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Abstract  

Autonomous Underwater Vehicles (AUVs) have become an indispensable tool that is 

employed by an array of fields. From the inspection of underwater cables and pipelines, 

to the monitoring of fish pens and coral reefs, to the detection and disposal of mines, 

and to the executing search and rescue operations, AUV research and development has 

received a lot of attention. This thesis is concerned with the mathematical modeling of 

an underactuated AUV to execute its missions. The modeling task entails identification 

of the numerous parameters of the vehicle. A finite element analysis software was used 

to estimate the parameters describing drag and hydrodynamic mass phenomena. While 

the proposed underactuated configuration promotes the deployment of more energy-

efficient vehicles, this configuration imposes complications on the guidance and motion 

control tasks as the vehicle becomes constrained in the way it can reach certain 

positions or perform certain motions (anholonomy). To tackle this trajectory tracking 

guidance problem, a model-based controller that overcomes the underactuated nature 

of the vehicle was designed. This controller was further enhanced by the novel 

development and application of a Universal Adaptive Stabilizer-based adaptation law 

that aims to minimize controller effort, reject noise, and provide robust trajectory 

tracking. The adaptation is governed by a statistical management system to ensure 

proper operation in a noisy underwater environment. Moreover, the navigation problem 

is touched upon by implementing a sensor fusion algorithm to estimate the vehicle state 

in its noisy environment. The algorithm investigates an Extended Kalman Filter as well 

as an Unscented Kalman Filter to fuse the available information from sensors with the 

modeled dynamics of the vehicle and provide better estimates of the vehicle state. 

Additionally, the hardware and software was integrated in a Robot Operating System 

setting, and a Gazebo-based simulation environment that enables the visual depiction 

and testing of algorithms on the considered AUV was developed. The parameter 

identification methodology compared well to published analytical and empirical forms, 

the proposed adaptation law outperformed traditional techniques like Adaptive 

Proportional Controllers, and the gain management system demonstrated excellent 

potential at maintaining stable operation of the vehicle in very noisy environments. 

Keywords: Autonomous Underwater Vehicle; Modeling; Underactuated Systems; 

Adaptive Control; State Estimation; System Identification; Robot Operating System 
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Chapter 1. Introduction 

Underwater vehicles have progressed a lot over the course of the past 70 years. 

Research and development of Underwater Vehicles (UVs), however, has lagged behind 

when compared to aerial vehicles, land vehicles and watercrafts. Numerous problems 

hindering the deployment of underwater vehicles are still considered unsolved when 

compared to the other vehicles. Primarily is the problem of accurate localization 

underwater. Vehicles operating above sea level make use of the Global Positioning 

System (GPS) in localization and velocity estimation tasks; on the other hand, the high 

frequency nature of the electromagnetic waves of GPS causes conductive seawater to 

attenuate it heavily and hinder its utility. Other more costly techniques are used to 

localize UVs, but those techniques run into limitations when it comes to accuracy 

and/or the effective span of the space they can cover. Further, many classes of 

autonomous underwater vehicles are underactuated, which gives rise to nonholonomic 

constraints on the kinematically admissible motion of the vehicle. Consequently, the 

control process becomes nontrivial in the sense that nonlinear approaches are 

sometimes required, for stabilization through time-invariant static state-feedback is not 

generally possible. Other issues affecting the development of underwater vehicles 

include the high cost of equipment, the high-pressure nature of the environment, and 

the high cost maintenance required to keep the vehicles operational. 

This chapter introduces the different types of Underwater Vehicles (UV), their 

use in the industry, and the difficulties associated with their deployment. It then presents 

the problems investigated in this work as well as the contribution. Finally, the 

organization of the thesis is presented. 

1.1. Overview 

UVs can be split into two categories; manned vehicles and unmanned vehicles. 

The former includes submarines as well as atmospheric diving suits, and the latter 

includes Remotely Operated Vehicles (ROVs), Autonomous Underwater Vehicles 

(AUVs), and Hybrid Vehicles. The last category can either be man-operated or 

autonomous. The several types of UVs are deployed in many industries today for 

various purposes. Those uses are summarized adequately by the Department of Navy 

for Research, Development and Acquisition of the United States. Categorized under 
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defense purposes, UVs can perform intelligence, surveillance and reconnaissance 

missions, mine countermeasures operations, offence missions, inspection and 

identification tasks, oceanography surveys, payload delivery assignments, and 

information acquisition/jamming operations. Categorized under commercial uses, UVs 

are involved in offshore Oil and Gas works like rig inspection as well as underwater 

construction/welding, pipeline and undersea-cable deployment and inspection works, 

salvage operations, and monitoring and protection of aquaculture fish farms. 

Categorized under science missions, UVs are involved in oceanographic observation 

tasks and marine archaeology studies [1].  

The aforementioned missions depend heavily on the ability of the vehicle to 

locate itself with respect to the environment as well as the awareness of the surrounding 

environment. Each mission requires some types of sensor packages; to exemplify, 

aquaculture monitoring enforces that the vehicle be able to map underwater current 

movement, take environmental readings like temperatures, oxygen levels, and salinity 

of the water, and detect and localize fish swarms [2]. Some of the missions necessitate 

the vehicle to have a manipulator arm to carry the different works. Others require 

autonomy, the removal of a tether, and high endurance to be deployed for extended 

periods of time. Consequently, it is argued that all of them can make use of an accurate 

mathematical model that can describe adequately the dynamics of the vehicle. 

One of the major constituent subsystems of an Underwater Vehicle is the 

pressurized hull, which houses most of the electronics. It also protects them from the 

pressure outside, and it prevents water from seeping inside. Next is the hydrodynamic 

hull, which encases the vehicle in a shroud that enhances drag characteristics by 

allowing for a smoother and more aerodynamic water flow-path around the vehicle. 

This hull is usually made from syntactic foam, which also serves to permanently control 

the vehicle buoyancy. Buoyancy Ballast system is the subsystem that provide buoyancy 

control at any time. An example is submarine ballast tanks that can store water or 

replace it with air to adjust stability or buoyancy. The power delivery system supplies 

the vehicle with power through means of internal high capacity and power density 

batteries, or it can be delivered through an external umbilical/tether. Thrusters or 

thruster-control surface combinations are used to actuate the vehicle and steer it through 

water. Thrusters consist of motors with carefully selected propellers installed. Brushed 
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motor thrusters need to be pressure and water proofed through the design of special 

housings that are usually filled with oil. In addition, periodic maintenance in the form 

of changing the brushes of the motor is necessary. More recently, brushless motor 

thrusters have been adopted for cost-efficient underwater vehicles. They need not be 

water or pressure proofed, for they have an open design and water can seep into the 

inside of the motor. Adverse effects include a shorter lifespan of the thruster, though. 

Also, brushless motors require specialized control circuits to function properly. 

Navigation and positioning subsystems take care of localization of the vehicle as well 

as other dependent tasks like path-planning, obstacle-avoidance, and navigating the 

environment. Finally, communication links transmit data to ground station or allow 

remote operation of the vehicle. It can take a wireless acoustic form or a wired form 

through the tether interface. 

1.2. Thesis Objectives  

This research work develops a mathematical model for an underwater vehicle, 

and it utilizes the developed model in the creation of an adaptive guidance controller as 

well as a navigation filter. The derived highly-coupled nonlinear model accounts for 

various phenomena a marine craft experiences in an underwater setting. The 

aforementioned applications in section 1.1 of the vehicle model can improve the 

performance and endurance of various marine crafts working in the field. A better 

model-based control law can help minimize the control effort required to realize certain 

functionality. The proposed adaptive control low exhibits robustness to external 

environmental disturbance while requiring lower control effort when compared to a 

more traditional approach. The model-based state estimator serves as a possible 

substitute for an Inertial Navigation System (INS) for solving the navigation problem. 

1.3. Research Contribution 

This work accomplishes the following:   

• Propose a mathematical model for an underwater marine craft that is 

advantageous in automating the vehicle in its missions. 

• Perform parameter identification through means of software packages to 

describe various underwater environmental phenomena. 
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• Utilize the devised model in: 

o Devise a robust adaptive controller capable of overcoming the 

underactuated nature of the vehicle, the coupled nonlinear dynamics of 

the vehicle, and the unpredictable disturbances an underwater 

environment imposes on the vehicle. 

o Propose and implement a model-based navigation solution capable of 

providing the position and attitude of the vehicle in a reliable manner.  

• Integrate the hardware and implement the devised controller and the  in a Robot 

Operating System setting. 

1.4. Thesis Organization 

After the introduction chapter, this thesis is organized as follows:  

• Chapter 2 details the use of UVs in the industry and presents a survey of the 

practices involving UVs. It also reviews the literature available on modeling, 

parameter identification, navigation, guidance, and control of UVs. 

• Chapter 3 derives the mathematical model describing the equations of motion 

of the vehicle. 

• Chapter 4 involves in the identification process of rigid body, drag, and added 

inertia parameters of the proposed vehicle. 

• Chapter 5 proposes the guidance control strategy developed to overcome the 

underactuated nature of the underwater vehicle. It also presents the adaptation 

laws and the devised gain update algorithm.   

• Chapter 6 implements sensor-fusion algorithms that make use of the devised 

mathematical model and the information available from sensor packages to 

estimate the state of the vehicle.  

• Chapter 7 details the proposed experimental setup and sensor packages to be 

used. It also presents the architecture for hardware-software integration, and it 

showcases a Gazebo underwater environment for testing of underwater vehicle 

algorithms.  

• Chapter 8 concludes on the outcomes of this work and proposes improvements 

on future efforts in the field.  
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Chapter 2. Background and Literature Review 

This chapter engages in market research that aims to identify what product 

AUVs in the industry utilize to carry the tasks required of them. Areas of improvement 

are identified and are taken as a basis for contribution of this thesis. Literature review 

is then presented to describe the modelling process for UVs and to showcase the latest 

model-aided techniques employed in navigation and control of UVs. 

2.1. Survey of AUVs in the Field 

As part of literature review, a survey of AUVs operating in the field was 

conducted in order to classify underwater vehicles, find out how they perform their 

tasks, and identify possible areas of improvement. This section categorizes the vehicles 

based on the levels of autonomy possible and the levels of sizes that the vehicle can 

take.  

The levels of autonomy differ from one field to another; nonetheless, be it an 

automotive vehicle, a robot, or an underwater vehicle; all fields identify a range of 

classes that span the gap between full human control to full autonomy of the vehicle. 

Figure 1 presents 6 different levels of autonomy as classified by the National Defense 

Research Institute [1].  

 

Figure 1: Vehicle Autonomy Levels 

Fully Autonomous •Requires no human intervention

Mixed Initiative •Operator and Vehicle operate in tendem depending 
on data

Human-Supervised •Vehicle requires human input to initiate tasks

Human-Delegated •low-level tasks handled by vehicle 

Human-Assisted •Vehicle requires operator presence to function, 
works in parallel with human input

Human-Operated •All activity is initiated by operator
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One more possible classification of AUVs is one based on the size of the 

vehicle. The size of an AUV can allow or limit what missions it can perform. A survey 

done by United States Department of the Navy identifies 4 main classes of AUVs 

available in the market [1]. Figure 2 presents the identified classes. 

 

Figure 2: Autonomous Underwater Vehicle Classes 

The surveyed AUVs follow the classification detailed in Figure 2. Categorized 

under the first class, Man-portable class, the Bluefin-9 in Figure 3 is chosen. It is a 

product of Bluefin Robotics, and it is one of the smallest AUVs in deployment today. 

It was designed to carry mapping missions in shallow waters.  

 

Figure 3: Bluefin-9 [1] 

The REMUS-6000 shown in Figure 4 is an example of a Light-Weight Vehicle 

class product. It is developed by Naval Oceanographic Office as a substitute for other 

vehicles of this class with low endurance and payload ratings. This vehicle is aimed at 

deep sea operations; mainly mapping.  

Man-portable class
•<25 Kgs
•<20 hrs 
•No hydrodynamic hull

Light-Weight Vehicle class
•200 Kgs
•20-40 hrs
•30-100 Litres Payload

High-Weight Vehicle class
•1500 Kgs
•40-80 hrs
•100-200 Litres Payload

Large-Vehicles class
•10000 Kgs
•>400 hrs
•400-1000 Litres Payload



21 
 

 

Figure 4: REMUS-6000 [1] 

To demonstrate defense/military use of AUVs, the High-Weight class HUGIN-

1000 Military Version was chosen, which is shown in Figure 5. This vehicle was 

developed by the Royal Navy of Norway based on another product, the HUGIN-1000. 

The HUGIN product line is heavily engaged in Oil and Gas underwater works and 

inspection. The military version of the HUGIN is feature rich, and it is one of the few 

vehicles employing sensor fusion and map-based navigation techniques.  

 

Figure 5: HUGIN-1000 [1] 

An example of the Large-Vehicles class is the Theseus in Figure 6, which is an 

AUV designed to carry installation and inspection works for undersea fibre-optic 

cables. Its large size and payload capacity make it suitable for its tasks. They also enable 

it to carry payload delivery missions as well.  

 

Figure 6: Theseus [1] 



22 
 

One last example of a very small vehicle that man-operated is the VideoRay, 

which is shown in Figure 7. It is an inspection class remotely operated vehicle that is 

considered to be one of the most portables vehicles in the industry. Like other small 

vehicles, it lacks proper navigation sensor packages, and it is linked to a ground control 

station through means of a tether. This tether also supplies it with power.  

 

Figure 7: VideoRay [1] 

To summarize the results of the survey, Table 1 compares the surveyed vehicles. 

The conducted research provided some valuable insight into what types of vehicles the 

different industries utilize and how those vehicles perform their given tasks. The 

combination of different sensor packages enables each vehicle to carry its given tasks. 

Further, most vehicles that carry localization elected to use acoustic time of flight 

techniques, which provide the location of the vehicle relative to a known truth 

landmark. Drawbacks here include the high cost in addition to the need for 

accompanying GPS-enabled floats to acquire the accurately known true position. 

Navigation through unknown territory is accomplished with the help of multi-beam 

sonar systems that map the environment and localize the vehicle in the generated map. 

Few high-end vehicles designed for military used especially make use of sensor fusion 

techniques to combine inertial information from IMUs with other sources like pressure 

sensors and Echo Sounders [3]. All the surveyed vehicles are underactuated. The exact 

nature of the controllers implemented on the surveyed vehicles is not disclosed; 

however, no indication of model-based control or application of advanced techniques 

exist [1, 4]. This is explored further in the next subsection. 
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2.2. Literature Review 

This section of literature review will be split into subsections, each dealing with 

one area of research. 

2.2.1. Modeling of underwater vehicles. A lot of work has been put into 

characterization of the dynamics of underwater vehicles. These efforts aim to capture 

the various physical phenomena that an UV experiences in a fluid environment like that 

of water. The vehicle is usually taken as a rigid body that can be described by the 

dynamics of rigid bodies undergoing general motion in the 6 degrees of freedom that 

are kinematically admissible [5, 6]. These equations of motion turn out to be a set of 6 

second order nonlinear differential equations. Those set are accompanied by a 

kinematics model that can describe the motion of the vehicle in a number of coordinate 

frames [7, 8]. 

  Since water is more viscous and more dense that of air, effects of the likes of 

damping have to be taken into account in a water environment [9]. Drag is the main 

energy dissipating component in the vehicle model, and it is a function of water 

properties of the likes of density and salinity. It is a resistive hydrodynamic force 

resulting from the movement of the vehicle relative to the fluid as well is the movement 

of the fluid relative to other fluid layers; those constituents of drag are called potential 

drag and skin friction, respectively [10].  

In a six degrees-of-freedom (DOF) setting such as that of the vehicle, drag is a 

result of the coupled motion of all the motions of the vehicle. [11] presents a novel 

procedure that aims to identify the hydrodynamic damping coefficients that describe 

the two types of drag. The procedure includes constructing a pendulum-like setup with 

a scaled model of the vehicle, whose parameters are to be identified, pinned at the end 

of the pendulum. As a result of the exact knowledge of the dynamics of pendula, a 

model for this new system is derived with the drag coefficients governing the damping 

behavior. Decay pendulum motion experiments were conducted and validated against 

the real vehicle. The results proved to be descriptive of the phenomenon. More 

traditional approaches are taken in [12-16], where finite element software packages are 

utilized to simulate the flow around the vehicle, and the drag coefficients are extracted 

from simulation and validated against experimental data. In [15], the equations of 

motion are formulated in such a way for the equations to be linear in the unknown drag 
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coefficients. Accordingly, a number of Least squares techniques were employed to 

identify the parameters of a set of ROV free roaming data collected. Furthermore, 6 

different plant models were used, each with a different level of complexity in terms of 

the coupling between the different degrees of freedom. The algorithms were successful 

at finding the parameters, with the difference being converging time and the amount of 

data needed to reach a solution. 

Other noticeable crucial effects when a solid body moves in a fluid is the added 

mass or inertia of the water surrounding the solid [17]. When acceleration is imposed 

on a fluid either by acceleration of a solid body in the fluid or by acceleration of the 

fluid itself, additional forces will act on the surfaces in contact with the fluid. These 

fluid inertial forces are of importance in many practical situations. 

Added mass is a fluid-structure interaction phenomenon that affects the motion 

of solid structures in a fluid medium. This interaction appears in the form of an 

additional force required to accelerate the body in the medium. The interaction is 

governed by numerous criteria like the geometry of the moving body, the orientation 

of the body, the type and amount of fluid surrounding the body, and the frequency of 

excitation of waves [18]. The effect appears as a strongly coupled phenomenon or as a 

weakly coupled one. Strong coupling is denoted as two-way interaction between the 

solid and the fluid domains, which means that movement of one medium affects the 

other in a significant manner such that the resulting interaction on the second medium 

affects the first and so on. This type of fluid-structure interaction is observable in 

flexible solids undergoing vibration. Weak coupling, however, is a one-way interaction 

that manifests from one medium to the other. Being a rigid body and not a flexible one, 

an underwater vehicle experiences only one-way weak coupling. Moreover, when it 

comes to Underwater Vehicles, the assumption is made to neglect the varying nature of 

the phenomenon under the premise that underwater currents roughly do not vary at 

typical working depths for these vehicles (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ > 20𝑚𝑚) [10]. Consequently, the 

effect can be modeled as a constant term that is added to the mass matrix of the vehicle 

and not a function of frequency [12]. A lot of effort is expensed in finding cost-effective 

ways to identify added inertia parameters. [19] presents a novel adaptive algorithm is 

implemented online to fine tune all the different parameters of the vehicle in a real-time 

setting. The algorithm is tested in a real-world test and it is shown to give comparable 
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results to the more conventional least squares parameter identification, which was run 

offline. other approaches taken to identify added inertia include modal analysis-based 

approaches and kinetic energy-based approaches. The former relies on comparing the 

natural frequencies of the rigid body of the vehicle in vacuum to the natural frequencies 

of the vehicle in water, and then it uses this information to identify the parameters [20]. 

The other approach is based on potential fluid theory, and it matches the kinetic energy 

of the added inertia moving at the speed of the vehicle to the kinetic energy of the fluid 

domain in which the vehicle moves [21]. 

2.2.2. Underactuated systems. Underactuated systems are ones in which the 

number of actuators is less than the number of degrees of freedom. They are defined as 

systems, usually mechanical, that cannot follow arbitrary paths and trajectories in the 

configuration space of the system. While motion can happen in those unactuated 

degrees of freedom due to external disturbances for example, the actuator configuration 

does not have control over them, and the system cannot be accelerated in the unactuated 

degrees of freedom. Sometimes the reason behind the under-actuation is the existence 

of nonholonomic constraints that prevent the motion in certain directions [22]. 

Nonholonomic constraints are kinematic constraints that are expressed in terms of the 

generalized coordinates and velocities. They limit the motion through restricting the set 

of allowable generalized velocities. 

Underactuated mechanical systems often arise in applications involving 

space/underwater robots, aerial vehicles, mobile robots, robotic manipulators, and 

legged robots [23]. The study of underactuated systems is essential to the deployment 

of such types of robots in their respective fields. It also is important when a fully 

actuated system loses an actuator on a mission and is still required to continue its task 

[24]. All of the surveyed AUVs were underactuated. 

2.2.3. Guidance. Guidance is the action of determining the desired position, 

velocity, and acceleration of a marine craft to be used by the control system [25]. Many 

solutions to this problem exist in literature. The trajectory generation task is preferred 

to take a simple form and be computationally inexpensive. To that end, techniques of 

the likes of polynomials, splines, and linear paths with blends have been developed 

[26]. Dubins, clothoids (Euler spirals), and Fermat spirals are reported to be used in 

connecting linear path segments [27, 28]. Monotone cubic Hermite splines are an 
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approach used in generating spline-based trajectories [29]. The guidance system utilizes 

one of the aforementioned techniques to generate paths that connect reference 

waypoints for the vehicle to follow.  

2.2.4. Control of underactuated systems. Control is the action of 

determining the effort in terms of forces and moments required of a marine craft to 

achieve an objective, which lies in accordance with the guidance task [25]. The AUV 

control problem is a rather challenging one [30, 31]. One reason behind the claim 

includes the underactuated nature of the vehicle. Although the nature of the motion is 

kinematically admissible, there are less actuators than degrees of freedom. In other 

words, the vehicle is capable of reaching a certain target position, but it has to move in 

such a way that is permissible by the thruster arrangement installed. This arrangement 

is referred to as nonholonomic constraints, which translates to the vehicle not being 

able to move in one or more directions. Advanced control approaches are often 

necessary to get around those constraints. These approaches have to exploit the 

coupling between the degrees of freedom to design control laws that are able to carry 

the task required of the vehicle. In fact, it has been proven that nonholonomic control 

systems with restricted mobility cannot be stabilized by smooth time-invariant state 

feedback laws [32]. The motion control task can be a point-to-point motion problem 

where the system has to reach a final configuration from an initial one, a path following 

problem where the system has to both reach a final configuration from an initial one 

and follow a geometric path, or a trajectory following problem where the system has to 

perform a path following problem that is associated with a timing law, which dictates 

when the system should reach a certain configuration [33]. 

Literature presents a multitude of approaches to tackle the control problem. One 

of the simpler approaches to solve the control problem is line-of-sight (LOS) path 

following, where the marine craft is required to move at a constant forward speed and 

a heading controller leads the marine craft to converge to the parameterized path [29, 

34]. The heading controller drives two angles between the current position of the 

vehicle and a desired waypoint to accomplish the control objective. Sliding mode 

control is used in literature to design controllers that are exponentially stable and 

capable of following trajectories. In [33], the authors tackle the problem of designing 

control laws for a 4-thruster underactuated marine craft. First, the dynamics are 

transformed into chained form coordinates. A kinematic control law is then devised for 
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point-to-point as well as trajectory following motion tasks. Finally, a dynamic control 

law, which is also designed around the transformed coordinates, is coupled with the 

kinematic control law to realize force- and moment-based control rather than velocity 

control. The stability of the laws is investigated and proven.  An AUV with 4 actuators 

is treated in [35], where a second order chained form transformation is coupled with a 

discontinuous control method to attain a globally stable control of the system. The 

stabilizing problem was split into three, each concerned with a part of the dynamics. 

The controller is verified through simulation. A more traditional methodology to deal 

with underactuated systems is presented in [36], and it was tested on an underactuated 

prismatic-prismatic-rotary (PPR) robotic manipulator. The procedure includes 

expressing the dynamic equations into a 2nd order chained form, and it devises a 

backstepping controller for this new subsystem. Backstepping is a nonlinear control 

methodology that allows for more flexibility than state-feedback linearization. It 

permits keeping some nonlinear terms in the dynamics as well as adding nonlinear 

damping, which makes for “more robust control laws that are less susceptible to errors 

arising from imprecise models” [37]. In [38], a quadcopter underactuated system is 

stabilized in attitude using a time-delayed controller. The results of which outperform 

that of a similar PID controller, especially for disturbance rejection. The control method 

is concerned with estimating the dynamic state of the system and providing 

compensation through control action.  

2.2.5. Navigation. Navigation is science of directing a marine craft through 

determining pose, course, and distance travelled [10]. The missions that Underwater 

Vehicles execute require the vehicle to know its position relative to the environment in 

which it is deployed. This requires the use of sensor packages that enable the vehicle to 

carry the different tasks and missions it is assigned. In contrast to vehicles with direct 

line of sight to the sky, where localization is a solved problem through means of the 

Global Positioning System (GPS), an underwater setting renders GPS ineffective since 

it operates on high-frequency electromagnetic waves (~1.5 GHz). Those waves get 

highly attenuated by water, and they are unable to penetrate well in water.  

