the heuristic solutions to the exact solutions is developed. 

Step 5: A simulation model is developed from the formulated model using the 

discrete event simulator SimEvent from Mathworks. The GA is integrated 

with the simulation so that it can be used as a solver to schedule the requests 

into the resources in real-time as they arrive. 

Step 6: The GA service latency is compared to WFQ, PSQ, and RR algorithms. 
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1.7 Thesis Organization 

 In this chapter, an introduction has been given about fog computing, cloud 

computing, scheduling, the research significance, and the problem statement. Chapter 

2 is dedicated to surveying relevant literature on fog computing, scheduling techniques, 

architecture, characteristics and similar concepts. Chapter 3 introduces the proposed 

mathematical model that represents the problem mentioned in this research with an 

illustrative numerical examples. Chapter 4 presents the Genetic Algorithm, its 

implementation, experimentation and comparison to the exact methods solutions. 

Chapter 5 contains the developed simulation and its experimentation. Finally, Chapter 

6 gives the conclusion and prospect future work.  
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Chapter 2. Literature Review 

The literature reviewed in this work will cover many areas that have 

interconnection with fog computing. This includes cloud computing, internet of things, 

mobile cloud computing and mobile edge computing. A major area that the reviewed 

literature will focus on is latency minimization using different types of algorithms.  

2.1 Characteristics of Fog Computing versus Cloud Computing 

 The main factor that distinguishes fog computing from cloud computing is its 

closeness to end users. As in fog layer, the services can be hosted at edge devices such 

as access points, routers, switches, base stations, and even end devices. Fog computing, 

being at the edge of the network implies a list of characteristics mentioned in [2, 5, 16, 

22, 23]. Table 1 recaps these characteristics and presents a cloud-vs-fog computing 

comparison.  

Table 1: Fog versus Cloud Characteristics 

Cloud computing characteristics Fog computing characteristics 

Vertical resource scaling Vertical and horizontal resource scaling 

Large-size and centralized Small-size and spatially distributed 

Multi-hop WAN-based access Single-hop WLAN-based access 

High communication latency and service 

deployment 

Low communication latency and service 

deployment 

Ubiquitous coverage and fault-resilient Intermittent coverage and fault-sensitive 

Context-unawareness Context awareness 

Limited support to device mobility Full support to device mobility 

Support to computing-intensive delay-

tolerant analytics 

Support to real-time streaming 

applications 

Unlimited power supply (exploitation of 

electrical grids) 

Limited power supply (exploitation of 

renewable energy) 

Limited support to the device 

heterogeneity 

Full support to the device heterogeneity 

VM-based resource virtualization Container-based resource virtualization 

High inter-application isolation Reduced inter-application isolation 
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 Fog computing devices are provided with ‘Intelligence’ that makes them able 

to decide whether a request needs to be served in the fog layer or pushed up to the cloud 

layer. This is achieved using smart gateways as in [8]. The jobs that fog nodes are able 

to perform include, but not limited to, collecting data, processing, filtering data, 

monitoring status of end devices and uploading what needs to be uploaded to the cloud 

layer. The purpose of fog computing is delivering services for specific type of 

applications or requests that demand real-time and predictable latency (like industrial 

automation, transportation, live streaming, online gaming, connected vehicles, and 

smart traffics). In contrast, the requests that require cloud computing services rather 

than fog computing (like long term storage, analysis, and business intelligence) are 

transferred to the cloud layer. Fog computing devices act only as routers or gateways 

forwarding these requests. 

2.2 Other Platforms Similar to Fog Computing: 

 There are many other similar concepts that overlap with fog computing, 

however, they are different. These concepts include:  

1- Local cloud: Local cloud is a complementary model for the public traditional 

cloud computing. Its main purpose is to run specific services in a local network 

to essentially strengthen the security of the computing environment. The local 

servers will be running cloud-enabling software and in most cases they support 

interplay with the public cloud layer.  

2- Cloudlet: Cloudlet is “a data center in a box” [18]. It is a secured resource-rich 

computer or cluster of computers that is well-connected to distant cloud on the 

Internet and these resources can be leveraged by usually-few nearby mobile 

devices [15]. The physical proximity of Cloudlet to users is very essential 

because it makes the end-to-end service time fast and predictable as it becomes 

only one-hop network latency. It also helps meeting the peak bandwidth service 

demand of real-time/interactive response for generating and receiving media 

such as high-definition video and high-resolution images.  

3- Mobile Cloud Computing (MCC): MCC is defined as a model that combines 

mobile computing and cloud computing. In MCC the cloud is basically designed 

to remotely handle the large data storage and processing requirements for the 

mobile devices [11]. The remote cloud computing servers don’t necessarily 



 

22 

 

have to have rich and powerful resources. They could at least cooperate with 

mobile devices for storage and processing [24].  

4- Mobile Edge Computing (MEC). MEC, like fog computing, has the same 

concept of pushing “intelligence” to the edge of the network. It is also very 

similar to Cloudlet except that it is primarily located where the data originates 

within the range of Radio Access Network such as mobile base stations or 

access points [18]. The MEC servers are located at the ultimate edge of the 

network to perform specific (business oriented) tasks and jobs that are just not 

convenient to be executed on the traditional cloud computing [11]. In [25], the 

authors proposed this definition for MEC: “Mobile Edge Computing is a model 

for enabling business oriented, cloud computing platform within the radio 

access network at the close proximity of mobile subscribers to serve delay 

sensitive, context aware applications”. According to [25], the prime objectives 

of MEC are: 1) Optimization of mobile resources by offloading the 

compute/storage-intensive tasks off the edge devices. 2) Optimization of the 

large data before sending to the cloud layer. 3) Reducing the latency by enabling 

cloud computing services within physical proximity to mobile subscribers. The 

MEC “sits” on the link the data pass through so that it can actively analyze and 

respond to user requests. The MEC servers are usual servers equipped with 

CPUs, memory, and communicating interfaces. Using MEC paradigm, it helps 

achieving less latency performance and less bandwidth consumption. 

Application of MEC include smart grids, smart transportation or smart traffic, 

video streaming, mobile big data analytics, mobile gaming, edge health care, 

and sensor networks application. 

2.3 Implementations within Fog Computing  

 At present, there are only some existing studies in the literature in terms of 

design, algorithms or implementations within fog computing. In [26], Cisco has 

introduced Cisco IOx.  Cisco IOx is a hosting environment for IoT applications. IOx 

brings the application execution capability down to the source of IoT data. IOx offers 

steady and consistent hosting across multiple network infrastructure devices such as 

Cisco routers, switches, and compute modules. In [10], Stojmenovic et al. addressed 

Cloudlet as a special case of fog computing. It is an intermediate layer located between 
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the cloud data centers and each mobile device. The edge devices connect wirelessly to 

the closest Cloudlet rather than accessing the far cloud data center. The authors also 

introduced fog computing within smart grids where each micro-grid can be depicted as 

a fog computing node. Customers communicate to nearby fog nodes rather than the 

remote cloud. Fog devices will coordinate with cloud data centers and customers in 

order to deliver power services. In [4], the authors presented a high level programming 

model for future internet applications that are characterized by being geospatially 

distributed, large-scale and latency-sensitive. Fog computing resources are allocated 

for serving the low-latency services while tolerant larger scope services that need 

aggregation are allocated in cloud layer. Reference [23] studied web optimization 

within fog computing context. Fog servers connect the end users to the internet so that 

all web requests have to pass through the fog servers on their way to the web servers of 

the cloud layer. There are two possible process flows for the web requests: (1) 

optimizing webpage for its initial request and (2) optimizing webpage for its subsequent 

request(s) where all the needed files and web objects are cached and stored locally 

within the fog server. In [27], Ottenwälder et al. introduced a placement and migration 

method for providers of infrastructures that involved the fog and the cloud computing 

resources. It works by planning the migration ahead of time so that it can meet the 

defined end-to-end service latency and at the same time it reduces the network 

bandwidth consumption.  According to [28], mobile cloud is a very similar paradigm 

to fog computing in which the resources are shared not only from central data centers 

but also from pervasive mobile devices. Although these devices have heterogeneous 

resources (e. g. CPUs, bandwidth, content) and support services, they still have the 

ability to share these resources. Based on the key concept of service-oriented utility 

functions, the authors proposed an architecture and mathematical framework for 

heterogeneous resource sharing. The heterogeneous resources are most probably 

measured in dissimilar scales/units (e.g. power, bandwidth, latency). For this reason, 

the authors adopted a unified framework on their work where all quantities are mapped 

to time only. They also formulated their model for optimization and found the optimal 

solution using convex optimization approaches.  

 In [9, 11, 20], the security and privacy issues within fog computing were 

studied. The authors discussed security issues such as authentication, secure data 

storage, secure computation, access control, and network security. Fog computing, 
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being at the edge of the network, makes it surrounded by many security threats such as 

the Man-in-the-Middle Attack. These threats may not be easily avoided using the 

security solutions that exist in the context of cloud computing.  They also highlighted 

privacy issues such as data privacy, usage privacy, and location privacy. The vicinity 

and the physical proximity of fog computing nodes to end users give it the ability to 

collect and leak sensitive information like data, location and usage. The same 

application code is applied on various devices for different large–scale applications in 

the fog and the cloud layers. In terms of real-world applications, Cao  et al. in [29] 

designed fall detection algorithms and designed and employed a real-time fall detection 

system. Basically, they split the fall detection task between the edge devices and the 

server (e.g., servers in the cloud layer). The sensor data are transmitted to the fog server 

in real-time so that both edge device and fog server perform the computation for fall 

accurate detection. While in [30] and [31], the authors presented an intelligent 

mechanism that can dynamically choose whether it is beneficial to offload parts of the 

computation off the mobile devices or not and where to offload if so. That is achieved 

by monitoring all the available fog resources and their runtime configurations (e.g., the 

network latency and the bandwidth between the mobile device and the server, the size 

of the overhead data, etc.) 

