
Houston Journal of Mathematics
c© 2006 University of Houston

Volume 32, No. 1, 2006

ON Φ-MORI RINGS
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Abstract. A commutative ring R is said to be a φ-ring if its nilradical

Nil(R) is both prime and comparable with each principal ideal. The name

is derived from the natural map φ from the total quotient ring T (R) to R

localized at Nil(R). An ideal I that properly contains Nil(R) is φ-divisorial

if (φ(R) : (φ(R) : φ(I)) = φ(I). A ring is a φ-Mori ring if it is a φ-ring that

satisfies the ascending chain condition on φ-divisorial ideals. Many of the

properties and characterizations of Mori domains can be extended to φ-Mori

rings, but some cannot.

1. Introduction

We assume throughout that all rings are commutative with 1 6= 0. For such a
ring R, we let T (R) denote the total quotient ring of R, Z(R) denote the set of
zero divisors of R and Nil(R) denote the nilradical. We say that Nil(R) is divided
if it compares with each principal ideal of R (see [16] and [5]). Those ideals which
are not contained in Nil(R) are referred to as nonnil ideals (or are nonnil). If
Nil(R) is both divided and a prime ideal, we say R is a φ-ring. Note that each
nonnil ideal of a φ-ring properly contains the nilradical. For convenience we let
H denote the class of all φ-rings. The name is derived from the natural map
φ : T (R) → RNil(R) from the total quotient ring of R into R localized at Nil(R).
For a, b ∈ R with b not a zero divisor, φ(a/b) is simply a/b viewed as an element
of RNil(R).

The elements in R\Z(R) are referred to as regular elements and an ideal I is
said to be regular if it contains at least one regular element. For a nonzero ideal I,
regular or not, we let I−1 = {x ∈ T (R) | xI ⊂ R} and Iv = (I−1)−1. The former
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is referred to as the inverse of I and the latter as the v of I. Both notations are
dependent on knowing both the ideal and the ring in question at the time. For
clarity, we occasionally use (R : I) for the inverse. A nonzero ideal I of R is said
to be divisorial if Iv = I.

Recall that a Mori domain is an integral domain that satisfies the ascending
chain condition on divisorial ideals. Recently, the second-named author [28] gen-
eralized the concept of Mori domains to the context of commutative rings with
zero divisors. According to [28] a ring R is called a Mori ring if it satisfies a.c.c
on divisorial regular ideals. We are interested in extending the Mori property
to φ-rings. Specifically we say that a nonnil ideal I is φ-divisorial if φ(I) is a
divisorial ideal of φ(R), the image of R in RNil(R). A φ-ring R is a φ-Mori ring if
it satisfies a.c.c. on φ-divisorial ideals. Just as a field is trivially a Mori domain,
if R is trivially a φ-ring in the sense that Nil(R) is the maximal ideal of R, then
R is considered to be a φ-Mori ring.

In Theorem 2.2 we show that a φ-ring R is φ-Mori if and only if φ(R) is a Mori
ring. An alternate characterization is that R is φ-Mori if and only if R/Nil(R) is a
Mori domain (Theorem 2.5). As with Mori domains ([30, Théorème 1]) and Mori
rings ([28, Theorem 2.22]), a φ-ring R is a φ-Mori ring if and only if for each nonnil
ideal I, there is a finitely generated nonnil ideal J ⊂ I such that φ(J)v = φ(I)v

(Theorem 2.14). For Mori domains, the statement is given in terms of nonzero
ideals, and for Mori rings, it is given in terms of regular ideals. Other similarities
to Mori domains include that if R is a φ-Mori ring, then RP is φ-Mori for each
nonnil prime P (Theorem 3.5). In Theorem 3.6 we show that if R is a φ-ring,
then it is φ-Mori if and only if (i) RM is φ-Mori for each maximal φ-divisorial
ideal M , (ii) φ(R) = ∩φ(R)φ(M) where the intersection is taken over the set of
maximal φ-divisorial ideals, and (iii) each nonnil (ideal) element is contained in at
most finitely many maximal φ-divisorial ideals. In the event there are no maximal
φ-divisorial ideals, we assume the empty intersection is the ring RNil(R). Note
that the Mori ring in our Example 5.3 shows that a Mori ring need not be locally
Mori.

One difference between Mori domains and φ-Mori rings is with regard to poly-
nomial extensions. Of course there is no hope that the nilradical of R[x] will be
divided if R is not a domain, but in some cases the nilradical of R(x) is a divided
prime (see Examples 4.7, 5.4 and 5.7). Here R(x) denotes the localization of R[x]
at the set of polynomials whose coefficients generate R as an ideal. It is known
that if D is an integrally closed Mori domain, then D[x] is a Mori domain [33,
Théorème 3.5]. Since a localization of a Mori domain is a Mori domain, D(x) is
a Mori domain in this case. In Theorem 4.5 we show that if R is an integrally
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closed φ-Mori ring such that Nil(R) = Z(R) 6= (0), then R(x) is a φ-Mori ring
if and only if each regular (equivalently, nonnil) ideal of R is invertible. Several
examples show that this statement cannot be generalized to rings where the set of
zero divisors properly contains the nilradical (see the aforementioned Examples
4.7, 5.4 and 5.7).

Throughout the paper we will use the technique of idealization of a module
to construct examples. Recall that for an R-module B, the idealization of B

over R is the ring formed from R × B by defining addition and multiplication
as (r, a) + (s, b) = (r + s, a + b) and (r, a)(s, b) = (rs, rb + sa), respectively. A
common notation for the idealized ring is R(+)B. See [20], [21] and [22] for basic
properties of these rings.

A good reference for Mori domains is the recent survey article by V. Barucci
[11].

2. Basic properties of φ-Mori Rings

We are concerned only with those rings for which the associated nilradical is a
divided prime. For such a ring R, the kernel of the map φ : T (R) −→ RNil(R) is
contained in Nil(R) and it is a common ideal of R and T (R). Since φ is a ring
homomorphism, the ideals of R that contain Ker(φ) are in a one-to-one order
preserving correspondence with the ideals of φ(R). Moreover, since the nilradical
of φ(R) is simply the image of φ(Nil(R)), there is a natural ring isomorphism
between R/Nil(R) and φ(R)/Nil(φ(R)). This isomorphism extends to a field
isomorphism between the quotient fields of R/Nil(R) and RNil(R)/Nil(φ(R) since
Nil(φ(R)) = Z(φ(R)) is a divided prime of φ(R).

Lemma 2.1. Let R ∈ H and let I, J be nonnil ideals of R. Then I = J if and
only if φ(I) = φ(J).

Proof. Since Nil(R) is a divided prime of R and neither I nor J is contained in
Nil(R), both (properly) contain Nil(R). Thus both contain the kernel of φ. The
result follows from standard ring theory. £

A simple use of this lemma is the following characterization of φ-Mori rings in
terms of Mori rings in the sense of [28].

Theorem 2.2. Let R ∈ H. Then R is a φ-Mori ring if and only if φ(R) is a
Mori ring.

Proof. Each regular ideal of φ(R) is the image of a unique nonnil ideal of R

and φ(I) is a regular ideal of φ(R) for each nonnil ideal I of R. Moreover, by
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definition, if J = φ(I), then J is a divisorial ideal of φ(R) if and only if I is
φ-divisorial. Thus a chain of φ-divisorial ideals of R stabilizes if and only if the
corresponding chain of divisorial ideals of φ(R) stabilizes. It follows that R is
φ-Mori ring if and only if φ(R) is a Mori ring. £

We recall the following lemma from [10, Lemma 1.1].

Lemma 2.3. Let R ∈ H. Then R/Nil(R) is ring-isomorphic to φ(R)/Nil(φ(R)).

Our next lemma extends this result to RNil(R)/Nil(φ(R)) and the quotient
field of R/Nil(R). Under the isomorphism we have that (φ(R) : φ(I))/φ(Nil(R))
is isomorphic to (R/Nil(R) : I/Nil(R)) for each nonnil ideal I of R.

Lemma 2.4. The following hold for each R ∈ H.

(a) The map β : φ(R) → R/Nil(R) given by β(φ(r)) = r + Nil(R) is a
well-defined ring homomorphism whose kernel is Nil(φ(R)).

(b) β extends to a map from RNil(R) onto the quotient field of R/Nil(R).
(c) Under the derived isomorphism ̂β : RNil(R)/Nil(φ(R)) → T (R/Nil(R)),

(φ(R) : φ(I))/Nil(φ(R)) is isomorphic to (R/Nil(R) : I/Nil(R)) for each
nonnil ideal I.

(d) For each nonnil ideal I of R, I is φ-divisorial if and only if I/Nil(R) is
a divisorial ideal of R/Nil(R). Moreover, φ(I) is invertible if and only if
I/Nil(R) is invertible.

(e) For each nonempty set of nonnil primes P of R, φ(R) = ∩P∈Pφ(R)φ(P )

if and only if R/Nil(R) = ∩P∈P(R/Nil(R))P/Nil(R).

Proof. For (a), all we need show is that β is well-defined. To this end let
r, s ∈ R be such that φ(r) = φ(s). Thus r − s ∈ Ker(φ). As Nil(R) contains
Ker(φ), r − s ∈ Nil(R) and therefore β is well-defined. Obviously, the kernel
of β is the image of Nil(R) in φ(R), but this is the nilradical of φ(R) since
Nil(φ(R)) = φ(Nil(R)).

For (b), first recall that the nilradical of φ(R) is a common prime of φ(R)
and RNil(R). Moreover, it is the maximal ideal of RNil(R) and is the entire set
of zero divisors of both rings. That there is a natural isomorphism between
RNil(R) and the quotient field of R/Nil(R) amounts to little more than the fact
that, up to isomorphism, localizing at a prime commutes with moding out by
the prime in question. What the extension of β to a map from RNil(R) onto the
quotient field of R/Nil(R) amounts to is simply the composition of the canonical
homomorphism from RNil(R) onto RNil(R)/Nil(φ(R)) and the isomorphism from
RNil(R)/Nil(φ(R)) onto (R/Nil(R))Nil(R)/Nil(R).
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For (c), let I be a nonnil ideal of R. By way of the isomorphism in (b),
it suffices to show that β((φ(R) : φ(I)))/Nil(φ(R)) equals (φ(R)/Nil(φ(R)) :
φ(I)/Nil(φ(R))). We have that (φ(R)/Nil(φ(R)) : φ(I)/Nil(φ(R))) contains
β((φ(R) : φ(I)))/Nil(φ(R)) since φ(I) properly contains Nil(φ(R)), the latter a
prime ideal of φ(R). That the two are equal is a consequence of the fact that
Nil(φ(R)) is divided and equal to the set of zero divisors of RNil(R). This allows
us to pull back each nonzero member of (φ(R)/Nil(φ(R)) : φ(I)/Nil(φ(R))) to
an element of (φ(R) : φ(I)).