The latest developments in this field come in the form of integration of computer 

vision and mapping techniques. [39] provides a comprehensive survey that details most 

of the technologies being deployed recently. A lot of those techniques aim to carry 
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simultaneous localization and mapping (SLAM) of the underwater environment, which 

makes later visits to a site that has been mapped easier since the vehicle only has to 

localize itself relative to the known map. A number of sensor packages are used to 

implement the techniques; sonar sensors in the single and multi-beam form and one or 

more camera sensors comprise the most widely used techniques. The algorithms are 

often coupled with other sensor packages and sensor fusion is usually carried to have 

better measurements of the quantities of interest [40]. 

High-frequency Long Baseline (LBL) as well as Ultra-Short Baseline (USBL) 

acoustic time of flight methods are used to acquire the position of the vehicle relative 

to a transponder/network of transponders. Both methods utilize triangulation of the 

acoustic waves. The former utilizes a network of transponders with known locations, 

while the latter utilizes sonar technology to determine the range to the vehicle [3, 41]. 

The errors that occur in these methods are attributed to inaccurate knowledge of the 

precise locations of the transponders, inaccurate knowledge of the sound velocity and 

the variations that happen to the velocity of sound as a result of environmental factors 

such as water temperature and density [4]. It is possible to measure some of those 

quantities and update the estimate of the speed of sound underwater frequently onboard 

the vehicle.   

The relative distance of the vehicle to the surface of the water, depth, is a quantity 

that can be measured indirectly. Pressure sensors can be used to estimate the depth of 

the vehicle since pressure is a linear function of depth. However, those sensors operate 

with some uncertainty, for movements of the vehicle affect the pressure field 

surrounding it. As a result, the quality of measurements when the vehicle is not 

stationary degrades. 

Other quantities that are essential for navigation and tracking are the attitude, 

heading, and velocity of the vehicle. Inertial measurement units (IMU) comprising of 

accelerometers, magnetometers and gyroscopes are used to provide estimates of the 

aforementioned quantities. Those sensors excel at providing an accurate attitude of the 

vehicle. Moreover, IMUs enable inertial navigation through dead reckoning, which is 

the process of estimating the trajectory through knowledge of an initial position and 

availability of IMU measurements. The result is highly driven by the drift resulting 

from the integration process of IMU measurements to achieve position estimates. Errors 
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accumulate over time, and the drift grows to cause unbounded growth in the quantities 

integrated. Inherent errors with these systems include misalignment of the sensor axis 

and those of the vehicle, errors due to geographic magnetic interferences, and errors 

due to magnetic disturbance from the vehicle components magnetic signature [42]. 

Velocity can also be acquired through a single integration of the acceleration, but the 

drift problem will persist. Another way of acquiring velocity estimates is through 

Doppler sonars, which utilize the Doppler effect to calculate the translational velocity 

of the vehicle relative to the sea-floor. Nonetheless, they work provided the sea-floor is 

in range of the sensor used [43]. 

State estimation enables the use of stochastic techniques to improve on the quality 

of measurements produced by the sensors used. It involves the use of stochastic filters 

that utilize any and all available measurements of the states to produce a measurement 

of superior quality. The filters fuse the measured quantities along with the dynamic or 

kinematic models governing the motion of the vehicle to provide a better estimate than 

the measurement [4]. Those filters are also optimal and unbiased, given that the correct 

measurement and dynamic model statistics are fed into the filters. Consequently, this 

property corrects for the noises corrupting the states as well as the uncertainty of the 

sensors. It is of interest to point that the singularity-free solution to represent rotation, 

quaternions, imposes difficulties that are acknowledged in the literature. For instance, 

the work of [44] derives the inertial dynamics of a body utilizing quaternions to 

represent attitude. Several approaches are followed, and the performance of them is 

compared. An Extended Kalman Filter (EKF) approach is first presented. Then, an 

optimization based quaternion rate Kalman is devised. The implemented optimization 

algorithms are based on newton and gauss-newton numerical methods, and they provide 

fast convergence as well as performance improvement over the EKF in a real-time 

setting. Instead of an EKF, [45] deals with the formulation of an Unscented Kalman 

Filter (UKF) to deal with the nonlinearity associated with the process and/or 

measurement equations used to construct the filter. Certain modifications were done on 

the formulation of the filter to accommodate for the problematic properties of the 

quaternions. Other works acknowledge the bias error terms present in the sensors and 

include it in the state vector to be estimated. To illustrate, [46] avoids the use of an EKF 

and uses a nonlinear observer instead, one in which global exponential convergence in 

terms of the estimation error can be established. The observer utilizes the kinematic 
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equations of motion for an aerial vehicle and integrates information from both GPS and 

IMU sources. The results are verified using real test data. In [47], an algebraic nonlinear 

transform of generalized nonlinear measurement equations of a time of flight sensor 

solution is implemented such that the new model is a linear time-varying one. 

Integrating the new model with two observers for attitude and translational motion 

estimation enabled the presentation of a navigation solution that is proven to be globally 

convergent. Other works on nonlinear observers aim to couple the information provided 

by the active sensor packages and fuse the measurements to aid in navigating the 

vehicle [40, 48, 49]. The premise with nonlinear observers is that, unlike the EKF, it is 

often possible to prove local or even sometimes global stability of the observer.  
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Chapter 3. Mathematical Model 

In this chapter, we study the dynamics that govern the motion of the vehicle. 

Standard notation in the marine vessels field is utilized here. Then, the kinematics 

model is formulated considering appropriate coordinate frames. Afterwards, the 

dynamic equations of motion are derived from both basic principles and empirical 

observations. Finally, the power source model of Chen and Mora is explained and 

detailed. 

3.1. The kinematics of Motion 

For an unconstrained six degrees of freedom marine vessel, six independent 

coordinates are required to fully describe the dynamics. The Society of Naval Architects 

and Marine Engineers have established standard terminology to describe position, 

attitude, velocities, forces, and moments. Table 2 presents the nomenclature used 

throughout this thesis.  

Table 2: SNAME Nomenclature for Marine Vessels [7] 

DOF Motion 
Forces and 

Moments 
Velocities poses 

1 Motion in the 𝑥𝑥 direction (Surge) 𝑋𝑋 𝑢𝑢 𝑥𝑥 

2 Motion in the 𝑦𝑦 direction (Sway) 𝑌𝑌 𝑣𝑣 𝑦𝑦 

3 Motion in the 𝑧𝑧 direction (Heave) 𝑍𝑍 𝑤𝑤 𝑧𝑧 

4 Motion around the 𝑥𝑥 direction (Roll) 𝐾𝐾 𝐷𝐷 𝜙𝜙 

5 Motion around the 𝑦𝑦 direction (Pitch) 𝑀𝑀 𝑞𝑞 𝜃𝜃 

6 Motion around the 𝑧𝑧 direction (Yaw) 𝑁𝑁 𝑟𝑟 𝜓𝜓 

3.1.1. Coordinate frames. Dynamic motion of the AUV requires a reference 

frame relative to which motion can be described. This inertial frame has to be one in 

which the Newton-Euler equations of motion are valid; that is, the frame is 

nonaccelerating. A number of standard coordinate frames are in use to describe the 

terrestrial motion of Earth through space as well as motion on the surface or Earth. 

The Earth-Centered Inertial reference frame (ECI) is a nonaccelerating frame 

that is fixed at the center of the Earth. It is often used to describe terrestrial navigation. 

Another frame of interest is the Earth-Centered Earth-Fixed (ECEF) reference frame. 
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Similar to ECI, ECEF is fixed at the center of the Earth. However, it rotates relative to 

ECI at a rate of a revolution per 24 hours or 7.2921𝑥𝑥10−5 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠. 

The North-East-Down (NED) is a Cartesian coordinate frame that is defined 

relative to elliptical Earth. It is a tangent plane to the surface of the earth that moves 

with the vehicle, but its axes point in different directions than those of the vehicle. The 

three principal directions in this frame point towards true north, the east, and 

downwards. To map a location in this frame relative to ECEF, longitude, 𝑙𝑙, and 

latitude, 𝜇𝜇, angles are used. Figure 8 shows the NED frames with the longitude and 

latitude angles. 

 

Figure 8: North-East-Down Coordinate Frame [10] 

An approximation of the NED coordinate frame is denoted as the n-frame. It is 

defined as a tangent plane to the surface of earth with Cartesian axes pointing towards 

the directions of NED and constant longitude and latitude angles. This approximation 

is called flat Earth navigation, and the gravitational acceleration is constant in both 

direction and magnitude in this model [25]. The effects of having a rotating earth are 

neglected under the premise that AUVs are not made to transverse large distances. In 

addition, the effects that the rate of rotation of Earth introduces are negligible when 

compared to the dominant hydrodynamic effects on the vehicle. The rate of rotation of 

Earth is 𝜔𝜔𝑒𝑒 = 7.2921 × 10−5 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠. 
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Another reference frame of interest happens to be the body-fixed frame (b-

frame), which is located at the center of gravity of the vehicle for 

convenience (𝑥𝑥𝑏𝑏𝑦𝑦𝑏𝑏𝑧𝑧𝑏𝑏). In this frame, 𝑥𝑥𝑏𝑏 points forwards, 𝑦𝑦𝑏𝑏 points rightwards and 𝑧𝑧𝑏𝑏 

points downwards. The rotations the vehicle can take are roll about the 𝑥𝑥𝑏𝑏 axis, pitch 

about the 𝑦𝑦𝑏𝑏 axis and yaw about 𝑧𝑧𝑏𝑏 axis. Figure 9 depicts the axes of the b-frame on a 

marine vessel. 

 

Figure 9: Body-fixed Frame [10] 

3.1.2. Coordinate frame transformation. The orientation of the AUV can 

have be described using numerous approaches. The mapping between orientation in 

inertial and body frames can be done through three consecutive rotations about the axes 

of interest with an order that is important. There are numerous ways to represent this 

rotation. One can use axis-angle rotation, Euler angles, Gibbs vector, Pauli spin 

matrices, and Hamilton’s quaternions to name but a few [10]. The physically 

meaningful Euler angles of roll, pitch, and yaw, can be used; however, the inverse 

kinematic problem of extracting the angles from the rotation matrix run into 

singularities when the second rotation sequence matches either of the other two. A 

singularity free solution comes in the form of unit quaternions, which is a four-

parameter solution for the three rotations problem [50]. The velocity in the n-frame is 

realized through rotating the velocity of the body-fixed frame as follows 

�̇�𝐏𝑛𝑛 = 𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒) 𝛖𝛖𝒃𝒃 (1) 
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where 𝐑𝐑𝑏𝑏
𝑛𝑛 is the rotation matrix mapping a vector quantity in the b-frame to the n-frame. 

Appendix A introduces quaternions. 

The time rate of change of quaternions is related to the angular velocity vector of the 

body-fixed frame, and the is given by the following matrix 

�̇�𝒒 = ��̇�𝜂𝜖𝜖̇� =
1
2
� −𝝐𝝐T
𝜂𝜂 I3𝑥𝑥3 + 𝐒𝐒(𝝐𝝐)�  𝛚𝛚𝑏𝑏 = 𝐓𝐓(𝒒𝒒) 𝛚𝛚𝑏𝑏 

𝐓𝐓(𝒒𝒒) =
1
2

 �

−𝜖𝜖1 −𝜖𝜖2 −𝜖𝜖3
𝜂𝜂 −𝜖𝜖3 𝜖𝜖2
𝜖𝜖3 𝜂𝜂 −𝜖𝜖1
−𝜖𝜖2 𝜖𝜖1 𝜂𝜂

� 
(2) 

where 𝐒𝐒 is the skew-symmetric matrix defined by 

𝐒𝐒(𝝀𝝀) = �
0 −𝜆𝜆3 𝜆𝜆2
𝜆𝜆3 0 −𝜆𝜆1
−𝜆𝜆2 𝜆𝜆1 0

 � (3) 

and the vector cross product is defined by 

𝛌𝛌 × 𝐚𝐚: = 𝐒𝐒(𝝀𝝀)𝐚𝐚 (4) 

Standard terminology in the marine vessels field denote body-fixed displacements and 

velocities, whether they use quaternions or Euler angles, as  

𝜼𝜼 = �𝐏𝐏𝑛𝑛𝒒𝒒 � , 𝝂𝝂 = �
𝛖𝛖𝑏𝑏
𝛚𝛚𝑏𝑏

� (5) 

where 𝜼𝜼 represents position and attitude in the n-frame, 𝝂𝝂 represents the linear and 

angular velocities in the b-frame. The components of the position and orientation 

vectors are  

𝐏𝐏𝑛𝑛 = �
𝑥𝑥𝑛𝑛 
𝑦𝑦𝑛𝑛
𝑧𝑧𝑛𝑛
� , 𝛖𝛖𝑏𝑏 = �

𝑢𝑢 
𝑣𝑣
𝑤𝑤
� , 𝒒𝒒 = �

𝜂𝜂
𝜖𝜖1
𝜖𝜖2
𝜖𝜖3

� , 𝛚𝛚𝑏𝑏 = �
𝐷𝐷
𝑞𝑞
𝑟𝑟
� (6) 

The kinematic equations of motion can then be shown to take the following form  

�̇�𝜼 = 𝐉𝐉𝒒𝒒(𝒒𝒒) 𝝂𝝂 (7) 
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��̇�𝐏𝑛𝑛�̇�𝒒 � = �
𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒) 𝐎𝐎3𝑥𝑥3
𝐎𝐎4𝑥𝑥3 𝐓𝐓(𝒒𝒒)� �

𝛖𝛖𝑏𝑏
𝛚𝛚𝑏𝑏

� 

where 𝐎𝐎i𝑥𝑥j is a 𝑖𝑖 × 𝑗𝑗 matrix of zeros. 

The kinematic model presented above does not take the physical constraints that 

are typically present with AUVs, which is the existence of nonholonomic constraints. 

Nonholonomic constraints are kinematic constraints that involve generalized 

coordinates and velocities of the system of interest. For example, wheeled vehicles like 

cars and differential mobile robots cannot move the in lateral direction in typical 

operating conditions, for the friction between the tires and the ground prevents slipping 

from occurring [51]. Also, those vehicles cannot translate normal to the ground.  

Autonomous Underwater Vehicles, which are usually neutrally buoyant, exhibit 

the notion of anholonomy. Thrusters propel the vehicle in the forward direction, while 

fins or thrusters exert moments on the vehicle to give it the ability to turn. Like wheeled 

vehicles, the motion of AUVs is only possible in surge and not in sway or heave in 

addition to the possible angular motions of pitch, roll, and yaw that depend on the 

thruster/fin arrangement installed. The kinematic model can then be rewritten as in 

equation (8). 

��̇�𝐏𝑛𝑛�̇�𝒒 � = �
𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒)1𝑥𝑥3 𝐎𝐎1𝑥𝑥3
𝐎𝐎4𝑥𝑥3 𝐓𝐓(𝒒𝒒)� �

𝑢𝑢
𝛚𝛚𝑏𝑏

� (8) 

where 𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒)1𝑥𝑥3 is the first row of 𝐑𝐑𝑏𝑏

𝑛𝑛(𝒒𝒒), which describes the relation between the 

surge motion and the change of position coordinate in the n-frame. In the context of 

navigation, these constraints can be exploited to provide pseudo zero-velocity 

measurements in the constrained direction for a navigation filter to make use of. 

3.2. The Dynamic Equations of Motion  

3.2.1.  Rigid-body kinetics. The vehicle is taken to be a rigid body for which 

the dynamics are to be described; that is, the distance between any two points in the 

object is taken to be invariant. The general motion of a rigid body can be described 

through the translation and rotation of a point in that body. The position of vector 

describing such point can take the following form: 

𝒓𝒓𝐺𝐺 = 𝒓𝒓𝑂𝑂 + 𝒓𝒓𝐺𝐺/𝑂𝑂  (9) 
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where 𝒓𝒓𝑂𝑂 is the position vector to a point of observation, 𝒓𝒓𝐺𝐺 is the position vector to the 

center of gravity (CG) of the vehicle, and 𝒓𝒓𝐺𝐺/𝑂𝑂 is the relative position of CG with 

respect to point O. Figure 10 depicts the aforementioned quantities. 

 

Figure 10: Coordinate Frames of the AUV 

The velocity is then the derivative of the position vector, which comprises of a 

translation and a rotation representing a change in magnitude and a change in direction 

shown as: 

𝒗𝒗𝐺𝐺 = 𝒅𝒅
𝒅𝒅𝒅𝒅

(𝒓𝒓𝐺𝐺) = 𝒅𝒅
𝒅𝒅𝒅𝒅�𝒓𝒓𝑂𝑂 + 𝒓𝒓𝐺𝐺 𝑂𝑂⁄ � = 𝒗𝒗𝑂𝑂 + �̇�𝒓𝐺𝐺 𝑂𝑂⁄ + 𝝎𝝎 × 𝒓𝒓𝐺𝐺 𝑂𝑂⁄ = 𝒗𝒗𝑂𝑂 + 𝝎𝝎 × 𝒓𝒓𝐺𝐺 𝑂𝑂⁄  (10) 

where �̇�𝒓𝐺𝐺 𝑂𝑂⁄ = 0 for a rigid body when expressed in the b-frame. 

Similarly, the acceleration of the rigid body through another differentiation is shown to 

be: 

𝒂𝒂𝐺𝐺 = 𝒅𝒅
𝒅𝒅𝒅𝒅

(𝒗𝒗𝐺𝐺) = �̇�𝒗𝐺𝐺 + 𝝎𝝎 × 𝒗𝒗𝐺𝐺 

       = �̇�𝒗𝑂𝑂 + 𝝎𝝎 × 𝒗𝒗𝑂𝑂 + 𝝎𝝎 × �𝝎𝝎 × 𝒓𝒓𝐺𝐺 𝑂𝑂⁄ �       
(11) 

 It is common practice to place the body-fixed coordinate frame at the center of gravity 

of the vehicle. That will simplify equation (11) since 𝒓𝒓𝐺𝐺/𝑂𝑂 = [0 0 0]𝑇𝑇 to the following 

form, written in light of the Newton-Euler equations: 

𝒅𝒅
𝒅𝒅𝒅𝒅

(𝑚𝑚 𝒗𝒗𝐺𝐺) = 𝒇𝒇𝐺𝐺  

m 𝒂𝒂𝐺𝐺 = 𝑚𝑚 (�̇�𝒗𝑂𝑂 + 𝝎𝝎 × 𝒗𝒗𝑂𝑂) = 𝒇𝒇𝐺𝐺  
𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

+ 𝒓𝒓𝐺𝐺 × 𝑚𝑚 𝒂𝒂𝐺𝐺 = 𝑴𝑴𝐺𝐺  

(12) 
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𝒅𝒅
𝒅𝒅𝒅𝒅

(𝐼𝐼𝑂𝑂 𝝎𝝎) +  𝒓𝒓𝐺𝐺 × 𝑚𝑚(�̇�𝒗𝑂𝑂 + 𝝎𝝎 × 𝒗𝒗𝑂𝑂) = 𝐼𝐼𝑐𝑐 �̇�𝝎 + 𝝎𝝎 × (𝐼𝐼𝑐𝑐 𝝎𝝎) = 𝑴𝑴𝐺𝐺  

The devised equations of motion describing the 6-DOF vehicle can be 

rearranged and written in the standard form used by the society of naval architects and 

marine engineers in equation (13). The following utilizes the previously defined 

standard notations of 𝜼𝜼 and 𝝂𝝂.  

𝐌𝐌𝑅𝑅𝑅𝑅 �̇�𝝂 + 𝐂𝐂(𝝂𝝂)𝝂𝝂 = 𝝉𝝉 (13) 

where the rigid-body mass matrix, 𝐌𝐌𝑅𝑅𝑅𝑅, consists of the total mass of the vehicle, 𝑚𝑚, as 

well as the second moment of area, 𝐈𝐈𝑏𝑏, taken with respect to the b-frame principle axes 

(moment of inertia), 𝐈𝐈3x3 is the identity matrix of size ℝ3𝑥𝑥3, and 𝐒𝐒�𝒓𝒓g� is the previously 

defined skew-symmetric matrix. Equation (14) presents the form. 

𝐌𝐌RB = �
m 𝐈𝐈3x3 −𝑚𝑚𝐒𝐒�𝒓𝒓g�

m𝐒𝐒�𝒓𝒓g� 𝐈𝐈𝑏𝑏
� 

𝐈𝐈𝑏𝑏 = �
𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥

� 

(14) 

When the observation point, 𝒓𝒓g, is taken to be the center of the body-fixed coordinate 

frame, the matrix reduces to: 

𝐌𝐌RB =

⎣
⎢
⎢
⎢
⎢
⎡
𝑚𝑚 0 0 0 0 0
0 𝑚𝑚 0 0 0 0
0 0 𝑚𝑚 0 0 0
0 0 0 𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑦𝑦 𝐼𝐼𝑥𝑥𝑧𝑧
0 0 0 𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑦𝑦𝑦𝑦 𝐼𝐼𝑦𝑦𝑧𝑧
0 0 0 𝐼𝐼𝑧𝑧𝑥𝑥 𝐼𝐼𝑧𝑧𝑦𝑦 𝐼𝐼𝑧𝑧𝑧𝑧⎦

⎥
⎥
⎥
⎥
⎤

 (15) 

The Coriolis and Centripetal forces matrix is a compact form of the resulting equations 

of motion from the derived rigid body dynamics of equation. This matrix factorization 

can also be utilized to account for the added mass contribution to Coriolis and 

Centripetal forces. The matrices corresponding to body and added mass Coriolis and 

Centripetal forces are presented below: 

𝐂𝐂(𝝂𝝂) = �
𝟎𝟎3x3 −𝐒𝐒(𝐌𝐌11𝝂𝝂1 + 𝐌𝐌12𝝂𝝂2)

−𝐒𝐒(𝐌𝐌11𝝂𝝂1 + 𝐌𝐌12𝝂𝝂2) −𝐒𝐒(𝐌𝐌12
T 𝝂𝝂1 + 𝐌𝐌22𝝂𝝂2)� (16) 
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𝐂𝐂𝐴𝐴(𝝂𝝂) = �
𝟎𝟎3x3 −𝐒𝐒�𝐌𝐌𝐴𝐴11𝝂𝝂1 + 𝐌𝐌𝐴𝐴12𝝂𝝂2�

−𝐒𝐒�𝐌𝐌𝐴𝐴11𝝂𝝂1 + 𝐌𝐌𝐴𝐴12𝝂𝝂2� −𝐒𝐒�𝐌𝐌𝐴𝐴21𝝂𝝂1 + 𝐌𝐌𝐴𝐴22𝝂𝝂2�
� 

3.2.2. Hydrostatics. Hydrostatic effects on the vehicle comprise the restoring 

forces matrix, which describes two forces. The first one is the effect of gravitational 

force acting through the center of gravity and the resultant moment about it, while the 

second one is the effect of buoyancy in the form of force acting through the center of 

buoyancy and corresponding moment about it. Those two effects have a direct effect 

on the natural stability of the vehicle since the resulting moments are dependent on the 

attitude of the vehicle as well as the locations of the centers of buoyancy and gravity. 

𝐟𝐟b𝑛𝑛 and 𝐟𝐟g𝑛𝑛 in equation set (17) represent the buoyancy and weight forces, respectively.  

𝐟𝐟b𝑛𝑛 = − �
0
0
B
� , B = ρg∇ 

𝐟𝐟g𝑛𝑛 = �
0
0
W
� , W = mg 

(17) 

where ρ is the density of the water, g is the gravitational constant, ∇ is the submerged 

volume of the vehicle, and m is the mass of the vehicle.  

Representing the effects in the body-fixed frame through proper rotations yields 

equations set (18), where 𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒)T represents the rotation matrix mapping from the n-

frame to the b-frame, 𝒓𝒓bb is the location of the center of buoyancy in b-frame, and 𝒓𝒓gb is 

the location of the center of gravity in b-frame. 