2.4 Scheduling Techniques 

Simplex [32] as an exact solution technique, operates on what is called 

simplicial cones. These simplicial cones are the edge or the neighborhoods of the 

vertices of a geometric object called a polytope. The main idea of simplex algorithm is 

the replacement of the objectives and constraints set of a formulated problem by an 

alternative convex shape of feasible points and extreme rays. The algorithm begins at a 

starting vertex and moves along the edges of the polytope targeting the edge of the 

optimum solution within the feasible region. Branch-and-Bound (B&B) algorithm is an 

approach that works by means of enumeration of all possibilities which are finite in 

number [33, 34]. However, explicit enumeration is normally impossible due to the 

exponentially increasing number of potential solutions. Sometimes many possibilities 

can be implicitly eliminated by domination or feasibility arguments. The use of bounds 

for the function to be optimized combined with the value of the current best solution 

enables the algorithm to search parts of the solution space only implicitly. This is one 

https://en.wikipedia.org/wiki/Vertex_(geometry)
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of the strong advantages of B&B that it throws out large parts of the search space by 

using previous estimates on the objective function under concern. This helps in 

eliminating large parts of the search space and reduces the runtime significantly. 

On the heuristics side, one of the important algorithms is simulated annealing. 

Simulated annealing is based on ideas from statistical mechanics and is inspired by an 

analogy to the physical annealing of a solid [35, 36]. To set some material into a low-

energy state it will be heated to a high temperature and then cooled very slowly. This 

process allows coming to thermal equilibrium at each temperature. The system is 

expected to acquire a low-energy state at freezing temperatures. The algorithm begins 

with a randomly generated solution at a high (artificial) temperature and then the 

temperature is reduced gradually until it reaches freezing point. The regions in the 

solution space are searched at each temperature by an algorithm called the Metropolis 

algorithm. An iteration of the Metropolis algorithm starts with implanting random 

perturbations to the candidate solutions and evaluating the impact on the solution 

quality [36]. Along with simulated annealing, genetic algorithm is also an important 

heuristic approach in the literature.   The latter is founded based on the natural evolution 

mechanism [37-39]. The algorithm simulates the natural populations’ reproduction 

operations in the process of achieving efficient optimized solutions. Through different 

generations, the algorithm searches for variations to evolve the solutions. The 

population consists of chromosomes, also called individuals, and all these 

chromosomes represent possible solutions to the problem regardless the feasibility. 

Each chromosome is associated with a fitness value to represent how ‘good’ it is 

compared to the others. This fitness function depends on the objective of the problem 

under concern.   

Additionally, ant colony algorithm is also a heuristic algorithm that is taken 

from ‘ants’ and how they can manage to find shortest paths from their colony to feeding 

sources and backward [40]. These ants communicate using what are called pheromone 

trails. A moving ant lays some pheromone in different quantities in order to make the 

path it is following by a trail of this substance. Whereas the movement of an isolated 

ant is random, an ant encountering a previously laid trail can detect it and decide with 

high probability to follow it. The overall behavior that arises is a form of a behavior in 

which as more ants follow a trail, that trail becomes most probable of being followed. 

This process depicts a positive feedback loop, where the likelihood with which an ant 
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selects a specific path grows up with the number of ants that previously selected to take 

the same path.  

2.5 Fog Computing and IoT Interconnection  

 Fog computing will play a crucial role in upcoming internet of things (IoT) 

applications [1, 6, 14]. The huge range of IoT applications that could be built on fog 

computing platform makes it a promising paradigm. In IoT, the end devices or “things” 

are provided with unique identifiers (for example IP address, RFID, NFC tag, bar code 

or QR code) and they are able to transfer data over the network without involving a 

human-being during the data transfer process [5]. These “things” are also equipped with 

embedded electronic components, software components, sensors, controllers and 

networking capabilities in a way that makes it able to communicate and exchange data 

with each other. Examples of future scenarios and applications of IoT that can be 

developed and built upon fog computing services include Smart Traffic Light System, 

Wind Farm, Connected Vehicles, Smart Grid, and Wireless Sensor Networks. 

2.6 Latency Optimization using Genetic Algorithms  

 In [39], the authors proposed a budget constraint based scheduling model to 

minimize execution time while meeting a specified budget for delivering results. They 

modeled the workflow application as a Directed Acyclic Graph (DAG). The developed 

genetic algorithm is used to solve the scheduling optimization problem with a cost-

fitness and time-fitness. The algorithm was tested in a simulated Grid environment. In 

[41], Buyya et al. proposed a genetic algorithm approach for scheduling workflow 

applications by either minimizing the monetary cost while meeting users’ budget 

constraints, or minimizing the execution time while meeting users’ deadline constraints. 

They evaluate the approach for balanced and unbalanced workflow structures. In [42], 

different existing approaches were comparatively examined for scheduling of scientific 

workflow applications in Grid environments. Three algorithms were evaluated; one of 

them is using Genetic algorithms (GA). The authors also studied the incremental 

workflow partitioning against the full-DAG-graph scheduling strategy. They 

demonstrated experiments using real-world scientific applications covering both 

balanced (symmetric) and unbalanced (asymmetric) workflows. In [43], Rodriguez  et 

al. proposed a resource provisioning and scheduling strategy for scientific workflows 
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on Infrastructure as a Service (IaaS) cloud environments. The authors presented an 

algorithm based on the meta-heuristic optimization technique named particle swarm 

optimization (PSO). This algorithm aims to minimize the overall workflow execution 

cost while meeting deadline constraints. Their heuristic is evaluated using CloudSim 

simulation tool and various well-known scientific workflows of different sizes. In [44], 

the authors worked on deadline sensitive leases which can be scheduled using 

traditional backfilling algorithm. However, in the backfilling algorithm one of the 

leases is selected from the best effort queue which will provide the free resources to 

schedule the deadline sensitive lease. However, in some scenarios, backfilling 

algorithm does not provide better scheduling if there are similar types of leases and 

must be in conjugative in sequence. For this reason, the authors used an algorithm called 

AHP (Analytic Hierarchy Process) as a decision maker with the backfilling algorithm. 

AHP helps in choosing a possible best lease from a given best effort queue in order to 

schedule deadline sensitive leases. In [45], Mao et al. presented an auto-scaling 

mechanism for cloud computing environments. In their approach, the cloud resources 

are considered as virtual machines (VMs) of various sizes/costs. The jobs are specified 

as workflows where users specify performance requirements by assigning (soft) 

deadlines to jobs. The goal is to ensure all jobs are finished within their deadlines at 

minimum financial cost. They used the Earliest Deadline First (EDF) algorithm to 

schedule tasks on each VM type. After deadline assignment and instance consolidation, 

every task is scheduled to a VM type. They sort the tasks by their deadlines for each 

VM type, and schedule the task with the earliest deadline whenever an instance is 

available. In [46], the authors proposed a Dynamic Critical Path (DCP) based workflow 

scheduling algorithm that determines efficient mapping of tasks by calculating the 

critical path in the workflow task graph at every step. It assigns priority to a task in the 

critical path which is estimated to complete earlier. They compared the performance of 

their proposed approach with other existing heuristic and meta-heuristic based 

scheduling strategies for different types and sizes of workflows. In [47], Chen et al. 

aimed at proposing an ant colony optimization (ACO) algorithm to schedule large-scale 

work-flows with various QoS parameters. This algorithm enables users to specify their 

QoS preferences as well as define the minimum QoS thresholds for a certain 

application. The objective of this algorithm is to find a solution that meets all QoS 

constraints and optimizes the user-preferred QoS parameter. 
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Chapter 3. Modeling the Problem 

3.1 Environment Analysis  

 As discussed in the literature review (Chapter 2, section 2.2), the integration 

between fog computing and cloud computing creates a 3-layered architecture. The edge 

devices reside at the edge of the network. Fog computing devices “sit” in the 

intermediate layer while cloud resources are in the upper most layer. The 3-layered 

architecture with the data flow direction is shown in Figure 2.   

 IoT devices, residing in the edge layer, require services from fog and cloud 

resources by sending requests that need to be processed. Based on [48], the IoT requests 

can be described or defined as data, with specific size, that need to be processed or 

analyzed. The analysis or processing stage refers to some computational processes that 

have to take place in fog or cloud layer. 

 

Figure 2: Fog and Cloud Computing Architecture of Service Scheduling 

 

 The main objective of the model is to minimize the latency as round-trip time 

(RTT) for serving or processing the requests coming from the edge layer. For this 

model, the latency of an IoT request is specifically defined as the round trip time from 

the moment the request gets initiated at the edge layer to the moment it gets completely 

processed or served and the results are returned back to the requester. This latency 

includes many delay components.  
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In networking, the latency is generally divided into several components: 

1-  Transmission delay: this is the time it takes to push the packet's bits onto the 

networking or connection link.  

2- Queuing or networking delay: this is the time the data packets spend in passing 

through the network routers and switches.  

3- Propagation delay: this is the time for a signal to propagate or travel through the 

networking media and reach its destination. In this work, the propagation delay is 

completely neglected as it is insignificant compared to the other delay components.  

 Transmission delay is a function of the packet's length and has nothing to do 

with the distance between the two nodes. It is calculated from the transmission bit rate 

and the size of data to transmit and hence it is uniform and can be evaluated beforehand. 

On the contrary, the queuing time is stochastic with a certain average and it cannot be 

evaluated beforehand. For this reason, the total delay of summing the transmission and 

queuing time will also be stochastic with a certain average. This latter delay can be 

written as in equation (1). The Total delay is the summation of the two delay 

components, transmission and the queuing time. 

         𝛿̅ = 𝛿𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝛿𝑞̅𝑢𝑒𝑢𝑖𝑛𝑔 (1) 

 Additionally, there is the actual processing time which is the time it takes to 

process the data of each request. Examples of IoT data processing are data storage, data 

aggregation and analysis, features extraction, images and video processing, etc. This 

processing time is defined by the data size each request has and the processing 

capability of the resource that will serve or process the request. The resource capability 

is defined in terms of processing speed. Moreover, a request might suffer some 

additional delay if the resource is busy serving other requests. The reason behind that 

is, it is assumed that a resource can process only one request at a time in the modeling.  

3.2 The Edge-Fog-Cloud Environment Model 

 The scheduling problem model is built based on the following environment 

settings or assumptions: 

• There is a set of fog and cloud computing resources (m resources) denoted as set 

by 𝑆 = {S1, S2, S3, … , Sm}. Each resource has its own attributes: processing 

power and average networking delay. 

https://en.wikipedia.org/wiki/Transmission_delay
https://en.wikipedia.org/wiki/Queuing_delay
https://en.wikipedia.org/wiki/Propagation_delay
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• The processing speed of each resource is measured as the number of packets that 

can be processed per unit time. 

• No communication or cooperation exists between the processing nodes, at both 

fog and cloud layers. 

• A resource, at both fog and cloud layers, can process only one request at a time. 