Let s be a nonzero member of (φ(R)/Nil(φ(R)) : φ(I)/Nil(φ(R))). Then there
are nonnilpotent elements a ∈ φ(R) and b ∈ φ(I) such that s can be represented
by multiplication by (a + Nil(φ(R))/(b + Nil(φ(R)). It suffices to show that
a/b ∈ (φ(R) : φ(I)). Since Nil(φ(R)) = Z(RNil(R)) is divided and b is not
nilpotent, b is a regular element of φ(R) and (a/b)Nil(φ(R)) ⊆ Nil(φ(R)). For
each r ∈ φ(I), we have s(r +Nil(φ(R)) = c+Nil(φ(R)) for some c ∈ φ(R). Thus
ar + Nil(φ(R)) = bc + Nil(φ(R)) and from this we have c − ar/b ∈ Nil(φ(R))
since b is a regular element of φ(R) and Nil(φ(R)) is divided. It follows that
ar/b ∈ φ(R).

The statements in (d) are a simple consequence of (c).
For (e), first suppose q is an element in ∩φ(R)φ(P )\φ(R). Then the ideal

J = (φ(R) : (1, q)) is a proper divisorial ideal of φ(R). Moreover for each P ∈ P,
J is not contained in φ(P ). By definition, the inverse image of J in R is a
proper φ-divisorial ideal of R, call it I. Then no P ∈ P contains I, and by (d),
I/Nil(R) is a proper divisorial ideal of R/Nil(R). Making use of the map ̂β, we
see that the image of q in T (R/Nil(R)) is not in R/Nil(R). On the other hand,
q will be in ∩ (R/Nil(R))P/Nil(R) since no prime from P contains I. Thus having
R/Nil(R) = ∩ (R/Nil(R))P/Nil(R) implies φ(R) = ∩φ(R)φ(P ). A similar proof
establishes the converse. £

The following is a characterization of φ-Mori rings in terms of Mori domains.

Theorem 2.5. Let R ∈ H. Then R is a φ-Mori ring if and only if R/Nil(R) is
a Mori domain.

Proof. Suppose that R is a φ-Mori ring. Let {Im/Nil(R)} be an ascending
chain of nonzero divisorial ideals of R/Nil(R) where each Im is a nonnil ideal of
R. Hence {φ(Im)} is an ascending chain of regular divisorial ideals of φ(R) by
Lemma 2.4. Thus there exists an integer n ≥ 1 such that φ(In) = φ(Im) for each
m ≥ n and so we also have In = Im by Lemma 2.1 (for each m ≥ n). It follows
that In/Nil(R) = Im/Nil(R) as well.
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Conversely, suppose that R/Nil(R) is a Mori domain. Let {Im} be an ascend-
ing chain of nonnil φ-divisorial ideals of R. Thus {Im/Nil(R)} is an ascending
chain of nonzero divisorial ideals of R/Nil(R). Thus there exists an integer n ≥ 1
such that In/Nil(R) = Im/Nil(R) for each m ≥ n. As above, we have In = Im

for each m ≥ n. £

The following lemma makes it easy to show that each φ-Mori ring is also a
Mori ring in the sense of [28].

Lemma 2.6. Let R ∈ H and suppose that a nonnil ideal I of R is a divisorial
ideal of R. Then φ(I) is a divisorial ideal of φ(R), i.e I is a φ-divisorial ideal of
R.

Proof. Let y ∈ φ(I)v. Since φ(I)v is contained in φ(R), y = φ(d) for some
d ∈ R. We need to show that y ∈ φ(I). Now, let x ∈ I−1. Since φ is a ring
homomorphism from T (R) into RNil(R), φ(x) ∈ (φ(R) : φ(I)). Thus yφ(x) =
φ(d)φ(x) = φ(dx) = w ∈ φ(R). Since the kernel of φ is a common ideal of R and
T (R), we must have dx ∈ R. As I is a divisorial ideal of R and x is an arbitrary
element of I−1, we have d ∈ I and therefore y ∈ φ(I) as desired. £

Theorem 2.7. Let R ∈ H be a φ-Mori ring. Then R satisfies the a.c.c on nonnil
divisorial ideals of R. In particular, R is a Mori ring.

Proof. Let {Im} be an ascending chain of nonnil divisorial ideals of R. Hence
{φ(Im)} is an ascending chain of regular divisorial ideals of φ(R) by Lemma 2.6.
Thus there is an integer n ≥ 1 such that φ(In) = φ(Im) for each m ≥ n. Thus
In = Im by Lemma 2.1. The “In particular” statement is now clear. £

The converse of Theorem 2.7 is not valid as can be seen by the following
example.

Example 2.8. Let D be an integral domain with quotient field L which is not
a Mori domain and set R = D(+)(L/D), the idealization of L/D over D. Then
R ∈ H is a Mori ring which is not a φ-Mori ring.

Proof. First note that L/D is a divisible D-module; i.e., d(L/D) = L/D for each
nonzero d ∈ D. Thus for each nilpotent element (0, b) and each nonnil element
(d, f), there is an element c ∈ L/D such that (d, f)(0, c) = (0, dc) = (0, b).
Since Nil(R) = (0)(+)L/D, it is a divided prime of R. Thus R ∈ H. Since
every nonunit of R is a zero divisor, we conclude that R is a Mori ring. On the
other hand, since D is not a Mori domain and R/Nil(R) is ring-isomorphic to
D, R/Nil(R) is not a Mori domain. Thus R is not a φ-Mori ring by Theorem
2.5. £
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In the example section at the end of the paper, we will show how to construct
a nontrivial Mori ring (i.e., where R 6= T (R)) in H which is not φ-Mori (Example
5.3).

Note that if Nil(R) = Z(R), then RNil(R) is simply the total quotient ring of
R and φ(R) = R. Thus we may state the following partial converse for Theorem
2.7.

Corollary 2.9. Let R ∈ H such that Nil(R) = Z(R). Then R is a φ-Mori ring
if and only if R is a Mori ring.

Recall from [10] that a ring R ∈ H is called a Nonnil-Noetherian ring if every
nonnil ideal of R is finitely generated. Theorem 2.2 of [10] shows that a ring R ∈ H
is a Nonnil-Noetherian ring if and only if R/Nil(R) is a Noetherian domain. It is
also the case that R is a Nonnil-Noetherian ring if and only if each regular ideal
(equivalently, nonnil ideal) of φ(R) is finitely generated. At the time this paper
was being written, the authors were aware of seven different types of φ-rings either
in the literature or under study: (in alphabetical order) φ-Bezout, φ-Dedekind,
φ-chained, φ-Krull, φ-Mori, φ-pseudo-valuation and φ-Prüfer (see [2], [3], [5], [7],
and [8]). Letting “φ-BLANK” represent any one of these, it is known that a
ring R ∈ H is a φ-BLANK ring if and only if R/Nil(R) is a BLANK domain.
Moreover, there are characterizations of each type in terms of the corresponding
ring φ(R) as well. Thus it seems natural to change the name “Nonnil-Noetherian
ring” to φ-Noetherian ring. We shall use this new name for the remainder of this
paper.

Theorem 2.10. Let R ∈ H be a φ-Noetherian ring. Then R is both a φ-Mori
ring and a Mori ring.

Given a Krull domain of the form E = L + M where L is a field and M a
maximal ideal of E, any subfield K of L gives rise to a Mori domain D = K +M .
If L is not a finite algebraic extension of K, then D cannot be Noetherian (see
[12, Section 4]). We make use of this in our next example to build a φ-Mori ring
which is neither an integral domain nor a φ-Noetherian.

Example 2.11. Let K be the quotient field of the ring D = Q + XR[[X]] and
set R = D(+)K, the idealization of K over D. It is easy to see that Nil(R) =
{0}(+)K is a divided prime ideal of R. Hence R ∈ H. Now since R/Nil(R) is
ring-isomorphic to D and D is a Mori domain but not a Noetherian domain, we
conclude that R is a φ-Mori ring which is not a φ-Noetherian ring.

In light of Example 2.11, φ-Mori rings can be constructed as in the following
example.
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Example 2.12. Let D be a Mori domain with quotient field K and let L be an
extension ring of K. Then R = D(+)L, the idealization of L over D, is in H.
Moreover, R is a φ-Mori ring since R/Nil(R) is ring-isomorphic to D which is a
Mori domain.

The following result is a generalization of [34, Theorem 1]. An analogous result
holds for Mori rings when the chains under consideration are restricted to regular
divisorial ideals whose intersection is regular [28, Theorem 2.22].

Theorem 2.13. Let R ∈ H. Then R is a φ-Mori ring if and only if whenever
{Im} is a descending chain of nonnil φ-divisorial ideals of R such that ∩ Im 6=
Nil(R), then {Im} is a finite set.