𝐟𝐟bb = 𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒)T 𝐟𝐟b𝑛𝑛 

𝐟𝐟gb = 𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒)T 𝐟𝐟g𝑛𝑛 

𝒢𝒢(𝜼𝜼) = − �
𝐟𝐟bb + 𝐟𝐟gb

 𝒓𝒓bb × 𝐟𝐟bb + 𝒓𝒓gb × 𝐟𝐟gb
� = −�

𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒)T�𝐟𝐟bn + 𝐟𝐟gn�

𝒓𝒓bb × 𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒)T 𝐟𝐟b𝑛𝑛 + 𝒓𝒓gb × 𝐑𝐑𝑏𝑏

𝑛𝑛(𝒒𝒒)T 𝐟𝐟g𝑛𝑛
 � 

          =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

2(B − W)(𝜖𝜖1 𝜖𝜖3 − 𝜂𝜂 𝜖𝜖2)
2(B − W)(𝜖𝜖2 𝜖𝜖3 + 𝜂𝜂 𝜖𝜖1)

(W − B)(1 − 2(𝜖𝜖12 + 𝜖𝜖22) )
𝑟𝑟𝑏𝑏𝑥𝑥(2B)(𝜖𝜖1 𝜖𝜖2 + 𝜂𝜂 𝜖𝜖3)
𝑟𝑟𝑏𝑏𝑥𝑥(B)�1 − 2(𝜖𝜖12 + 𝜖𝜖22)�
𝑟𝑟𝑏𝑏𝑥𝑥(2B)(𝜖𝜖2 𝜖𝜖3 − 𝜂𝜂 𝜖𝜖1) ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

(18) 
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3.2.3. Hydrodynamics. Hydrodynamic effects on the vehicle are twofold. 

They are added mass in addition to damping. Hydrodynamic added mass is a 

component that is a consequence of the fluid-structure interaction between the vehicle 

and the surrounding environment. This phenomenon results in a change to the apparent 

mass of the vehicle that impedes the acceleration of the vehicle. In the devised model, 

the effect of added mass is accounted for as a change in the apparent mass matrix of the 

vehicle as in equation (19). 

𝐌𝐌 = 𝐌𝐌𝑅𝑅𝑅𝑅 + 𝐌𝐌𝐴𝐴 

𝐌𝐌𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑋𝑋�̇�𝑢 𝑋𝑋�̇�𝑣 𝑋𝑋�̇�𝑤 𝑋𝑋�̇�𝑝 𝑋𝑋�̇�𝑞 𝑋𝑋�̇�𝑟
𝑌𝑌�̇�𝑢 𝑌𝑌�̇�𝑣 𝑌𝑌�̇�𝑤 𝑌𝑌�̇�𝑝 𝑌𝑌�̇�𝑞 𝑌𝑌�̇�𝑟
𝑍𝑍�̇�𝑢 𝑍𝑍�̇�𝑣 𝑍𝑍�̇�𝑤 𝑍𝑍�̇�𝑝 𝑍𝑍�̇�𝑞 𝑍𝑍�̇�𝑟
𝐾𝐾�̇�𝑢 𝐾𝐾�̇�𝑣 𝐾𝐾�̇�𝑤 𝐾𝐾�̇�𝑝 𝐾𝐾�̇�𝑞 𝐾𝐾�̇�𝑟
𝑀𝑀�̇�𝑢 𝑀𝑀�̇�𝑣 𝑀𝑀�̇�𝑤 𝑀𝑀�̇�𝑝 𝑀𝑀�̇�𝑞 𝑀𝑀�̇�𝑟
𝑁𝑁�̇�𝑢 𝑁𝑁�̇�𝑣 𝑁𝑁�̇�𝑤 𝑁𝑁�̇�𝑝 𝑁𝑁�̇�𝑞 𝑁𝑁�̇�𝑟 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 
(19) 

where 𝐌𝐌𝑅𝑅𝑅𝑅 represents the previously defined rigid body mass matrix. Each variable in 

𝐌𝐌𝐴𝐴  denotes a force or a moment in the direction of the variable due to an acceleration 

denoted in the subscript. Table 2 explains the force and moment notation. To illustrate, 

𝑍𝑍�̇�𝑟 is a force the vehicle experiences in the z-axis (down in b-frame terminology) due 

to an angular acceleration �̇�𝑟 about the z-axis. 

The empirical Drag model shown in equation (20) depicts the highly coupled 

nature of drag. The model accounts for the quadratic and linear components of drag 

phenomenon [10].  

D(𝝂𝝂)𝝂𝝂 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡|𝝂𝝂|T𝐃𝐃𝑛𝑛1𝒗𝒗
|𝝂𝝂|T𝐃𝐃𝑛𝑛2𝒗𝒗
|𝝂𝝂|T𝐃𝐃𝑛𝑛3𝒗𝒗
|𝝂𝝂|T𝐃𝐃𝑛𝑛4𝒗𝒗
|𝝂𝝂|T𝐃𝐃𝑛𝑛5𝒗𝒗
|𝝂𝝂|T𝐃𝐃𝑛𝑛6𝒗𝒗⎦

⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡
𝑋𝑋𝑢𝑢
𝑌𝑌𝑣𝑣
𝑍𝑍𝑤𝑤
𝐾𝐾𝑝𝑝
𝑀𝑀𝑞𝑞
𝑁𝑁𝑟𝑟 ⎦
⎥
⎥
⎥
⎥
⎤

∘ 𝝂𝝂 (20) 

where 𝝂𝝂 is the vector of linear and angular velocities, each 𝐃𝐃𝑛𝑛𝑛𝑛 is a ℝ6𝑥𝑥6 matrix that 

captures the coupling between the degrees of freedom and affects the 𝑖𝑖𝑡𝑡ℎ degree of 

freedom, and the ∘ operator represents the Hadamard product (element-wise 

multiplication). The notation used here for the forces is similar to that of the added mass 

forces. For example, 𝑋𝑋𝑢𝑢 is the coefficient of drag force in the x-direction due to a 

velocity 𝑢𝑢 in the x-direction. This model has 222 parameters to be identified. 
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While the aforementioned model is expected to be representative of drag 

phenomenon, it would be difficult to use because of the extensive number of 

parameters. The identification process in this case might not converge, or it might 

require a lot of independent and representative experimental data points for any 

identification algorithm to converge. More information on the identification process is 

presented in the next section. As a consequence of the difficulty associated with the use 

of the fully coupled drag model, a simpler approach needs to be followed. This 

approach is one that is representative of the phenomenon, yet it is simple enough with 

a fewer number of parameters to identify. The vehicle does not move in a manner in 

which all degrees of freedom are changing at the same time, so uncoupling the drag 

components will be done. The uncoupled degrees of freedom model exhibits the basic 

nature of drag; Potential drag is shown to be proportional to the square of vehicle 

velocity, while skin friction is linearly proportional to the vehicle velocity. This is 

shown in equation (21). 

𝐃𝐃(𝝂𝝂) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑋𝑋|𝑢𝑢|𝑢𝑢|𝑢𝑢|
𝑌𝑌|𝑣𝑣|𝑣𝑣|𝑣𝑣|
𝑍𝑍|𝑤𝑤|𝑤𝑤|𝑤𝑤|
𝐾𝐾|𝑝𝑝|𝑝𝑝|𝐷𝐷|
𝑀𝑀|𝑞𝑞|𝑞𝑞|𝑞𝑞|
𝑁𝑁|𝑟𝑟|𝑟𝑟|𝑟𝑟| ⎦

⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡
𝑋𝑋𝑢𝑢
𝑌𝑌𝑣𝑣
𝑍𝑍𝑤𝑤
𝐾𝐾𝑝𝑝
𝑀𝑀𝑞𝑞
𝑁𝑁𝑟𝑟 ⎦
⎥
⎥
⎥
⎥
⎤

 (21) 

where the notation for linear drag is the same as in the coupled degrees of freedom 

model, and 𝑋𝑋|𝑢𝑢|𝑢𝑢 is the quadratic drag force in the x-direction due to a velocity 𝑢𝑢 in the 

x-direction. The 𝐃𝐃(𝝂𝝂) is multiplied by 𝝂𝝂 in the equations of motion. 

3.2.4. External forces. The external forces exerted on the vehicle are those 

arising from actuation through thrusters and those arising from the environmental 

currents. Actuation of the vehicle is achieved through thrusters, which are modeled by 

the thruster allocation matrix. Actuation of each thruster results in a thrust force applied 

on the location of the thruster, a moment of that force about the center of gravity of the 

vehicle, and a reactional torque on the vehicle that is a result of the rotary motion of the 

propeller. Equation (22) presents the external forces vector where 𝑓𝑓𝑛𝑛 is the force exerted 

by thruster 𝑖𝑖 and 𝑅𝑅 is the perpendicular distance from the center of gravity to any of the 

thrusters. 
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𝝉𝝉𝑏𝑏 = � 𝒇𝒇
𝒓𝒓 × 𝒇𝒇� =

⎣
⎢
⎢
⎢
⎢
⎡

𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4
0
0
0

𝑅𝑅 (−𝑓𝑓1 − 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4)
𝑅𝑅 (𝑓𝑓1 − 𝑓𝑓2 + 𝑓𝑓3 − 𝑓𝑓4) ⎦

⎥
⎥
⎥
⎥
⎤

 (22) 

The thruster allocation matrix maps the force exerted by each of the actuators to the 

resulting forces, moments, and torques on the vehicle. This matrix is shown below: 

𝝉𝝉𝑏𝑏 =

⎣
⎢
⎢
⎢
⎢
⎡

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
−𝑅𝑅 −𝑅𝑅 𝑅𝑅 𝑅𝑅
𝑅𝑅 −𝑅𝑅 𝑅𝑅 −𝑅𝑅⎦

⎥
⎥
⎥
⎥
⎤

�

𝑓𝑓1
𝑓𝑓2
𝑓𝑓3
𝑓𝑓4

� (23) 

Often, thruster performance curves relate the force, 𝑓𝑓𝑛𝑛, that any of the thrusters needs to 

exert to the input electrical signal sent to the thrusters. Lookup tables or fitting tools are 

then used to send the signal required to generate the desired force. 

Finally, considering all the above, the model can be written as: 

𝐌𝐌 �̇�𝝂 + 𝐂𝐂(𝝂𝝂)𝝂𝝂 + 𝐃𝐃(𝝂𝝂)𝝂𝝂 + 𝓖𝓖(𝜼𝜼) = 𝝉𝝉𝒂𝒂𝒂𝒂𝒅𝒅𝒂𝒂𝒂𝒂𝒅𝒅o𝒓𝒓 (24) 

The form in equation (24) can be expanded to: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑚𝑚 �̇�𝑢 + 𝑚𝑚(𝑤𝑤 𝑞𝑞 − 𝑣𝑣 𝑟𝑟) + 𝑋𝑋𝑢𝑢𝑢𝑢 + 𝑋𝑋|𝑢𝑢|𝑢𝑢|𝑢𝑢|𝑢𝑢 + 2(B − W)(𝜖𝜖1 𝜖𝜖3 − 𝜂𝜂 𝜖𝜖2)
𝑚𝑚 �̇�𝑣 + 𝑚𝑚(𝑢𝑢 𝑟𝑟 − 𝑤𝑤 𝑞𝑞) + 𝑌𝑌𝑣𝑣𝑣𝑣 + 𝑌𝑌|𝑣𝑣|𝑣𝑣|𝑣𝑣|𝑣𝑣 + 2(B − W)(𝜖𝜖2 𝜖𝜖3 + 𝜂𝜂 𝜖𝜖1)

𝑚𝑚 �̇�𝑤 + 𝑚𝑚(𝑣𝑣 𝐷𝐷 − 𝑢𝑢 𝑞𝑞) + 𝑍𝑍𝑤𝑤𝑤𝑤 + 𝑍𝑍|𝑤𝑤|𝑤𝑤|𝑤𝑤|𝑤𝑤 + (W − B)(1 − 2(𝜖𝜖12 + 𝜖𝜖22) )
𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝐷 + 𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝑞 + 𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝑟 + �𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑥𝑥𝑥𝑥� 𝑞𝑞 𝑟𝑟 + 𝐾𝐾𝑝𝑝𝐷𝐷 + 𝐾𝐾|𝑝𝑝|𝑝𝑝|𝐷𝐷|𝐷𝐷 + 𝑟𝑟𝑏𝑏𝑥𝑥(2B)(𝜖𝜖1 𝜖𝜖2 + 𝜂𝜂 𝜖𝜖3)

𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝐷 + 𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝑞 + 𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝑟 + (𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑥𝑥𝑥𝑥) 𝐷𝐷 𝑟𝑟 + 𝑀𝑀𝑞𝑞𝑞𝑞 + 𝑀𝑀|𝑞𝑞|𝑞𝑞 + 𝑟𝑟𝑏𝑏𝑥𝑥(B) �1 − 2(𝜖𝜖12 + 𝜖𝜖22)�

𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝐷 + 𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝑞 + 𝐼𝐼𝑥𝑥𝑥𝑥�̇�𝑟 + �𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑥𝑥𝑥𝑥� 𝐷𝐷 𝑞𝑞 + 𝑁𝑁𝑟𝑟𝑟𝑟 + 𝑁𝑁|𝑟𝑟|𝑟𝑟 + 𝑟𝑟𝑏𝑏𝑥𝑥(2B)(𝜖𝜖2 𝜖𝜖3 − 𝜂𝜂 𝜖𝜖1) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4
0
0
0

𝑅𝑅 (−𝑓𝑓1 − 𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4)
𝑅𝑅 (𝑓𝑓1 − 𝑓𝑓2 + 𝑓𝑓3 − 𝑓𝑓4) ⎦

⎥
⎥
⎥
⎥
⎤

 

(25) 
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Chapter 4. Parameter Identification 

The problem of parameter identification appears because some parameters of 

the vehicle model are not known with great certainty, while other parameters are not 

known at all. To exemplify, the mass, the inertia and locations of the centers of 

gravity/buoyancy are parameters that can be estimated thorough software packages 

with some certainty; however, the quality of materials, the manufacturing process, and 

the assembly process might impose unforeseen changes in the parameters mentioned. 

Moreover, parameters like the added mass coefficients and damping coefficients are 

financially very costly to estimate since they require specialized experimental setups. 

Nevertheless, finite element computational methods allow the identification of these 

parameters, and experimental validation often shows that the finite element analysis 

gives realistic results when applied properly. 

4.1. Proposed Vehicle Classification 

The proposed vehicle, which is shown in Figure 11, is a man-portable class 

Autonomous Underwater Vehicle (AUV) with a quadcopter-like thruster arrangement. 

The vehicle in its stable configuration has the axis of the cylinder horizontal, unlike a 

quadcopter. This stable configuration is induced by controlling the locations of the 

centers of gravity and buoyancy of the vehicle. 

 

Figure 11: Vehicle CAD model 

4.2. Mass Matrix Identification 

 The components relevant to construct this matrix are total mass of the vehicle, 

the inertia tensor, and the center of gravity. Knowledge of the materials involved as 
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well as their properties allow for Autodesk Inventor to compute the desired quantities. 

It is of significance to mention that the center of buoyancy is also calculable through 

the software package. That is doable by replacing all the material properties with those 

of water and re-evaluating the center of gravity, which will describe the center of 

buoyancy. The quantities are tabulated below. 

Table 3: AUV properties 

Quantity value 

Mass 4.82 𝑘𝑘𝑘𝑘 

Inertia 
�

0.06346 −8.680𝑥𝑥10−6 −5.175𝑥𝑥10−5
−8.680𝑥𝑥10−6 0.05195 5.200𝑥𝑥10−7
−5.175𝑥𝑥10−5 5.200𝑥𝑥10−7 0.05281

�  𝑘𝑘𝑘𝑘.𝑚𝑚2 

Center of Gravity [0 0 0]𝑇𝑇𝑚𝑚 

Center of Buoyancy [1 × 10−4 0 −0.030]𝑇𝑇𝑚𝑚 

It is evident that the nearly symmetrical shape of the AUV caused the Inertia tensor to 

almost be purely diagonal. In addition, the centers of gravity and buoyancy result in 

natural stability in the roll and pitch motions. 

4.3. Damping Parameters Identification 

Commercial software package ANSYS was used to obtain an estimate of the 

different drag components. The general methodology followed is that of [52]. A 3D 

model for the vehicle was created in Autodesk Inventor for simulation purposes. Two 

scenarios were considered in the simulation environment; translational motion in the 

directions of the three principal axes as well as rotational motion about them. A 

multitude of flow velocity conditions for the two scenarios were simulated. Those 

scenarios are referred to as scenario 1 and scenario 2. 

Figure 12 and Figure 13 show the meshed model in the ANSYS environment in 

the two scenarios mentioned. An enclosure that is 4-5 times as large as the vehicle was 

created to model each scenario, since general fluid simulation guidelines suggest a 

minimum of 2-3. Mesh statistics are presented in Table 4. The required level of 

refinement of the discretized model was determined through a mesh convergence study. 

An additional level of refinement was applied to the model to run the scenarios for good 

measure. 
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Table 4: Mesh statistics 

 Number of elements Number of nodes 

Scenario 1 405354 82067 

Scenario 2 1902365 365667 

 

 

Figure 12: Mesh Front View of AUV 

 

Figure 13: Mesh Side View of AUV 

As for the boundary conditions, the first scenario was simulated in the Fluent 

ANSYS package. It consisted of an enclosure with the AUV model inside. The former 

domain was chosen to be a water fluid domain with auto initialization, and the latter 

domain was a no-slip boundary condition. The enclosure had an inlet with a specified 

velocity on one side, and it had a zero relative-pressure outlet on the other side. All the 

other sides of the enclosure were free boundaries with zero shear interaction with the 



46 
 

fluid domain. A parametric study was implemented for several inlet velocities. The 

resulting total pressure fields were integrated over the entire boundary of the AUV for 

every inlet velocity to compute the total drag force. Figure 14 and Figure 16 present the 

pressure contour field on the AUV boundary as well as the velocity stream lines 

throughout the fluid boundary. The figures correspond to a case of translational flow 

with 1 𝑚𝑚/𝑠𝑠 inlet velocity. For brevity, cases of the flow in the other directions are not 

presented. 

The second scenario was simulated in the CFX ANSYS package. It also 

consisted of an enclosure and an AUV model inside. Here, rotary motion of the AUV 

was realized through mesh motion of the AUV domain. The former domain was chosen 

to be a water fluid domain with auto initialization, and the latter domain was a no-slip 

boundary condition with mesh motion handling. All the sides of the enclosure were free 

boundaries with zero shear interaction with the fluid domain. A parametric study was 

implemented for several rotational velocities of the AUV domain. The resulting total 

pressure fields were integrated over the entire boundary of the AUV for every inlet 

velocity to compute the total drag moment. It is of interest to indicate that CFX, unlike 

FLUENT, is a time domain solver and not a steady state one when mesh motion 

handling is enabled. Figure 15 and Figure 17 report the pressure contour field on the 

AUV boundary as well as the velocity stream lines throughout the fluid boundary for 

two flows. For brevity, other cases are not presented. 

 

Figure 14: Pressure Contour Plot for Translational Motion 
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Figure 15: Pressure Contour Plot for Rotational Motion 

 

Figure 16: Flow Velocity Streamlines for Translational Motion 

 

Figure 17: Flow Velocity Streamlines for Rotational Motion 

Figure 18 shows the drag forces and drag torques on the vehicle as a function of the 

linear or angular velocity of the vehicle. To get the quadratic and linear drag 
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coefficients, the ANSYS data was fitted to quadratic functions to find the drag profiles. 

The drags coefficients documented in Table 5. 

Table 5: Identified Drag Model Parameters 

 𝟏𝟏 𝟐𝟐 𝟑𝟑 𝟒𝟒 𝟓𝟓 𝟔𝟔 

Linear drag coefficients  1.073 1.168 1.168 −0.0219 0.0504 0.0504 

Quadratic drag coefficients 23.382 28.770 28.770 0.0471 0.1533 0.1533 

 

 

Figure 18: Drag Identification Results 
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4.4. Hydrodynamic Mass Identification 

To estimate the hydrodynamic parameters of the vehicle, experimental testing 

and/or simulation through finite element packages is necessary. Here, the relevant 

parameters are identified through the ANSYS software suite.  

The added mass coefficients for a slender body can be derived through strip 

theory methodology like in [53]. Many vehicles, however, are not slender in shape, and 

the proposed vehicle is no exception. Therefore, a more fundamental view of the 

phenomenon is taken to identify the added mass parameters. Since the added mass 

determines the necessary work required to change the kinetic energy of the fluid 

surrounding a body in motion, one can relate the kinetic energy of the fluid surrounding 

the body and the kinetic energy of the body [21]. The kinetic energy of a fluid volume 

can be calculated through the volume integral: 

KE =
1
2
��𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑥𝑥2� 𝑟𝑟𝑚𝑚 

      =
ρ
2
��𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑥𝑥2�

 

𝑉𝑉

𝑟𝑟𝑑𝑑 

      =
ρ
2
��𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑥𝑥2� 𝑟𝑟𝑥𝑥𝑟𝑟𝑦𝑦𝑟𝑟𝑧𝑧 

(26) 

where 𝑢𝑢𝑛𝑛, 𝑖𝑖 = 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 are the Cartesian components of the fluid velocity, and 𝑑𝑑 is the 

entire fluid domain. The integral above assumes stationary fluid far from the body. For 

a flowing fluid with a constant uniform velocity, 𝑊𝑊𝑖𝑖, the integral becomes: 

KE =
ρ
2
�(𝑢𝑢𝑛𝑛 −𝑊𝑊𝑛𝑛)(𝑢𝑢𝑛𝑛 −𝑊𝑊𝑛𝑛)

 

𝑉𝑉

𝑟𝑟𝑑𝑑 (27) 

According to potential theory, the added mass can be computed by equating the kinetic 

energy of the fluid relative to the body as in equations (26) and (27) to an equivalent 

body kinetic energy. 

KEfluid = KEbody 

ρ
2
�(𝑢𝑢𝑛𝑛 −𝑊𝑊𝑛𝑛)(𝑢𝑢𝑛𝑛 −𝑊𝑊𝑛𝑛)

 

𝑉𝑉

𝑟𝑟𝑑𝑑 =
1
2
𝑚𝑚𝑎𝑎𝑈𝑈2 

(28) 

where 𝑈𝑈 is the instantaneous velocity of the body moving in the fluid. 
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According to [54], in context of potential fluid flow, the added mass matrix for a 

symmetric body must be symmetric. The aforementioned integrals were implemented 

in ANSYS for the simulations described earlier in the chapter. First, the methodology 

is tested through simulating the flow over a primitive shape for which the added mass 

is known. Then, the added mass of the vehicle can be estimated using the validated 

methodology. 

The added mass for a cylinder is shown through analytical and empirical 

approaches to take the form in equation set (29) [18, 37], where 𝑋𝑋�̇�𝑢 is the only empirical 

form. The cylinder had a diameter of 0.4 𝑚𝑚 and a length of 0.3 𝑚𝑚. 

𝑴𝑴𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒅𝒅𝑪𝑪𝒓𝒓𝑨𝑨𝒅𝒅𝒅𝒅𝑪𝑪𝒅𝒅

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝑋𝑋�̇�𝑢 = 1.08 𝜌𝜌𝜌𝜌𝑟𝑟2.93𝑙𝑙0.07

𝑌𝑌�̇�𝑣 = 𝜌𝜌𝜌𝜌𝑟𝑟2𝑙𝑙                    
𝑍𝑍�̇�𝑤 = 𝜌𝜌𝜌𝜌𝑟𝑟2𝑙𝑙                     
𝐾𝐾�̇�𝑝 = 0                              

𝑀𝑀�̇�𝑞 =
1

12
𝜌𝜌𝜌𝜌𝑟𝑟2𝑙𝑙3               

𝑁𝑁�̇�𝑟 =
1

12
𝜌𝜌𝜌𝜌𝑟𝑟2𝑙𝑙3               

 (29) 

where 𝑟𝑟 is the radius of the cylinder, 𝑙𝑙 is the length of the cylinder, and 𝜌𝜌 is the density 

of the fluid in which the body is submerged.  

The results of the added mass identification results for a cylinder are 

documented in Table 6. 

Table 6: Added Mass Results for a Cylinder 

 𝑿𝑿�̇�𝒂 [𝒌𝒌𝒌𝒌] 𝒀𝒀�̇�𝒗,𝒁𝒁�̇�𝒘 [𝒌𝒌𝒌𝒌] 𝑲𝑲�̇�𝒑 [𝒌𝒌𝒌𝒌.𝒎𝒎𝟐𝟐] 𝑴𝑴�̇�𝒒,𝑵𝑵�̇�𝒓[𝒌𝒌𝒌𝒌.𝒎𝒎𝟐𝟐] 

Real Added Mass 32.200 37.699 0 0.283 

ANSYS Added Mass 34.996 38.646 0.085 0.328 

The methodology gives accurate results for the translational degrees of freedom. 