• There is a set of n requests that need to be processed individually at fog and cloud 

layers. These requests are denoted as a set by 𝑅 = {𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑛}. Each 

request has its own attributes: initiation time, data size, priority and deadline.  

• A request may get created (initiated) at any instant of time. 

• The data size of each request is defined by the number of packets the request has, 

assuming that the size of one data packet in all requests is fixed. 

• Each request priority is assigned as a normalized fractional weight to signify how 

important the request is compared to others. All requests weights are summed 

up to an exact 1 as shown in equation (2). The reason behind adopting this 

fractional weight is to define the most important requests that need to be served 

early even if some other requests with low priority take longer time.  

 
∑ 𝑊𝑗 =  1 

𝑛

𝑗=1

 
(2) 

• The deadline requirement of each request is defined as a time duration that starts 

from the moment it gets created, not referenced to time 0.  

• A request consists of only one operation or one task that needs to be performed 

by one resource.   

• Each request experiences transmission and queuing delay in the forward journey 

moving from edge to fog or cloud layers to get processed. This transmission and 

queuing delay is a function of two parameters: the first one is the request data 

size in terms of packets, and the second one is the transmission and queuing 

delay per packet of the resource the request will be served at. This transmission 

and queuing time represents how far the resource is from the edge layer.  

• The requests will also suffer the same transmission and queuing delay in the 

backward journey from fog or cloud layer to edge layer. This is because it is 

assumed that the size of the resulted data after processing is equal to the original 

data.  
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• The actual processing time of each request is equal to the request size (in packets) 

divided by the processing node speed (in packets per second). 

• All requests in the model are independent. 

• Preemption is not allowed. If a request starts processing, it must finish without 

interruption.  

• All the needed scheduling problem parameters are known by the time they will 

be solved. The scheduling problem parameters are the number of requests and 

resources with their attributes.   

• The objective in the model is achieving the least overall latency possible for 

serving all requests considering their different priorities or weights as explained 

in equation (2). 

Time in this model is continuous, not discrete-valued. This way, the latency may 

be any positive real-valued number and there is no limit to the time horizon that 

the schedule must be performed within. It also means that any request can be 

processed at any instant of time. 

  

 These environment characteristics can be translated into the following notations 

list: 

 𝑳𝑻: Average weighted overall latency.   

𝑳𝑻𝒊𝒋: Latency of request 𝑅𝑗 that is served in resource 𝑆𝑖. 

𝒏: Number of requests of a set of requests R numbered from 𝑅1 to 𝑅𝑛. 

𝑹𝒔𝒊𝒛𝒆𝒋
: Data size of request 𝑅𝑗. 

𝑹𝒊𝒏𝒊𝒕𝒋
 : Initiation time of request 𝑅𝑗.  

𝑹𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆𝒋
: Deadline of processing request 𝑅𝑗. 

𝑹𝒑𝒓𝒊𝒋
: Weighting factor of request 𝑅𝑗 describing its priority.  

𝒎: Number of resources exist in both fog and cloud with a set name S, numbered 

from 𝑆1 to 𝑆𝑚.  

𝑷𝒊: The processing power of resource 𝑆𝑖.  

𝜹̅𝒊: The average transmission and queuing delay per packet for reaching 

resource 𝑆𝑖. 

𝒙𝒊𝒋: A set of 0-1 variables such that 𝑥𝑖𝑗 equals 1 iff request 𝑅𝑗 is allocated in a 

resource 𝑆𝑖. 
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Ѳ𝒊𝒋𝒌: A set of 0-1 variables such that Ѳ𝑗𝑘 equals 1 iff request 𝑅𝑗 should be 

executed before 𝑅𝑘 in the same resource, 𝑆𝑖. 

𝑺𝑻𝒊𝒋: Start time of actual processing of request Rj within resource 𝑆𝑖. 

𝑷𝑻𝒊𝒋: Processing time of requests Rj in resource 𝑆𝑖. 

𝑻𝑸𝑻𝒊𝒋: Transmission and queuing time of requests Rj to reach resource 𝑆𝑖. 

  

 The objective in the model is minimizing the sum of the RTT for serving all n 

requests using m resources available, considering the requests different priorities or 

latency costs. Mathematically, the latency, which is the objective function, is the 

difference between the initiation time and the end of service which includes the starting 

time, the processing time, and the transmission and queuing time. Then the latency of 

each request is weighted by its priority in order to evaluate the overall latency, as shown 

in equation (3). 

 

min {𝐿𝑇 =   ∑ ∑ (𝐿𝑇𝑖𝑗 ∗ 𝑅𝑝𝑟𝑖𝑗
∗ 𝑥𝑖𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

 } 

𝐿𝑇𝑖𝑗 = 𝑆𝑇𝑖𝑗 + 𝑃𝑇
𝑖𝑗

+ 𝑇𝑄𝑇𝑖𝑗 − 𝑅𝑖𝑛𝑖𝑡𝑗
 

∀𝑅𝑗 ∈ 𝑅, ∀𝑆𝑖 ∈ 𝑆 

 

 

(3) 

Where: 

 
𝑃𝑇𝑖𝑗 =

𝑅𝑠𝑖𝑧𝑒𝑗

𝑃𝑖
⁄                  ∀𝑅𝑗 ∈ 𝑅, ∀𝑆𝑖 ∈ 𝑆 

(4) 

     Equation (4) defines the processing time of request 𝑅𝑗 in resource 𝑆𝑖. The 

processing time of each request is equal to the request data size in packets divided by 

the resource processing power in packets per second. 

 

𝑇𝑄𝑇𝑖𝑗 =  ∑ 𝛿𝑖̅

𝑅𝑠𝑖𝑧𝑒𝑗

1

                            ∀𝑅𝑗 ∈ 𝑅 , ∀𝑆𝑖 ∈ 𝑆  

 

(5) 

   Equation (5) defines the transmission and queuing time of request 𝑅𝑗 from the 

edge layer to fog or cloud resource 𝑆𝑖. A request delay is the summation of its packets 

delays that will suffer individual delays distributed around a specific mean. This means 

a request cannot start processing unless all its packets reach the resource. 

Subject to: 

 ∑ 𝑥𝑖𝑗 =  1 𝑚
𝑖=1                                    ∀𝑅𝑗 ∈ 𝑅 (6) 
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 Equation (6) means request 𝑅𝑗 must be served and served only once by only one 

resource. 

  𝑆𝑇𝑖𝑗 ≥ 𝑅𝑖𝑛𝑖𝑡𝑗  
+ 𝑇𝑄𝑇𝑖𝑗 

                    ∀𝑅𝑗 ∈ 𝑅 (7) 

 Equation (7) means a request 𝑅𝑗 cannot start processing before its initiation time 

plus the transmission and queuing time to where fog or cloud resources reside. 

 𝑖𝑓       𝑥𝑖𝑗 + 𝑥𝑖𝑘 = 2        𝑡ℎ𝑒𝑛          Ѳ𝑖𝑗𝑘 + Ѳ𝑖𝑘𝑗 = 1 

𝑆𝑇𝑖𝑘 ≥ Ѳ𝑖𝑗𝑘 ∗ (𝑆𝑇𝑖𝑗 + 𝑃𝑇𝑖𝑗)  

∀(𝑅𝑗 , 𝑅𝑘) ∈ 𝑅, 𝑅𝑗 ≠ 𝑅𝑘, ∀𝑆𝑖 ∈ 𝑆   

 

(8) 

 Equation (8) means a resource 𝑆𝑖 can process only one request at a time. If there 

are two requests arrive the resource at the same time, one of them should be shifted to 

start after the other. 

 𝑆𝑇𝑖𝑗 + 𝑃𝑇𝑖𝑗 + 𝑇𝑄𝑇𝑖𝑗 − 𝑅𝑖𝑛𝑖𝑡𝑗
≤ 𝑅𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗

           ∀𝑅𝑗 ∈ 𝑅, ∀𝑆𝑖 ∈ 𝑆  (9) 

 Equation (9) means each request 𝑅𝑗 must be served within its deadline 

requirement 𝑅𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗
. 

3.3 Model validation using Lingo 

 In this section, the model described in the previous section is validated using a 

software called Lingo. Lingo is an optimization modeling software for linear and 

nonlinear integer optimization models. It supports many exact algorithms such as 

simplex and Branch-and-Bound (B&B). We adopted B&B as an exact algorithm for 

solving the model. The reason behind that is, B&B throws out large parts of the search 

space by using previous estimates on the objective function under concern. This helps 

in eliminating large parts of the search space and reduces the runtime significantly.   

 To validate the model, a small scheduling problem that involves only 5 requests 

and 2 resources was built for demonstration purposes. The two resources represent 1 

fog processing node and 1 cloud processing node. The attributes of these requests and 

resources are shown in Table 2 and Table 3. As seen from Table 2, all 5 requests are 

assumed to be initiated at the same time and they have the same data size for 

demonstration purposes. However, they have different priorities and deadline 

requirements. The 2 resources attributes are shown in Table 3. One of them represents 

a fog resource with lower delay and lower processing power compared to the other one 

with higher delay and higher processing power representing a cloud resource. 
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Table 2: 5 Requests with Their Associated Attributes 

Requests,  

Rj 

Initiation 

time, 𝑹𝒊𝒏𝒊𝒕𝒋
 

Data size, 

𝑹𝒔𝒊𝒛𝒆𝒋
 

Priority, 

𝑹𝒑𝒓𝒊𝒋
 

Deadline, 

𝑹𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆𝒋
 

R1 15 5000 0.2 1000 

R2 15 5000 0.38 1500 

R3 15 5000 0.01 2000 

R4 15 5000 0.4 600 

R5 15 5000 0.01 2000 

 

Table 3: 2 Resources with Their Associated Attributes 

Resource,  

Si 

Processing power, 

𝑷𝒊 

Average delay, 

𝜹̅𝒊 

S1 (Fog) 20 0.001 

S2 (Cloud) 100 0.1 

  

 Lingo software gives the absolute optimal solution for the scheduling problem 

using the objective function given in equation (3). Table 4 and Table 5 show this 

optimal solution with its associated parameters. The solution parameters are the 

allocation of the requests (𝑥𝑖𝑗) within the 2 resources with 1’s and 0’s. The starting time 

of each request (𝑆𝑇𝑗), the processing time (𝑃𝑇𝑖𝑗), and the transmission and queuing 

delay (𝑇𝑄𝑇𝑖𝑗), the latency (𝐿𝑇𝑖𝑗) of each request which must be less than deadline 

(𝑅𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑗
) and the overall weighted latency (𝐿𝑇). Table 5 shows the other part of the 

solution in terms of the order of execution (Ѳ𝑖𝑗𝑘) for each two requests allocated to the 

same resource as the resource can execute only one request at a time (refer to the 

constraint in equation (8)).  