Proof. Suppose that R is a φ-Mori ring and {Im} is a descending chain of
nonnil φ-divisorial ideals of R such that ∩ Im 6= Nil(R). Hence {Im/Nil(R)} is
a descending chain of (nonzero) divisorial ideals of R/Nil(R) by Lemma 2.4 and
Im/Nil(R) 6= {0} in R/Nil(R). Since R/Nil(R) is a Mori domain by Theorem
2.5, we conclude that {Im/Nil(R)} is a finite set by [34, Theorem 1]. Hence {Im}
is a finite set. Conversely, suppose that whenever {Im} is a descending chain of
nonnil φ-divisorial ideals of R such that ∩ Im 6= Nil(R), then {Im} is a finite set.
Since every nonzero ideal of R/Nil(R) is of the form I/Nil(R) for some nonnil
ideal I of R and a nonnil ideal I of R is φ-divisorial if and only if I/Nil(R)
is a divisorial ideal of R/Nil(R) by Lemma 2.4, we conclude that if {Jm} is a
descending chain of (nonzero) divisorial ideals of R/Nil(R) such that ∩Jm 6= {0},
then {Jm} is a finite set. Hence R/Nil(R) is a Mori domain by [34, Theorem 1].
Thus R is a φ-Mori ring by Theorem 2.5. £

Mori domains can be characterized by the property that for each nonzero ideal
I, there is a finitely generated ideal J ⊂ I such that (D : I) = (D : J) (equiv-
alently, Iv = Jv) ([31, Theorem 1]). Our next result generalizes this result to
φ-Mori rings.

Theorem 2.14. Let R ∈ H. Then R is a φ-Mori ring if and only if for any
nonnil ideal I of R, there exists a nonnil finitely generated ideal J , J ⊂ I, such
that φ(J)−1 = φ(I)−1, equivalently φ(J)v = φ(I)v.

Proof. Suppose that R is a φ-Mori ring and let I be a nonnil ideal of R.
Since R/Nil(R) is a Mori domain and F = I/Nil(R) is a nonzero ideal of
R/Nil(R), there exists a nonzero finitely generated ideal L of R/Nil(R) such that
L−1 = F−1. Since L = J/Nil(R) for some nonnil finitely generated ideal J of
R and T (R/Nil(R)) = T (φ(R))/Nil(φ(R)), we conclude that φ(J)−1 = φ(I)−1.
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Conversely, suppose that for each nonnil ideal I of R, there exists a nonnil finitely
generated ideal J , J ⊂ I, such that φ(J)−1 = φ(I)−1. Then one can see that for
any nonzero ideal F of R/Nil(R) there exists a nonzero finitely generated ideal
L, L ⊂ F , such that L−1 = F−1. Hence R/Nil(R) is a Mori domain by [31,
Theorem 1]. Thus, R is a φ-Mori ring by Theorem 2.5. £

In the following corollary we combine all of the different characterizations of
φ-Mori rings stated in this section. In the next section we will give yet another
characterization in terms of maximal φ-divisorial ideals (see Theorem 3.6).

Corollary 2.15. Let R ∈ H. The following statements are equivalent.

(1) R is a φ-Mori ring.
(2) R/Nil(R) is a Mori domain.
(3) φ(R)/Nil(φ(R)) is a Mori domain.
(4) φ(R) is a Mori ring.
(5) If {Im} is a descending chain of nonnil φ-divisorial ideals of R such that

∩ Im 6= Nil(R), then {Im} is a finite set.
(6) For each nonnil ideal I of R, there exists a nonnil finitely generated ideal

J , J ⊂ I, such that φ(J)−1 = φ(I)−1.
(7) For each nonnil ideal I of R, there exists a nonnil finitely generated ideal

J , J ⊂ I, such that φ(J)v = φ(I)v.

3. Some properties of ideals of φ-Mori rings

The following result is a generalization of [34, Theorem 5].

Theorem 3.1. Let R ∈ H be a φ-Mori ring and I be a nonzero φ-divisorial ideal
of R. Then I contains a power of its radical.

Proof. Set D = R/Nil(R). Then D is a Mori domain by Theorem 2.5. Since
I/Nil(R) is a nonzero divisorial ideal of D by Lemma 2.4, we conclude that
I/Nil(R) contains a power of its radical by [34, Theorem 5]. Since Nil(R) is
divided, I contains a power of its radical. £

We recall a few definitions regarding special types of ideals in integral domains.
For a nonzero ideal I of an integral domain D, I is said to be strong if II−1 = I,
strongly divisorial if it is both strong and divisorial, and v-invertible if (II−1)v =
D. We will extend these concepts to the rings in H.

Let I be a nonnil ideal of a ring R ∈ H. We say that I is strong if II−1 =
I, φ-strong if φ(I)φ(I)−1 = φ(I), strongly divisorial if it is both strong and
divisorial, strongly φ-divisorial if it is both φ-strong and φ-divisorial, v-invertible
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if (II−1)v = R and φ-v-invertible if (φ(I)φ(I)−1)v = φ(R). Obviously, I is φ-
strong, strongly φ-divisorial or φ-v-invertible if and only if φ(I) is, respectively,
strong, strongly divisorial or v-invertible.

The following lemma follows easily from Lemma 2.4 and the definitions above.
We leave the proof to the reader.

Lemma 3.2. Let R ∈ H be a φ-Mori ring and I be a nonnil ideal of R. Then
the following hold.

(a) I is φ-strong if and only if I/Nil(I) is a strong ideal of R/Nil(R).
(b) I is strongly φ-divisorial if and only if I/Nil(R) is a strongly divisorial

ideal of R/Nil(R).
(c) (φ(R) : φ(I)) = φ(R) if and only if (R/Nil(R) : I/Nil(R)) = R/Nil(R).
(d) I is a φ-v-invertible ideal if and only if I/Nil(R) is a v-invertible ideal of

R/Nil(R).

In [31, Proposition 1], J. Querré proved that if P is a prime ideal of a Mori
domain D, then P is divisorial when it is height one. In the same proposition, he
incorrectly asserted that if the height of P is larger than one and P−1 properly
contains D, then P is strongly divisorial. While it is true that such a prime must
be strong, a (Noetherian) counterexample to the full statement can be found in
[18]. What one can say is that Pv will be strongly divisorial (see [4]).

Theorem 3.3. Let R ∈ H be a φ-Mori ring and P be a (nonnil) prime ideal of
R. If ht(P ) = 1, then P is φ-divisorial. If ht(P ) ≥ 2, then either φ(P )−1 = φ(R)
or φ(P )v is strongly divisorial.

Proof. Set D = R/Nil(R) and let Q be a nonzero prime ideal of D. If Q is
not strong, then QDQ is principal (generated by t−1 where t ∈ (D : Q)\(Q : Q)).
Since D is a Mori domain (Theorem 2.5), DQ is a quasilocal Mori domain whose
maximal ideal is principal. Such a domain must be one-dimensional for otherwise
the powers of the maximal ideal form an infinite descending chain of divisorial
ideals with nonzero intersection. If ht(Q) ≥ 2 and (D : Q) properly contains D,
then Qv is strongly divisorial ([23, Proposition 2.2]).

Making use of Lemma 2.4 again, we have that if ht(P ) ≥ 2, then φ(P ) is strong,
and φ(P )v is strongly divisorial whenever (φ(R) : φ(P )) properly contains φ(R).

On the other hand, if ht(P ) = 1, then ht(P/Nil(R)) = 1. Moreover, P/Nil(R)
is a divisorial ideal of D by [31, Proposition 1]. Hence P is φ-divisorial by Lemma
2.4. £
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For a φ-Mori ring R ∈ H, let Dm(R) denote the maximal φ-divisorial ideals of
R; i.e., the set of nonnil ideals of R maximal with respect to being φ-divisorial.
The following result generalizes [15, Theorem 2.3] and [12, Proposition 2.1].

Theorem 3.4. Let R ∈ H be a φ-Mori ring such that Nil(R) is not the maximal
ideal of R. Then the following hold.

(a) The set Dm(R) is nonempty. Moreover, M ∈ Dm(R) if and only if
M/Nil(R) is a maximal divisorial ideal of R/Nil(R).

(b) Every ideal of Dm(R) is prime.
(c) Every nonnilpotent nonunit element of R is contained in a finite number

of maximal φ-divisorial ideals.

Proof. Set D = R/Nil(R). Then D is Mori domain by Theorem 2.5.
By Lemma 2.4, a nonnil ideal I of R is φ-divisorial if and only if I/Nil(R) is

a divisorial ideal of D. Thus we obviously have that I is a maximal φ-divisorial
ideal of R if and only if I/Nil(R) is a maximal divisorial ideal of D. A simple
consequence of D satisfying the a.c.c. on divisorial ideals is that each (proper)
divisorial ideal is contained in a maximal divisorial ideal. Moreover, each of its
maximal divisorial ideals is prime [15, Theorem 2.3]. Hence Dm(R) is nonempty
and each member of Dm(R) is a prime ideal of R.

Since every nonzero nonunit element of D is contained in a finite number of
maximal divisorial ideals of D by [12, Proposition 2.1], it is easy to see that every
nonnilpotent nonunit element of R is contained in a finite number of maximal
φ-divisorial ideals of R. Thus (c) holds. £

As with a nonempty subset of R, a nonempty set of ideals S is multiplicative
if (i) the zero ideal is not contained in S, and (ii) for each I and J in S, the
product IJ is in S. Such a set S is referred to as a multiplicative system of ideals
and it gives rise to a generalized ring of quotients RS = {t ∈ T (R) | tI ⊂ R

for some I ∈ S}. For each prime ideal P , R(P ) = {t ∈ T (R) | st ∈ R for some
s ∈ R\P} = RS where S is the set of ideals (including R) that are not contained
in P . Note that in general a localization of a Mori ring need not be Mori (see
Example 5.3 below). On the other hand if S is a multiplicative system of regular
ideals, then RS is a Mori ring whenever R is Mori ring ([28, Theorem 2.13]).

Theorem 3.5. Let R be a φ-Mori ring. Then
(a) RS is a φ-Mori ring for each multiplicative set S.
(b) RP is a φ-Mori ring for each prime P .
(c) RS is a φ-Mori ring for each multiplicative system of ideals S.
(d) R(P ) is a φ-Mori ring for each prime ideal P .
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Proof. It suffices to prove (a) and (c).
Let S be a multiplicative set. No nilpotent element can be contained in S.

Moreover, the nilradical of RS is simply the localization of Nil(R). Thus Nil(RS)
is a divided prime of RS . Also (RS)Nil(RS) is naturally isomorphic to RNil(R).
That RS is φ-Mori now follows from Theorem 2.5.