However, the rotational degrees of freedom did not exactly closely match the analytical 

solution. This can be explained by the mesh not being fine enough in the CFX module 

that utilizes moving mesh to solve the problem. The module used does not support 

smaller mesh sizes. 

The added mass matrix for the vehicle was then simulated. Convergence results 

for the simulated runs are shown in Figure 19. As the mesh became finer, the solution 
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converged to the values presented in Table 7. The added mass in the roll motion is 

observed to be somewhat large, and the convergence analysis suggests that 

improvement is possible.  

Table 7: Added Mass Results for the Vehicle 

 𝑿𝑿�̇�𝒂 [𝒌𝒌𝒌𝒌] 𝒀𝒀�̇�𝒗,𝒁𝒁�̇�𝒘 [𝒌𝒌𝒌𝒌] 𝑲𝑲�̇�𝒑 [𝒌𝒌𝒌𝒌.𝒎𝒎𝟐𝟐] 𝑴𝑴�̇�𝒒,𝑵𝑵�̇�𝒓[𝒌𝒌𝒌𝒌.𝒎𝒎𝟐𝟐] 

Real Added Mass 38.583 31.258 0.9285 0.116 

 

 

Figure 19: Added Mass Convergence Results 
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4.5. Fine-tuning of the Parameters 

It is often of interest to improve upon the estimated parameters when 

experimental data is present. Parameter identification can be used to fine-tune the 

parameters of the vehicle [14, 15, 19]. The identification vector accommodates all the 

variables to be identified, which are attributed to mass, inertia, center of buoyancy, 

damping, and added mass. Nonlinear least square optimization techniques can be used 

to identify the parameters that best fit the simulation results to the experimental ones. 

The Levenberg-Marquardt algorithm is a numerical routine that operates in a hybrid 

fashion between Gradient-Decent and Gauss-Newton numerical routines.  

Let 𝒇𝒇 be a 6-row vector containing the difference between the experimental 

response, 𝐲𝐲, and the simulation results, as follows: 

𝒇𝒇 = 𝐲𝐲 − (𝐌𝐌 �̇�𝝂 + 𝐂𝐂(𝝂𝝂)𝝂𝝂 + 𝐃𝐃(𝝂𝝂)𝝂𝝂 + 𝓖𝓖(𝜼𝜼) − 𝝉𝝉𝒂𝒂𝒂𝒂𝒅𝒅𝒂𝒂𝒂𝒂𝒅𝒅o𝒓𝒓) 
 

(30) 

Let 𝐉𝐉 be the Jacobian matrix, where the partial derivatives of 𝒇𝒇 with respect to the 

elements of 𝛌𝛌 are evaluated at the values of the vector at every iteration 𝑖𝑖: 

𝐉𝐉𝑪𝑪 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕λ1

𝜕𝜕𝑓𝑓1
𝜕𝜕λ2

…
𝜕𝜕𝑓𝑓1
𝜕𝜕λ𝑛𝑛

𝜕𝜕𝑓𝑓2
𝜕𝜕λ1

𝜕𝜕𝑓𝑓2
𝜕𝜕λ2

…
𝜕𝜕𝑓𝑓2
𝜕𝜕λ𝑛𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕λ1

𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕λ2

…
𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑥𝑥λ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

�

 𝝀𝝀= 𝝀𝝀𝑪𝑪

 (31) 

Approximated by the linearization, 𝒇𝒇 can be rewritten with 𝜹𝜹 representing a change in 

the parameter vector 𝝀𝝀, as: 

𝒇𝒇(𝝀𝝀𝑪𝑪 + 𝜹𝜹) ≈ 𝒇𝒇(𝝀𝝀𝑪𝑪) + 𝑱𝑱𝑪𝑪𝜹𝜹 
 

(32) 

The Levenberg-Marquardt numerical routine yields a minimum 𝒇𝒇, given by: 

(𝑱𝑱𝑻𝑻𝑱𝑱 + 𝝍𝝍𝝍𝝍)𝛅𝛅 = 𝐣𝐣𝐓𝐓𝒇𝒇  
 

(33) 

where 𝝍𝝍 is a parameter that is varied by the algorithm between iterations such that 

convergence is reached, and 𝛅𝛅 is the parameter that linear system can be solved for to 

be added to 𝝀𝝀. Many software packages like MATLAB have an implementation of the 

described routine. 
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Chapter 5: Guidance and Control 

This chapter deals with the motion planning task and the associated control to 

force the vehicle to follow some trajectory. The devised control method is twofold; a 

high-level controller and a low-level controller. Given an input trajectory, the high-

level controller, derived from the vehicle kinematic model, computes the requires 

vehicle velocities required to force the vehicle to track the input trajectory, and the low-

level controller, derived from the vehicle dynamic model, takes the input from the high-

level controller and computes the necessary thrust and torque required of the vehicle to 

realize the input velocities. 

5.1. Trajectory Planning 

To perform the tasks required of the vehicle, motion planning is necessary. 

Trajectory panning is the process of describing the desired motion in terms of positions, 

velocities and accelerations for the different degrees of freedom involved in the motion. 

The trajectory generation task is preferred to take a simple form and be computationally 

simple. To that end, techniques of the likes of polynomials, splines, and linear paths 

with blends have been developed [26]. Here, a quintic polynomial scheme is described 

to generate the history of required position, velocity, and acceleration for the vehicle. 

This higher order scheme allows for specifying position waypoints that the vehicle will 

go through to reach an end goal. It also allows for continuous velocity and acceleration 

trajectories, unlike cubic polynomials that only have continuous velocity trajectories. 

The quintic polynomial describing the motion between two waypoints 𝑥𝑥(𝐷𝐷0) 

and 𝑥𝑥(𝐷𝐷𝑓𝑓) is described by: 

𝑥𝑥(𝐷𝐷) = 𝑟𝑟0 + 𝑟𝑟1𝐷𝐷 + 𝑟𝑟2𝐷𝐷2 + 𝑟𝑟3𝐷𝐷3 + 𝑟𝑟4𝐷𝐷4 + 𝑟𝑟5𝐷𝐷5 (34) 

The velocity and acceleration trajectories are then realized by differentiation equation 

(34) to get: 

�̇�𝑥(𝐷𝐷) = 𝑟𝑟1 + 𝑟𝑟2𝐷𝐷 + 𝑟𝑟3𝐷𝐷2 + 𝑟𝑟4𝐷𝐷3 + 𝑟𝑟5𝐷𝐷4 

�̈�𝑥(𝐷𝐷) = 𝑟𝑟2 + 𝑟𝑟3𝐷𝐷 + 𝑟𝑟4𝐷𝐷2 + 𝑟𝑟5𝐷𝐷3 
(35) 

To solve for the polynomial describing the motion, six constraints must be 

specified to solve for 𝑟𝑟0,𝑟𝑟1, … ,𝑟𝑟5. They are the two position waypoints, initial and 

final velocities, and initial and final accelerations. The constraints form a linear system 

of equations in the needed parameters, which is shown in matrix form in equation (36). 
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⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥0
�̇�𝑥0
�̈�𝑥0
𝑥𝑥𝑓𝑓
�̇�𝑥𝑓𝑓
�̈�𝑥𝑓𝑓⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 𝐷𝐷0 𝐷𝐷02 𝐷𝐷03 𝐷𝐷04 𝐷𝐷05

0 1 2𝐷𝐷0 3𝐷𝐷02 4𝐷𝐷03 5𝐷𝐷04

0 0 2 6𝐷𝐷0 12𝐷𝐷02 20𝐷𝐷03

1 𝐷𝐷𝑓𝑓 𝐷𝐷𝑓𝑓2 𝐷𝐷𝑓𝑓3 𝐷𝐷𝑓𝑓4 𝐷𝐷𝑓𝑓5

0 1 2𝐷𝐷𝑓𝑓 3𝐷𝐷𝑓𝑓2 4𝐷𝐷𝑓𝑓3 5𝐷𝐷𝑓𝑓4

0 0 2 6𝐷𝐷𝑓𝑓 12𝐷𝐷𝑓𝑓2 20𝐷𝐷𝑓𝑓3⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝑟𝑟0
𝑟𝑟1
𝑟𝑟2
𝑟𝑟3
𝑟𝑟4
𝑟𝑟5⎦
⎥
⎥
⎥
⎥
⎤

 (36) 

5.2. Control 

As a consequence of the underactuated nature of the underwater vehicle, 

nonholonomic constraints interfere with the ability of the vehicle to move freely in 3D 

space. That is, while the vehicle can reach any position in its configuration space, it is 

constrained in the way that motion can happen. Submarines are examples of 

underactuated underwater vehicles with nonholonomic constraints, for they are usually 

equipped with a thruster that propels the vehicle forward and two stern planes that 

introduce pitch and yaw moments. Similarly, the AUV can only generate thrust in the 

forward direction and moments about all axis. This makes the control nontrivial as the 

simpler techniques like state feedback become inapplicable. Consequently, a subset of 

the degrees of freedom that can be actuated are exploited in a manner that allows the 

vehicle to accomplish the tasks required of it. Here, trajectory tracking is the task we 

focus on, for it is a common task that underwater vehicles are required to perform. The 

suggested control architecture is presented in Figure 20. 

 
Figure 20: Control Diagram 

5.2.1. Kinematic controller. Based on the kinematic model derived in 

equation set (7), it is of interest to device a control law that exclusively makes use of 

the actuatable degrees of freedom in tracking a given trajectory. First, the position and 

velocity of point 𝑬𝑬 in Figure 21 is to be described, where point 𝑬𝑬 is a lookahead distance 

usually employed in line-of-sight path following algorithms. In the inertial frame, point 

𝑬𝑬 is described as: 
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𝜼𝜼𝐸𝐸 = [𝑥𝑥𝐸𝐸 𝑦𝑦𝐸𝐸 𝑧𝑧𝐸𝐸]𝑇𝑇 

𝛖𝛖𝐸𝐸 = [𝑢𝑢𝐸𝐸 𝑣𝑣𝐸𝐸 𝑤𝑤𝐸𝐸]𝑇𝑇  
(37) 

with the velocities written in terms of the translational velocity, 𝛖𝛖𝐺𝐺, and rotational 

velocity, 𝛚𝛚, of the vehicle as: 

𝛖𝛖𝐸𝐸 = 𝛖𝛖𝐺𝐺 + 𝛚𝛚 ×  𝒓𝒓𝐺𝐺/𝐸𝐸   (38) 

where the distance between points 𝐺𝐺 and 𝐸𝐸 is: 

𝒓𝒓𝐺𝐺/𝐸𝐸 = [𝜖𝜖 0 0]𝑇𝑇 (39) 

 

Figure 21: Kinematic control scheme 

To formulate the kinematic control law, the kinematic model is first used to 

describe the velocities in equation (38) in the n-frame as: 

�̇�𝜼𝐸𝐸 = 𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒)�𝛖𝛖𝐺𝐺 + [0 𝑣𝑣 𝑤𝑤]𝑇𝑇 + 𝛚𝛚 ×  𝒓𝒓𝐺𝐺/𝐸𝐸� 

�̇�𝒒 = 𝐓𝐓(𝒒𝒒) 𝛚𝛚 
(40) 

where 𝛖𝛖𝐺𝐺 = [𝑢𝑢 0 0]𝑇𝑇 and 𝛚𝛚 = [0 𝑞𝑞 𝑟𝑟]𝑇𝑇 are inputs, and the rest of the velocities 

are taken as disturbances. 

The trajectory following problem is to design a control law that can force the 

vehicle whose position is described by (40) to follow the desired continuous trajectory 

described by some 𝜼𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑, �̇�𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑.  

The control law can be derived by noticing that the following relationship holds 

when describing the motion in terms of point 𝐸𝐸: 
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𝛖𝛖𝐺𝐺 + 𝛚𝛚 ×  𝒓𝒓𝐺𝐺/𝐸𝐸 = �
𝑢𝑢
𝑣𝑣
𝑤𝑤
� + 𝜖𝜖 �

0
𝑞𝑞
−𝑟𝑟

� 

                               = 𝐒𝐒 𝛖𝛖𝑎𝑎 + [0 𝑣𝑣 𝑤𝑤]𝑇𝑇 

(41) 

where 𝐒𝐒 = �
1 0 0
0 0 𝜖𝜖
0 −𝜖𝜖 0

�, 𝛖𝛖𝑎𝑎 = [𝑢𝑢 𝑞𝑞 𝑟𝑟]𝑇𝑇, and [0 𝑣𝑣 𝑤𝑤]𝑇𝑇 is the sway and heave 

velocities of the vehicle due to environmental disturbance. 

Consequently, the kinematic relationship between points 𝐸𝐸 and 𝐺𝐺 can be 

exploited to devise the following control law: 

𝛖𝛖𝑎𝑎 = 𝐒𝐒−1�𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒)��̇�𝜼𝐸𝐸 + 𝚲𝚲�𝜼𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − 𝜼𝜼𝐸𝐸� − [0 𝑣𝑣 𝑤𝑤]𝑇𝑇�� (42) 

where 𝚲𝚲 is a diagonal design matrix that is positive definite and Hurwitz. 𝚲𝚲 serves as 

the proportional gain in this control law. 

The closed loop dynamics are noticed to take the form of 

�̇�𝜼𝐸𝐸 = 𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒)𝐑𝐑𝑏𝑏

𝑛𝑛(𝒒𝒒)𝑇𝑇 ��̇�𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 + 𝚲𝚲�𝜼𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − 𝜼𝜼𝐸𝐸�� 

= �̇�𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 + 𝚲𝚲�𝜼𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − 𝜼𝜼𝐸𝐸� 
(43) 

where the simplification is valid as a result of the orthogonal property of the rotation 

matrix. Denoting the error as 𝑪𝑪 = 𝜼𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − 𝜼𝜼𝐸𝐸 , the error can be described by the 

dynamics that exponentially converge to zero: 

�̇�𝑪 + 𝚲𝚲𝑪𝑪 = 𝟎𝟎 (44) 

It is of interest to note that under drift due to ocean currents and/or nonzero lateral 

vehicle motion, the control law of (42) does not guarantee tracking of any reference 

orientation trajectories. [55] proves that under zero disturbances, asymptotic orientation 

tracking is also guaranteed.  

 The kinematic control law in (43) was supplemented with integral control 

action, for steady state error was present despite the gain adaptation proposed later in 

this chapter. The kinematic control law is then updated to be: 

�̇�𝜼𝐸𝐸 = �̇�𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 + 𝚲𝚲�𝜼𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − 𝜼𝜼𝐸𝐸� + 𝚲𝚲𝐢𝐢 � �𝜼𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − 𝜼𝜼𝐸𝐸� 𝑟𝑟𝐷𝐷
𝑡𝑡

0
 (45) 
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where 𝚲𝚲𝐢𝐢 is a diagonal matrix with small integral gain, and 𝚲𝚲 is the proportional gain 

matrix in this control law. 

5.2.2. Dynamic controller. The second part of solving the trajectory tracking 

problem lies in the vehicle being able to realize the velocity commands that the 

kinematic controller produces. This command is a function of the state of the vehicle. 

The dynamic controller receives this velocity command, which is now denoted as 

𝛖𝛖𝑎𝑎𝑑𝑑𝑒𝑒𝑑𝑑, and tries to match the real velocity 𝛖𝛖 with the kinematic controller output. 

Denoting the error between the two velocities as 𝑪𝑪𝒗𝒗 = 𝛖𝛖 − 𝛖𝛖a𝑑𝑑𝑒𝑒𝑑𝑑, the dynamics of 𝜼𝜼𝐸𝐸 

can be described as: 

�̇�𝜼𝐸𝐸 = 𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒)�𝐒𝐒�𝑪𝑪𝑣𝑣 + 𝛖𝛖a𝑑𝑑𝑒𝑒𝑑𝑑� + [0 𝑣𝑣 𝑤𝑤]𝑇𝑇� (46) 

which leads to the following error dynamics: 

�̇�𝑪 + 𝚲𝚲𝑪𝑪 = 𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒)𝐒𝐒(𝑪𝑪𝑣𝑣) (47) 

The trajectory tracking error here does not converge to zero as equation (47) suggests. 

To force the position error dynamics, 𝑪𝑪, to zero, the mismatch between the command 

velocity and the vehicle velocity, 𝑪𝑪𝑣𝑣, must be driven to zero.  

Recalling that the dynamics of the vehicle can be described by: 

𝐌𝐌 �̇�𝝂 + 𝐂𝐂(𝝂𝝂)𝝂𝝂+ 𝐃𝐃(𝝂𝝂)𝝂𝝂 + 𝓖𝓖(𝜼𝜼) = 𝝉𝝉𝒂𝒂 (48) 

A reduced order model that only takes into consideration the controlled degrees of 

freedom is written as 

𝐌𝐌3×3 �̇�𝛖𝑎𝑎 + 𝐂𝐂(𝝂𝝂𝑎𝑎)3×3𝛖𝛖𝑎𝑎 + 𝐃𝐃(𝝂𝝂𝑎𝑎)3×3𝛖𝛖𝑎𝑎 + 𝓖𝓖(𝜼𝜼) + 𝒅𝒅(𝝂𝝂) = 𝝉𝝉𝒂𝒂 (49) 

in which 𝛖𝛖𝑎𝑎 = [𝑢𝑢 𝑞𝑞 𝑟𝑟]𝑇𝑇, 𝝂𝝂 = [𝑢𝑢 𝑣𝑣 𝑤𝑤 𝐷𝐷 𝑞𝑞 𝑟𝑟 ]𝑇𝑇, 𝝉𝝉𝒂𝒂 = [𝑋𝑋 𝐿𝐿 𝑀𝑀]𝑇𝑇, 

and 𝒅𝒅(𝝂𝝂) is a disturbance vector arising from the coupling between the dynamics in the 

nonlinear model that are not fully accounted for in the reduced model. The computation 

of such vector is possible since knowledge of the entire state vector is assumed to be 

known. Also, 𝐌𝐌3×3, 𝐂𝐂(𝝂𝝂)3×3, and 𝐃𝐃(𝝂𝝂)3×3 are only compromised of the components 

directly induced by 𝛖𝛖𝑎𝑎. 
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The dynamic controller now is required to produce a 𝝉𝝉𝒂𝒂 that can track the velocity 

vector 𝛖𝛖𝑎𝑎 despite of the disturbance vector 𝒅𝒅(𝝂𝝂). Given that 𝛖𝛖𝑎𝑎𝑑𝑑𝑒𝑒𝑑𝑑 and �̇�𝛖𝑎𝑎𝑑𝑑𝑒𝑒𝑑𝑑 are 

available, a computed-torque-like control law is applicable as: 

𝝉𝝉𝒂𝒂 = 𝐌𝐌3×3 ��̇�𝛖a𝑑𝑑𝑒𝑒𝑑𝑑 + 𝐊𝐊𝑑𝑑𝐞𝐞𝑣𝑣�+ 𝐂𝐂(𝝂𝝂)3×3𝛖𝛖𝑎𝑎des + 𝐃𝐃(𝝂𝝂)3×3𝛖𝛖𝑎𝑎des + 𝓖𝓖(𝜼𝜼) + 𝒅𝒅(𝝂𝝂) (50) 

in which 𝐊𝐊𝑑𝑑 is a positive diagonal design matrix. 

The dynamics of the error when substituting the control law in the model are now 

given by: 

�̇�𝑪𝑣𝑣 + 𝐊𝐊d 𝑪𝑪𝑣𝑣 = 𝟎𝟎 (51) 

which implies exponential convergence to zero of 𝑪𝑪𝑣𝑣 and, consequently, 𝑪𝑪. 

5.3. Adaptive Online Parameter Tuning 

5.3.1.  Adaptive Proportional Controller (APC). The performance of the 

previously devised controllers depends on the values of the positive design parameters 

𝚲𝚲 and 𝐊𝐊𝐝𝐝. Further, the performance of the dynamic inner control loop must keep up 

with the trajectory fed by the kinematic outer control loop in presence of noise and 

possible model uncertainty for robust trajectory tracking to occur. Consequently, an 

adaptive strategy to tune the design parameter gains is proposed. Two approaches are 

presented; an Adaptive Proportional Control adaptation law that depends on the 

tracking error and an adaptation law based on Universal Adaptive Stabilization (UAS).  

The APC tunes the design parameters based on the propagation of variable 𝑘𝑘, 

which depends on the error. The dynamic gain adaptation law is given as: 

�̇�𝑘𝑥𝑥 = 𝛾𝛾𝑥𝑥𝐷𝐷𝑥𝑥2 

�̇�𝑘𝑥𝑥 = 𝛾𝛾𝑥𝑥𝐷𝐷𝑥𝑥2 

�̇�𝑘𝑥𝑥 = 𝛾𝛾𝑥𝑥𝐷𝐷𝑥𝑥2 

(52) 

where 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥, and 𝑘𝑘𝑥𝑥 are the adapted gain parameters, 𝛾𝛾𝑥𝑥, 𝛾𝛾𝑥𝑥, and 𝛾𝛾𝑥𝑥 are positive 

constants that drive the adaptation rate with respect to the tracking error, and 𝐷𝐷𝑥𝑥,

𝐷𝐷𝑥𝑥, and 𝐷𝐷𝑥𝑥 are the errors in the three principal directions. The control law for the 

kinematic loop then becomes 

�̇�𝜼𝐸𝐸 = �̇�𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 + 𝚲𝚲�𝜼𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − 𝜼𝜼𝐸𝐸� (53) 
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where 𝚲𝚲 = 𝑟𝑟𝑖𝑖𝑟𝑟𝑘𝑘��𝑘𝑘𝑥𝑥2 𝑘𝑘𝑥𝑥2 𝑘𝑘𝑥𝑥2��. 

To prove the stability of the devised kinematic control law, consider the 

candidate Lyapunov function  

𝑑𝑑𝑥𝑥(𝐷𝐷𝑥𝑥,𝑘𝑘𝑥𝑥) =
1
2

(𝐷𝐷𝑥𝑥2 + 𝑘𝑘𝑥𝑥2) (54) 

Taking the time derivative of candidate Lyapunov function yields 

�̇�𝑑𝑥𝑥(𝐷𝐷𝑥𝑥,𝑘𝑘𝑥𝑥) = 𝐷𝐷𝑥𝑥�̇�𝐷𝑥𝑥 + 𝑘𝑘𝑥𝑥�̇�𝑘𝑥𝑥 

                    = 𝐷𝐷𝑥𝑥��̇�𝑥𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − �̇�𝑥𝐸𝐸� + 𝑘𝑘𝑥𝑥(𝛾𝛾𝑥𝑥𝐷𝐷𝑥𝑥2) 

                    = 𝐷𝐷𝑥𝑥 ��̇�𝑥𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − ��̇�𝑥𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 + 𝑘𝑘𝑥𝑥2�𝑥𝑥𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − 𝑥𝑥𝐸𝐸��� + 𝑘𝑘𝑥𝑥(𝛾𝛾𝑥𝑥𝐷𝐷𝑥𝑥2) 

                    = 𝐷𝐷𝑥𝑥��̇�𝑥𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − �̇�𝑥𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − 𝑘𝑘𝑥𝑥2𝐷𝐷𝑥𝑥� + 𝑘𝑘𝑥𝑥(𝛾𝛾𝑥𝑥𝐷𝐷𝑥𝑥2) 

                    = −𝑘𝑘𝑥𝑥2𝐷𝐷𝑥𝑥2 + 𝑘𝑘𝑥𝑥𝛾𝛾𝑥𝑥𝐷𝐷𝑥𝑥2 

                    = −(𝑘𝑘𝑥𝑥2 − 𝑘𝑘𝑥𝑥𝛾𝛾𝑥𝑥)𝐷𝐷𝑥𝑥2 < 0 

(55) 

where equation (53) was used to write �̇�𝑥𝐸𝐸 = �̇�𝑥𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 + 𝑘𝑘𝑥𝑥2�𝑥𝑥𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − 𝑥𝑥𝐸𝐸�.  