 As the latency of each request, 𝐿𝑇𝑖𝑗, is given in Table 4, their summation can be 

simply obtained 4070 as shown in the table. However, that is not the actual objective 

function described by equation (3). Equation (3) defines the overall weighted latency 

considering requests’ different weights. This latter one can be calculated as 627.5 as 

shown in the last column. The total non-weighted latency is just the summation of 𝐿𝑇𝑖𝑗  

while the weighted latency is the summation of multiplying 𝐿𝑇𝑖𝑗 by 𝑅𝑝𝑟𝑖𝑗
. This way, 



 

35 

 

the model will give less delay to the requests that have higher priority in order to 

minimize the overall weighted latency. This difference between the latency and the 

weighted latency is a core concept in the formulated model.    

 In the allocation column in Table 4, it can be noticed that R1 (request 1) and R4 

are allocated in S1 (resource 1) while the rest R2, R3, and R5 are allocated in S2. The 

order of processing requests that are allocated in the same resource is given in Table 5. 

Be reminded that in the model, it is assumed that each resource can process only one 

request at a time. For instance, it can be seen that Ѳ4,1is equal to 1 which means R4 

precedes R1 in the execution phase. This means, the opposite parameter, Ѳ1,4 should 

equal to zero according to equation (8), as shown in Table 5. This also applies for the 

other 3 requests R2, R3 and R5 allocated in S2. 

 To make the scheduling clear, Table 4 and Table 5 are mapped into a Gantt chart 

shown in Figure 3. It can be seen from the graph that, while R1 and R4 are allocated in 

the same resource S1, R4 gets executed first, as Table 5 also stated. The moment R4 

finished processing, the resource is released and R1 starts executing because it was kept 

waiting. On the other hand, R2, R3 and R5 as they are allocated in S2, the resource will 

process R2 followed by R3 followed by R5, as Table 5 stated. 

 What can be concluded from the results shown in Table 4 and Table 5 is that, 

the allocation of the requests within the resources and their execution order gets affected 

directly by the requests priorities (weights). We can see that the highest prioritized 

request R4 is scheduled in S1 (which is a fog resource with less  

𝛿̅ compared to S2) and it gets executed before R1 (which is allocated in the same 

resource S1). The main reason for that is having the weight factor in the overall weighted 

latency given in equation (3). As R4 has more weight (priority), the optimizer will try 

to give the least latency possible for this specific request in order to minimize the overall 

latency. 
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Table 4: Lingo Optimal Scheduling Solution – Part 1 

 

Requ

-ests, 

Ri 

Allocation, 𝒙𝒊𝒋 Start 

time, 

𝑺𝑻𝒊𝒋 

Proc. 

time, 

𝑷𝑻𝒊𝒋 

Trans. 

time, 

𝑻𝑸𝑻𝒊𝒋 

Requests 

latency, 

𝑳𝑻𝒊𝒋  < 

𝑹𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆𝒋
 

Weighted 

overall 

latency, 

𝑳𝑻𝒊𝒋 *𝑹𝒑𝒓𝒊𝒋
 

S1 

(Fog) 

S2 

(Cloud) 

R1 1 0 270 250 5 510   <  1000 510 * 0.2 

R2 0 1 515 50 500 1050 <  1500 1050 * 0.38 

R3 0 1 615 50 500 1150 <  2000 1150 * 0.01 

R4 1 0 20 250 5 260   <  600 260 * 0.4 

R5 0 1 565 50 500 1100 <  2000 1100 * 0.01 

      ∑ = 4070 ∑ = 627.5 

 

Table 5: Lingo Optimal Scheduling Solution – Part 2 

Resource,  

Si 

Allocated 

requests,  

Rj 

 

Ѳ𝒊𝒋𝒌 

Order of 

processing, 

Rj → Rk 

S1 R1, R4 Ѳ141 = 1, Ѳ114 = 0 R1 → R4 

S2 R2, R3, R5 Ѳ223 = 1, Ѳ232 = 0 

Ѳ225 = 1, Ѳ252 = 0 

Ѳ235 = 1, Ѳ253 = 0 

R2 → R3 → R5 

 

 

 

Figure 3: Gantt chart for Lingo Optimal Scheduling Solution 
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Chapter 4. Proposed Solution 

4.1 Genetic Algorithms 

 In this thesis, the GA is adopted for solving the large size scheduling problems. 

The main reason behind using the GA as a heuristic approach is the complexity of the 

scheduling problem in general. It is not efficient to use an exact method for solving 

large scheduling problems that have hundreds or thousands of requests and resources 

as the time it takes to find the optimal solution grows significantly. In this section, 

before looking into solving the model, the GA and its implementation will be 

introduced.   

 GA is a meta-heuristic inspired by the process of natural selection that belongs 

to the larger class of evolutionary algorithms. In a GA, a population of candidate 

chromosomes to an optimization problem is evolved toward better ones. The evolution 

usually starts from a population of randomly generated chromosomes, and is 

an iterative process, with the population in each iteration called a generation. The GA 

iterates towards getting better chromosomes in terms of the objective. In each 

generation, the fitness of every chromosome in the population is evaluated. The GA 

fitness is the value of the objective function in the optimization problem being solved. 

The chromosomes also get evaluated for any feasibility conditions that exist in the 

optimization problem. The fitter chromosomes get stochastically selected from the 

current population, and each chromosome is modified (using the so called GA 

operators) to form a new generation. The new generation of chromosomes is then used 

in the next iteration of the algorithm.  

 The GA algorithm terminates when either a maximum number of generations 

has been produced, or a satisfactory fitness level has been reached, or there is no 

improvement in the fitness for a certain number of generations. A typical genetic 

algorithm requires a full representation or description to the optimization problem under 

concern. It requires a definition of the fitness function and all the constraints exist in 

the problem in order to evaluate the solution domain. 

 For a scheduling problem, the chromosome actually represents a candidate 

solution to the problem whether it is feasible or not. A candidate solution to the 

scheduling problem can be the allocation array of requests within resources, 𝑥𝑖𝑗, as 

shown in Figure 4. What is shown in Figure 4 is just an example of allocating N requests 

https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Population
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Fitness_(biology)
https://en.wikipedia.org/wiki/Objective_function
https://en.wikipedia.org/wiki/Stochastics
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Genetic_representation
https://en.wikipedia.org/wiki/Fitness_function
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within M resources. The 0 means not allocated and the 1 means allocated. The 0’s and 

1’s are “Genes”. For instance, it is clear that R1 (request 1) is allocated in S3 (resource 

3) and R2 is allocated in S2. This 2- dimensional array can be stretched vertically in 

order to get a 1-dimensional solution array that represents the chromosome for the GA. 

The latter one is shown in Figure 5 and it represents the exact same 2 dimensional array 

in Figure 4. 

 It is important to note that there is also another dimension in the scheduling 

problem solution which is the execution order of requests that are allocated to the same 

resource (refer to equation (8) or Table 5). This is an important parameter because it 

gives the time dimension to the scheduling problem and distinguishes it for a traditional 

allocation problem. This parameter is not considered as part of the chromosome. 

However, it is considered in the latency evaluation of each chromosome. 

 

 

 

Figure 5: Chromosome Representation as 1-D Array 

4.2 The GA Implementation  

 The GA is developed as described in the implementation flowchart given in 

Figure 6. The GA starts by setting the values for major parameters such as the 

population size, the termination counter, the GA maximum number of iterations, and 

the number of requests and the number of resources. This is followed by assigning these 

requests and resources attributes from the user. The requests attributes are: data size, 

   Figure 4: Chromosome Representation as 2-D Array 
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priority, initiation time, and deadline. While the resources attributes are: processing 

power and average transmission and queuing delay.  

 A pseudocode is provided for the GA implementation in Table 6. The GA 

initially generates a certain number of candidate solutions (chromosomes) randomly to 

represent the initial population for the first generation. The number of chromosomes in 

the population is defined by the population size in the problem. The next step is to 

evaluate these chromosomes individually based on the feasibility constraints and the 

fitness function available in the model. Note that since the problem is a minimizing 

problem, the fitness is inversely proportionate to the latency in equation (3) and this is 

shown is equation (10). This means the less latency the better fitness value and the more 

latency the worse fitness value for each chromosome. 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 1/𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (10) 

 The following step is to sort the chromosomes according to their fitness. The 

algorithm scans all the chromosomes looking for the best chromosome that is better 

than the “best-so-far” one. If a better chromosome is found, the “best-so-far” will be 

replaced and a counter will be reset to zero. This counter is called the “trials counter” 

and it is used for holding the number of iterations the GA loops without finding a better 

solution. If this counter reaches the GA termination counter, the algorithm breaks.  

 After that, the GA implements what is known as the “GA operators”. The GA 

operators are 3 operations; selection, crossover, and mutation. These operations are 

used to evolve the current population and produce a new population that can have fitter 

chromosomes. After implementing the GA operators on the current population, the 

chromosomes’ fitness will be re-evaluated and they will be re-sorted to get a new 

generation. The GA keeps iterating, implementing the GA operators, generating newer 

generations, and sorting the chromosomes while looking for a better chromosome than 

the “best-so-far”. At the end, it terminates either by consuming the termination counter 

(as explained in the previous paragraph) or by consuming the maximum number of 

iterations. 
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Figure 6: GA Implementation Flowchart 
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Table 6: GA Implementation Pseudocode   

Algorithm: GA Implementation 

Set population size, scheduling problem size, termination counter 

Define requests and resources attributes 

Create initial population 

Evaluate fitness and check feasibility 

repeat 

 Sort chromosomes based on their fitness 

 for (i=1 to population size) do 

  if A better chromosome than best-so-far is found then 

   Replace best-so-far and reset trials counter 

  endif 

 endfor 

 if A better chromosome not found then 

  Increment trials counter 

  if (trials counter = termination counter) then 

   exit 

  endif 

 endif 

 Crossover 

 Mutation 

 Evaluate fitness and check feasibility 

until (maximum number of iterations) 

print best-so-far chromosome 

 

 4.2.1 Initial Population. As mentioned in section 4.2, the GA creates the first 

population or generation randomly. The function implementation is given in Table 7. 