Let C = R\Z(R). Then RC = T (R) is a φ-Mori ring. Note that if S is a
multiplicative system of nonzero ideals that contains a subideal of Nil(R), then
RS = T (R). Thus for (c) we may assume that each ideal of S is nonnil. In
this case, each ideal in S properly contains Nil(R) and we have that the set
T = {I/Nil(R) | I ∈ S} is a multiplicative system of ideals of R/Nil(R). Since
R/Nil(R) is a Mori domain, (R/Nil(R))T is a Mori domain [32, Théorème 2.2].
By Theorem 2.5, we also have that T (R)/Nil(R) is also a Mori domain. We
clearly have that RS/Nil(R) = (R/Nil(R))T ∩T (R)/Nil(R), a finite intersection
of Mori domains, and thus a Mori domain [32, Théorème 2.1]. That RS is φ-Mori
now follows from Theorem 2.5. £

One of the well-known characterizations of Mori domains is that an integral
domain D is a Mori domain if and only if (i) DM is a Mori domain for each
maximal divisorial ideal M , (ii) D = ∩DM where the M range over the set
of maximal divisorial ideals of D, and (iii) each nonzero element is contained
in at most finitely many maximal divisorial ideals ([32, Théorème 2.1] and [34,
Théorème I.2]). A similar statement holds for φ-Mori rings. Note that in condition
(ii), if D has no maximal divisorial ideals, the intersection is assumed to be the
quotient field of D. For the equivalence, that means that D is its own quotient
field. The analogous statement is that if Dm is empty, then we have R = T (R) =
RNil(R) with Nil(R) the maximal ideal.

Theorem 3.6. Let R ∈ H. Then the following are equivalent.

(1) R is a φ-Mori ring.
(2) (i) RM is a φ-Mori ring for each maximal φ-divisorial M , (ii) φ(R) =

∩φ(R)φ(M) where the M range over the set of maximal φ-divisorial ideals,
and (iii) each nonnil element (ideal) is contained in at most finitely many
maximal φ-divisorial ideals.

(3) (i) R(M) is a φ-Mori ring for each maximal φ-divisorial M , (ii) φ(R) =
∩φ(R)φ(M) where the M range over the set of maximal φ-divisorial ideals,
and (iii) each nonnil element (ideal) is contained in at most finitely many
maximal φ-divisorial ideals.
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Proof. First note that by Lemma 2.4, statement (ii) is equivalent to having
R/Nil(R) = ∩ (R/Nil(R))M/Nil(R) with the intersection again taken over the set
of maximal φ-divisorial ideals of R. In both cases, we assume an intersection over
an empty set of primes is the corresponding total quotient ring (quotient field for
R/Nil(R)). That (1) implies both (2) and (3) now follows from [32, Théorème
2.1] and [34, Théorème I.2] together with Theorems 3.4 and 3.5 above. Theorem
3.5 also shows that (3) implies (2) since RM = (R(M))R\M . It remains to show
that (2) implies (1).

Assume RM is a φ-Mori ring for each maximal φ-divisorial ideal M , φ(R) =
∩φ(R)φ(M) where the M range over the set of maximal φ-divisorial ideals, and
that each nonnil element of R is contained in at most finitely many maximal
φ-divisorial ideals. By Theorem 2.5, RM/Nil(RM ) ∼= (R/Nil(R))M/Nil(R) is a
Mori domain. By Lemma 2.4, each maximal divisorial ideal of R/Nil(R) is of
the form M/Nil(R) for some maximal φ-divisorial ideal M of R. Thus each
nonzero element of R/Nil(R) is contained in at most finitely many maximal
divisorial ideals. Hence R/Nil(R) is a Mori domain by [32, Théorème 2.1] and
[34, Théorème I.2]. That R is a φ-Mori ring now follows from Theorem 2.5. £

Recall from [8] that a ring R ∈ H is called a φ-chained ring (φ-CR) if for every
x ∈ T (φ(R))\φ(R) = RNil(R)\φ(R), we have x−1 ∈ φ(R); equivalently, if for
every pair of elements a, b ∈ R\Nil(R), either a | b or b | a in R. If a φ-chained
ring R has exactly one nonnil prime ideal and every nonnil ideal of R is principal,
then we say that R is a discrete rank one φ-chained ring. We recall the following
result from [2].

Lemma 3.7. ([2, Theorem 2.7]) Let R ∈ H. Then R is a φ-chained ring if and
only if R/Nil(R) is a valuation domain.

If Nil(R) a divided prime ideal of R, then one can easily prove the following
result.

Lemma 3.8. Let R ∈ H with Krull dimension different from zero. Then R is a
discrete rank one φ-chained ring if and only if R/Nil(R) is a discrete valuation
domain.

In [12], Barucci and S. Gabelli proved that if P is a maximal divisorial ideal
of a Mori domain D, then the following three conditions are equivalent: (1) DP

is a discrete rank one valuation domain, (2) P is v-invertible, and (3) P is not
strong [12, Theorem 2.5]. A similar result holds for φ-Mori rings. Lemma 3.2 is
particularly useful in establishing this theorem.
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Theorem 3.9. Let R ∈ H be a φ-Mori ring and P ∈ Dm(R). Then the following
statements are equivalent.

(1) RP is a discrete rank one φ-chained ring.
(2) P is φ-v-invertible.
(3) P is not φ-strong.

Proof. Set D = R/Nil(R). Then D is a Mori domain by Theorem 2.5 and
P/Nil(R) ∈ Dm(D).

To see that (1) implies (2), assume that RP is a discrete φ-chained ring. From
this it is easy to see that DP/Nil(R)

∼= RP /Nil(RP ) is a discrete valuation domain
by Lemma 3.8. Hence P/Nil(R) is v-invertible by [12, Theorem 2.5] and we have
that P is φ-v-invertible by Lemma 3.2.

To see that (2) implies (3), first note that by Lemma 3.2, P is φ-v-invertible
if and only if P/Nil(R) is v-invertible, and P is φ-strong if and only if P/Nil(R)
is strong. As P/Nil(R) is a divisorial ideal, it cannot be both strong and v-
invertible. Thus (2) and (3) are equivalent.

If P/Nil(R) is not strong, then DP/Nil(R)
∼= RP /Nil(RP ) is a discrete valua-

tion domain [12, Theorem 2.3]. We will then have that RP is a discrete φ-chained
ring by Lemma 3.8. Hence (3) implies (1). £

The following result is a generalization of [4, Theorem 3.4].

Theorem 3.10. Let R ∈ H be a φ-Mori ring and P be a nonnil prime ideal of
R minimal over a nonnil principal ideal I of R. If P is finitely generated, then P

has height one.

Proof. Set D = R/Nil(R). Since D is a Mori domain and P/Nil(R) is a minimal
finitely generated prime ideal of D over the nonzero principal ideal I/Nil(R) of
D, we conclude that ht(P/Nil(R)) = 1 by [4, Theorem 3.4]. Hence it is clear that
ht(P ) = 1. £

4. The special case Nil(R) = Z(R)

While many of the results of this paper are true for the trivial case Nil(R) =
Z(R) = {0} (i.e., R is an integral domain), the main results in this section
(Theorems 4.3 and 4.5 and their corollaries) are not. Moreover, they need not
hold when we have that Nil(R) is a nontrivial divided prime properly contained
in Z(R). A consequence of having Nil(R) = Z(R) is that R will be a McCoy
ring; i.e., each finitely generated ideal containing only zero divisors has a nonzero
annihilator. Even more is true.
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Theorem 4.1. Let R be a ring for which Nil(R) = Z(R). Then Nil(R) is a
prime ideal of R. Moreover, if Nil(R) is a divided, then for each nonzero nilpotent
m, R/Ann(m) is such that Nil(R/Ann(m)) = Z(R/Ann(m)) is a divided prime
of R/Ann(m) and R/Ann(m) is a McCoy ring.

Proof. The set of zero divisors of a ring is always a union of prime ideals. Thus
if Z(R) = Nil(R), Nil(R) must be a prime ideal. Assume that it is divided and
let m be a nonzero nilpotent element of R and let R = R/Ann(m). For each
r ∈ R, let r denote the image of r in R. Note that if n is a nilpotent element of R,
n is nilpotent in R. Since Nil(R) = Z(R) is a prime ideal of R, Ann(m) ⊆ Nil(R)
and we have that Nil(R) = Nil(R) is a prime ideal of R.

Let r ∈ R be a regular element and let s ∈ R be such that r s = 0. Then
rsm = 0. Since r is regular, sm = 0. Thus s = 0 and it follows that Z(R) =
Nil(R), the nilradical of R. For a nilpotent element n ∈ Nil(R), n/r ∈ Nil(R)
since Nil(R) is a divided prime. Thus (n/r) = n/r is in R. It follows that
Nil(R) = Nil(R)/Ann(m) is a divided prime of R. £

The ring R constructed in Example 5.4 is in the setH but with Nil(R) 6= Z(R).
For each nonzero nilpotent m of this ring, R/Ann(m) is a McCoy ring. However, it
is rare that R/Ann(m) is such that its nilradical is both a divided prime and equal
to Z(R/Ann(m)). It is possible to have Nil(Ann(m)) equal to Z(R/Ann(m))
but not be divided, and it is possible to have Nil(R/Ann(m)) neither divided nor
equal to Z(R/Ann(m)) (see the above mentioned Example 5.4).

Theorem 4.2. Let R be an integrally closed ring for which Nil(R) = Z(R).
Then Nil(R) is a divided prime of R, R/Nil(R) is an integrally closed domain
and R/Ann(m) is integrally closed for each nonzero nilpotent m.

Proof. Since R is integrally closed and Nil(R) = Z(R), each nonnil element
of R is regular. Moreover, for r ∈ R\Nil(R) and m ∈ Nil(R), m/r must be
in R. Hence Nil(R) is a divided prime of R. We also have that Nil(R) is
the maximal ideal of T (R). Thus T (R/Nil(R)) = T (R)/Nil(R) and since R is
integrally closed in T (R) and Nil(R) is a common prime ideal of R and T (R),
R/Nil(R) is an integrally closed domain. Let m be a nonzero nilpotent of R and
let R = R/Ann(m). By the previous theorem, Z(R) = Nil(R) = Nil(R) is a
divided prime of R. Moreover, Ann(m) is a common ideal of R and T (R), and
T (R) = T (R)/Ann(m). It follows that R is integrally closed in T (R). £
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In our next two theorems and the corresponding corollaries, we assume that
Nil(R) is not trivial. Borrowing notation from [25], we let NT denote the nil-
radical of T (R[x]). Recall that a ring R is said to be a Prüfer ring if each finitely
generated regular ideal is invertible [22].