Given that 𝑘𝑘𝑥𝑥(0) > 0, then 

𝑑𝑑𝑥𝑥(0,0) = 0 

𝑑𝑑𝑥𝑥(𝐷𝐷𝑥𝑥,𝑘𝑘𝑥𝑥) > 0,∀𝐷𝐷𝑥𝑥,𝑘𝑘𝑥𝑥 ≠ 0 

�̇�𝑑𝑥𝑥(𝐷𝐷𝑥𝑥,𝑘𝑘𝑥𝑥) < 0,∀𝐷𝐷𝑥𝑥,𝑘𝑘𝑥𝑥 ≠ 0 𝑖𝑖𝑓𝑓 𝑘𝑘𝑥𝑥 > 𝛾𝛾𝑥𝑥 

(56) 

where the condition 𝑘𝑘𝑥𝑥 > 𝛾𝛾𝑥𝑥 can be enforced by initializing 𝑘𝑘𝑥𝑥 to be larger in magnitude 

than the selected 𝛾𝛾𝑥𝑥. The same stability proof can be realized for the 𝑦𝑦 as well as the 𝑧𝑧 

dynamics. Following Lyapunov stability theory, the system is asymptotically stable, 

and the tracking error will converge to zero. 

Let the dynamic gain adaptation law for the dynamic controller be given as: 

�̇�𝑘𝑑𝑑𝑥𝑥 = 𝛾𝛾𝑑𝑑𝑥𝑥𝐷𝐷𝑣𝑣𝑥𝑥
2 

�̇�𝑘𝑑𝑑𝑥𝑥 = 𝛾𝛾𝑑𝑑𝑥𝑥𝐷𝐷𝑣𝑣𝑥𝑥
2  

�̇�𝑘𝑑𝑑𝑥𝑥 = 𝛾𝛾𝑑𝑑𝑥𝑥𝐷𝐷𝑣𝑣𝑥𝑥
2 

(57) 

where 𝑘𝑘𝑑𝑑𝑥𝑥,𝑘𝑘𝑑𝑑𝑥𝑥, and 𝑘𝑘𝑑𝑑𝑥𝑥 are the adapted gain parameters, 𝛾𝛾𝑑𝑑𝑥𝑥, 𝛾𝛾𝑑𝑑𝑥𝑥, and 𝛾𝛾𝑑𝑑𝑥𝑥 are positive 

constants that drive the adaptation rate with respect to the tracking error, and 
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𝐷𝐷𝑣𝑣𝑥𝑥, 𝐷𝐷𝑣𝑣𝑥𝑥, and 𝐷𝐷𝑣𝑣𝑥𝑥 are the errors in the three principal directions. By substituting (50) 

into (49), the control law for the dynamic loop can be written as 

�̇�𝛖a = �̇�𝛖a𝑑𝑑𝑒𝑒𝑑𝑑 + 𝐊𝐊𝑑𝑑𝐞𝐞𝑣𝑣 (58) 

where 𝐊𝐊𝑑𝑑 = 𝑟𝑟𝑖𝑖𝑟𝑟𝑘𝑘��𝑘𝑘𝑑𝑑𝑥𝑥
2 𝑘𝑘𝑑𝑑𝑥𝑥

2 𝑘𝑘𝑑𝑑𝑥𝑥
2�� and 𝐞𝐞𝑣𝑣 = 𝛖𝛖a − 𝛖𝛖a𝑑𝑑𝑒𝑒𝑑𝑑. 

To prove the stability of the devised dynamic control law, consider the candidate 

Lyapunov function  

𝑑𝑑𝑑𝑑𝑥𝑥�𝐷𝐷𝑣𝑣𝑥𝑥,𝑘𝑘𝑑𝑑𝑥𝑥� =
1
2
�𝐷𝐷𝑣𝑣𝑥𝑥

2 + 𝑘𝑘𝑑𝑑𝑥𝑥
2� (59) 

Taking the time derivative of candidate Lyapunov function yields 

�̇�𝑑𝑑𝑑𝑥𝑥�𝐷𝐷𝑣𝑣𝑥𝑥,𝑘𝑘𝑑𝑑𝑥𝑥� = 𝐷𝐷𝑣𝑣𝑥𝑥�̇�𝐷𝑣𝑣𝑥𝑥 + 𝑘𝑘𝑑𝑑𝑥𝑥�̇�𝑘𝑑𝑑𝑥𝑥 

                    = 𝐷𝐷𝑣𝑣𝑥𝑥(�̇�𝑢 − �̇�𝑢𝑟𝑟𝐷𝐷𝑠𝑠) + 𝑘𝑘𝑑𝑑𝑥𝑥�𝛾𝛾𝑑𝑑𝑥𝑥𝐷𝐷𝑣𝑣𝑥𝑥
2� 

                    = 𝐷𝐷𝑣𝑣𝑥𝑥 ���̇�𝑢𝑟𝑟𝐷𝐷𝑠𝑠 + 𝑘𝑘𝑑𝑑𝑥𝑥
2(𝑢𝑢 − 𝑢𝑢𝑑𝑑𝑒𝑒𝑑𝑑)� − �̇�𝑢𝑟𝑟𝐷𝐷𝑠𝑠� + 𝑘𝑘𝑑𝑑𝑥𝑥�𝛾𝛾𝑑𝑑𝑥𝑥𝐷𝐷𝑣𝑣𝑥𝑥

2� 

                    = 𝐷𝐷𝑣𝑣𝑥𝑥��̇�𝑢𝑟𝑟𝐷𝐷𝑠𝑠 − �̇�𝑢𝑟𝑟𝐷𝐷𝑠𝑠 − 𝑘𝑘𝑑𝑑𝑥𝑥
2𝐷𝐷𝑣𝑣𝑥𝑥� + 𝑘𝑘𝑑𝑑𝑥𝑥�𝛾𝛾𝑑𝑑𝑥𝑥𝐷𝐷𝑣𝑣𝑥𝑥

2� 

                    = −𝑘𝑘𝑑𝑑𝑥𝑥
2𝐷𝐷𝑣𝑣𝑥𝑥

2 + 𝑘𝑘𝑑𝑑𝑥𝑥𝛾𝛾𝑑𝑑𝑥𝑥𝐷𝐷𝑣𝑣𝑥𝑥
2 

                    = −�𝑘𝑘𝑑𝑑𝑥𝑥
2 − 𝑘𝑘𝑑𝑑𝑥𝑥𝛾𝛾𝑑𝑑𝑥𝑥�𝐷𝐷𝑣𝑣𝑥𝑥

2 < 0 

(60) 

Given that 𝑘𝑘𝑑𝑑𝑥𝑥(0) > 0, then 

𝑑𝑑𝑑𝑑𝑥𝑥(0,0) = 0 

𝑑𝑑𝑑𝑑𝑥𝑥�𝐷𝐷𝑣𝑣𝑥𝑥,𝑘𝑘𝑑𝑑𝑥𝑥� > 0,∀𝐷𝐷𝑣𝑣𝑥𝑥,𝑘𝑘𝑑𝑑𝑥𝑥 ≠ 0 

�̇�𝑑𝑑𝑑𝑥𝑥�𝐷𝐷𝑣𝑣𝑥𝑥,𝑘𝑘𝑑𝑑𝑥𝑥� < 0,∀𝐷𝐷𝑣𝑣𝑥𝑥,𝑘𝑘𝑑𝑑𝑥𝑥 ≠ 0 𝑖𝑖𝑓𝑓 𝑘𝑘𝑑𝑑𝑥𝑥 > 𝛾𝛾𝑥𝑥 

(61) 

where the condition 𝑘𝑘𝑑𝑑𝑥𝑥 > 𝛾𝛾𝑑𝑑𝑥𝑥 can be enforced by initializing 𝑘𝑘𝑑𝑑𝑥𝑥 to be larger in 

magnitude than the selected 𝛾𝛾𝑑𝑑𝑥𝑥. The same stability proof can be realized for the 𝑦𝑦 as 

well as the 𝑧𝑧 dynamics. Following Lyapunov stability theory, the system is 

asymptotically stable, and the tracking error will converge to zero. 

The APC is noticed to be slow to provide the necessary adaptation required to 

track a given trajectory. Its performance is also severely affected by the amount of noise 

injected in the simulation environment. Therefore, another approach needs to be 

investigated, and it needs to exhibit robustness to noise as well as show quick adaptation 

as a response to disturbances. 
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5.3.2. Adaptive Nussbaum Controller (ANC). The Universal Adaptive 

Stabilizer (UAS) adaptation law devised here relies on a Nussbaum function to tune the 

design parameters. Nussbaum functions are usually exploited in the design of UAS’s. 

Numerous Nussbaum functions have been tested, and a Mittag-Leffler function was 

chosen to act as a Nussbaum function for the purpose of tuning the design parameters. 

It is of interest to note that a Mittag-Leffler function can act as a Nussbaum function 

under certain conditions that are documented in [56]. The new control law takes the 

following form. 

�̇�𝜼𝐸𝐸 = �̇�𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 + 𝑵𝑵(𝚲𝚲)�𝜼𝜼𝐸𝐸𝑑𝑑𝑒𝑒𝑑𝑑 − 𝜼𝜼𝐸𝐸� (62) 

where 𝑵𝑵(𝚲𝚲) = 𝑟𝑟𝑖𝑖𝑟𝑟𝑘𝑘��𝑁𝑁𝑥𝑥(𝑘𝑘𝑥𝑥) 𝑁𝑁𝑥𝑥�𝑘𝑘𝑥𝑥� 𝑁𝑁𝑥𝑥(𝑘𝑘𝑥𝑥)�� and each 𝑁𝑁𝑛𝑛(𝑘𝑘𝑛𝑛) is the Mittag-

Leffler function that depends on two positive real parameters, 𝛼𝛼 and 𝛽𝛽. The conditions 

under which the Mittag-Leffler function acts as a Nussbaum function are investigated 

in [56], and they correspond to 𝛼𝛼 ∈ (2,3] and 𝛽𝛽 = 1. The Mittag-Leffler function is 

given as: 

𝑁𝑁𝑛𝑛(𝑧𝑧) = �
𝑧𝑧𝛾𝛾

Γ(𝛼𝛼𝛾𝛾 + 𝛽𝛽)

∞

𝛾𝛾=0

 ,    𝑖𝑖 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧 (63) 

where 𝛼𝛼 = 2.5 and 𝛽𝛽 = 1 are the constant parameters and Γ(𝑧𝑧 + 1) = 𝑧𝑧Γ(𝑧𝑧), 𝑧𝑧 > 0, is 

the standard Gamma function. The time propagation of the tunable gains is defined just 

like in equation (52) as: 

�̇�𝑘𝑥𝑥 = 𝛾𝛾𝑥𝑥𝐷𝐷𝑥𝑥2 

�̇�𝑘𝑥𝑥 = 𝛾𝛾𝑥𝑥𝐷𝐷𝑥𝑥2 

�̇�𝑘𝑥𝑥 = 𝛾𝛾𝑥𝑥𝐷𝐷𝑥𝑥2 

(64) 

The stability of the UAS approach is proved as follows. Rewriting equation (62) 

in terms of the tracking error for the 𝑥𝑥 direction gives 

�̇�𝐷𝑥𝑥 + 𝑁𝑁𝑥𝑥(𝑘𝑘𝑥𝑥)𝐷𝐷𝑥𝑥 = 0 

�̇�𝐷𝑥𝑥 = −𝑁𝑁𝑥𝑥(𝑘𝑘𝑥𝑥)𝐷𝐷𝑥𝑥  
(65) 

Choose a candidate Lyapunov function as 

𝑑𝑑𝑥𝑥(𝐷𝐷𝑥𝑥,𝑘𝑘𝑥𝑥) =
1
2
𝐷𝐷𝑥𝑥2 + � 𝑁𝑁𝑥𝑥�𝑘𝑘𝑥𝑥(𝐷𝐷)�

𝑘𝑘𝑥𝑥(𝑡𝑡)

𝑘𝑘𝑥𝑥(𝑡𝑡0)
𝑟𝑟𝐷𝐷 (66) 

Taking the time derivative of candidate Lyapunov function yields 
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�̇�𝑑𝑥𝑥(𝐷𝐷𝑥𝑥,𝑘𝑘𝑥𝑥) = 𝐷𝐷𝑥𝑥�̇�𝐷𝑥𝑥 + 𝑁𝑁𝑥𝑥�𝑘𝑘𝑥𝑥(𝐷𝐷)��̇�𝑘𝑥𝑥(𝐷𝐷) 

                    = −𝑁𝑁𝑥𝑥�𝑘𝑘𝑥𝑥(𝐷𝐷)�𝐷𝐷𝑥𝑥2 + 𝑁𝑁𝑥𝑥�𝑘𝑘𝑥𝑥(𝐷𝐷)�𝛾𝛾𝑥𝑥𝐷𝐷𝑥𝑥2 
(67) 

Letting 𝛾𝛾𝑥𝑥 = 1 gives  

�̇�𝑑𝑥𝑥(𝐷𝐷𝑥𝑥,𝑘𝑘𝑥𝑥) = 0 (68) 

Integrating �̇�𝑑𝑥𝑥(𝐷𝐷𝑥𝑥,𝑘𝑘𝑥𝑥) gives 

𝑑𝑑𝑥𝑥(𝐷𝐷) − 𝑑𝑑𝑥𝑥(𝐷𝐷0) = 𝐶𝐶 (69) 

where 𝐶𝐶 is a constant of integration.  

Substituting (66) in (69) gives 

1
2
𝐷𝐷𝑥𝑥2 + � 𝑁𝑁𝑥𝑥�𝑘𝑘𝑥𝑥(𝐷𝐷)�

𝑘𝑘𝑥𝑥(𝑡𝑡)

𝑘𝑘𝑥𝑥(𝑡𝑡0)
𝑟𝑟𝐷𝐷 = 𝐶𝐶 + 𝑑𝑑𝑥𝑥(𝐷𝐷0) (70) 

Dividing by 𝑘𝑘𝑥𝑥(𝐷𝐷) − 𝑘𝑘𝑥𝑥(𝐷𝐷0) gives 

1
2

𝐷𝐷𝑥𝑥2

𝑘𝑘𝑥𝑥(𝐷𝐷) − 𝑘𝑘𝑥𝑥(𝐷𝐷0) =
𝐶𝐶 + 𝑑𝑑𝑥𝑥(𝐷𝐷0)

𝑘𝑘𝑥𝑥(𝐷𝐷) − 𝑘𝑘𝑥𝑥(𝐷𝐷0) −
1

𝑘𝑘𝑥𝑥(𝐷𝐷) − 𝑘𝑘𝑥𝑥(𝐷𝐷0)� 𝑁𝑁𝑥𝑥�𝑘𝑘𝑥𝑥(𝐷𝐷)�
𝑘𝑘𝑥𝑥(𝑡𝑡)

𝑘𝑘𝑥𝑥(𝑡𝑡0)
𝑟𝑟𝐷𝐷 (71) 

Now if 𝑘𝑘𝑥𝑥(𝐷𝐷) → ∞ as 𝐷𝐷 → ∞, then the R.H.S. of equation (71) can take values 

approaching −∞ following the nature of Nussbaum functions, and this will violate (71) 

as 𝑘𝑘𝑥𝑥(𝐷𝐷) is defined in (64) to be positive. Since the positive nature of the L.H.S. of (71) 

is violated by letting 𝑘𝑘𝑥𝑥(𝐷𝐷) → ∞, then the assumption that 𝑘𝑘𝑥𝑥(𝐷𝐷) → ∞ is false and 𝑘𝑘𝑥𝑥(𝐷𝐷) 

is, therefore, bounded. However, �̇�𝑘𝑥𝑥(𝐷𝐷) being a non-decreasing function by definition 

and 𝑘𝑘𝑥𝑥(𝐷𝐷) being bounded implies that 𝑘𝑘𝑥𝑥(𝐷𝐷) → 𝑘𝑘𝑥𝑥∞ as 𝐷𝐷 → ∞. This further implies that 

�̇�𝑘𝑥𝑥(𝐷𝐷) → 0 as 𝐷𝐷 → ∞, i.e. 𝐷𝐷2(𝐷𝐷) → 0 as 𝐷𝐷 → ∞ or 𝐷𝐷(𝐷𝐷) → 0 as 𝐷𝐷 → ∞. The stability of 

the approach is concluded. 

 Like with the APC stability proof, the above ANC stability proof is also 

applicable to the dynamics control loop adaptation law. 

It is of interest to describe the conditions under which the adaptive algorithms 

tune the controller parameters. This is important because the devised adaptation is 

unidirectional, so the gains only grow as a result of the adaptation. If the gains are too 

large in magnitude, oscillations due to large control effort might hinder the system from 

staying as close to the trajectory as possible. Moreover, large gains translate to large 
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control effort, which has detrimental consequences on the endurance of the onboard 

power source.  

5.4. Adaptive Gain Update Conditions 

 Since it is important to have control over the gain adaptation in a realistic 

setting, a gain update management algorithm is devised here. Let the Euclidean norm 

of the error between the path and trajectory is a zero-mean randomly distributed 

Gaussian variable ‖𝑪𝑪‖2~𝒩𝒩�0,𝜎𝜎𝑪𝑪𝑛𝑛�. This assumption is valid since it is expected of the 

controller to ideally reduce the error to zero, and it is expected that the error will vary 

depending on the varying trajectory. The standard deviation of the error norm is updated 

at each time step to describe the variance of the history of the error. The Euclidian or 

second norm of the error is shown in equation (72). 

‖𝑪𝑪‖2 = �𝐷𝐷𝑥𝑥2 + 𝐷𝐷𝑥𝑥2 + 𝐷𝐷𝑥𝑥2 = 𝐷𝐷𝑛𝑛 (72) 

Further, let the expected value of the vector of error norms 𝑪𝑪𝑛𝑛 be described by the 

average value of the error norm computed over a moving window of the variable, and 

let the standard deviation of the vector of error norms 𝑪𝑪𝑛𝑛 be that of the entire time 

history of 𝑪𝑪𝑛𝑛. 

𝐸𝐸�𝑪𝑪𝑛𝑛𝑘𝑘� = �
𝐷𝐷𝑛𝑛𝑛𝑛
𝐿𝐿

𝑘𝑘

𝑛𝑛=𝑘𝑘−𝐿𝐿

 (73) 

When the controller is functioning properly, the expected value of the error 

norm ideally reduces to a small quantity. Further, the value of the error norm under 

typical operating conditions should not be far away from the expected value of the error 

norm. Typical trajectories that AUVs are required to track are parametrized to be slowly 

varying and smooth. Therefore, unless environmental disturbances affect the vehicle, 

the assumptions on the mean and standard deviation of the error norm should hold. To 

alleviate the effect of significant disturbances on the vehicle, the gain values are reset 

to their initial levels when such a disturbance is detected.  

The proposed adaptation is set to happen when the current value of the error 

norm is more than two standard deviations away from the expected value of the error 

norm as shown in equation (74). 
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�𝐷𝐷𝑛𝑛𝑘𝑘 − 𝐸𝐸�𝑪𝑪𝑛𝑛𝑘𝑘��
𝜎𝜎𝑪𝑪𝑛𝑛

> 2 (74) 

where 𝜎𝜎𝑪𝑪𝑛𝑛 is the standard deviation of 𝑪𝑪𝑛𝑛. This condition serves to indicate with 

confidence that the value of error norm is 

For the sake of computational performance, it is of interest to implement a 

recursive mean and standard deviation algorithm to avoid processing the entire time 

history of the error vector at each time step. The Welford algorithm was proposed by 

[57], and it has since been analyzed and observed to be stable and much less prone to 

loss of precision over alternative algorithms. The algorithm is presented in Figure 22. 

Initialization 𝑪𝑪 = 𝟎𝟎 
𝒙𝒙� = 𝝈𝝈𝒙𝒙𝟐𝟐 = 𝟎𝟎 

 

Update when new value is available 𝑛𝑛 = 𝑛𝑛 + 1 

�̅�𝑥𝑛𝑛𝑒𝑒𝑤𝑤 = �̅�𝑥𝑜𝑜𝑜𝑜𝑑𝑑 +
𝑥𝑥 − �̅�𝑥𝑜𝑜𝑜𝑜𝑑𝑑

𝑛𝑛
 

𝜎𝜎𝑥𝑥2𝑛𝑛𝑒𝑒𝑤𝑤 = 𝜎𝜎𝑥𝑥2𝑜𝑜𝑜𝑜𝑑𝑑 +
𝑥𝑥 − �̅�𝑥𝑜𝑜𝑜𝑜𝑑𝑑
𝑥𝑥 − �̅�𝑥𝑛𝑛𝑒𝑒𝑤𝑤

 

Finalize update �̅�𝑥𝑛𝑛𝑒𝑒𝑤𝑤 = �̅�𝑥𝑛𝑛𝑒𝑒𝑤𝑤 
𝜎𝜎𝑥𝑥2𝑜𝑜𝑜𝑜𝑑𝑑 = 𝜎𝜎𝑥𝑥2𝑛𝑛𝑒𝑒𝑤𝑤 

Figure 22: The Welford Recursive Algorithm 

The expression in equation (74) represents the normal score or the z-score, 

which is defined to be the number of standard deviation by which an observed variable 

exceeds the mean. It is argued that if the computed normal score suddenly grows to 

exceed some threshold that is determined from the history of the computed normal 

score, it must be the case that a disturbance of some sort happened. The threshold is set 

to take the value of the last maximum computed normal score since it is expected of the 

controller to drive that score to low values as the error grows smaller. The suggested 

approach to effectively deal with these situations comes in the form of resetting the 

adapted controller gains as to avoid having gains that are larger than required in normal 

operating conditions. This condition serves to circumvent unnecessary large gains for 

the controllers. The algorithm flowchart is presented in Figure 23. The gains are left to 

adapt in the first couple of seconds since they are initialized with very small positive 

values as discussed in the stability analysis. 
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Figure 23: Gain Adaptation Conditions 

To elaborate on the proposed algorithm, the vehicle first starts with gains of 

small magnitude, and it is commanded to track some trajectory. The gain adaptation 

happens for a brief window, which was chosen to be 2 seconds based on trial and error, 

to drive the gains to values that can successfully accomplish the trajectory tracking task. 

As that happens, the statistics of the error norm in terms of expected value and standard 

deviation should be low in magnitude relative to their initial values. When a disturbance 

happens, the error norm will suddenly increase in magnitude, the expected value of the 

error norm will also increase, and the standard deviation will grow. The Z-score was 

chosen to be the performance metric to detect such incidents, and the designed threshold 

was two standard deviations from the expected value of the error norm. This serves to 

establish a confidence interval that the error norm has increased beyond desired levels, 

and the corrective action here to prevent controller saturation is to reset the gains as 

they might have been driven too large. 

5.5. Simulation Results 

In order to evaluate the performance of the devised control algorithm, the 

controller was tested in simulation environment under MATLAB. The vehicle was 

commanded to cover two loops around each of the four parametrized trajectories, and 
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the tracking results validate the performance of the controller. The simulation 

conditions are documented in Table 8. 20 Monte Carlo simulations for each of the 

parametrized trajectories allowed the generation of aggregate performance statistics for 

the controllers and adaptation routines. 

Table 8: Simulation Conditions 

 Value 
Initial Pose  
(Straight/ Polynomial Paths) 𝜼𝜼 = [1 1 8 0.7071 0 0 0.7071  ]𝑻𝑻 

Initial Pose 
 (Helical/8-shaped Paths) 𝜼𝜼 = [1 1 1 0.7071 0 0 0.7071  ]𝑻𝑻 

Dynamics noise 𝒘𝒘~𝒩𝒩�0,𝟏𝟏𝟎𝟎−𝟐𝟐�, 𝐰𝐰 ∈ ℝ13 

Measurements noise 𝒗𝒗~𝒩𝒩�0,𝟏𝟏𝟎𝟎−𝟐𝟐�,          𝒗𝒗 ∈ ℝ13 

The first test trajectory employs interpolated straight lines parametrized by 

constant velocity and zero acceleration constraints to connect between waypoints, and 

it connects those lines at waypoints in a non-smooth manner. The waypoints are 

presented in Table 9. 