The algorithm scans the chromosomes and for each chromosome it loops through the 

requests and the resources. For each request, the algorithm selects a resource randomly 

for execution. 

 4.2.2 Selection using Roulette Wheel. In order to implement the crossover 

and the mutation operators, the chromosomes that will be crossed over or mutated need 

to be selected. An algorithm called “roulette-wheel” has been adopted for selecting the 

chromosomes. Roulette-wheel is a selection algorithm based on the fitness value. It 

uses the fitness value as a probability to select the fitter chromosomes (the ones with 

better objective function or less latency). The probability of selecting any chromosome 

out of the whole population is calculated by normalizing the fitness as shown in 
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equation (11) and hence it is called the normalized fitness. It is calculated from the 

fitness of each chromosome divided by the summation of fitness for all the 

chromosomes. This way, the fitter chromosomes will have a high chance to be selected 

than the less fit ones. The summation of the normalized fitness of all the chromosomes 

in the population is equal to an exact one, hence it represents probability. 

 
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 =  

𝐹𝑖

∑ 𝐹𝑖
 

(11) 

 The roulette wheel algorithm is implemented as shown in Table 8. After 

normalizing the chromosomes fitness, the population is sorted by descending fitness 

values. Then accumulated normalized fitness values are calculated. The accumulated 

fitness value of a chromosome is the sum of its own fitness value plus the fitness values 

of all the previous chromosomes after sorting. This means, the accumulated normalized 

fitness of the last chromosome should be 1. Then, a random number between 0 and 1 is 

chosen. The selected chromosome is the last one whose accumulated normalized value 

is smaller than this random number.  

 

Table 7: Initial Population Algorithm 

Algorithm: Initial Population 

Inputs: Population Size (pop_size), Number of Requests (num_requests), Number of Resources 

(num_resources) 

Outputs: Initial Population (pop) 

 

for (k = 1 to pop_size) do 

 for (i = 1 to num_resources) do 

  for (j = 1 to num_requests) do 

   For each request, select a resource randomly 

   Assign the request into the selected resource, x[i][j] 

  endfor 

 endfor 

endfor 
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Table 8: Selection using Roulette Wheel 

Algorithm: Selection using Roulette Wheel 

Inputs: Population Size (pop_size), Population (pop) 

Outputs: Index of a Selected Chromosome with the Population (index)  

for (i=1 to pop_size) do 

 Calculate normalized fitness   

endfor 

Sort chromosomes based on fitness  

Choose a small random number, R 

for (i=1 to pop_size) do 

 Calculate accumulated normalized fitness   

 if (accumulated normalized fitness > R) then 

  Choose this chromosome and return its index within pop 

 endif 

endfor 

 

4.2.3 Crossover.  The crossover, also called recombination, is an operator that 

is used to generate new chromosomes from the current population. It works by selecting 

two chromosomes and recombining them as shown in Figure 7 to produce two new 

chromosomes. The first selected pair of chromosomes is called “Parent Chromosomes” 

while the second recombined one is called “Children Chromosomes”. The idea behind 

the crossover operator is crucial for the GA evolvement. If the parent chromosomes are 

fit or have better objective values within the population, the children chromosomes are 

also more likely to have better level of fitness compared to other chromosomes. 

 In terms of implementation, the crossover is implemented as shown in Table 9. 

Two parent chromosomes get selected using roulette-wheel algorithm. Then, the 

crossover-point over the two chromosomes is selected randomly between 1 and 60% of 

the chromosome length represented by the number of requests. The two selected 

chromosomes get crossed over the selected cross point by swapping their opposite parts 

(as shown in Figure 7). The two generated children chromosomes are copied to a new 

population which is called the new offspring or the new generation. This process is 

repeated until the number of generated children chromosomes in the new generation is 

equal to the number of chromosomes in the current generation. 
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 It is important to note that, although the crossover point is selected randomly, it 

is chosen delicately at a point (as shown in Figure 8) in order not to mix up the requests 

allocation. These points are referred to “requests chunks”. It maps each request to an 

only one resource. If the cross point is not chosen as shown in Figure 8, a request might 

be allocated to more than one resource which validates the constraint in equation (6). 

This is the reason behind representing the chromosome length by the number of 

requests only, not by the actual chromosome length, when selecting the cross point. 

This way, it is easier to avoid allocating a request to more than one resource after the 

crossover.  

 

Figure 7: Crossover Operation 

Table 9: Crossover 

Algorithm: Crossover 

Inputs: Population Size (pop_size), Population (pop), Number of Requests (num_requests), Number 

of Resources (num_resources) 

Outputs: New Population (pop) 

 

for (i=1 to pop_size, step 2) do 

 select first chromosome using roulette wheel 

 select second chromosome using roulette wheel 

 Choose a cross point from 1 to 60%*num_requests as an integer number  

 for (j=1 to cross point) do 

  cross first chromosome genes with second chromosome genes 

  Place children chromosome in the new pop 

 endfor  

endfor 
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Figure 8: The Cross-Point within a Chromosome 

 

4.2.4 Mutation.  The mutation operator in the GA is used to implant small changes 

within the chromosomes after the crossover. This mutation operation is performed on 

the chromosomes by simply changing the allocation of a request from one resource to 

another one, as shown in Figure 9. In this case, the mutation shown in Figure 9 is 

changing the allocation of request 2 (R2) from resource 2 (S2) to resource 3 (S3). 

 

 

Figure 9: Mutation Operation  

  

 The mutation is the GA is implemented as shown in Table 10. It is important to 

note that the changes are not performed at the population level, i.e. the population is 

not mutated as a single 2-D array in different multiple locations. The mutation is 

performed at the chromosome level which means all chromosomes are scanned and 

each chromosome is selected and mutated individually and independently. Each 

chromosome is mutated based on a probability of 25% which means not every 

chromosome in the population will get mutated. If a chromosome is selected for 

mutation, the GA implants a number of changes defined by NUM_MUTATIONS. For 

each mutation operation, a random request is selected and re-allocated into another 

resource that is also selected randomly. The mutation algorithm repeats this process by 

the number of mutations defined by NUM_MUTATIONS. 
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Table 10: Mutation 

Algorithm: Mutation  

Inputs: Population Size (pop_size), Population (pop), Number of Requests (num_requests), Number 

of Resources (num_resources) 

Outputs: Mutated Population (pop) 

 

for (i = 1 to pop_size) do 

 if ((rand() % 4)=0) then      

  for (j = 1 to NUM_MUTATIONS ) do 

   Chose a request randomly from the pool 

   Deallocate the selected request from all resources 

   Chose a resource randomly from the pool 

   Re-allocate the selected request to the selected resource 

  endfor 

 endif  

endfor 

 

4.2.5 Feasibility Check.  After each mutation and crossover, the GA needs to 

check the feasibility of all chromosomes in the population. To do that, the GA examine 

for two constraints. The first constraint is to make sure that each request must be 

allocated into one and only one resource and the second constraint is satisfying the 

deadline requirements modeled in equation (6) and equation (9). To test the first 

constraint, as show in Table 11, the GA sums each request chunk. The request chunks 

are divided as shown in Figure 10. A request chunk is a vector that maps each request 

to an only one resource as stated in the model formulation. This means a request chunk 

vector must be all zeros with a single one if the request is allocated in one resource and 

hence the summation should equal to 1. In case a request is allocated into more than 1 

resource, the summation will not be equal to 1. 

If a request is allocated into more than one resource, the chromosome will be 

flagged as infeasible and the algorithm continues checking for another chromosome. 

For testing the deadline requirement, the algorithm compares the service latency 

assigned to each request to its deadline. If the service latency is greater than the deadline 

requirement, the chromosome will be flagged as infeasible and the algorithm continues 

to check another chromosome. The latency and the fitness of each chromosome is 

evaluated in section 4.2.6. 
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Table 11: Feasibility Check 

Algorithm: Feasibility Check  

Inputs: Population Size (pop_size), Population (pop), Number of Requests (num_requests), Number 

of Resources (num_resources) 

Outputs: Population with Feasibility Check (pop) 

 

for (i=1 to pop_size) do 

 for (j=1 to num_requests) do 

  Calculate the request chunk sum 

  if (request chunk sum =  1) then 

   Feasibility of the selected request is positive 

  else  

   Feasibility of the selected request is negative and continue  

  endif 

 endfor 

 for (j=1 to num_requests) do 

  if (latency of request <= deadline of request) then 

   Feasibility of the selected request is positive  

  else  

   Feasibility of the selected request is negative and continue 

  endif 

 endfor  

endfor 

 

 

 

Figure 10: Request Chunks for Feasibility Check 

 

4.2.6 Fitness Calculation.  In this function, the GA considers calculating the 

fitness values for each chromosome. This part of the algorithm is implemented as 

shown in Table 12. The GA starts by scanning all chromosomes within the population. 

For each chromosome, it loops through the requests and the resources while it calculates 

the processing time, the transmission and queuing time, and the starting time for each 

request (refer to equation (4), equation (5), and equation (7)). Then, the GA looks into 
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the resources one by one and it extracts the requests indices that are allocated in each 

resource and their count. This is followed by the execution phase where the algorithm 

executes the requests in sequence in a random order. This is to consider the assumption 

in the model that states each resource can process only one request at a time (refer to 

equation (6)). After execution, each request latency is calculated individually and used 

to calculate the overall weighted latency by multiplying each request latency by its 

priority (refer to equation (3)).  

4.3 GA Experimentation 

 Before using the genetic algorithm in a real-time simulation environment, 

different GA parameters within the implementation were studied. The most important 

two parameters within the GA implementation are: population size (U) and termination 

counter (T). These two parameters have a direct impact on the solution quality and 

runtime. The runtime is the time the algorithm keeps running to come up with a 

solution.  The solutions quality of the GA is also studied in this section by comparing 

it to the exact optimal solution obtained from Lingo.  

4.3.1 Population Size, U. The GA population size, U, is one of the most 

important parameters of almost every GA implementation. Optimizing the population 

size is crucial because increasing it has a direct impact on the algorithm solution quality 

and runtime as well.  