Theorem 4.3. Let R be an integrally closed ring for which Nil(R) = Z(R) 6= {0}.
Then the following are equivalent.

(1) R(x) is integrally closed.
(2) R(x) contains NT .
(3) R/Nil(R) is a Prüfer domain.
(4) For each maximal ideal M , RM is a φ-chained ring.
(5) R is a Prüfer ring.

Proof. Since R is integrally closed and Nil(R) = Z(R), Nil(R) is divided and
each ideal that is not contained in Nil(R) is regular and contains Nil(R). More-
over, R is a McCoy ring.

If R(x) is integrally closed, then it must contain the nilradical of T (R[x]). Thus
(1) implies (2).

If R is also a Prüfer ring, then R(x) is integrally closed [22, Theorem 16.8] and
we have that (5) implies (1).

Another simple implication is that (4) implies (5). If I is a finitely generated
regular ideal of R, then the same can be said for each IRM . If RM is φ-chained,
then IRM is principal. From this it follows that each finitely generated regular
ideal of R is invertible. Thus R is a Prüfer ring.

By Theorems 4.1 and 4.2, we have that R/Ann(m) is an integrally closed Mc-
Coy ring for each nonzero nilpotent m and that R/Nil(R) is an integrally closed
domain. We also have that Nil(R) contains Ann(m) and that Nil(R/Ann(m)) =
Nil(R)/Ann(m) = Z(R/Ann(m)) is a divided prime of R/Ann(m). Moreover,
the following are equivalent for an ideal I that is not contained in Nil(R), (i)
I is finitely generated, (ii) I/Nil(R) is finitely generated and (iii) I/Ann(m) is
finitely generated. All three of the ideals I, I/Nil(R) and I/Ann(m) are regular.

To see that (2) implies (3), assume R(x) contains NT and let I be an ideal
whose image in R/Nil(R) is a nonzero finitely generated ideal. In addition, let
m be a nonzero nilpotent. By the above, both I and I/Ann(m) are finitely
generated regular ideals. Since R/Ann(m) is an integrally closed McCoy ring,
I/Ann(m) must be an invertible ideal of R/Ann(m) [25, Theorem 8]. It fol-
lows that R/Ann(m) is a Prüfer ring whose nilradical is a divided prime. Thus
R/Nil(R) is a Prüfer domain [2, Theorem 2.6].
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To complete the proof we show that (3) implies (4). To this end, assume
R/Nil(R) is a Prüfer domain and let M be a maximal ideal of R. Local-
izing R/Nil(R) at a maximal M/Nil(R) will yield a valuation domain. As
(R/Nil(R))M/Nil(R) is naturally isomorphic to RM/Nil(RM ), the result follows
from [2, Theorem 2.7] (see Lemma 3.7 above). £

Corollary 4.4. Let R be a ring for which Nil(R) = Z(R) 6= (0). If R(x) contains
NT , then Nil(R) is a divided prime of R and the integral closure of R is a Prüfer
ring.

Proof. Let R′ be the integral closure of R. Since NT contains Nil(T (R)) and
R(x) ∩ T (R) = R, Nil(R) = Nil(T (R)). Since Nil(R) = Z(R), we have that
Nil(R) is a divided prime of R. Obviously, we must have Nil(R) = Nil(R′) =
Z(R′) and NT ⊆ R′(x). Thus R′ satisfies the five equivalent statements of the
previous theorem. In particular, R′ must be a Prüfer ring. £

A ring R is said to be a φ-Dedekind ring if Nil(R) is a divided prime of R

and for each nonnil ideal I of R, φ(I) is an invertible ideal of φ(R) [3]. It is
known that if Nil(R) is a divided prime, then R is a φ-Dedekind ring if and only
if R/Nil(R) is a Dedekind domain [3, Theorem 2.5]. Our next result provides
several other characterizations for the special case that Nil(R) = Z(R) 6= {0}.
Later we will construct an example of an integrally closed φ-Noetherian ring R

with {0} 6= Nil(R) 6= Z(R) such that R(x) is φ-Noetherian and R/Nil(R) is an
integrally closed Noetherian domain that is not Dedekind (Example 5.4). We also
give an example of an integrally closed φ-Mori ring R with {0} 6= Nil(R) 6= Z(R)
such that R(x) is an integrally closed φ-Mori ring even though R/Nil(R) is not
a Prüfer domain and neither R nor R(x) is φ-Noetherian (Example 5.7).

Theorem 4.5. Let R be an integrally closed ring for which Nil(R) = Z(R) 6= {0}.
Then the following are equivalent.

(1) R is φ-Mori and NT is an ideal of R(x).
(2) R(x) is φ-Mori.
(3) R(x) is φ-Noetherian.
(4) R is φ-Noetherian and NT is an ideal of R(x).
(5) Each regular ideal of R is invertible.
(6) R/Nil(R) is a Dedekind domain.
(7) R is a φ-Dedekind ring.

Proof. Clearly, (3) implies (2), and (4) implies (1). By Theorem 4.3, we also
have that if any one of (1) through (4) holds, then R is a Prüfer ring. The
equivalence of (6) and (7) is by Theorem 2.5 of [3].
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[(2)⇒(1)] Assume R(x) is φ-Mori. Then NT is a divided prime of R(x). Since
Nil(R) = Z(R), NT = Z(R(x)). Let I be a regular ideal of R. Then IvR(x) =
(IR(x))v [29, Lemma 5.1]. Moreover, IvR(x) ∩ R = Iv. Hence R is a Mori ring.
As above, R(x)/NT is naturally isomorphic to (R/Nil(R))(x). Thus we also have
that R/Nil(R) is a Mori domain. Therefore R is a φ-Mori ring.

[(1)⇒(6)] Assume R is a φ-Mori ring and NT is an ideal of R(x). Then
R/Nil(R) is both a Mori domain and a Prüfer domain. The only such integral
domains are the Dedekind domains [31, Corollaire 2].

[(6)⇒(5)] Assume R/Nil(R) is a Dedekind domain and let I be a regular ideal
of R. Then R is a Prüfer ring by Theorem 4.3. Since R is integrally closed and
Nil(R) = Z(R), I (properly) contains Nil(R). Moreover, as I/Nil(R) is finitely
generated, I must be finitely generated. Thus each regular ideal of R is invertible.

[(5)⇒(3)] Assume each regular ideal of R is invertible. Since R is a McCoy ring,
both R and R(x) are Prüfer rings [22, Corollary 18.11]. Thus each regular ideal
of R(x) is extended from an ideal of R [1, Theorem 3.3]. As an invertible ideal
is always finitely generated, each regular ideal of R(x) is invertible and finitely
generated. Since Nil(R) = Z(R) is a divided prime of R, NT = Nil(R(x)) =
Z(R(x)) = Nil(R)R(x) is a divided prime of R(x). Moreover, each ideal that
is not contained in Nil(R(x)) contains Nil(R(x)) and is regular. It follows that
R(x) is φ-Noetherian.

[(3)⇒(4)] Assume R(x) is φ-Noetherian. Then NT is a divided prime of R(x).
Since Nil(R) = Z(R), NT = Z(R(x)). Let I be a regular ideal of R. Then IR(x)
is a regular ideal of R(x). Thus IR(x) is finitely generated. As I generates IR(x),
I must be finitely generated as an ideal of R. Moreover, R(x)/NT is naturally
isomorphic to (R/Nil(R))(x). So we also have that R/Nil(R) is a Noetherian
domain. Hence R is φ-Noetherian. £

Corollary 4.6. Let R be a ring for which Nil(R) = Z(R) 6= {0}. If R(x) is
φ-Noetherian, then the integral closure of R is a φ-Dedekind ring.

Proof. Assume R(x) is φ-Noetherian and let R′ be the integral closure of R.
Then Nil(R(x)) = NT is a divided prime of both R(x) and R′(x). Moreover,
since R(x) ∩ T (R) = R, Nil(R) = Nil(R′) is a common divided prime of R and
R′. By Corollary 4.4, R′ is a Prüfer ring and R′/Nil(R) is a Prüfer domain.
Moreover, the proof that (3) implies (4) above is valid no matter whether R is
integrally closed or not. Hence R/Nil(R) is a Noetherian domain [10].

Since Nil(R) = Z(R), we also have that T (R)/Nil(R) is the quotient field of
R/Nil(R). From this we see that R′/Nil(R) is the integral closure of R/Nil(R).
Thus R/Nil(R) is a Noetherian domain whose integral closure is a Prüfer domain.
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This means the integral closure is both a Prüfer domain and a Krull domain; i.e.,
it is a Dedekind domain. £

We can make a comparable statement for φ-Mori rings. However, the best con-
clusion is only that the integral closure of R/Nil(R) is a Prüfer domain. It seems
likely that in this case R/Nil(R) (and therefore R) must be one-dimensional.

Example 4.7. Let D be a one-dimensional quasilocal Mori domain whose corre-
sponding polynomial ring D[x] is also Mori and whose integral closure is a nondis-
crete one-dimensional valuation domain. Let R = D(+)L be the ring formed by
idealization of the quotient field of D. Then the following hold.

(a) Nil(R) = Z(R) is a divided prime of R.
(b) R is a φ-Mori ring.
(c) R(x) is a φ-Mori ring.
(d) The integral closure of R/Nil(R) is a Püfer domain that is not a Dedekind

domain.