Table 9: Waypoints Used to Parametrize Trajectories 

 From Waypoint (𝒙𝒙,𝑪𝑪, 𝒛𝒛) [𝒎𝒎]  To Waypoint (𝒙𝒙,𝑪𝑪, 𝒛𝒛)[𝒎𝒎] 
Path 1 [𝟕𝟕,𝟕𝟕,𝟕𝟕] [𝟏𝟏𝟒𝟒,𝟕𝟕,𝟏𝟏𝟒𝟒] 
Path 2 [𝟏𝟏𝟒𝟒,𝟕𝟕,𝟏𝟏𝟒𝟒] [𝟏𝟏𝟒𝟒,𝟏𝟏𝟒𝟒,𝟏𝟏𝟒𝟒] 
Path 3 [𝟏𝟏𝟒𝟒,𝟏𝟏𝟒𝟒,𝟏𝟏𝟒𝟒] [𝟕𝟕,𝟏𝟏𝟒𝟒,𝟎𝟎] 
Path 4 [𝟕𝟕,𝟏𝟏𝟒𝟒,𝟏𝟏] [𝟕𝟕,𝟕𝟕,𝟕𝟕] 

For the straight paths parameterized trajectory, Figure 24 shows the trajectory tracking 

results, Figure 25 shows the trajectory tracking errors, Figure 26 shows the vehicle 

tracking velocities, Figure 27 shows the control efforts required to track the trajectory, 

and Figure 28 shows the adaptation of the kinematic and the dynamic controller gains. 
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Figure 24: Trajectory Tracking (Parametrized Straight Paths) 

 

 

Figure 25: Trajectory Tracking Errors (Parametrized Straight Paths) 
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Figure 26: Vehicle Tracking Velocities (Parametrized Straight Paths) 

 

Figure 27: Control Efforts (Parametrized Straight Paths) 
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Figure 28: Gain Adaptation (Parametrized Straight Paths) 

The second test trajectory employs quintic polynomials going through the same 

waypoints in the first test trajectory. The polynomial has continuous first and second 

derivatives, so motion is expected to be smooth and jerks in the acceleration should be 

avoided by feeding the polynomial with proper conditions in between waypoints.  

For the quintic polynomials parameterized trajectory, Figure 29 shows the trajectory 

tracking results, Figure 30 shows the trajectory tracking errors, Figure 31 shows the 

vehicle tracking velocities, Figure 32 shows the control efforts required to track the 

trajectory, and Figure 33 shows the adaptation of the kinematic and the dynamic 

controller gains. 
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Figure 29: Trajectory Tracking (Parametrized Polynomial Paths) 

 

 

 

Figure 30: Trajectory Tracking Errors (Parametrized Polynomial Paths) 
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Figure 31: Vehicle Tracking Velocities (Parametrized Polynomial Paths) 

 

Figure 32: Control Efforts (Parametrized Polynomial Paths) 
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Figure 33: Gain Adaptation (Parametrized Polynomial Paths) 

The third parametrized trajectory is a helix. The results for the trajectories as 

well as the required controller effort in terms of thrust and moments that the vehicle 

exerts are documented below.  

For the helical parameterized trajectory, Figure 34 shows the trajectory tracking results, 

Figure 35 shows the trajectory tracking errors, Figure 36 shows the vehicle tracking 

velocities, Figure 37 shows the control efforts required to track the trajectory, and 

Figure 38 shows the adaptation of the kinematic and the dynamic controller gains. 
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Figure 34: Trajectory Tracking (Parametrized Helical Paths) 

 

 

 

Figure 35: Trajectory Tracking Errors (Parametrized Helical Paths)  
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Figure 36: Vehicle Tracking Velocities (Parametrized Helical Paths) 

 

Figure 37: Control Efforts (Parametrized Helical Paths) 
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Figure 38: Gain Adaptation (Parametrized Helical Paths) 

The fourth parametrized trajectory is a figure-8 with a varying height. The 

results for the trajectories as well as the required controller effort in terms of thrust and 

moments that the vehicle exerts are documented below.  

For the 8-shaped parameterized paths, Figure 39 shows the trajectory tracking 

results, Figure 40 shows the trajectory tracking errors, Figure 41 shows the vehicle 

tracking velocities, Figure 42 shows the control efforts required to track the trajectory, 

and Figure 43 shows the adaptation of the kinematic and the dynamic controller gains. 
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Figure 39: Trajectory Tracking (Parametrized 8-shaped Paths) 

 

Figure 40: Trajectory Tracking Errors (Parametrized 8-shaped Paths) 
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Figure 41: Vehicle Tracking Velocities (Parametrized 8-shaped Paths) 

 

Figure 42: Control Efforts (Parametrized 8-shaped Paths) 
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Figure 43: Gain Adaptation (Parametrized 8-shaped Paths) 

Table 10 - Table 13 summarize the tracking performance of the two proposed 

controllers and the two adaptation routines in the presence of noise as well as the lack 

thereof. The mean error norm as well as the mean control effort for each thruster are 

documented for the tested trajectories.  

Table 10: Trajectory Tracking Error (Conditional Adaptation Law) 

 

Noisy Environment Noise-Free Environment 
APC error [𝒎𝒎] ANC error [𝒎𝒎] APC error [𝒎𝒎] ANC error [𝒎𝒎] 

Straight Paths 0.4509 0.3524 0.3301 0.2850 
Polynomial Paths 𝐹𝐹𝑟𝑟𝑖𝑖𝑙𝑙𝑠𝑠 0.2515 0.0800 0.1029 
Helical Paths 1.7676 0.2704 0.6477 0.0660 
8-shaped Paths 0.2992 0.2477 0.0715 0.0755 

Table 11: Trajectory Tracking Effort (Conditional Adaptation Law) 

 

Noisy Environment Noise-Free Environment 
APC effort [𝑵𝑵] ANC effort [𝑵𝑵] APC effort [𝑵𝑵] ANC effort [𝑵𝑵] 

Straight Paths 2.6492 2.0228 1.6845 1.7531 
Polynomial Paths 𝐹𝐹𝑟𝑟𝑖𝑖𝑙𝑙𝑠𝑠 2.7916 2.6433 2.4293 
Helical Paths 2.1138 0.8369 0.3785 0.3529 
8-shaped Paths 5.8636 1.7709 1.6688 1.1086 

Table 12: Trajectory Tracking Error (Continuous Adaptation Law)  

 

Noisy Environment Noise-Free Environment 
APC error [𝒎𝒎] ANC error [𝒎𝒎] APC error [𝒎𝒎] ANC error [𝒎𝒎] 

Straight Paths 𝐹𝐹𝑟𝑟𝑖𝑖𝑙𝑙𝑠𝑠 0.2857 𝐹𝐹𝑟𝑟𝑖𝑖𝑙𝑙𝑠𝑠 0.2206 
Polynomial Paths 𝐹𝐹𝑟𝑟𝑖𝑖𝑙𝑙𝑠𝑠 0.2401 0.0853 0.0984 
Helical Paths 𝐹𝐹𝑟𝑟𝑖𝑖𝑙𝑙𝑠𝑠 0.2769 0.0808 0.0655 
8-shaped Paths 𝐹𝐹𝑟𝑟𝑖𝑖𝑙𝑙𝑠𝑠 0.2715 0.0599 0.0735 
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Table 13: Trajectory Tracking Effort (Continuous Adaptation Law) 

 

Noisy Environment Noise-Free Environment 
APC effort [𝑵𝑵] ANC effort [𝑵𝑵] APC effort [𝑵𝑵] ANC effort [𝑵𝑵] 

Straight Paths 𝐹𝐹𝑟𝑟𝑖𝑖𝑙𝑙𝑠𝑠 3.2884 𝐹𝐹𝑟𝑟𝑖𝑖𝑙𝑙𝑠𝑠 1.8329 
Polynomial Paths 𝐹𝐹𝑟𝑟𝑖𝑖𝑙𝑙𝑠𝑠 3.2886 3.0515 2.4310 
Helical Paths 𝐹𝐹𝑟𝑟𝑖𝑖𝑙𝑙𝑠𝑠 2.7089 0.3638 0.3523 
8-shaped Paths 𝐹𝐹𝑟𝑟𝑖𝑖𝑙𝑙𝑠𝑠 4.6655 1.6673 1.1082 

Figure 44 - Figure 46 present a visual depiction of the mean tracking error and 

the mean control effort for the proposed controllers and adaptation routines. It is of 

significance to indicate that the APC with the continuous adaptation law was not 

included in the visual depiction, for it fails consistently in a noisy setting. 

 

Figure 44: Adaptive Nussbaum Controller Performance with the Continuous 
Adaptation Law 

 

Figure 45: Adaptive Proportional Controller Performance with the Conditional 
Adaptation Law 
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Figure 46: Adaptive Nussbaum Controller Performance with the Conditional 
Adaptation Law 

With the continuous adaptation law, the APC consistently fails in the simulated 

noisy environment, and it sometimes fails in the noise free environment. On the other 

hand, the ANC exhibits robustness to the level of noise present. Moreover, when it does 

work, the APC results in approximately the same level of mean tracking error as the 

ANC, but it consistently requires larger control efforts than the ANC. With the 

conditional adaptation law, the trend is similar. Here, the APC sometimes fails in the 

noisy environment, which gives merit to the proposed conditional adaptation law. 

Similar to the other adaptation routine, the APC requires more control effort to achieve 

a similar or worse trajectory tracking error to the ANC. All in all, the results point to 

the ANC being superior to the APC in all test cases, when the control effort required to 

achieve a certain trajectory tracking error is taken into consideration. The results also 

give merit to the use of the conditional adaptation routine over the continuous 

adaptation routine such that the adapting gains reset to avoid overshoot and/or 

instability. It is important to note that the injected noise magnitudes were large, which 

was done to test the robustness of the controllers and the adaptation laws to the 

existence of noise and disturbances in the underwater environment. Further, the 

measurement noise choice is justified when considering that popular acoustic Time-of-

Flight localization techniques can involve relatively large uncertainties that arise of the 

inaccurate knowledge of the density of the medium, systematic bias in the measurement 

apparatus, and other issues that hinder accurate localization of the vehicle [4].  

The proposed gain management system is to be verified through simulating a 

case where the vehicle is required to track the parameterized polynomials trajectory 
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through the waypoints of Table 9. To force the gains to adapt, the vehicle is disturbed 

by dynamics noise, measurements noise, and forces due to water currents. The water 

current effects are modeled to be first-order Gauss-Markov processes that exert forces 

in the three principal directions [10]. The exact form of the disturbance is shown below. 

�̇�𝝉𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡 + 𝛿𝛿𝝉𝝉𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡 = 𝝐𝝐 (75) 

where 𝝉𝝉𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑛𝑛𝑡𝑡 = [𝑋𝑋 𝑌𝑌 𝑍𝑍]𝑇𝑇 are the current-induced forces in the three principal 

directions, 𝛿𝛿 is a time constant to determine how fast the current changes, and 𝝐𝝐 is a 

vector of Gaussian white noises that drive the system.  

To disturb the vehicle in some of the simulated scenarios, we inject water 

current disturbances in the three principal directions to induce gain adaptation. The 

simulated disturbance representing the current disturbance forces is shown in Figure 

47. 

 

Figure 47: Injected Current-induced Disturbance Forces 

Table 14: Simulation Conditions 

 Value 
Initial Pose 𝜼𝜼 = [1 1 8 0.7071 0 0 0.7071 ]𝑻𝑻 
Dynamics noise 𝒘𝒘~𝒩𝒩�0,𝟏𝟏𝟎𝟎−𝟐𝟐�, 𝐰𝐰 ∈ ℝ13 
Measurements noise 𝒗𝒗~𝒩𝒩�0,𝟏𝟏𝟎𝟎−𝟐𝟐�,          𝒗𝒗 ∈ ℝ13 
Current noise 𝝐𝝐 ~𝒩𝒩(0,𝟏𝟏𝟎𝟎𝟐𝟐),          𝝐𝝐 ∈ ℝ3 



82 
 

In Figure 48 and Figure 49, the performance of devised gain management 

algorithm is tested against the case where adaptation is continuous and is not managed 

by the algorithm. The ANC is run on the parametrized polynomial paths trajectory, and 

the algorithm results are documented. The trajectory has bends in which we expect 

aggressive maneuvering to induce large amounts of tracking error. This motions before 

and after this bend are clearly steeper when the trajectory plot is inspected. It is apparent 

from the error norm as well as the standard deviation plots that the vehicle starts off 

path, and the error in this case is large with some value for the standard deviation. As 

the controller drives the vehicle to the command trajectory, the error and standard 

deviation decrease in magnitude. The Z-score plot shows a similar trend. When a turn 

is reached, which happens every 20 seconds, the Z-Score performance metric 

experiences a sharp increase in value. If the controller manages to drive the vehicle 

back to the trajectory, the Z-score decreases and so does the error norm and the standard 

deviation. When the bend at 60 seconds time is reached, the Z-score grows to become 

larger than the previously recorded peak and larger than the threshold, and that resets 

the gains. During the same loop in which the gains reset, the adaptation law updates the 

gains and pushes them to the controller. This is different from the case in Figure 51 in 

which continuous adaptation is simulated with the same controller and trajectory type. 

Here, the gains are shown to be under adaptation throughout the tracking task, the gain 

values are higher when compared to the gain management algorithm, and the tracking 

performance is worse as previously detailed in the tracking performance results. 

In Figure 50 and Figure 51, the performance of devised gain management 

algorithm is tested against the case where adaptation is continuous and is not managed 

by the algorithm. The ANC is run on the parametrized polynomial paths trajectory, and 

the algorithm results are documented. The simulation results clearly show the 

advantage of the gain management algorithm as the ANC in continuous adaptation 

mode eventually diverges as a consequence of the large gains. The adaptation governed 

by the proposed algorithm, however, still manages to keep the tracking error from 

increasing without bound.  
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Figure 48: Gain Update Algorithm without Water Current Disturbance (Adaptive 
Nussbaum Controller on the Parametrized Polynomial Paths) 
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Figure 49 Continuous Gain Update without Water Current Disturbance (Adaptive 
Nussbaum Controller on the Parametrized Polynomial Paths) 
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Figure 50: Gain Update Algorithm with Water Current Disturbance (Adaptive 
Nussbaum Controller on the Parametrized Polynomial Paths) 
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Figure 51: Continuous Gain Update with Water Current Disturbance (Adaptive 
Nussbaum Controller on the Parametrized Polynomial Paths) 
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Chapter 6: Navigation and Localization 

Navigation and localization are crucial to the functionality of an AUV, for 

accurate position information is not always available. Measurements of the vehicle 

states are often corrupted with noise arising from both the sensors and the environment. 

The underwater environment is one in which slowly varying or constant disturbances 

in the form of ocean currents and waves are likely to happen [37]. A filter which makes 

use of the structural dynamic equations of motion in estimating the vehicle states is 

necessary for successful deployment of UVs. In this chapter, the problems that 

problems that Inertial Measurement Units (IMUs) suffer from are introduced. Then, an 

Unscented Kalman Filter (UKF) and an Extended Kalman Filter (EKF) are used to fuse 

the sensor measurements with the dynamic model to provide a vehicle state estimate.  

6.1. Problems with Inertial Measurement Units 

A strap-down IMU consists of a triad of orthogonally mounted accelerometers, 

gyroscopes, and, often, magnetometers. The sensor package is mounted along the b-

frame or the body frame of the vehicle. Various errors affect the performance of an 

IMU; the accelerometer and gyroscope measurements typically suffer from biases, 

scale factors, misalignments, and noise. The biases that affect measurements are not 

necessarily constant. They are susceptible to drift. The scale factor of the IMU can be 

a linear or a nonlinear function of the measurement. The triad of the IMU sensors can 

also suffer from misalignment between the three axes of each sensor. The noise 

affecting IMU measurement can be a result of the sensor package internal circuitry or 

the body they are mounted on. The noise is usually modeled as Gaussian and white [44, 

45, 58, 59]. These devices are used in inertial navigation to estimate motion, and they 

require correction from sources like GPS to function properly. 

The following describes the quantities measured by the IMU, where 𝜺𝜺𝑛𝑛 is a 

vector of zero-mean white Gaussian noises. The acceleration measured by the IMU is 

a function of the real acceleration vector, 𝒂𝒂𝑏𝑏, first order scale factors and misalignment 

error, 𝚫𝚫(𝑠𝑠𝑎𝑎,φ𝑎𝑎), an accelerometer bias, 𝒃𝒃𝑎𝑎, the acceleration of gravity, 𝐠𝐠𝑏𝑏, and some 

zero-mean white Gaussian noise, 𝜺𝜺𝑛𝑛. The rate of change of the bias is modeled as a 

random walk (Wiener process). The 𝑏𝑏 superscript refers to the quantities that are 

describes in the b-frame. 
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�̇�𝒗𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏 = [𝐈𝐈 + 𝚫𝚫(𝑠𝑠𝑎𝑎,φ𝑎𝑎)]𝒂𝒂𝑏𝑏 + 𝒃𝒃𝑎𝑎 + 𝐠𝐠𝑏𝑏 + 𝜺𝜺1 

�̇�𝒃𝑎𝑎 = 𝜺𝜺2 
(76) 

Similar to the acceleration measurement model, the angular velocity measured by the 

IMU as a function of the real angular velocity vector, first order scale factors and 

misalignment error, bias, and noise. The rate of change of the bias is also modeled as a 

random walk (Wiener process). The 𝑏𝑏 superscript refers to the quantities that are 

describes in the b-frame. 

𝝎𝝎𝐼𝐼𝐼𝐼𝐼𝐼
𝑏𝑏 = �𝐈𝐈 + 𝚫𝚫�𝑠𝑠𝑔𝑔,φ𝑔𝑔��𝝎𝝎𝑏𝑏 + 𝒃𝒃𝐺𝐺 + 𝜺𝜺3 

�̇�𝒃𝐺𝐺 = 𝜺𝜺4 
(77) 

The magnetometer measurement model, similar to the acceleration and angular velocity 

measurement models, is a function of the real local magnetic field strength, first order 

scale factors, and misalignment error, bias, and noise. The rate of change of the bias is 

also modeled as a random walk (Wiener process). The 𝑏𝑏 superscript refers to the 

quantities that are describes in the b-frame. 

𝒅𝒅𝐼𝐼𝐼𝐼𝐼𝐼
𝑏𝑏 = �𝐈𝐈 + 𝚫𝚫�𝑠𝑠𝑔𝑔,φ𝑔𝑔��𝒅𝒅𝑏𝑏 + 𝒃𝒃𝑚𝑚 + 𝜺𝜺5 

�̇�𝒃𝐺𝐺 = 𝜺𝜺6 
(78) 

Unlike the other two sensors, the magnetometer reading is very easy to calibrate. [60, 

61] present methods that can be used to calibrate the magnetometer and identify the 

scale and bias terms. Calibration is accomplished through knowing the local magnetic 

field strength, which is constant for a given location. Often, that information alongside 

a set of measurements are fed into an optimization routine to approximate the 

measurement model. Further, having a calibrated magnetometer allows for the use of it 

in the attitude estimation problem.  

The [𝐈𝐈 + 𝚫𝚫(𝑠𝑠,φ)] term in both measurement models represents the scale factors and 

misalignment errors of the IMU. The values that this matrix can take constant values, 

or they can be slowly changing like the biases of the sensors. Consequently, they are 

either determined through calibration of the IMU sensors before deployment, or they 

are included in the state estimation problem as random walk processes [46, 58]. 𝐈𝐈 is the 

identity matrix, and the details of the comprising components are shown below. 
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𝚫𝚫(𝑠𝑠,φ) = �
𝑠𝑠𝑥𝑥 φ𝑥𝑥𝑥𝑥 φ𝑥𝑥𝑥𝑥
φ𝑥𝑥𝑥𝑥 𝑠𝑠𝑥𝑥 φ𝑥𝑥𝑥𝑥
φ𝑥𝑥𝑥𝑥 φ𝑥𝑥𝑥𝑥 𝑠𝑠𝑥𝑥

� (79) 

The sensors are often calibrated before deployment, and online identification of the 

errors is only possible if enough information about the motion of the vehicle is 

attainable. In other words, the observability of the dynamic system is a requirement 

[62].  

6.2. Sensor Fusion Formulation 

The need to use sensor fusion techniques on the vehicle arises because of the 

noisy nature of the underwater environment. The inertial solution is not perfect as 

discussed in the literature review, so successful deployment of the AUV requires the 

sensor packages to provide more information about the vehicle state than what an IMU 

offers. A doppler velocity log as well as an underwater localization sensor package are 

assumed to be available in the development of this chapter. 

To formulate the filter, the dynamic model given by 

𝐌𝐌 �̇�𝝂 + 𝐂𝐂(𝝂𝝂)𝝂𝝂 + 𝐃𝐃(𝝂𝝂)𝝂𝝂 + 𝓖𝓖(𝜼𝜼) = 𝝉𝝉𝒂𝒂𝒂𝒂𝒅𝒅𝒂𝒂𝒂𝒂𝒅𝒅o𝒓𝒓 (80) 

is rewritten to isolate �̇�𝒗 as  

�̇�𝒗 = −𝑴𝑴−𝟏𝟏�𝐂𝐂(𝝂𝝂)𝝂𝝂 + 𝐃𝐃(𝝂𝝂)𝝂𝝂 + 𝓖𝓖(𝜼𝜼)� + 𝑴𝑴−𝟏𝟏𝝉𝝉𝒂𝒂𝒂𝒂𝒅𝒅𝒂𝒂𝒂𝒂𝒅𝒅o𝒓𝒓 

�̇�𝒗 = 𝑴𝑴−𝟏𝟏𝒇𝒇(𝜼𝜼,𝒗𝒗) + 𝑴𝑴−𝟏𝟏𝒂𝒂 
(81) 

and the kinematic model is described by 

�̇�𝜼 = ��̇�𝐏𝑛𝑛�̇�𝒒 � = 𝐉𝐉𝒒𝒒(𝒒𝒒) 𝝂𝝂 = �
𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒) 𝟎𝟎3𝑥𝑥3
𝟎𝟎4𝑥𝑥3 𝐓𝐓(𝒒𝒒)� �

𝛖𝛖𝑏𝑏
𝛚𝛚𝑏𝑏

� (82) 

The complete model can then be described by 

��̇�𝝂�̇�𝜼� = �
𝑴𝑴−𝟏𝟏𝒇𝒇(𝒙𝒙, 𝐷𝐷) + 𝑴𝑴−𝟏𝟏𝒂𝒂(𝐷𝐷)

𝐉𝐉𝒒𝒒(𝒒𝒒) 𝝂𝝂 � = 𝑭𝑭(𝒙𝒙,𝒂𝒂, 𝒅𝒅) (83) 

and the state vector of the dynamic system is: 

𝒙𝒙 = [𝛖𝛖𝑏𝑏 𝛚𝛚𝑏𝑏 𝐏𝐏𝑛𝑛 𝒒𝒒 ]𝑇𝑇 , 𝒙𝒙 ∈ ℝ13 (84) 

The discrete form of the above model is realized through Euler integration. Also, 

additive dynamics zero-mean white Gaussian noise, 𝒘𝒘𝑘𝑘~𝒩𝒩(0,𝑸𝑸𝒘𝒘) is included to 
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characterize any disturbances or uncertainties in the model. Based in forward Euler 

integration, the discrete form of the nonlinear dynamic plant model can be written as: 

𝒙𝒙𝑘𝑘+1 = 𝒙𝒙𝑘𝑘 + 𝑭𝑭(𝒙𝒙𝑘𝑘,𝒂𝒂𝑘𝑘, 𝒅𝒅𝑘𝑘)𝚫𝚫𝒅𝒅 + 𝒘𝒘𝑘𝑘 (85) 

A measurement equation is necessary to depict the information the sensors 

provide and relate them to the state vector quantities. This measurement model is 

disturbed by a vector of zero-mean white Gaussian noise denoted 𝒗𝒗𝑘𝑘~𝒩𝒩(0,𝑹𝑹𝒗𝒗). The 

measurement model is presented below, where 𝒉𝒉(𝒙𝒙𝑘𝑘) is the vector-valued measurement 

function. 