 In this experiment, the objective is to study the population size versus solution 

quality which is the overall latency, LT, and runtime, RT. Different scheduling problem 

sizes were experimented to insure that the population size that will be selected is 

suitable to solve different size problems. The scheduling problem size, referred to as N, 

is defined as the number of requests and resources, regardless their parameters. The 

problems’ sizes experimented namely are: 40 requests and 10 resources (40/10), 60 

requests and 20 resources (60/20), 80 requests and 30 resources (80/30), 100 requests 

and 50 resources (100/50), as shown in Figure 11 and Figure 12. It is very important to 

note that these scheduling problems are totally independent and they are not related to 

each other. The parameters of these scheduling problems are set as follows: requests 

generation is in Poisson distribution with an inter-arrival rate mean of 2 seconds, data 

size is normally distributed with a mean of 1000 and a variance of 100, deadline is 

relaxed, and priority  is  uniformly  distributed  from  1  to  10.  On  the  other hand, the 
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Table 12: Fitness Calculation 

Algorithm: Fitness Calculation 

Inputs: Population Size (pop_size), Population (pop), Number of Requests (num_requests), Number 

of Resources (num_resources) 

Outputs: Population with Fitness Values (pop)  

 

for (k=1 to pop_size) do 

 for (j=1 to num_requests) do 

  for (i=1 to num_resources) do 

    if (x[i][j]=1) then  

     request[j].PT  = request[j].size / resource[i].speed; 

     request[j].TQT = resource[i].delta * request[j].size; 

     request[j].ST  = request[j].init_time + request[j].TQT; 

     break; 

    endif 

  endfor 

 endfor 

 for (i=1 to num_resources) do 

  Collect the count of requests assigned to each resource and their indices to req_cnt  

                             & req_array respectively  

  for (j=1 to req_cnt) do 

   Select a request from req_array randomly  

   Eliminate the selected request from req_array 

   if (request[j].ST < sTime_next) then 

    request[j].ST = sTime_next; 

   endif 

   sTime_next = request[j].ST + request[j].PT; 

   request[j].LT=request[j].ST+request[j].PT+request[j].TT- 

                                            request[j].init_time; 

  endfor 

 endfor 

 for (j = 1 to num_requests) do 

  LT += (request[j].LT * request[j]. priority); 

 endfor  

 Each chromosome fitness = 1/LT; 

endfor 

 

  



 

50 

 

resources processing power is normally distributed with a mean of 200 and a variance 

of 25. Their average delays are also normally distributed with a mean of 50 milliseconds 

and a variance of 10 milliseconds. The deadline requirements are relaxed because the 

objective of this experiment is to study the objective value only. The number of missed 

deadline requests is not a concern in this experiment. 

 In this experiment, the objective is to study the population size versus solution 

quality which is the overall latency, LT, and runtime, RT. Different scheduling problem 

sizes were experimented to insure that the population size that will be selected is 

suitable to solve different size problems. The scheduling problem size, referred to as N, 

is defined as the number of requests and resources, regardless their parameters. The 

problems’ sizes experimented namely are: 40 requests and 10 resources (40/10), 60 

requests and 20 resources (60/20), 80 requests and 30 resources (80/30), 100 requests 

and 50 resources (100/50), as shown in Figure 11 and Figure 12. It is very important to 

note that these scheduling problems are totally independent and they are not related to 

each other. The parameters of these scheduling problems are set as follows: requests 

generation is in Poisson distribution with an inter-arrival rate mean of 2 seconds, data 

size is normally distributed with a mean of 1000 and a variance of 100, deadline is 

relaxed, and priority is uniformly distributed from 1 to 10. On the other hand, the 

resources processing power is normally distributed with a mean of 200 and a variance 

of 25. Their average delays are also normally distributed with a mean of 50 milliseconds 

and a variance of 10 milliseconds. The deadline requirements are relaxed because the 

objective of this experiment is to study the objective value only. The number of missed 

deadline requests is not a concern in this experiment. 

 The experimented population size starts from 1 up to 10, then it jumps to 15 and 

steps by 5 up to 100. We tried to be accurate within the range from 1 to 10 because the 

change is dramatic in this range. Since GA has a stochastic nature for finding the 

heuristic solutions, each experiment is repeated 5 times and the average is taken. The 

termination counter for this experiment is set to 50 (the termination counter is an 

important parameter and it will be studied in more details in section 4.2.2).  

 Figure 11 shows the fitness or latency versus the population size while Figure 

12 shows the runtime versus the population size. Be reminded that, the objective is 

minimizing the latency.  It can be noticed in Figure 11 that as the population size is 

increased, better minimized latency solutions are obtained, for all different scheduling 
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problem sizes. The drop can be seen very clearly in the curve starting, between 

population size 1 and 10. It can also be observed that all solutions stabilize (to a great 

extent) in around a population size of 60. It is also essential to note that the objective 

solutions or the objective latencies for these different sizes problems are not related to 

each other because they are different in size and they have different or independent 

attributes. In other words, the larger scheduling problem does not mean larger latency 

value. As can be seen in Figure 11, the problem with N=100/50 has less latency than 

the one with N=60/20. 

 Figure 12 shows the runtime versus the population size. It can be noticed that, 

as the population size increases, the runtime also increases. At this point, it can be 

understood that increasing the population size gives better and fitter solutions, however, 

at the expense of runtime. This indicates the importance of choosing a population size 

that gives fitter solutions and at the same time doesn’t take long runtime. The second 

observation in Figure 12  is, as the problem size increases, the times it takes to find the 

best solution increases. As can be seen, the problem with N=100/50 has the largest 

runtime compared to the others, while the one with N=40/10 has the smallest. 

Increasing the problem size directly increases the number of loops and iterations within 

the GA implementation.  

 

  

Figure 11: Overall Latency versus Population Size 
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Figure 12: Runtime versus Population Size 

 

4.3.2 Termination Counter, T. The termination counter, referred to as T, is 

the number of iterations the GA performs looking for better solutions before it 

terminates. If the GA consumes the number of iterations without finding a better 

solution than the best so far, it terminates. If it finds a better solution, it resets the 

counter to zero. This parameter has a direct impact on the algorithm solution refinement 

and runtime. This means, increasing the termination counter refines and improves the 

solution as it gives the algorithm more space and number of trials to find better 

solutions. However, it increases the runtime as it iterates more.  

 In this experiment, the objective is study the termination counter versus the 

solution quality and runtime as well. The same 4 different sizes scheduling problems 

used in section 4.2.1 are again used for this experiment. The experimented termination 

counter starts from 1 up to 40. Since the GA has a stochastic nature for finding the 

heuristic solutions, each experiment is repeated 5 times and the average is taken. The 

population size is set to 60 for this experiment as concluded in the last experiment.  

 Figure 13 shows the fitness function or latency versus the termination counter 

while Figure 14 shows the runtime versus the termination counter.  From Figure 13, it 

can be noticed that, increasing the termination counter refines the solution for all 

different scheduling problems. It can also be seen that after 25 or 30 iterations, the 

solution stabilizes to a great extent. This means the objective value is not improving 
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anymore. Figure 14 shows that increasing the termination counter directly increases the 

runtime of the algorithm. This is intuitive as increasing the termination counter gives 

the algorithm extra more iterations and hence more runtime before termination.  

 

 

Figure 13: Overall Latency versus Termination Counter 

 

 

Figure 14: Runtime versus Termination Counter 
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 After studying the population size and the termination counter of the GA 

algorithm, the population size is set to 60 and the termination counter is set to 20 as 

seen in Figure 11, Figure 12, Figure 13, and Figure 14. After these chosen values, the 

objectives stop improving and any extra iterations are not useful. Then the actual 

solutions convergence are plotted for the same 4 scheduling problems as shown in 

Figure 15. 

 

Figure 15: Overall Latency Convergence through the GA Iterations 
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 To do the comparison, Different scheduling problems with different sizes were 

experimented. However, small size scheduling problems were chosen for the 

experiment. Lingo, being an exact solution tool, takes very long time to come up with 
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an optimal solution. Moreover, the problem is modeled to be non-linear in the integer 

programming modeling. The objective functions and some constraints are non-linear.  

The model being non-linear means that there are variables that are multiplied with each 

other in the ILP model. Lindo, Lingo software developer company, is stating “In 

general, Integer Nonlinear models are very difficult to solve for all but the smallest 

cases” [49].  

 The sizes of the experimented scheduling problems in terms of the number of 

requests and resources (N) are: 4/2, 6/2, 8/2, 12/2, 8/3, and 10/3, as shown in Figure 16 

and Figure 17. The parameters of these problems are chosen randomly and not based 

on any distribution or pattern. Figure 16 shows the solution quality (latency in 

milliseconds) for both B&B and GA.  It can be noticed that the exact solution and 

heuristic solution are very close to each other. Figure 17 shows the runtime for the 

experimented problems.   

 

 

Figure 16: Overall Latency Comparison between Heuristic and Exact Methods 

0

20

40

60

80

100

120

140

160

180

Lingo GA Lingo GA Lingo GA Lingo GA Lingo GA Lingo GA

4,2 6,2 8,2 12,2 8,3 10,3

18.97 18.97

166.05166.97

90.29 94.1

12.11 14.95

63.6 64.71

20.42 21.66O
v
er

al
l 

L
at

en
cy

, 
L

T
(S

ec
o

n
d

s)

Scheduling Problems Size N (# of Requests , # of Resources)



 

56 

 

 

Figure 17: Runtime Comparison between Heuristic and Exact Methods 
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Chapter 5. Simulation and Results  

 A simulation model from the formulated model is developed using the discrete 

event simulator SimEvent. SimEvents provides a discrete-event simulation engine and 

components library for analyzing event-driven system models.   

 The simulation is built based on edge-fog-cloud 3-layered architecture as can 

be seen in Figure 18. At the edge layer, requests get generated in a specific distribution 

and inter-arrival time. Each generated request is associated with its attributes defined 

in the model. Then, the requests move from edge layer heading towards the upper two 

layers, fog and cloud, where they experience some small delay. This small delay 

represents the network gap between the edge layer and the upper two layers.  

 

Figure 18: Edge-Fog-Cloud 3-Layered Simulation Setup 

   

 The upper two layers contain the cloud and fog resources or servers. All 

requests, on their way to these servers, get received in the GA scheduling algorithm. 

The GA scheduling algorithm developed in the previous chapter is rewritten in C 

language and integrated with SimEvents environment to help scheduling requests as 

they arrive. The GA scheduler receives requests within specific defined time frames 

and it runs the GA to find the scheduling solutions and dispatches the requests 
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accordingly. Within any time frame the GA scheduler can receive any number of 

requests as long as it does not exceed the maximum number the GA can handle. 