Proof. As in Example 2.11 above, we have that Nil(R) = Z(R) is a divided
prime of R and therefore R is a φ-Mori ring. Since D[x] is a Mori domain, so
is D(x). As D(x) is naturally isomorphic to R(x)/Nil(R(x)), we at least have
that R(x)/Nil(R(x)) is a Mori domain. To complete the proof of statement (c)
we must show that Nil(R(x)) is a divided prime of R(x). Since the integral
closure of D is a Prüfer domain, L(x) = L[x]U(D) [26, Corollary 10]. It follows
that (0)(+)L(x) is the nilradical of R(x). Thus Nil(R(x)) is a divided prime of
R(x). As the integral closure of D is a nondiscrete valuation domain, it is not
Noetherian. £

Mori domains which satisfy all of the requirements in the previous example
exist. In particular, W. Heinzer and D. Lantz describe a general scheme for
constructing a one-dimensional quasilocal N-ring D whose integral closure is a
nondiscrete rank one valuation domain [19, Example 2.2] (see also [27, Example
9]). A domain that is an N-ring is also a Mori domain [17, Corollary 2.8]. The
domain D is a certain subring of a generalized power series ring of the form
K[[S]] where S consists of those positive rational numbers of the form r + s/2r

where 1 ≤ r and s = 0, 1, 2, . . . , 2r − 1 and K is an irredundant union of fields
K0 ⊂ K1 ⊂ K2 · · · where Ki is a finite algebraic extension of Ki−1 for each i ≥ 1.
By starting with an uncountable field K0 whose algebraic closure is not a finite
extension, we will have a Mori domain that contains an uncountable field. For
such a domain it is known that the corresponding polynomial ring is Mori [35,
Theorem 3.15] (see also [13]).
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Following the nomenclature above, a ring R ∈ H is said to be φ-integrally
closed if φ(R) is integrally closed [3]. It is always the case that if Nil(R) is
divided prime of R, then Nil(φ(R)) = Z(φ(R)) is a divided prime of φ(R). Thus
we may put together several of the results above to obtain the following corollary.

Corollary 4.8. Let R ∈ H. If R is φ-integrally closed and φ(R) is not an integral
domain, then the following are equivalent.

1 R is φ-Dedekind.
2 φ(R)(x) is φ-Noetherian.
3 φ(R)(x) is φ-Mori.
4 φ(R) is φ-Mori and Nil(T (φ(R)[x])) is an ideal of φ(R)(x).
5 φ(R)/Nil(φ(R)) is a Dedekind domain.
6 R/Nil(R) is a Dedekind domain.

Theorem 4.9. Let R ∈ H. If R(x) is a φ-ring and φ(R) is not an integral
domain, then the integral closure of φ(R) is a Prüfer ring.

Proof. Assume R(x) is a φ-ring and φ(R) is not an integral domain. Since φ(R)
is a φ-ring with Nil(φ(R)) = Z(φ(R)) 6= (0), it suffices to show that the nilradical
of φ(R)(x) is divided (Corollary 4.4). For each f(x) =

∑

fix
i ∈ T (R)[x], let

̂φ(f(x)) =
∑

φ(fi)(x) ∈ RNil(R)[x]. Then for each nonzero nilpotent polynomial
m(x) ∈ φ(R)[x] and each nonnil polynomial r(x) ∈ φ(R)[x], there is a pair of
polynomials n(x) ∈ Nil(R)[x] and s(x) ∈ R[x]\Nil(R)[x] such that m(x) =
̂φ(n(x)) and r(x) = ̂φ(s(x)). Since R(x) is a φ-ring, there is a nilpotent polynomial
k(x) and a polynomial u(x) with unit content such that u(x)n(x) = s(x)k(x). It
follows that v(x)m(x) = r(x)j(x) with v(x) = ̂φ(u(x)) having unit content in
φ(R) and j(x) = ̂φ(k(x)) nilpotent. Since v(x) is a unit in φ(R)(x), m(x) ∈
r(x)φ(R)(x). Thus Nil(φ(R)(x)) is divided and, by Corollary 4.4, the integral
closure of φ(R) is a Prüfer ring. £

5. Examples

All but one of the examples in this section are constructed using idealization of
a particular type of divisible module, the construction of the other is only slightly
different. Given an integral domain D and a nonempty set of nonzero prime ideals
P, let B =

∑

F/DPα where F is the quotient field of D and the Pαs range over
the set P. It is easy to prove that B is a divisible D-module; i.e., rB = B for
each nonzero r ∈ D. From this it will follow that the idealized ring R = D(+)B
is in the set H. We collect several useful facts about rings formed in this manner.
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Theorem 5.1. Let D be an integral domain with quotient field F and let P =
{Pα} be a nonempty set of nonzero prime ideals of D. For each Pα ∈ P, let
Bα = F/DPα

. Finally let R = D(+)B where B =
∑

Bα. Then the following
hold.

(a) Z(R) = C(+)B where C = ∪Pα.
(b) T (R) can be identified with the ring DS(+)B where S = D\∪Pα.
(c) For each nonzero r ∈ D and each b, c ∈ B, there is an element d ∈ B

such that (r, b)(0, d) = (0, c). Thus (0)(+)B is a divided prime of R.
(d) If I is an ideal of R that is not contained in B, then it contains B and

must be of the form AR = A(+)B for some nonzero ideal of A of D.
(e) A finitely generated nonnil ideal AR = A(+)B has a nonzero annihilator

if and only if there is a prime Pα ∈ P containing A such that (DPα :
ADPα

) properly contains DPα
.

(f) If D is a Noetherian domain, then R is φ-Noetherian.
(g) If D is a Mori domain, then R is a Mori ring and a φ-Mori ring.
(h) R(x) may be identified with the ring D(x)(+)B(x) where B(x)=B[x]U(D).
(i) If D is an integrally closed domain, then R(x) is integrally closed if and

only if R(x) contains NT .

In the proof below and throughout the examples that follow we identify B with
(0)(+)B. For the proof below, we let Dα denote the ring DPα . Also for b ∈ B,
we let bα denote the component of b in Bα.

Theorem 25.1 of [22] gives many of the elementary properties of rings formed
by idealization. For example, an element (u, c) is a unit of A(+)C if and only if
u is a unit of A, an element (r, a) is a zero divisor if and only if r ∈ Z(A)∪ Z(C)
where Z(C) = {r ∈ A | rb = 0 for some nonzero b ∈ C}, and T (A(+)C) can be
identified with the ring AS(+)CS where S = A\(Z(A)∪ Z(C)). The prime ideals
of A(+)C are the ideals of form P (+)C where P is a prime ideal of A. These
results originally appeared in [20, Section 4].

Proof. Since D is an integral domain and R is formed by the idealization of B

over D, the zero divisors of R are the elements of the form (r, b) where rc = 0
for some nonzero c ∈ B. Moreover, the units of R are the elements of the form
(u, b) where u is a unit of D. By the construction of B, rc = 0 for some r ∈ D

and c ∈ B, if and only if r is not a unit in some Dα. Hence (r, b) ∈ Z(R) if
and only if r ∈ C = ∪Pα. It follows that (s, c) ∈ R is not a zero divisor if and
only if s ∈ S = D\ ∪ Pα. For such an element s, s is a unit in each Dα. Thus
s−1B = B and therefore T (R) can be identified with the ring DS(+)B. Since D
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is an integral domain and the prime ideals of R are the ideals of the form P (+)B
where P is a prime of D, B is a prime ideal of R.

Let r ∈ D\{0} and b, c ∈ B. We will work component-wise on those α for
which cα is not 0. Fix such an α and let dα ∈ F\Dα be such that the image of
dα in Bα is cα. Consider the element r−1dα. Since r ∈ D and dα is not in Dα,
r−1dα is not in Dα. The image of this element in Bα is r−1cα. Let r−1c ∈ B be
defined component-wise by (r−1c)α = r−1cα when cα 6= 0 and (r−1c)β = 0 when
cβ = 0. A simple check shows that (r, b)(0, r−1c) = (0, c). Hence B is a divided
prime of R.

Since B is a divided prime of R, each ideal that contains a nonnilpotent element
properly contains B. Thus the ideals of R are of two forms, I = JR = J(+)B
where J is a nonzero ideal of D and (0)(+)E where E is a D-submodule of B. Let
AR = A(+)B be a finitely generated nonnil ideal of R. We first assume that AR

has a nonzero annihilator in R. Since D is an integral domain, the annihilator of
AR must be contained in B. If no Pα contains A, then ADα = Dα. In which case,
Ab 6= (0) for each nonzero b ∈ B. As we have assumed AR does have nonzero
annihilators, some Pα must contain A. Suppose Pα contains A and let cα ∈ Bα

be such that Acα = (0). If cα 6= 0, then there is an element dα ∈ F\Dα such that
dαA ⊆ Dα. Conversely if fα ∈ F\Dα is such that fαA ⊆ Dα, then A must be
contained in Pα and the element of B whose only nonzero component is the image
of fα ∈ Bα is a nonzero annihilator of AR. Thus AR has a nonzero annihilator if
and only if (Dα : ADα) 6= Dα for some α.

The regular divisorial ideals of R are all of the form JR = J(+)B where J is
a divisorial ideal of D that is not contained in ∪Pα. Thus if D is a Mori domain,
R will be a Mori ring. Since the nilradical of R is a divided prime, we also have
that R is φ-Mori when D is a Mori domain (Theorem 2.5), and R is φ-Noetherian
when D is Noetherian ([10, Theorem 2.2]).

For (h), first note that R[x] is simply the idealization of B[x] as a D[x]-module.
Thus T (R[x]) can be identified with D[x]S(+)B[x]S where S is the set of elements
of D[x] that are not zero divisors on B[x].

This same identification lets us identify R(x) with D(x)(+)B(x) where B(x) =
B[x]U(D).

Obviously, if R(x) is integrally closed, it must contain NT . Thus to finish the
proof of (i) we may assume D is integrally closed and R(x) contains NT . Since
D is an integrally closed domain, both D[x] and D(x) are integrally closed. In
particular, D(x) is integrally closed in D[x]S . Thus R(x) is integrally closed in
T (R[x]) [22, Corollary 25.7]. £
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In our first example of this section we use the technique outlined above to
construct a φ-Noetherian ring R where Nil(R) 6= (0) is properly contained in
Z(R), R = T (R) and R(x) is φ-Noetherian. Here, we start with a valuation
domain V . In Example 5.4, we start with a UFD that is not a Prüfer domain and
build a ring with similar properties.

Example 5.2. Let R = V (+)B where V = K[[y]] and B = K((y))/V . Then the
following statements hold.

(a) Z(R) = yK[[y]](+)B.
(b) R = T (R) and Nil(R) is a divided prime of R with R/Nil(R) isomorphic

to V .
(c) R is φ-Noetherian.
(d) Let A be a finitely generated ideal of R. If A 6= R, then Ann(A) 6= (0).