𝒛𝒛𝑘𝑘 = 𝒉𝒉(𝒙𝒙𝑘𝑘) + 𝒗𝒗𝑘𝑘 (86) 

The discrete form of the measurement model is: 

𝒉𝒉(𝒙𝒙k, 𝐷𝐷𝑘𝑘) = �𝛖𝛖𝑘𝑘𝑏𝑏 𝝎𝝎𝑘𝑘
𝑏𝑏 𝐏𝐏𝑛𝑛𝑘𝑘 𝒒𝒒𝑘𝑘 �

𝑇𝑇
 (87) 

where 𝛖𝛖𝑘𝑘𝑏𝑏 is the linear vehicle velocity measured in the b-frame by a doppler velocity 

log, 𝝎𝝎𝑘𝑘
𝑏𝑏  is the angular vehicle velocity measured in the b-frame by a calibrated inertial 

measurement unit, 𝐏𝐏𝑛𝑛𝑘𝑘 is the position of the vehicle measured in the n-frame by an 

acoustic time-of-flight localization setup, and 𝒒𝒒𝑘𝑘 is the quaternion describing the 

attitude of the vehicle as reported by the calibrated inertial measurements unit. The 

measurements model considered here is linear, and the measurement model can be 

written as: 

𝒛𝒛𝑘𝑘 = 𝐇𝐇 𝒙𝒙𝑘𝑘 + 𝒗𝒗𝑘𝑘 (88) 

where 𝐇𝐇 = 𝐈𝐈13×13 is the identity matrix. 

6.3. Extended Kalman Filter (EKF) 

The Kalman Filter (KF) is a linear Minimum Mean Square Error estimation 

technique, and the dynamic and measurements models dealt with are both nonlinear in 

the states. Therefore, it is necessary to linearize the models around the best estimate 

available at that instant. Unlike the KF, for which stability can be proven, the stability 

of the EKF filter is nontrivial and is heavily reliant on the linearization to not diverge 

[63]. The algorithm usually employs a first order Taylor series expansion for the 

dynamics and measurement equations around the estimate, 𝒙𝒙�, to linearize them [64]. 

Alternate formulations of the EKF, like the one utilized here, make use of Euler 
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discretization. Also, 𝒇𝒇𝒙𝒙(𝒙𝒙�, 𝒅𝒅) represents the Jacobian of the dynamics equation that is 

utilized in the EKF algorithm. Notice that the measurement equation is linear in the 

state vector. The Jacobian of the measurement equation is the identity matrix. The 

Jacobian for the dynamics equation is shown in equation (89). 

𝒇𝒇𝒙𝒙(𝒙𝒙�, 𝒅𝒅) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

…
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑛𝑛

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

…
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥𝑛𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑥𝑥2

…
𝜕𝜕𝑓𝑓𝑛𝑛
𝜕𝜕𝑥𝑥𝑛𝑛⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

�

 𝒙𝒙�𝑘𝑘 

 (89) 

The Jacobian of the dynamics equation is presented in Appendix C. The EKF algorithm 

is presented in Figure 52. 

Initialization 𝑬𝑬[𝒙𝒙𝟎𝟎|𝒛𝒛𝟎𝟎] = 𝒙𝒙�𝟎𝟎          |          𝒂𝒂𝒄𝒄𝒗𝒗[𝒙𝒙𝟎𝟎|𝒛𝒛𝟎𝟎] = 𝑷𝑷𝟎𝟎 
State Propagation 

Covariance Propagation 

𝒙𝒙�𝑘𝑘 = 𝒙𝒙�𝑘𝑘|𝑘𝑘−1 = 𝑭𝑭(𝒙𝒙𝑘𝑘−1,𝒙𝒙�𝑘𝑘−1,𝒂𝒂𝑘𝑘−1) 
𝑷𝑷𝑘𝑘|𝑘𝑘−1 = 𝑷𝑷�𝑘𝑘 = 𝛟𝛟𝑘𝑘−1𝑃𝑃𝑘𝑘−1𝛟𝛟𝑘𝑘−1

T + 𝚪𝚪𝚪𝚪𝑘𝑘−1𝚪𝚪T 

Kalman Gain 

State Update 

Covariance Update 

𝐊𝐊𝑘𝑘 = 𝑷𝑷�𝐾𝐾𝒉𝒉𝒙𝒙𝐾𝐾
𝑇𝑇 �𝒉𝒉𝒙𝒙𝑘𝑘𝑷𝑷�𝐾𝐾𝒉𝒉𝒙𝒙𝑘𝑘

𝑇𝑇 + 𝑹𝑹𝑘𝑘�
−𝟏𝟏 

𝒙𝒙�𝐾𝐾 = 𝒙𝒙�𝐾𝐾 + 𝐊𝐊𝑘𝑘[𝑧𝑧𝑘𝑘 − 𝒉𝒉𝑘𝑘(𝒙𝒙𝑘𝑘)] 

𝑷𝑷�𝐾𝐾 = �𝐈𝐈 − 𝐊𝐊𝑘𝑘𝒉𝒉𝒙𝒙𝑘𝑘(𝒙𝒙𝑘𝑘)�𝑷𝑷�𝐾𝐾�𝐈𝐈 − 𝐊𝐊𝑘𝑘𝒉𝒉𝒙𝒙𝑘𝑘(𝒙𝒙𝑘𝑘)�𝑇𝑇 + 𝐊𝐊𝑘𝑘𝑹𝑹𝑘𝑘𝐊𝐊𝑘𝑘
𝑇𝑇 

Figure 52: Extended Kalman Filter Algorithm 

where forward Euler integration yields: 

𝑭𝑭(𝒙𝒙𝑘𝑘,𝒙𝒙�𝑘𝑘,𝒂𝒂𝑘𝑘) = 𝒙𝒙�𝑘𝑘 + Δ𝐷𝐷[𝑴𝑴−𝟏𝟏𝒇𝒇(𝒙𝒙, 𝐷𝐷) + 𝑴𝑴−𝟏𝟏𝒂𝒂(𝐷𝐷)] 

𝛟𝛟𝑘𝑘−1 = 𝐈𝐈 + Δ𝐷𝐷[𝒇𝒇𝒙𝒙(𝒙𝒙�, 𝒅𝒅)] 

𝚪𝚪 = Δ𝐷𝐷𝐌𝐌−𝟏𝟏 

(90) 

6.4. Simulation Results 

Here, the Adaptive Nussbaum Controller is integrated with the EKF as a sensor 

fusion algorithm to provide the controller feedback. The details of the simulation 

environment developed to test the algorithm are presented in Table 15. The waypoints 

used to generate the reference trajectory are shown in Table 16. Figure 53 and Figure 

54 present the trajectory tracking results that employ an EKF to provide controller 

feedback and the EKF state estimation error, respectively. 

. 
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Table 15: Simulation Conditions 

 Value 
Initial Pose 𝜼𝜼 = [0.1 0.1 0.1 0.7071 0 0 0.7071  ]𝑻𝑻 
Dynamics noise 𝒘𝒘~𝒩𝒩�0,𝟏𝟏𝟎𝟎−𝟐𝟐�, 𝐰𝐰 ∈ ℝ13 
Measurements noise 𝒗𝒗~𝒩𝒩�0,𝟏𝟏𝟎𝟎−𝟐𝟐�,          𝒗𝒗 ∈ ℝ13 

 

Table 16: Waypoints used to Parametrize Straight Trajectories 

 From Waypoint (𝒙𝒙,𝑪𝑪, 𝒛𝒛) [𝒎𝒎]  To Waypoint (𝒙𝒙,𝑪𝑪, 𝒛𝒛)[𝒎𝒎] 
Path 1 [𝟎𝟎,𝟎𝟎,𝟎𝟎] [𝟑𝟑,𝟎𝟎,𝟑𝟑] 
Path 2 [𝟑𝟑,𝟎𝟎,𝟑𝟑] [𝟑𝟑,𝟑𝟑,𝟑𝟑] 
Path 3 [𝟑𝟑,𝟑𝟑,𝟑𝟑] [𝟎𝟎,𝟑𝟑,−𝟑𝟑] 
Path 4 [𝟎𝟎,𝟑𝟑,−𝟑𝟑] [𝟎𝟎,𝟎𝟎,𝟎𝟎] 

 

 

Figure 53: Trajectory Tracking with Sensor Fusion Providing Feedback 
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Figure 54: EKF Estimation Results 

The estimate of the EKF is very close to the noisy true state, as shown in the 

reported estimation errors. The Mean Square Error for the run shown above is reported 

to be 6.1451 × 10−6 𝑚𝑚. The estimation results are very good since the true dynamics 

and measurements statistics are known. The filter then works in an optimal manner. 

6.5. Unscented Kalman Filter (UKF) 

While the Extended Kalman Filter is a widely applied algorithm for state 

estimation, it has many shortcomings when the system nonlinearities are significant. 

The linearization performed to apply the Kalman Filter algorithm to nonlinear systems 

might not be of sufficient order to capture the behavior accurately. As a result, the 

algorithm might diverge, or it might give unreliable estimates. A substitute to 

propagating the mean and covariance of the state of interest comes in the form of the 

Unscented Kalman Filter. The idea behind the UKF is that it is easier to approximate a 

probability density function than to approximate a nonlinear system. This greatly 

reduces the approximation errors of the UKF when compared to the EKF since the 

former only approximates the probability distribution functions [64]. 

The tool used to approximate the probability distribution functions used in the 

estimation process is the unscented transformation. The unscented transformation is 
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based on the fact that it is possible to perform a nonlinear transformation on a single 

point. Also, it possible to find a set of points in the state space that can be sampled to 

approximate the true probability density function of the state vector. These points 

whose ensemble mean and covariance represent the true mean and covariance for the 

state vector are called sigma points. The unscented transformation is summarized in 

Figure 55. 

For the vector 𝒙𝒙 ∈ ℝ𝑪𝑪×𝟏𝟏 that gets transformed by the nonlinear function 𝑪𝑪 = 𝒇𝒇(𝒙𝒙),  

Choose 𝟐𝟐𝑪𝑪 sigma points, 𝒙𝒙(𝑪𝑪) 

𝒙𝒙(𝑛𝑛) = 𝒙𝒙� + 𝒙𝒙�(𝑛𝑛),     𝑖𝑖 = 1, . . . , 2𝑛𝑛 

𝒙𝒙�(𝑛𝑛) = √𝑛𝑛𝑷𝑷𝑛𝑛 ,           𝑖𝑖 = 1, . . . ,𝑛𝑛 

𝒙𝒙�(𝑛𝑛+𝑛𝑛) = −√𝑛𝑛𝑷𝑷𝑛𝑛,    𝑖𝑖 = 1, . . . ,𝑛𝑛 

Transform the sigma points 𝑪𝑪(𝑪𝑪) = 𝑓𝑓�𝒙𝒙(𝑛𝑛)�,            𝑖𝑖 = 1, . . . , 2𝑛𝑛 

Mean approximation 𝑪𝑪𝒂𝒂 =
1

2𝑛𝑛
�𝑪𝑪(𝑪𝑪)
2𝑛𝑛

𝑛𝑛=1

 

Covariance approximation 𝑷𝑷𝒂𝒂 =
1

2𝑛𝑛
��𝑪𝑪(𝑪𝑪) − 𝑪𝑪𝒂𝒂��𝑪𝑪(𝑪𝑪) − 𝑪𝑪𝒂𝒂�

𝑻𝑻
2𝑛𝑛

𝑛𝑛=1

 

Figure 55: Unscented Transformation Algorithm 

where √𝑛𝑛𝑷𝑷 is the matrix square root of 𝑛𝑛𝑷𝑷 such that √𝑛𝑛𝑷𝑷√𝑛𝑛𝑷𝑷
𝑇𝑇 = 𝑛𝑛𝑷𝑷 and √𝑛𝑛𝑷𝑷𝑛𝑛 is 

the 𝑖𝑖th column of √𝑛𝑛𝑷𝑷. Cholesky Decomposition or a Singular Value Decomposition 

are approaches through which the matrix square root can be carried out. 

The Unscented Kalman Filter algorithm is similar in form to the Extended 

Kalman Filter one except for the usage of unscented transformations to propagate the 

means and covariances. Figure 56 summarizes the algorithm.  

The need to compute the matrix square root eliminates the UKF as an option to 

provide real time filtering. Testing in the MATLAB environment showed that the 

Cholskey decomposition as well as Singular Value Decomposition fail to provide a 

result as the covariance matrix loses full rank at times during the simulations. 

6.6. Uncertainty structure Identification 

The underlying uncertainty structure arising from the process and the 

measurement method/device are two noise sequences modeled to be zero-mean normal 

Gaussian white noise processes. The magnitudes of the process and measurement noise 

covariance processes are needed for optimal estimation of the state vector. Literature 
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presents a multitude of methods that exploit a set of available data and the structure of 

the plant and measurement equations in formulating optimization problems that can be 

solved for the unknown uncertainty structure. Bayesian, Maximum likelihood, 

Correlation, and Autocovariance least-squares are examples of such approaches [65, 

66].  

Initialization 𝑬𝑬[𝒙𝒙𝟎𝟎|𝒛𝒛𝟎𝟎] = 𝒙𝒙�𝟎𝟎          |          𝒂𝒂𝒄𝒄𝒗𝒗[𝒙𝒙𝟎𝟎|𝒛𝒛𝟎𝟎] = 𝑷𝑷𝟎𝟎 
Unscented Transformation 
 
 
State a priori estimate 
 
 
Covariance a priori estimate 

𝑥𝑥�𝑘𝑘−1 𝐼𝐼𝑛𝑛𝑑𝑑𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑑𝑑
𝑇𝑇𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑𝑓𝑓𝑜𝑜𝑟𝑟𝑚𝑚𝑎𝑎𝑡𝑡𝑛𝑛𝑜𝑜𝑛𝑛

�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� 𝒙𝒙�𝑘𝑘
(𝑪𝑪) 

𝒙𝒙�𝐾𝐾− =
1

2𝑛𝑛
�𝒙𝒙�𝑘𝑘

(𝑪𝑪)
2𝑛𝑛

𝑛𝑛=1

 

𝑷𝑷𝑘𝑘− =
1

2𝑛𝑛
��𝒙𝒙�𝑘𝑘

(𝑪𝑪) − 𝒙𝒙�𝐾𝐾−��𝒙𝒙�𝑘𝑘
(𝑪𝑪) − 𝒙𝒙�𝐾𝐾−�

𝑻𝑻
2𝑛𝑛

𝑛𝑛=1

+ 𝑸𝑸𝑘𝑘 

Unscented Transformation 
 
 
Measurement Transformation 

Measurement prediction 
 

 
Covariance prediction 
 
 
Kalman Gain 

State Update 

Covariance Update 

𝒙𝒙�𝐾𝐾− 𝐼𝐼𝑛𝑛𝑑𝑑𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑑𝑑
𝑇𝑇𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑𝑓𝑓𝑜𝑜𝑟𝑟𝑚𝑚𝑎𝑎𝑡𝑡𝑛𝑛𝑜𝑜𝑛𝑛

�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� 𝒙𝒙�𝑘𝑘
(𝑪𝑪) 

 
𝒛𝒛�𝑘𝑘

(𝑪𝑪) = 𝒉𝒉�𝒙𝒙�𝑘𝑘
(𝑪𝑪)� 

𝒛𝒛�𝑘𝑘 =
1

2𝑛𝑛
�𝒛𝒛�𝑘𝑘

(𝑪𝑪)
2𝑛𝑛

𝑛𝑛=1

 

𝑷𝑷𝑥𝑥 =
1

2𝑛𝑛
��𝒛𝒛�𝑘𝑘

(𝑪𝑪) − 𝒛𝒛�𝑘𝑘��𝒛𝒛�𝑘𝑘
(𝑪𝑪) − 𝒛𝒛�𝑘𝑘�

𝑻𝑻
2𝑛𝑛

𝑛𝑛=1

+ 𝑹𝑹𝑘𝑘  

𝑷𝑷𝑥𝑥𝑥𝑥 =
1

2𝑛𝑛
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Figure 56: Unscented Kalman Filter Algorithm 
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Chapter 7. System Integration   

This chapter details the integration of the different components and subsystems 

of the vehicle. First, the hardware specifications are presented. Second, a suggested 

localization approach is detailed. Finally, the software architecture with which the 

hardware is integrated is explained, and a developed simulation environment that 

enables prototyping and testing of algorithms for underwater vehicles is discussed.  

7.1. Hardware 

The experimental hardware used is detailed here. First is the Blue Robotics 

T100 thrusters are used to provide actuation. The three-phase brushless motors running 

the thruster are controlled using electronic speed controllers (ESC), and a pulse-width 

modulated (PWM) signal is used as input to the thruster. The manufacturer provides 

steady state thrust, speed, and power draw charts for the thrusters. Table 17 presents 

the thruster specifications. For the IMU, a high-end consumer grade MIDG II solution 

is used. It provides acceleration, angular velocity, and magnetic field strength 

measurements at a rate of 50 Hz. Table 18 and Table 19 summarize the relevant 

specifications. For depth estimation, a pressure sensor is used. It provides a 

temperature-compensated high-resolution pressure output, and it is water proof up to 

300 m. Table 20 summarizes the relevant specifications. Figure 57 outlines the 

architecture of the system. It shows how the components are integrated and how they 

communicate with each other. 

Table 17: T100 Thruster Specification 

Quantity Value 

Maximum Thrust (Forward | Reverse)   2.36 𝑘𝑘𝑘𝑘𝑓𝑓 | 1.82 𝑘𝑘𝑘𝑘𝑓𝑓 

Minimum Thrust 0.01 𝑘𝑘𝑘𝑘𝑓𝑓 

Rotational Speed 300− 4200 𝑅𝑅𝑃𝑃𝑀𝑀 

Maximum Power 130 𝑊𝑊 

Recommended Voltage 12 𝑑𝑑 

Table 18: Rate Gyro Specifications 

Quantity Value 

Range of Operation   ± 300𝑜𝑜/𝑆𝑆𝐷𝐷𝑆𝑆   

Non-linearity 0.1 % 𝑜𝑜𝑓𝑓 𝐹𝐹𝑢𝑢𝑙𝑙𝑙𝑙 𝑆𝑆𝑆𝑆𝑟𝑟𝑙𝑙𝐷𝐷 

Noise Density 0.1𝑜𝑜/𝑆𝑆𝐷𝐷𝑆𝑆 /√𝐻𝐻𝑧𝑧 

3dB Bandwidth 20 𝐻𝐻𝑧𝑧 



97 
 

Table 19: Accelerometer Specifications 

Quantity Value 

Range of Operation   ± 6 𝑘𝑘   

Non-linearity 0.3 % 𝑜𝑜𝑓𝑓 𝐹𝐹𝑢𝑢𝑙𝑙𝑙𝑙 𝑆𝑆𝑆𝑆𝑟𝑟𝑙𝑙𝐷𝐷 

Noise Density 150 𝜇𝜇𝑘𝑘/√𝐻𝐻𝑧𝑧 

3dB Bandwidth 20 𝐻𝐻𝑧𝑧 

Table 20: Pressure Sensor Specification 

Quantity Value 

Maximum Mechanical Pressure   50 𝑏𝑏𝑟𝑟𝑟𝑟   

Operating Pressure 0 → 30 𝑏𝑏𝑟𝑟𝑟𝑟 

Resolution 0.2 𝑚𝑚𝑏𝑏𝑟𝑟𝑟𝑟 

 

Figure 57: System Integration Diagram 
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7.2. Localization  

Acoustic localization equipment is the most widely used option when it comes 

to underwater localization; however, they are very expensive and were not available to 

validate this work. Instead, the proposed localization approach was through Visual 

Servoing (VS) and pressure measurements.  

VS is the technique by which visual information is utilized in the control of 

robots. Here, VS provided measurements of the location of a float that represents the 

position of the vehicle inside the pool. The float was tied to the vehicle, which were 

given a constant depth test trajectory such that the float stays within a reasonable range 

from the true location of the vehicle. Pressure measurements provided a high-resolution 

measurement of the depth of the vehicle.  

Visual Servoing was implemented on a monocular camera. The camera tracked 

a target of know size. Having the size of the object and a camera model allows the 

estimation of the position of the object within the visible image frame. The location 

here is measured with respect to a characteristic point called the principal point, which 

represents the origin of the coordinate frame in the images captured by the camera.  

To localize an object in a camera image frame, the camera must be modeled. 

The pinhole camera model is a popular model used to represent images captured by 

monocular cameras. In this model, the scene is formed by projecting 3D points into the 

image plane using a perspective transformation [67]. The model is given by 

𝑠𝑠 𝑚𝑚′ = 𝐴𝐴𝐴𝐴𝑀𝑀′ = 𝐴𝐴[𝑅𝑅|𝐷𝐷]𝑀𝑀′ 

𝑠𝑠 �
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𝑣𝑣
1
� = �
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0 0 1

� �
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𝑦𝑦
𝑧𝑧
1

� 
(91) 

where 𝑥𝑥,𝑦𝑦, and 𝑧𝑧 are the coordinates of a 3D point in the world coordinate space; 𝑢𝑢 and 

𝑣𝑣 are the coordinates of the projection point in pixels; 𝐴𝐴 is the intrinsic parameters 

matrix of the camera; 𝑆𝑆𝑥𝑥 and 𝑆𝑆𝑥𝑥 are the principal points located at the image center; and 

𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑥𝑥 are the focal lengths expressed in pixels units. Figure 58 presents an overview 

of the camera image frame and how a point is depicted in its view. 
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Figure 58: Pinhole Camera Model [67] 

It is of interest to note that if an image from the camera is scaled by a factor due to a 

change in the camera resolution, all the aforementioned parameters should be scaled by 

the same factor. The characteristic matrix of camera intrinsic parameters does not 

depend on the scene viewed. Rather, it is fixed for a fixed focal length. The 

transformation matrix, 𝐴𝐴 = [𝑅𝑅|𝐷𝐷], combines rotation and\or translation of the camera. 

Consequently, it describes camera motion around a static scene, or rigid motion of an 

object in front of a still camera. The transformation matrix is called the matrix of camera 

extrinsic parameters, and it relates the coordinates of a point to the camera-fixed 

coordinate system.  

Real lenses typically suffer from distortion. Figure 59 presents the different 

types of distortion. Distortion can be corrected for after calibration. 

𝑥𝑥𝑢𝑢𝑛𝑛𝑑𝑑𝑛𝑛𝑑𝑑𝑡𝑡𝑜𝑜𝑟𝑟𝑡𝑡𝑒𝑒𝑑𝑑 = 𝑥𝑥𝑑𝑑
1 + 𝐾𝐾1𝑟𝑟2 + 𝐾𝐾2𝑟𝑟4 + 𝐾𝐾3𝑟𝑟6

1 + 𝐾𝐾4𝑟𝑟2 + 𝐾𝐾5𝑟𝑟4 + 𝐾𝐾6𝑟𝑟6
+ 2𝑃𝑃1𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑 + 𝑃𝑃2(𝑟𝑟2 + 2𝑥𝑥𝑑𝑑2) 

𝑦𝑦𝑢𝑢𝑛𝑛𝑑𝑑𝑛𝑛𝑑𝑑𝑡𝑡𝑜𝑜𝑟𝑟𝑡𝑡𝑒𝑒𝑑𝑑 = 𝑦𝑦𝑑𝑑
1 + 𝐾𝐾1𝑟𝑟2 + 𝐾𝐾2𝑟𝑟4 + 𝐾𝐾3𝑟𝑟6

1 + 𝐾𝐾4𝑟𝑟2 + 𝐾𝐾5𝑟𝑟4 + 𝐾𝐾6𝑟𝑟6
+ 2𝑃𝑃2𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑 + 𝑃𝑃1(𝑟𝑟2 + 2𝑦𝑦𝑑𝑑2) 

(92) 

where 𝑥𝑥𝑑𝑑 and 𝑦𝑦𝑑𝑑 are the distorted image coordinates, 𝐾𝐾𝑛𝑛 and 𝑃𝑃𝑛𝑛 are the radial and 

tangential distortion coefficients, respectively, and 𝑟𝑟 = �(𝑥𝑥𝑑𝑑 − 𝑥𝑥𝑐𝑐)2 + (𝑦𝑦𝑑𝑑 − 𝑦𝑦𝑐𝑐)2 is 

the distance between the distorted point coordinate and the camera principal point. 

Unlike the other coefficients, the distortion parameters are insensitive to changes in the 

resolution of the camera and do not need to be scaled accordingly. 
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Figure 59: Types of Distortion 

To test the proposed localization approach through Visual Servoing. A tag, 

whose dimensions are known, is moved along a known trajectory, and the 

measurements are processed using the open source Visual Servoing Platform (ViSP), 

which provides functions that are exploited to work with the available equipment. 

Figure 60 shows the reported trajectory of the moving tags based on ViSP 

measurements against the known ground truth that the tag is moved along. 