Requests arrival distribution and rate define the number of requests that get received in 

a time frame.  

 Initially, the resources in the simulation start as free resources, but as time 

proceeds and requests get processed or served, the resources are not assumed to be free 

anymore. This means, the GA has to be provided with the number of resources available 

and their attributes defined in the model. The GA runs and finds scheduling solutions 

and it keeps information and predictions about the resources status. The status is used 

to describe the time in which the resource will be busy processing other requests. For 

instance, if a resource is busy executing a request for 1 hour long, it will be more 

beneficial to take that into consideration and utilize other free resources that can provide 

less latency. However, the predicted status is not guaranteed to be true. The resources 

status is very important, because it is taken as an input to the GA algorithm alongside 

with the resources and requests attributes. It makes sense to not allocate requests within 

a resource that will be busy processing some other requests. Be reminded that 

preemption is not allowed in the model.    

 The resources attributes defined in the model are the processing power or speed 

and the average delay. The GA solver assumes all requests packets will be delayed by 

only the average value as it evaluates the delay and hence the latency beforehand within 

the algorithm. However, in the simulation environment, the actual delay per packet can 

be the same as the average value or different based on the distribution used. The 

transmission and queuing delay distribution is set to be Gaussian with specific mean 

and variance. When a request is sent to a specific resource to get served and it reaches 

the resource, if the resource is free and the waiting queue is empty, the request gets 

served or processed right away, otherwise it gets pushed into a waiting queue and served 

as soon as the resource becomes free. 

5.1 GA validation in SimEvents 

In this experiment, the GA scheduling algorithm is validated or verified to make 

sure that it works properly in optimizing the latency. To do that, the GA optimizer is 

observed for a simple and easy-to-follow resources setup. In other words, the GA is 

tested for a resources setup that have attributes (processing speed and average delay) 
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going in ascending or descending order. In this way, the GA behavior can be observed 

and judged by monitoring the number of requests allocated and served in each resource.  

The validation involves a system that has 16 servers numbered from 1 to 16. Server 

number 1 is set to be the slowest server and server 16 is set to be the fastest one. The 

processing speed is started by 100 packets per second for server 1 and gets increased 

by 100 for the rest of the servers. This means server 2 speed is 200, server 3 speed is 

300, up to server 16 which has a speed of 1600 packets per second. The processing 

speed setup is fixed throughout this experiment. 

On the other hand, the average delay (𝛿𝑖) for each server at the beginning is set to 

be equal for all the 16 servers as 1 millisecond, for the first experiment. The first 

experiment is followed by other 2 experiments in which the average delays are changed. 

In experiment 2 and 3, the average delays are changed with a “common difference” of 

10% and 80% respectively in an arithmetic series fashion. The common difference 

percentage is referred to by α. This means, for experiment 2, as an example, server 1 

average delay is 1 millisecond, server 2 average delay is 1.1 milliseconds, and server 3 

average delay is 1.2 milliseconds, up to server 16 with an average delay of 2.5 

milliseconds. Server 1 will be the closest while server 16 will be the furthest. In 

experiment 3, the average delays are changed in the same manner but using a common 

difference of 80%. 

The purpose of having such setup is to observe the number of requests allocated in 

each one of the 16 servers, in each experiment.  As the server’s attributes are set in 

ascending order, the optimizer behavior can be judged if it works properly as the 

powerful and closest servers are known. A total of 500 requests is used in the 3 

experiments with an average size of 3000 packets with the same priority level. The 

deadline requirements are relaxed as the objective is not to evaluate the latency. The 

requests arrival rate is 1 request per second in a Poisson distribution. The GA optimizer 

receives requests and schedules them within a time frame of 5 seconds.  

Figure 19 shows the number of requests allocated or served in each of the 16 

servers as percentages. As can be seen, in experiment 1 where the average delay 

common difference is 0%, the optimizer looks into accommodating more requests in 

the higher 8 resources since they are more powerful. In experiment 2, as the average 

delays for servers are increased in an ascending order by a common difference of 10%, 

the higher 8 resources become a little far, despite their high processing speed. In this 
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case, the optimizer tends to accommodate more requests in the middle region where 

there are servers with moderate processing speed and average delays. In the third case, 

the higher 8 servers become too far and it becomes not feasible anymore to use them 

for serving requests. In this case, the optimizer tends to allocate more requests in the 

closer lower resources as they have less delays. It deserves mentioning in this last case, 

experiment 3, the average delays are set deliberately using a high common difference 

of 80% so that the high average delays for the higher 8 servers overcome their high 

processing speed.  

 

 

Figure 19: Analyzing the Number of Requests Allocated in Each Resource 

5.2 Static Scheduling 

 In this experiment, the performance of the GA is evaluated in static scheduling 

mode in terms of two metrics: The overall average service latency and the number of 

missed-deadline requests.  In static mode, the inter-arrival time between requests is 

removed and all requests are assumed to be generated at time 0 as one batch.  In this 

experiment, the GA scheduler performance is compared to other traditional scheduling 

algorithms. These algorithms namely are WFQ, PSQ, and RR.  

 Waited-fair queuing and priority-strict queuing algorithms classify requests into 

priority classes at the output queue. Each priority class has its own queue. PSQ chooses 

requests from the highest priority class that has a nonempty queue. The choice among 

requests in the same priority class is typically done in a First-In-First-Out (FIFO) 

manner. On the other hand, WFQ uses a round robin scheduler to alternate selection 
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among the classes using a defined weight for each class. Since both WFQ and PSQ are 

priority based algorithm, the allocation in both of them is carried out based on priority, 

with high requests going to more powerful servers. The implementation for Round 

Robin algorithm is just allocating requests within resources in a Round Robin fashion. 

 This experiment involves a set of 16 servers with an average processing speed 

of 500 packets per second, but very widely distributed from 50 to 1000. The servers’ 

average delays are set to an average of 5 milliseconds per packet. It is also very widely 

distributed from 1 millisecond up to 9.7 millisecond.  

 A total of 100 requests is used in the experiment. These requests are generated 

at time 0 with no inter-arrival time as mentioned earlier. The priorities are set to be 

uniformly distributed from 1 to 16. The deadline requirements are set to be 400 seconds 

on average with a variance of 50.  

 The objective of this experiment is to study the overall average service latency 

and the number of missed-deadline requests using different scheduling algorithms, GA, 

WFQ, PSQ, and RR. These two aspects are studied versus requests average data size 

while other attributes are not changed. Initially, the average data size starts from a small 

value in a way that makes requests deadline requirements very loose and zero requests 

miss their deadlines. Then, the average data size is increased to observe the impact on 

the overall latency and number of missed-deadline requests. 

 Figure 20 and Figure 21 show the average overall latency and the number of 

missed-deadline requests versus requests average size, respectively. As can be seen in 

Figure 20, the GA achieved better overall latency than the rest of the algorithms. WFQ 

and PSQ results are very close to each other since the allocation of requests within 

resources in both of these algorithms is achieved based on priority, however the 

dispatching is different.  RR achieved the highest latency time and the reason behind 

that is the way requests get allocated in an RR fashion as without considering requests 

priorities. In Figure 21, it can be seen, the GA keeps the record clean of missed-deadline 

requests for longer time than the other algorithms. However, at an average size of 6500 

the amount of data within each request becomes so heavy and the GA cannot guarantee 

meeting all requests deadlines as their service latency increases and their deadlines 

become very critical.   

 As shown in Figure 20 and Figure 21, it is important to mention that, within all 

the experimented data sizes using the GA, the latter was able to come up with a feasible 
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schedule solution in which all requests deadlines should be met. However, the 

simulation results show that it is not guaranteed that all requests will be met even if the 

evaluated GA scheduling solution is feasible. This can be seen in Figure 21 between 

6000 and 8000 average data size. After a data size of 8000, the problem becomes 

infeasible and hence the GA cannot find a feasible schedule. This is true in the 

simulation because the actual delay per packet can be different from the average delay 

the algorithm assumes.  

 

 

Figure 20: Overall Latency versus Data Size in Static Scheduling 

 

5.3 Average Data Size Breaking Point 

 The objective of this experiment is to study requests average data size in which 

the GA will not be able to meet all requests deadlines using a specific setup of resources. 

As seen in the previous experiment, the resources available in the experiment could not 

meet all requests deadline requirements after an average size of almost 6000 packets. 

This data size breaking point is defined as the average data size after which the GA 

scheduler starts losing the ability to meet all requests deadlines. 
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Figure 21: Missed-Deadline Requests versus Data Size in Static Scheduling 

 

 The experiment involves the same requests and resources setup used in the 

previous experiment. The breaking point is studied versus the resource attributes in 

terms of processing speed and average delay. P0 is set to be 250 while 𝛿 0̅̅ ̅̅  is set to be 

0.005. These two attributes will be increased and decreased in ratios in order to see their 

impact on the breaking point.  

 Figure 22 shows the average data size breaking point versus the processing 

speed and the average delay. As can be seen, increasing the processing speed allows 

processing more data as they will experience less latency. It can also be seen that 

decreasing the average delay will rise the breaking point higher because less average 

delays provide less latency. However, from the figure, it can be noticed that the 

algorithm is more sensitive to the average delay than the processing capacity. This 

means for a specific average delay, at some point increasing the processing speed will 

not be beneficial as much as decreasing the average delay. This is true because the 

average delay is a bottleneck in the model. 
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Figure 22: The GA Breaking Point versus Processing Speed and Average Delay  

5.4 Dynamic Scheduling 

 In this experiment, the performance of the GA is evaluated in dynamic 

scheduling for the same two metrics studied in the static; the overall average service 

latency and the number of missed-deadline requests. In dynamic scheduling, requests 

are generated using a specific distribution and inter-arrival rate. On top of that, 

rescheduling feature has been also added into this experiment setup. As requests get 

received in time frames to get scheduled, any requests that are not dispatched yet will 

be rescheduled or reconsidered in the new schedule. The GA performance is compared 

to the other networking scheduling algorithms, WFQ, PSQ, and RR. 

 This experiment involves the same resources setup from the previous 

experiment. However, the number of requests is increased to 500 requests since the 

scheduling is dynamic and the objective is to evaluate the latency in a real-time manner. 

The requests are generated in a Poisson distribution with an inter-arrival mean of 1 

second. The priorities are set to be between 1 and 16 in a uniform distribution. The 

deadline requirements on average are set to 200 seconds with a variance of 50. The time 

frame in which the resources get scheduled in is 10 seconds. The average request data 

size will be changed in the experiment from 1000 up to 10000 packets.  