Thus R is a McCoy ring.
(e) Nil(R(x)) is a divided prime of R(x).
(f) R(x) is φ-Noetherian.

Proof. Since R is formed by idealization, each polynomial in R[x] has a unique
representation in the form (g(x), b(x)) with g(x) ∈ V [x] and b(x) ∈ B[x]. More-
over, R(x) = V (x)(+)B(x) where B(x) = B[x]U(V ).

Note that the first three statements are clear from the construction.
Let A = ((a1, b1), (a2, b2), . . . , (an, bn)) be a finitely generated ideal of R with

A 6= R. In any ring, a finitely generated ideal containing only nilpotents always
has a nonzero annihilator. Hence we may assume some ai is not 0. By Theorem
5.1, A = IR where I = (a1, a2, . . . , an)V is a proper ideal of V . Thus there
is a positive integer m such that (a1, . . . , an) = ymV . Consider the product
(ai, bi)(0, 1/y). Since ai/y ∈ V for each i, (ai, bi)(0, 1/y) = (0, 0). Thus A has a
nonzero annihilator.

To prove (e), let f(x) ∈ V [x] be a nonconstant polynomial whose content is not
equal to V . Since V is a DVR, f(x) = ynu(x) for some positive integer n and some
polynomial u(x) with unit content in V . Thus for each nonzero nilpotent (0, m)
and each nilpotent n(x) ∈ R(x), (f(x), n(x))(0, m/yn) = (0, m)/(u(x), 0) ∈ R(x).
Therefore Nil(R(x)) is a divided prime of R(x).

For (f), since R is a McCoy ring and R = T (R), R(x) = T (R[x]) [22, Theorem
16.4]. So R(x) is the only regular ideal of R(x) and by (e), Nil(R(x)) is a
divided prime of R(x). Moreover, R(x)/Nil(R(x)) is isomorphic to V (x) which
is Noetherian. Therefore R(x) is φ-Noetherian. £
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As mentioned above, a Mori ring is said to be nontrivial if it is properly con-
tained in its total quotient ring. Our next example is of a nontrivial Mori ring
that is in the set H but is not a φ-Mori ring.

Example 5.3. Let E be a Dedekind domain with a maximal ideal M such that
no power of M is principal (equivalently, M generates an infinite cyclic subgroup
of the class group) and let D = E +xF [x] where F is the quotient field of E. Let
P = {ND | N ∈ Max(E)\{M}} and let R = D(+)B. Then the following hold.

(a) If J is a regular ideal, then J = I(+)B = IR for some ideal I that contains
a polynomial in D whose constant term is a unit of E. Moreover, the ideal
I is principal and factors uniquely as P r1

1 P r2
2 · · ·P rn

n where the Pi are the
height one maximal ideals of D that contain I.

(b) R 6= T (R) since, for example, the element (1 + x, 0) is a regular element
of R that is not a unit.

(c) R is a nontrivial Mori ring but R is not φ-Mori.
(d) MR is a maximal φ-divisorial ideal of R, but RMR is not a Mori ring.

Proof. Since E is a Dedekind domain, D is a Prüfer domain and MD = M +
xF [x] is an invertible maximal ideal of D (see [14]). By Theorem 5.1, the nilradical
of R is divided and each regular ideal is of the form IR = I(+)B where I is an
ideal that is not contained in the union of the primes in P. It is clear that if g ∈ D

is such that its constant term is not a unit of E, then g ∈ ND for some ND ∈ P.
Hence if IR is regular it must contain a polynomial g(x) whose constant term
is a unit of E. Let P be a prime of D that contains I. Then P = fF [x] ∩ D

where f(x) ∈ E[x] has unit constant term. By checking locally, it is easy to see
that P = fD[x]. Moreover, only finitely many primes of F [x] contain g(x) so
the same is true for the primes of D. Thus I is contained in only finitely many
primes of D, and each of these is a height one principal maximal ideal of D.
Again, checking locally we see that I must factor uniquely as a finite product
P r1

1 P r2
2 · · ·P rm

m where the Pi are the primes of D that contain I.
The statement in (b) follows easily from (a). That R is a (nontrivial) Mori ring

also follows easily from the characterization of its regular ideals. On the other
hand R is not a φ-Mori ring since D is not a Mori domain.

In this case φ(R) = D and φ(MR) = M , an invertible maximal ideal of D.
Thus MR is φ-divisorial. Consider the localization RMR. Each maximal ideal of
E generates a maximal ideal of D that properly contains xF [x]. Since no power
of M is principal, each nonzero nonunit of E is contained in at least one member
of P. Thus each element of B is annihilated by an element in R\MR. Hence
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RMR = DM , a two-dimensional valuation domain with divisorial maximal ideal
MDM . Such a domain is never Mori. £

Our next example is one of two promised earlier to show that the statements
in Theorems 4.3 and 4.5 need not be equivalent when Nil(R) is neither the zero
ideal nor the entire set of zero divisors.

Example 5.4. Let D = K[y, z] with K a field and let P denote the set of height
one primes of D. For each Pα ∈ P, let Bα = K(y, z)/DPα . Let R = D(+)B
where B =

∑

Bα. Then the following hold.

(a) Z(R) = ∪Pα(+)B = (D\K)(+)B.
(b) R = T (R) and it is a φ-Noetherian ring.
(c) Nil(R) = (0)(+)B is a divided prime of R.
(d) NT ⊂ R(x).
(e) NT is a divided prime of R(x).
(f) R(x) is integrally closed.
(g) R(x) is a φ-Noetherian ring and a φ-Mori ring even though D is not a

Dedekind domain.
(h) For each nonzero nilpotent element m, Ann(m) = I(+)B where I is a

finite product of positive powers of height one primes of D and R/Ann(m)
is a McCoy ring. If I = P k

α , then Nil(R/Ann(m)) = Z(R/Ann(m)).
Otherwise, Nil(R/Ann(m)) is properly contained in Z(R/Ann(m)). The
only time Nil(R/Ann(m)) is divided is when I is prime.

As in the proof of Theorem 5.1, we let Dα denote the ring DPα for each Pα ∈ P.
Before starting the proof, some definitions are in order. An ideal I is said to be
semiregular if it contains a finitely generated ideal J such that Ann(J) = (0).
A ring V is said to be a discrete rank one valuation ring if there is a surjective
map ψ : T (V ) → Z ∪ {∞} (with n < ∞ = ∞ + n = ∞ + ∞ for all n) such
that V = {t ∈ T (V ) | ψ(t) ≥ 0} and for all s, t ∈ T (V ), ψ(st) = ψ(s) + ψ(t) and
ψ(s + t) ≥ min{ψ(s), ψ(t)}. Finally, a ring R is said to be a Krull ring if there
is a family of discrete rank one valuation rings {Vα | R ⊂ Vα ⊂ T (R)} (empty in
the case R = T (R)) such that R = ∩Vα with each regular nonunit of R a unit
in all but finitely many Vα. By allowing R = T (R) to be a (trivial) Krull ring,
we are following the lead of J. Huckaba in [22] rather than the original definition
due to R. Kennedy where R is assumed to be properly contained in T (R) [24].

Proof. Since each nonunit of D is contained in at least one Pα, f(+)b is a zero
divisor for each b ∈ B and f ∈ D\K. Thus R = T (R). Also Nil(R) is a divided
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prime. The ideal (y, z)(+)B contains only zero divisors but it has no nonzero
annihilator. Thus R is not a McCoy ring.

Next we show that R(x) contains NT , the nilradical of T (R[x]). To this end,
let I be a finitely generated semiregular ideal of R and let b be a nonzero element
of B. Since Nil(R) is divided, I = AR = A(+)B for some nonzero ideal A of D

with A contained in no height one prime of D. For each α, let bα denote the Bα

component of b. Since B =
∑

Bα, there are only finitely many such α. Thus it
suffices to prove the statement for those b with a single nonzero component, say
bβ . Since Pβ is a height one prime of a UFD, Dβ is a discrete rank one valuation
domain and Pβ = pβD for some pβ ∈ D. Thus we may further assume bβ has
the form 1/pm

β for some positive integer m. In this case, the annihilator of b is
the ideal pm

β D(+)B. Thus R/Ann(b) is naturally isomorphic to D/pm
β D, a one-

dimensional Noetherian ring with prime nilradical Pβ/pm
β D. Now the integral

closure of each Noetherian ring is a Krull ring [22, Theorem 10.1]. Moreover,
as with one-dimensional Krull domains (i.e., Dedekind domains), each regular
finitely generated ideal of a one-dimensional Krull ring is invertible. To prove
this simply use finite character and the fact that the regular localization at a
height one regular prime yields a discrete rank one valuation ring [22, Theorem
8.10]. Thus A/pm

β D generates an invertible ideal in the integral closure of D/pm
β .

Since this happens for each finitely generated semiregular ideal of R and each
nonzero nilpotent element, NT ⊂ R(x) [25, Theorem 8] (see also [25, Theorem
6]).

Next we show that NT is actually a divided prime of R(x). There is nothing
to prove for the regular elements of R(x) since each divides each member of
NT . Thus we may assume (r(x), b(x)) is such that the content of r(x) is a
nonzero ideal of D that is contained in some Pα. Since D = K[y, z], we may
write r(x) = pm1

α1
pm2

α2
· · · pmn

αn
s(x) where each mi ≥ 1 and the content of s(x) is

contained in no height one prime of D. Since such an s(x) divides each member
of NT , we may assume s(x) = 1. To complete the proof we simply use the fact
that each member of Nil(R) is divisible by pm1

α1
pm2

α2
· · · pmn

αn
. Therefore NT is a

divided prime of R(x).
Since D(x) is an integrally closed Noetherian domain and NT is a divided prime

of R(x), R(x) is integrally closed ([22, Corollary 25.7], or Theorem 5.1 above),
each regular ideal of R(x) is finitely generated and R(x) is both φ-Noetherian and
φ-Mori.