 

Figure 60: Visual Servoing Motion Tracking 
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To evaluate the performance of ViSP, the Mean Square Error of the distance between 

the measurement and truth was computed for the recorded motion according to: 

𝑀𝑀𝑆𝑆𝐸𝐸 =
1
𝑛𝑛

 �(𝑥𝑥 − 𝑥𝑥𝑚𝑚)2 + (𝑦𝑦 − 𝑦𝑦𝑚𝑚)2
𝑛𝑛

𝑛𝑛=1

 (93) 

The MSE for the trajectory shown was 0.0055 𝑚𝑚. For proper deployment of the 

suggested solution, a high-resolution camera needs to be used. Resolutions that are 

significantly larger than 1280 × 720, which was the only one available, are 

recommended to cover a large area. With the resolution used, a usable area of less 

than 0.5 × 0.5 𝑚𝑚 was achievable; an area too small for trajectory tracking and testing 

of the hardware. 

7.3. The Robot Operating System 

The Robot Operating System (ROS) is a middleware for robots; that is a 

collection of software frameworks that aid robot software development. ROS provides 

the services an operating system usually offers such as “hardware abstraction, low-level 

device control, implementation of commonly used functionality, message-passing 

between processes, and package management” [68]. The pieces of code in ROS where 

all the processing takes place are called nodes. Nodes post and receive messages that 

can contain anything from sensor data to be processed to control signals to be supplied 

to actuators. The communication or the messaging pattern between the comprising 

components of a ROS network is a publish-subscribe pattern, where the nodes that 

publish a message to a topic trigger the nodes that subscribe to that topic to receive the 

newly published information. A group of nodes is called a package, and a group of 

packages are called a stack. 

ROS was chosen to exploit the ease with which code can run in a network of 

connected computers. The computers can be placed onboard the vehicle or on a surface 

station. The different algorithms were implemented in five main nodes. The first node 

was a driver node for the pressure sensor, and it publishes the depth of the vehicle from 

the pressure reading to a topic called /depth. The second node was a driver node for 

MIDG IMU, and it publishes the inertial measurements of the sensor to a topic called 

/imu. The third node is the estimation node, which implements the sensor fusion 
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algorithm based on the Extended Kalman Filter. This node subscribes to the sensor 

messages and publishes the state estimate to a topic called /state_estimate. The fourth 

node is the adaptive control node. It subscribes to the /state_estimate topic, it processes 

the data to compute the control signal as well as update the gains of the controllers, and 

it published the control signal to a topic called /Thrust. The final implemented node is 

an Arduino node. This node subscribes to the /Thrust topic, and it computes the motor 

control signal required to realize the controller computed thrust.  

7.4. ROS-based Simulation Environment 

Here, we describe a developed simulation environment based around the gazebo 

simulator for which ROS integration and support is already present. The simulation 

environment should serve as a visual means through which algorithm prototyping and 

testing is possible. The gazebo simulator by default can handle rigid body motion, and 

the vehicle is assumed to be a rigid body undergoing general motion. The gazebo 

simulator can also handle simulating buoyancy. The other hydrodynamic effects are, 

however, not included by default in the simulator. Therefore, the effects that gazebo 

does not simulate by default are computed according to the developed equations of 

motion, and the resulting forces and moments are applied on the vehicle. [69] developed 

C++ gazebo plugins that give direct access to the quantities of interest. The identified 

parameters of the vehicle are then fed into the UUV plugin, and the vehicle equations 

of motion can then be simulated in the gazebo environment. Figure 61 shows the vehicle 

visualization when spawned in the Gazebo environment. 

 

Figure 61: AUV in the Gazebo environment 
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The used package and the code written give access to a ROS topic called 

thruster_manager/input, which accepts wrench messages that contain the forces and 

torques to be applied on the vehicle at each instance in time. This enables the 

development and visual testing of effort-based controllers through Python scripts, C++ 

scripts, or MATLAB/Simulink links. Figure 62 and Figure 63 show the running nodes 

and topics necessary for the Gazebo simulation and the ROS integration to run. 
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Figure 63: ROS Node Architecture 
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Chapter 8. Conclusions, Limitations, and Future Work 

8.1. Conclusions  

This work set out to mathematically model an Autonomous Underwater Vehicle 

and to estimate the parameters of the vehicle. The devised model accounted for a 

multitude of effects a marine craft experiences when operating in an underwater 

environment, and the parameter identification was primarily based on finite element 

analysis software packages. That allowed the approximation of quantities of the likes 

of the drag profile that the vehicle experiences as well as the added inertial effects 

resulting from the coupling between the rigid body of the vehicle and the fluid 

environment. 

The vehicle mathematical model is also exploited in the design of a novel 

adaptive guidance controller. The designed control law relies on the structural model to 

account for and then compensate for the nonlinear effects experienced in an underwater 

setting as well as the nonlinear dynamics of a six degrees of freedom rigid body 

undergoing general motion. The control law was compared against a classic control law 

from literature, and the proposed adaptive routine was also compared against a classic 

approach. The designed controller and adaptation routine proved superior to classical 

alternatives. 

Finally, the navigation problem was touched upon through the design and 

evaluation of two classical approaches to the navigation problem. Namely, an extended 

Kalman filter estimation problem in addition to an Unscented Kalman Filter estimation 

problem were formulated to make use of the structural mathematical model of the 

vehicle for navigation purposes. The classical approach to solving the navigation 

problem in literature is to deploy an Inertial Navigation System to localize the vehicle 

in its working environment. 

8.2. Limitations 

The primary limitation faced in this work was the unavailability of a localization 

system that provides position measurements of the vehicle. That prevented the 

experimental validation of the proposed work. 
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8.3. Future Work 

Here, we mention some possible improvements that can be applied to the 

proposed work. First, the mathematical model can be further enhanced by considering 

the effects of water currents, which are of interest in some environments. Assuming 

that the velocity of the vehicle as well as the flowrate of the ocean current are 

measurable, the effects of water currents on the dynamics of motion can then be 

incorporated into the model as 

𝐌𝐌 �̇�𝝂𝑟𝑟 + 𝐂𝐂(𝝂𝝂𝑟𝑟)𝝂𝝂𝑟𝑟 + 𝐃𝐃(𝝂𝝂𝑟𝑟)𝝂𝝂𝑟𝑟 + 𝓖𝓖(𝜼𝜼) = 𝝉𝝉𝒂𝒂𝒂𝒂𝒅𝒅𝒂𝒂𝒂𝒂𝒅𝒅o𝒓𝒓 (94) 

where 𝝂𝝂𝑟𝑟 = 𝝂𝝂 − 𝝂𝝂𝒂𝒂 and 𝝂𝝂𝑐𝑐 is the ocean current velocity.  

The added inertia for a body can be estimated using other techniques other than 

the simplistic approach used here. An approach based on modal analysis is presented 

in [20]. The vehicle is modeled and imported in a finite element analysis software 

package, and the modal analysis is run in vacuum in addition to in water. The natural 

frequencies reported by both approaches can then be exploited to estimate all the 

elements of the added mass matrix. 

Another possible improvement on this work lies in changing the adaptation law. 

This can be further investigated by substituting the input driven systems by a first order 

dynamic system in the gain that is driven the error. So, the new dynamic gain adaptation 

law can be described by the stable dynamics given by 

�̇�𝑘 + 𝛾𝛾1𝑘𝑘 = 𝛾𝛾2𝐷𝐷2 (95) 

where 𝛾𝛾1 is a design parameter that has to be properly selected for proper function of 

the adaptation law and 𝛾𝛾2 is a positive constant.  

The advantage this adaptation law offers is that the gain is allowed to increase and to 

decrease depending on the error. So, as the error decreases, the gain values will decrease 

as well. This will eliminate the need for resetting the gain based on the running statistics 

of the error norm, but it will also need the effect of the 𝛾𝛾1 parameter to be thoroughly 

investigated. 

Extensive experimental testing of the filters and the control algorithms with 

proper localization equipment is also necessary to validate the proposed work. Also, 

the benefit that the structural information of the mathematical model of the vehicle 
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provides when it comes to estimating the state can be investigated with the 

aforementioned equipment. 

Finally, it is possible to exploit the structural information that the model 

provides in fault detection. For example, [70] develops a 𝐴𝐴2-statistic-based fault 

detection and classification algorithm that can determine online any faults that could 

happen to the control surfaces of the marine craft. 
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Appendix A: Introduction to Quaternions 

This appendix is a brief introduction about quaternions, details the used 

properties, and presents the rotation matrix formed through quaternions. 

If we have two complex numbers 𝐴𝐴 = 𝑟𝑟 + 𝑏𝑏𝑖𝑖 and 𝐶𝐶 = 𝑆𝑆 + 𝑟𝑟𝑖𝑖, then 𝑄𝑄 = 𝐴𝐴 + 𝐶𝐶𝑗𝑗 

with 𝑘𝑘 ≜ 𝑖𝑖𝑗𝑗 yields a number in the space of quaternions denoted ℍ. 

𝑄𝑄 = 𝑟𝑟 + 𝑏𝑏𝑖𝑖 + 𝑆𝑆𝑗𝑗 + 𝑟𝑟𝑘𝑘 ∈ ℍ (96) 

where {𝑟𝑟, 𝑏𝑏, 𝑆𝑆,𝑟𝑟} ∈ ℝ and {𝑖𝑖, 𝑗𝑗,𝑘𝑘} are three imaginary unit numbers defined such that 

𝑖𝑖2 = 𝑗𝑗2 = 𝑘𝑘2 = 𝑖𝑖𝑗𝑗𝑘𝑘 = −1, (97) 

which leads to 

𝑖𝑖𝑗𝑗 = −𝑗𝑗𝑖𝑖 = 𝑘𝑘, 𝑗𝑗𝑘𝑘 = −𝑘𝑘𝑗𝑗 = 𝑖𝑖, 𝑘𝑘𝑖𝑖 = −𝑖𝑖𝑘𝑘 = 𝑗𝑗. (98) 

We are interested in unit quaternions for which the real part is 𝜂𝜂 and three imaginary 

parts form the vector 𝝐𝝐 = [𝜖𝜖1 𝜖𝜖2 𝜖𝜖3]𝑻𝑻. The unit quaternion is defined to have a 

second norm that is equal to 1. Therefore, the set, Q, of quaternions can be defined as: 

Q ≔ �𝒒𝒒 | 𝒒𝒒T𝒒𝒒 = 𝟏𝟏, 𝒒𝒒 = �𝜂𝜂𝝐𝝐� , 𝜂𝜂 ∈ ℝ, 𝝐𝝐 ∈ ℝ3, 𝒒𝒒 ∈ ℍ� (99) 

The norm requirement constrains the degrees of freedom of the quaternion to three. The 

unit quaternion, like regular complex numbers, can encode rotations which are three-

dimensional in the case of quaternions. The quaternion rotation is performed using the 

quaternion double product defined as 

𝑥𝑥′ = 𝒒𝒒⨂𝑥𝑥⨂𝒒𝒒∗  (100) 

where 𝒒𝒒∗ is the conjugate quaternion defined as 𝒒𝒒∗ = [𝜂𝜂 −𝝐𝝐𝑇𝑇]𝑇𝑇and the product of two 

quaternions is a quaternion given by the Hamiltonian product: 

𝐪𝐪1⨂𝐪𝐪2 = � 𝜂𝜂1𝜂𝜂2 − 𝝐𝝐1𝑇𝑇𝝐𝝐2
𝜂𝜂2𝝐𝝐1 + 𝜂𝜂1𝝐𝝐2 + 𝝐𝝐1 × 𝝐𝝐2

� (101) 

It is of interest to note that the rotation achieved through the quaternion double product 

is factorable into a traditional rotation matrix that multiply the vector to be rotated. The 

quaternion rotation matrix mapping the quantities measured in the body-fixed frame to 

the n-frame is given by: 
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𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒) ≔ 𝐑𝐑η,   𝛜𝛜 = 𝐈𝐈3x3 + 2η 𝐒𝐒(𝛜𝛜) + 2 𝐒𝐒2(𝛜𝛜) 

𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒) = �

1 − 2(𝜖𝜖22 + 𝜖𝜖32) 2(𝜖𝜖1𝜖𝜖2 − 𝜖𝜖3𝜂𝜂) 2(𝜖𝜖1𝜖𝜖3 + 𝜖𝜖2𝜂𝜂)
2(𝜖𝜖1𝜖𝜖2 + 𝜖𝜖3𝜂𝜂) 1 − 2(𝜖𝜖12 + 𝜖𝜖32) 2(𝜖𝜖2𝜖𝜖3 − 𝜖𝜖1𝜂𝜂)
2(𝜖𝜖1𝜖𝜖3 − 𝜖𝜖2𝜂𝜂) 2(𝜖𝜖2𝜖𝜖3 + 𝜖𝜖1𝜂𝜂) 1 − 2(𝜖𝜖12 + 𝜖𝜖22)

� 
(102) 

The rate of change of the rotation matrix 𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒) is given by 

�̇�𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒) = 𝐑𝐑𝑏𝑏

𝑛𝑛(𝒒𝒒) 𝐒𝐒(𝛚𝛚𝑏𝑏) (103) 

where 𝐒𝐒(𝛚𝛚𝑏𝑏) is the skew-symmetric matrix formed from the angular velocity 

components and 𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒) is the previously detailed quaternion rotation matrix. 

Equating the diagonal components of  �̇�𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒) to their corresponding components from 

𝐑𝐑𝑏𝑏
𝑛𝑛(𝒒𝒒) 𝐒𝐒(𝛚𝛚𝑏𝑏) and differentiating the unit quaternion constraint 𝒒𝒒T𝒒𝒒 = 𝟏𝟏 yields  

𝜂𝜂�̇�𝜂 + 𝜖𝜖1𝜖𝜖1̇ + 𝜖𝜖2𝜖𝜖2̇ + 𝜖𝜖3𝜖𝜖3̇ = 0 (104) 

which will give to the relation between the quaternion rate of change as a function of 

the quaternion value and the angular velocity of the body.  

The reader is referred to [71] for an extensive discussion of quaternions.  
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Appendix B: Discretization Routine 

An Euler integration was used to discretize the slow dynamics of the AUV. When the 

dynamics are characterized by higher velocities, however, the simple Euler-based 

approach will eventually diverge at the selected sampling period. Another discretization 

can be performed through: 

�̇�𝒙 = ��̇�𝜼
�̇�𝒗
� = 𝜻𝜻(𝒙𝒙,𝒂𝒂) = �

𝐉𝐉𝒒𝒒(𝒒𝒒) 𝝂𝝂
𝑴𝑴−𝟏𝟏𝒇𝒇(𝒙𝒙, 𝐷𝐷)

� + �
𝟎𝟎6𝑥𝑥1

𝑴𝑴−𝟏𝟏𝒂𝒂(𝐷𝐷)� 

�̈�𝒙 =
𝜕𝜕𝜻𝜻
𝜕𝜕𝒙𝒙

�̇�𝒙 +
𝜕𝜕𝜻𝜻
𝜕𝜕𝒂𝒂

�̇�𝒂 

(105) 

It is a fair assumption to consider the input to be constant as a result of the zero-order 

hold in a digital-to-analog converter. Consequently, the rate of change in input is zero, 

�̇�𝒂 = 0. That reduces the nonlinear continuous equation into the following homogeneous 

form, which utilizes the Jacobian, 𝜉𝜉(𝒙𝒙). 

�̈�𝒙 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝜁𝜁1
𝜕𝜕𝑥𝑥1

𝜕𝜕𝜁𝜁1
𝜕𝜕𝑥𝑥2

…
𝜕𝜕𝜁𝜁1
𝜕𝜕𝑥𝑥𝑛𝑛

𝜕𝜕𝜁𝜁2
𝜕𝜕𝑥𝑥1

𝜕𝜕𝜁𝜁2
𝜕𝜕𝑥𝑥2

…
𝜕𝜕𝜁𝜁2
𝜕𝜕𝑥𝑥𝑛𝑛

⋮ ⋮ ⋱ ⋮
𝜕𝜕𝜁𝜁𝑛𝑛
𝜕𝜕𝑥𝑥1

𝜕𝜕𝜁𝜁𝑛𝑛
𝜕𝜕𝑥𝑥2

…
𝜕𝜕𝜁𝜁𝑛𝑛
𝜕𝜕𝑥𝑥𝑛𝑛⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

�̇�𝒙 = 𝜉𝜉(𝒙𝒙)�̇�𝒙 (106) 

The solution of the homogeneous equation is given by: 

�̇�𝒙 = 𝐷𝐷𝜉𝜉(𝒙𝒙0)(𝑡𝑡−𝑡𝑡0)�̇�𝒙(0) (107) 

And the discrete form is given by the forward Euler integration: 

𝒙𝒙𝑘𝑘+1 = 𝒙𝒙𝑘𝑘 + �𝐷𝐷𝜉𝜉(𝒙𝒙𝑘𝑘)(𝜏𝜏)

ℎ

0

�̇�𝒙𝑘𝑘 𝑟𝑟𝑑𝑑 

           = 𝒙𝒙𝑘𝑘 + �𝐷𝐷𝜉𝜉(𝒙𝒙𝑘𝑘)Δ𝑡𝑡�̇�𝒙𝑘𝑘�Δ𝐷𝐷 

(108) 

This approach was found to provide numerical error that is in the same order of 

magnitude as a Runge-Kutta-based integration on the original dynamics equation, 

which requires more evaluations of the dynamics function than the proposed 

discretization. 

  



117 
 

Appendix C: Dynamics Equation Jacobian 

Columns 1 → 3 of the Jacobian of the dynamics model is: 
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Columns 4 → 6 of the Jacobian of the dynamics model is: 

 

 

0
−
𝑤𝑤

𝑣𝑣
𝑤𝑤

0
−
𝑢𝑢

−
𝑣𝑣

𝑢𝑢
0

−
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𝑦𝑦

𝐼𝐼𝑧𝑧
𝑧𝑧

∗
𝑞𝑞

 𝐼𝐼𝑥𝑥
𝑥𝑥 
−

 𝐼𝐼𝑦𝑦
𝑦𝑦

𝐼𝐼𝑧𝑧
𝑧𝑧

∗
𝐷𝐷

−
0.

04
71

∗
( 𝑟𝑟
𝑏𝑏𝑠𝑠

( 𝑟𝑟
) +

 𝑟𝑟
∗
𝑠𝑠𝑖𝑖
𝑘𝑘𝑛𝑛

( 𝑟𝑟
) –

 0
.4

64
7)

𝐼𝐼𝑧𝑧
𝑧𝑧

0
0

0
0

0
0

0
0

0
−

0.
5
∗
𝐷𝐷1

−
0.

5
∗
𝐷𝐷2

−
0.

5
∗
𝐷𝐷3

0.
5
∗
𝑛𝑛

−
0.

5
∗
𝐷𝐷3

0.
5
∗
𝐷𝐷2

0.
5
∗
𝐷𝐷3

0 .
5
∗
𝑛𝑛

−
0.

5
∗
𝐷𝐷1

−
0.

5
∗
𝐷𝐷2

0.
5
∗
𝐷𝐷1

0.
5
∗
𝑛𝑛
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Columns 7 → 13 of the Jacobian of the dynamics model is: 

 

  

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0
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0
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00
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∗
𝐷𝐷1

𝐼𝐼 𝑦𝑦
𝑦𝑦

−
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00
13

22
∗
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𝐼𝐼 𝑦𝑦
𝑦𝑦

0

0
0

0
−

0.
00

06
61

∗
𝐷𝐷1

𝐼𝐼𝑧𝑧
𝑧𝑧

−
0.

00
06

61
∗
𝑛𝑛

𝐼𝐼𝑧𝑧
𝑧𝑧

−
0.

00
06

61
∗
𝐷𝐷3

𝐼𝐼 𝑧𝑧
𝑧𝑧

−
0.

00
06

61
∗
𝐷𝐷2

𝐼𝐼 𝑧𝑧
𝑧𝑧

0
0

0
�2

∗
𝐷𝐷2

∗
𝑤𝑤
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∗
𝐷𝐷3

∗
𝑣𝑣
�

�2
∗
𝐷𝐷2

∗
𝑣𝑣 

+
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∗
𝐷𝐷3

∗
𝑤𝑤
�

�2
∗
𝐷𝐷1

∗
𝑣𝑣 
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∗
𝐷𝐷2

∗
𝑢𝑢

+
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∗
𝑛𝑛
∗
𝑤𝑤

�
�

2
∗
𝐷𝐷1

∗
𝑤𝑤
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∗
𝐷𝐷3

∗
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�
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0
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�
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∗
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𝐷𝐷1

∗
𝑣𝑣 
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�
�2

∗
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∗
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∗
𝐷𝐷3

∗
𝑤𝑤
�

�
2
∗
𝐷𝐷2

∗
𝑤𝑤
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∗
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∗
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∗
𝑤𝑤
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𝑛𝑛
∗
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�
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∗
𝐷𝐷1

∗
𝑢𝑢 
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∗
𝐷𝐷2

∗
𝑣𝑣
�

0
0

0
0

−
0.

5
∗
𝐷𝐷

−
0.

5
∗
𝑞𝑞

−
0.

5
∗
𝑟𝑟

0
0

0
0.

5
∗
𝐷𝐷

0
0 .

5
∗
𝑟𝑟

0.
5
∗
𝑞𝑞

0
0

0
0.

5
∗
𝑞𝑞

−
0.

5
∗
𝑟𝑟

0
0.

5
∗
𝐷𝐷

0
0

0
0 .

5
∗
𝑟𝑟

0.
5
∗
𝑞𝑞

0.
5
∗
𝑞𝑞

0
⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤  
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Appendix D: Computer Codes 

This appendix links to the GitHub repository where python scripts that can be 

used to proof test most of the functionality presented in this work are permanently 

stored. The python module depends on the following packages: 

1. Math 

2. Numpy 

3. Scipy 

4. Matplotlib 

The ROS functionality depends on: 

1. uuv_simulator 

2. ViSP 

The relevant GitHub repositories can be found at: https://github.com/ali94wadi 

  

https://github.com/ali94wadi


121 
 

Vita 

Ali Wadi was born in 1994, in Gaza, Palestine. He received his primary 

education and secondary education in Khan Younis, Palestine, and Abu Dhabi, UAE, 

respectively. He received his B.Sc. degree in Mechanical Engineering from the 

American University of Sharjah in 2015. Throughout 2015, he worked as an Inspection 

Engineer in Khatib & Alami, Abu Dhabi. 

In January 2016, he joined the Mechanical Engineering master's program in the 

American University of Sharjah as a graduate teaching assistant. During his master's 

study, he co-authored two papers which were published in international journals and 

co-authored two papers which appeared in international conferences. His research 

interests include Robotics, Autonomous Vehicles, Chemotherapeutic Drug Delivery 

Systems, Dynamics and Control, and Estimation Theory in a multidisciplinary setting. 

 


	Acknowledgement
	Dedication
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1. Introduction
	1.1. Overview
	1.2. Thesis Objectives
	1.3. Research Contribution
	1.4. Thesis Organization

	Chapter 2. Background and Literature Review
	2.1. Survey of AUVs in the Field
	2.2. Literature Review

	Chapter 3. Mathematical Model
	3.1. The kinematics of Motion
	3.2. The Dynamic Equations of Motion

	Chapter 4. Parameter Identification
	4.1. Proposed Vehicle Classification
	4.2. Mass Matrix Identification
	4.3. Damping Parameters Identification
	4.4. Hydrodynamic Mass Identification
	4.5. Fine-tuning of the Parameters

	Chapter 5: Guidance and Control
	5.1. Trajectory Planning
	5.2. Control
	5.3. Adaptive Online Parameter Tuning
	5.4. Adaptive Gain Update Conditions
	5.5. Simulation Results

	Chapter 6: Navigation and Localization
	6.1. Problems with Inertial Measurement Units
	6.2. Sensor Fusion Formulation
	6.3. Extended Kalman Filter (EKF)
	6.4. Simulation Results
	6.5. Unscented Kalman Filter (UKF)
	6.6. Uncertainty structure Identification

	Chapter 7. System Integration
	7.1. Hardware
	7.2. Localization
	7.3. The Robot Operating System
	7.4. ROS-based Simulation Environment
	8.1. Conclusions
	8.2. Limitations
	8.3. Future Work

	References
	Appendix A: Introduction to Quaternions
	Appendix B: Discretization Routine
	Appendix C: Dynamics Equation Jacobian
	Appendix D: Computer Codes
	Vita