 Figure 23 and Figure 24 show the overall average latency and the number of 

missed-deadline requests versus the average data size, respectively. As can be seen in 
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Figure 23, the GA achieved the best overall latency compared to the other algorithms. 

WFQ and PSQ results are very close to each other, however, the difference increases 

by increasing the average data size. On the other hand, Figure 24 shows that the GA 

achieved 0 missed-deadline requests if requests data size is less than 5000 packets on 

average. At an average size of 5000, while GA achieved 0 missed requests, WFQ and 

PSQ lost almost 10% and RR lost 6% missed requests. After this point, most of the 

requests deadline requirements become very critical and some of them even infeasible. 

For this reason, the GA also starts missing requests.  

5.5 Cloud versus Fog Computing Comparison 

In this experiment, the objective is to evaluate the service latency provided by 

resources setup that have cloud characteristics and fog computing characteristics. In 

general, cloud resources are powerful with high processing capabilities, but at the same 

time they have large average transmission and networking delay. Conversely, fog 

resources do not have rich processing power but they provide smaller average delay 

since they exist closer to the edge.  This experiment gives a clear notion about cloud 

and fog resources from a design perspective, whether it is more beneficial to put very 

powerful resources at cloud layer or to put much less powerful resources closer to 

requests sources in fog layer.  

In order to design a resource set that is able to serve a set of requests with a 

minimized latency, there are three parameters on the formulated model that need to be 

taken into consideration: 

1- The average delay, 𝛿̅. 

2- The processing speed, P. 

3- The number of resources, m.    

The impact of each one of these 3 parameters on the service latency is studied 

independently. In other words, they are studied separately by fixing two of them and 

varying only one. For instance, to study the average delay impact, the processing power 

and number of resources are fixed.  

The latency that can be achieved by varying these parameters is evaluated against 

a system that has a cloud characteristic. This cloud setup has a set of 4 super cloud 

servers with a  very  high  processing  capability  of  5000  packets per second. However,  
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Figure 23: Overall Latency versus Data Size in Dynamic Scheduling 

 

 

Figure 24: Missed-Deadline Requests versus Data Size in Dynamic Scheduling 
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 To evaluate the latency, a total of 500 requests is used in this set of experiments. 

Their arrival is in Poisson distribution with an inter-arrival mean of 1 second. Requests 

priorities are set to be equal. The deadline requirements are relaxed in this experiment 

since the objective is to evaluate the service latency, not the number of missed requests. 

The latency is studied versus the average data size which will be changed from 1000 

packets to 10000 packets.  

5.5.1 The Average Delay Ratio, 
𝛿̅𝑓

𝛿̅𝑐
.  In this experiment, the latency of a set 

of fog computing servers is studied and compared to the latency provided by the Cloud 

setup described in this section. The fog servers’ average delay is varied while their 

number and processing power are fixed. The number of fog servers is set to be 4 times 

the number of cloud server, 
𝑁𝑓

𝑁𝑐
= 4. Their processing power is only 10% or their cloud 

peers, 
𝑃𝑓

𝑃𝑐
= 10%. The average delay, 

δ̅𝒇

δ̅𝒄

, will be changed to 1%, 10%, 20%, 50% and 

85%. Figure 25 shows the latency results of fog computing compared to cloud 

computing for different average delays. As can be seen, reducing the average delay has 

a significant impact on the service latency even if the resources processing capability 

is poor. It can be noticed also that increasing the average delay of fog computing at 

some point breaks the cloud computing latency since fog computing has lower 

processing speed. For instance, for an average data size of 5000, fog computing latency 

crosses cloud computing latency when , 
δ̅𝒇

δ̅𝒄

 = 85% for the specified 
𝑁𝑓

𝑁𝑐
  and 

𝑃𝑓

𝑃𝑐
. This 

breaking point will be studied in more details in the next experiment.  

5.5.2 The Processing Speed Ratio, 
𝑃𝑓

𝑃𝑐
. The objective of this experiment is to 

study the impact of the processing capability of fog computing on the service latency. 

To do that, fog servers processing power is varied while their number and average delay 

are fixed. The number of fog servers is set to be 4 times the number of cloud servers, 

𝑁𝑓

𝑁𝑐
= 4. Their average delay is 10%, 

𝛿̅𝒇

𝛿̅𝒄

= 10%. The processing power, 
𝑃𝑓

𝑃𝑐
, will be 

changed to 3%, 5%, 7%, 10% and 20%. Figure 26 shows the latency results of fog 

computing compared to cloud computing for different processing power ratios. The 

figure shows that if fog computing has 4 times the number of resources of cloud 

computing and their average delay is reduced by 10 times, the processing capability can 
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be reduced and slowed down up to 5% and it will still provide better latency than cloud 

computing does. 

 

Figure 25: Latency of Fog Compared to Cloud by Varying Average Delay 

 

 

Figure 26: Latency of Fog Compared to Cloud by Varying Processing Power 
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5.5.3 The Number of Servers Ratio, 
𝑁𝑓

𝑁𝑐
. The objective of this experiment is 

to study the impact of the number of fog servers on the service latency. To do that, the 

number of fog servers is varied while their processing power and average delay are 

fixed. Their average delay is set to 10% of cloud computing average delay, 
δ̅𝒇

δ̅𝒄

= 10%. 

Their processing power, 
𝑃𝑓

𝑃𝑐
, is set to 10% as well. Their number, 

𝑁𝑓

𝑁𝑐
, is varied to 1, 1.5, 

2, 3, 4, 6, and 8. Figure 27 shows the latency results for this experiment. It is evident 

that the minimum 
𝑁𝑓

𝑁𝑐
 ratio can achieve better latency than cloud computing is 1.5. 

From the last three experiments, it can be seen that the latency performance of 

fog computing at some point crosses the cloud computing latency line. This happens in 

all the three cases, where fog computing average delay is increased much or processing 

power is decreased much or the number of servers is reduced significantly. In this 

experiment, the objective is to find these breaking points in terms of the 3 ratio 

parameters 
δ̅𝐟

δ̅𝐜

, 
Pf

Pc
, and 

Nf

Nc
 for a specific average size of 5000 packets. Figure 28 shows 

the results of the experiment. 

 

 

Figure 27: Latency of Fog Compared to Cloud by Varying Number of Resources 
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In conclusion, this work focused on modeling the edge-fog-cloud 3-layered 

architecture using ILP concepts. ILP has been involved in order to deliver optimal 

solutions and not just random solutions for scheduling the IoT requests within fog and 

cloud computing resources. The optimized service latency obtained from the GA is 

compared to non-optimized scheduling algorithms (WFQ, PRI, and RR) and the results 

showed the improvement in different scheduling scenarios with respect to service 

latency and satisfying deadline requirements. The experiments in section 5.5 show the 

significance of integrating fog computing with cloud computing. Fog computing is 

generally characterized by having small communication delay and wide spatial 

coverage. This allows using small-size low-power fog computing resources and it 

provides even better service latency than using cloud computing only. The experiments 

results give to what limit exactly fog computing with such characteristics can provide 

the better latency when it crosses the service latency of cloud computing. 

 

 

Figure 28: Break Points of Fog and Cloud Computing Latency 
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Chapter 6. Conclusion and Future Research 

6.1 Conclusion 

 This research addressed the scheduling of Internet of Things (IoT) requests into 

resources available at both fog and cloud computing layers. The problem is modeled 

using integer programming where the objective is to optimize the service latency and 

provide minimum service time for the IoT requests. The service latency is defined as 

the Round-Trip Time (RTT) for serving or processing an IoT request from the moment 

it gets initiated to the moment it gets completely processed and the results are returned 

back to the requesting device. This latency includes many delay components such as 

transmission delay, routing or queuing delay, propagation delay, processing time, and 

waiting time in case the resources are busy. The IoT requests are characterized by 

having attributes such as creation time, data size, priority, deadline, and dependency 

constraints. On the other hand, the resources are defined in terms of the processing 

capability and the average delay per packet to reach the resource. The objective function 

in the scheduling problem is to find the schedule that can give the least weighted overall 

latency. The weighted latency is calculated by the summation of multiplying each 

request weight by its latency component. This way, the model will give the least latency 

possible for requests with high weights represented in their priorities.   

The model is solved and validated using Lingo software to illustrate its solution 

and behavior. Lingo is set to use Branch-and-Bound as an exact algorithm for solving 

the model. All scheduling problems that are solved using Lingo are small-sized 

problems since the scheduling problem is proved to be an NP-hard problem [49]. For 

this reason, using exact methods is not efficient to solve large size problems. Therefore, 

Genetic Algorithms (GA) is developed as a heuristic approach to find feasible solutions 

with a good quality in a reasonable computational time. The GA is studied and 

evaluated on different problems with different sizes in order to estimate the effects of 

the model’s different parameters and how they can be tuned properly. After developing 

the GA, a comprehensive comparison is performed between the exact solutions 

obtained from Lingo and the heuristic solutions obtained from the GA.  

 As a methodology to prove the efficiency of the GA algorithm in a real-time 

environment, the Edge-Fog-Cloud 3-layered architecture in a Matlab tool named 

Simevents is developed. The GA scheduler is integrated with SimEvents environment 
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to help scheduling requests as they arrive. The service latency provided by the GA is 

then compared to other traditional scheduling algorithms in computer networking. 

These algorithms namely are waited-fair queuing (WFQ), priority-strict queuing (PSQ), 

and round robin (RR).  

6.2 Future Research  

This work can be improved by extending the model in order to consider other 

attributes and characteristics in edge, fog and cloud computing environments. For 

instance, the resources attributes can be extended to cover attributes such as resource 

speed and architecture, storage capacity, storage speed, memory capacity, and types of 

operating systems. The resources might be modified to have the ability to process more 

than one request at a time. Preemption might be allowed also in order to be able to 

modify schedule solutions with more flexibility. Requests can also be extended to have 

more than one operation or task per request. As it is in this model, each request has only 

one task to perform. Requests can also have location constraints that a request must be 

served in a specific resource. The objective function can also be extended to include 

objectives like resource utilization, network utilization, and energy consumption. 

Generally, fog computing paradigm and its relevance to IoT and cloud 

computing is a promising technology in the future. Its paradigms integration can foster 

a number of computing and network-intensive pervasive applications under the 

incoming realm of the future internet [16]. 
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