Let m be a nonzero nilpotent element and let mα1 , mα2 , . . . , mαn be the nonzero
components of m. For each αi there is a positive integer ki and a unit vi ∈ Dαi

such that mαi = (vi/pki
αi

) + Dαi where, as above, each pαi generates the prime
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ideal Pαi . It follows that Ann(m) = I(+)B where I = P k1
α1

P k2
α1
· · ·P kn

αn
. Thus

R/Ann(m) is isomorphic to the Noetherian ring D/I. It is well-known that in
a Noetherian ring, all ideals containing only zero divisors have nonzero annihila-
tors. Thus R/Ann(m) is a McCoy ring. For the other parts of (h), we need only
consider the Noetherian ring D/I.

The nilradical of D/I is simply
√

I/I where
√

I = pα1pα2 · · · pαnD while
Z(D/I) is the union (Pα1/I)∪(Pα2/I)∪· · ·∪(Pαn/I). It follows that Nil(D/I) =
Z(D/I) if and only if n = 1. Similarly, Nil(D/I) is prime if and only if n = 1.
Moreover, Nil(D/I) is a divided prime if and only if I = Pα1 is prime. £

Next we give an example where R is an integrally closed φ-Noetherian ring,
but R(x) is not.

Example 5.5. Let D = K[w, y, z] with w, y and z indeterminates over a field
K and let P denote the set of height one primes of D. For each Pα ∈ P, let Bα

denote K(w, y, z)/DPα . Let R = D(+)B where B =
∑

Bα. Then the following
hold.

(a) Z(R) = ∪Pα(+)B = (D\K)(+)B.
(b) R = T (R).
(c) Nil(R) = (0)(+)B is a divided prime of R.
(d) R(x) is not a Mori ring nor does it contain NT . Thus R(x) is not φ-

Noetherian.

Proof. The proof for each of the first three statements follows the same line
of reasoning as that used to prove the corresponding statements in the previous
example. Consider the height one prime Pβ = wD and let b ∈ B be such that
bβ = 1/w and bα = 0 for all other α. To show that R(x) does not contain NT

it suffices to show that (0, b)/(yx + z, 0) is not in R(x). Now the annihilator of
(0, b) is the ideal wD(+)B. Thus R/Ann(0, b) is naturally isomorphic to D/wD =
K[y, z], a two-dimensional Krull domain. Obviously, (y, z)K[y, z] is not invertible.
Therefore, (0, b)/(yx + z, 0) is not in NT [25, Theorem 8].

For each positive integer n, let In = ((yx + z, 0), (0, b), (0, b2), . . . , (0, bn)) and
consider the ascending chain of ideals I1 ⊂ I2 ⊂ I3 ⊂ · · · . Since no height
one prime of D contains both y and z but (y, z)D 6= D, (yx + z, 0) is a regular
nonunit of R(x). Obviously, any element of the form (f(x)/yx+z, 0) will multiply
(yx+ z, 0) into R(x). Next, note that for n ≤ k, wkbn = 0 but wn−1bn = b. Thus
for j ≤ n−1, (wn−1/yx+z, 0)(0, bj) = (0, 0) ∈ R(x) but (wn−1/yx+z, 0)(0, bn) =
(0, b)/(yx+z, 0) is not in R(x). Hence (wn−1/yx+z, 0) is in I−1

n−1 but not in I−1
n .
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It follows that (I1)v ⊂ (I2)v ⊂ (I3)v ⊂ · · · is a strictly increasing chain of regular
divisorial ideals of R(x). Thus R(x) is not a Mori ring. £

The construction in our next example is a variation on the general form we
have been dealing with. The difference is that instead of taking B = F/DQ for
some prime Q, we take B = F/QDQ. Except for the characterization of the ideals
with nonzero annihilators, the basic properties established in Theorem 5.1 hold
for a ring of the form R = D(+)(F/QDQ). In this case, QR will have a nonzero
annihilator no matter what (DQ : QDQ) is. As in the previous examples, we start
with a polynomial ring over a field. In this case, the domain D is an intersection
of two incomparable localizations of K[y, z].

Example 5.6. Let D = K[y, z](y+1)∩K[y, z](y,z) and let P = (y+1)K[y, z](y+1)∩
D and M = (y, z)K[y, z](y,z) ∩ D. The following statements hold for the ring
R = D(+)B where B = K(y, z)/MDM .

(a) Z(R) = M(+)B and T (R) = DM (+)B.
(b) B is a divisible D-module so R is φ-Noetherian.
(c) MR = M(+)B has a nonzero annihilator, so R is a McCoy ring.
(d) Each regular ideal of R is of the form PnR = Pn(+)B, a principal ideal.

Thus R is a Prüfer ring.
(e) R(x) contains the nilradical of T (R[x]), but Nil(R(x)) is not divided.

Proof. For each d ∈ K(y, z), let d denote its image in B. Then for each d ∈
D\M , Md = 0 in B. Hence M(+)B has a nonzero annihilator. On the other
hand, y + 1 annihilates no nonzero element of B. Since P and M are the only
maximal ideals of D and P has height one, Z(R) = M(+)B. Also, P (+)B is
regular. Let q ∈ K(y, z)\MDM . Then (q/r) 6= 0 in B for each nonzero r ∈ D.
Since r(q/r) = q, B is a divisible D-module. Thus Nil(R) is a divided prime
and R is a φ-ring by Theorem 5.1. Also P (+)B = PR is a principal ideal since
P = (y + 1)D. Since D is Noetherian, R is φ-Noetherian.

Let A be a proper nonnil ideal of R. Since Nil(R) is divided, A = JR = J(+B)
for some nonzero ideal J of D. If J ⊂ M , then A has a nonzero annihilator. On
the other hand if J is not contained in M , then it must be P -primary and A is
regular. Since P and M are the only maximal ideals of D and P is height one and
principal, each P -primary ideal is principal and a power of P . It follows that each
regular ideal of R is invertible. Thus R is both a McCoy ring and a Prüfer ring.
This combination is enough to guarantee that R(x) is Prüfer so R(x) contains the
nilradical of T (R[x]) (see [22, Corollary 18.11]).
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It remains to show that Nil(R(x)) is not divided. For this we show that 1
cannot be divided by yx + z in R(x). Assume otherwise. Then by Theorem 5.1
there must be a polynomial u(x) ∈ D[x] with unit content in D and a polynomial
f(x) ∈ K(y, z)[x] such that u(x)1 = (yx + z)f(x). Write u(x) = u0 + u1 + · · ·+
umxm and f = f0 + f1x + · · · + fnxn with the leading coefficient fn not zero;
i.e., fn /∈ MDM . Without loss of generality we may assume some coefficient
of u(x) is 1. Thus for some i, ui = 1 = yf i−1 + zf i. Since each uj is in D,
zf0, yfn ∈ DM/MDM and inductively we have zk+1fk, yk+1fn−k ∈ DM/MDM .
It follows that fj ∈ (DM : Mn+1DM ) for each j. But since DM is a two-
dimensional integrally closed Noetherian domain, (DM : Mn+1DM ) = DM . This
implies (yx+z)f(x) = 0 a contradiction. Therefore Nil(R(x)) is not divided. £

For our last example we show how to construct an integrally closed φ-Mori
ring R with R(x) φ-Mori and R/Nil(R) an integrally closed Mori domain that is
neither Noetherian nor Prüfer.

Example 5.7. Let X = {xα} be a set of algebraically independent indeterminates
over a field K and for some fixed xβ , let D = K[X ]M ′ ∩ K[X ](xβ+1) where M ′

is the maximal ideal of K[X ] generated by the set X . Finally let R = D(+)B
where B = K(X )/DP for P = (xβ + 1)D. Then the following hold.

(a) D is a Krull domain with two maximal ideals, M = M ′D and P =
K[X ]M ′ ∩ (xβ + 1)K[X ](xβ+1).

(b) D is Noetherian if and only if X is finite. Moreover, D is Dedekind if and
only if X is a singleton set.

(c) Z(R) = P (+)B and Nil(R) = (0)(+)B is a divided prime of R.
(d) R 6= T (R) = DP (+)B.
(e) NT ⊆ R(x) is a divided prime of R(x).
(f) R(x) is an integrally closed φ-Mori ring, but it is a φ-Noetherian ring if

and only if X is a finite set.

Proof. Since M is a maximal ideal, each element of P\M is comaximal with
M . Also, for each element f ∈ M\P and each positive integer m, f + (xβ + 1)m

is in neither M nor P . In particular f and P are comaximal. It follows that D

is a Krull domain with exactly two maximal ideals with P a principal maximal
ideal (necessarily, of height one). As no element of X is in P , the elements of
the form (xα, 0) ∈ M\P are regular elements of R that are not units of R. Thus
R 6= T (R).
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It is easy to see that Z(R) = P (+)B and that Nil(R) = (0)(+)B is a divided
prime of R. Note that P (+)B annihilates the nonzero nilpotent (0, 1/(xβ + 1).
Thus there are no semiregular ideals that are not regular.

Let (f(x), c(x)) be a nonnilpotent element of R[x] and let (0, b) be a nonzero
nilpotent element of R. By the construction of D, there is a nonnegative integer
m such that f(x) = (xβ + 1)mg(x) where g(x) ∈ D[x]\P [x]. Let k = deg(g(x)).
Then for each positive integer q, g(x) + (xβ + 1)qxk+1 is a polynomial with unit
content in D. Since DP is a discrete rank one valuation domain and b is not zero,
there is a nonpositive integer n such that b = u(xβ + 1)n with u a unit of DP .
Set d = u(xβ + 1)n−m ∈ B. Then f(x)d = g(x)b = (g(x) + (xβ + 1)−n+1xk+1)b
since (xβ + 1)n+1b = 0. Since v(x) = g(x) + (xβ + 1)−n+1xk+1 has unit content
in D, (0, d)(v(x), 0) is in R(x) and we have (0, b) = (f(x), c(x))(0, d)/(v(x), 0).
It follows that NT is a divided prime of R(x). Since D is a Krull domain, both
it and D(x) are integrally closed Mori domains. Thus by Theorem 2.5 and 5.1,
R(x) is an integrally closed φ-Mori ring.

Since D is Noetherian if and only if X is finite, we have that R and R(x)
are φ-Noetherian if and only if X is finite ([10, Theorem 2.2], or Theorem 5.1
above). £
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