Hindawi Publishing Corporation
Journal of Function Spaces

Volume 2015, Article ID 245436, 5 pages
http://dx.doi.org/10.1155/2015/245436

Research Article

Hindawi

The Randomized American Option as a Classical Solution to

the Penalized Problem

Guillaume Leduc

American University of Sharjah, P.O. Box 26666, Sharjah, UAE

Correspondence should be addressed to Guillaume Leduc; gleduc@aus.edu

Received 13 August 2015; Accepted 7 October 2015

Academic Editor: Hugo Leiva

Copyright © 2015 Guillaume Leduc. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We connect the exercisability randomized American option to the penalty method by showing that the randomized American
option value u is the unique classical solution to the Cauchy problem corresponding to the canonical penalty problem for American
options. We also establish a uniform bound for Au, where A is the infinitesimal generator of a geometric Brownian motion.

1. Introduction

The Black-Scholes model is the lingua franca [1], the vehicular
language, of option pricing. Yet pricing American options in
the Black-Scholes remains the topic of a significant literature
because every known method requires significant numerical
calculations. For surveys on American option pricing we refer
to [2-4].

Among all methods, Howison et al. [5] argue that, with a
quadratic convergence [6], the so-called penalty method for
the value of the American option in the Black-Scholes model
is “the most efficient numerical approximation methods
presently available for American option valuation.” It was
used among others in [5-14]. The penalty method transforms
the free boundary problem associated with the price of the
American option into a partial differential equation (PDE) of
the form

%u(x,t) = Au(x,t) —ru(x,t) + S (h(x),u(x,1)),
u(x,0)=h(x),
where
AF () = rf! (0 + 550 " () @)
is the infinitesimal generator of a risk neutral geometric

Brownian motion & with volatility o and r is the risk-free rate
and where the penalty term, B(h(x), u(x,t)), is a term which

typically is zero when h(x) < u(x,t) allowing the option to
behave like a European option and which drastically pushes
the value of the option higher when h(x) > u(x,t). Indeed,
the “canonical” [5] penalty term is

Bh(x),u(x,t)) =max(h(x)—u(x,t),0)n (3)

for some large value of n > 0.

In studies [5, 6, 9-12, 14] where such canonical penalty
method was used for approximating the American option
value in the Black-Scholes model, the solution to the asso-
ciated PDE is seen as a viscosity solution or as a weak
solution that is the solution to a variational problem. It is well
known that, in general, viscosity and weak solutions do not
possess the regularity properties of classical solutions which
can actually be differentiated in the classical sense to solve
the PDE.

In this paper, we connect the randomized American
option [15] to the penalty method, showing that not only does
its value u solve the canonical penalty problem (1), but also it
is a classical solution to this Cauchy problem and, for a given
maturity, Au is bounded.

Many of the above cited papers using the canonical
penalty method as well as other papers using penalized
problems such as [16, 17] were actually concerned not by
estimating the value of American options but rather by
determining the exact speed of convergence of option values
under tree schemes approximations of the Black-Scholes
model, a difficult [18] and long lasting problem still unsolved



when the maturity is not allowed to float. Indeed, randomized
American options can be used as a tool to help determine
this exact speed of convergence. It is well known that payoft
smoothness drastically affects this rate of convergence. We
believe that our result may contribute to solving this problem.
Yet the submitted paper answers the very natural question of
whether or not the canonical penalty problem has a classical
solution.

A randomly exercisable American option is an option
which, prior to maturity, can be exercised only at some
exercisable times following each other independently after an
exponentially distributed waiting time of average 1/x. Under
the label “option with random intervention time,” randomly
exercisable American options were first introduced in Dupuis
and Wang [19] for American perpetuities, then in Guo and
Liu [20] for American lookback perpetuities, and then in
Leduc [15] for American options. Note that the exercisability
randomized American option considered in this paper differs
from Carr’s maturity randomized option [21] which can be
exercised any time up to some random maturity. In contrast,
the exercisability randomized option can be exercised only at
random times up to a fixed maturity.

We denote by vt@" h(x) the value of a randomly exercisable
American option with maturity t and payoft function h, when
the spot price &, of the underlying at time 0 is x. The value of

this randomized American option vt‘%“h(x) is given by

vh(x) S sup E,(e7Th(E,)), (4)

TeT"[0,t]

where 7(0, t] is the set of exercisable stopping times in [0, ¢]
and where E, is the expectation of £ given that {; = x. As

shown in [15], vt@"h(x) is the only solution to the following
evolution equation:

v/'"h(x) = e " &,h (x)
t _ (5)
+ J &, (max (h, vfgh)) (x) ne ™ ds,

0

where, for functions ¢ : R — R, the expression &,y(x)
denotes the discounted expectation

def _p¢

&y (x) = e"Ec (v (&) ©)

It is also shown in [15] that vt‘%”h(x) solves

t

VP (x) = Uph (%) + L U (G ) (ds, ()
where
Grh(y) € max(h(y) —v/h(3),0)n—v"ih (y)r (8)

and where U is the semigroup associated with &; that is, for
functionsy : R — R,

Uy () € E, (y(£)). ©)
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Recall that a Lipschitz function h : R, — R, is
absolutely continuous and almost surely differentiable. In a
slight abuse of notion, we replace the Lipschitz constant C of
hby |||, so that for every x, y € R,

()= k()] < || 1x - ¥]- (10)

Finally, we denote by I the identity function: I(z) = z for
every z.

Theorem 1. Ifh is a Lipschitz function and IIH']|, < 0o, then
vt‘%”h(x) is the unique classical solution to the Cauchy problem:

2u (x,t) = Au(x,t) — ru(x,t)

ot
+max (h(x) —u(x,t),0)n, (1)
u(x,0)=h(x).
Furthermore,
‘iv‘%"h @[ =|n].. (12)
ox ! h ©

and for every T, there exists a constant Q depending only on r,
o, T, ||hlly, and ||Ih'||OO such that, for every 0 < t < T and
0<x,

x%vfy”h (x)

SQ;

(13)
Q

aZ
xz—v;%"h(x) < —.

o0x?

The proof of our main result is divided into several
steps. In Section 2, we show that v;@”h(x) is continuous. In
Section 3, we prove that vt‘%"h(x) is Lipschitz with respect to x.
In Section 4, we show that v‘?"h(x) is twice continuously dif-
ferentiable with respect to x, and the bounds for I (a/dx)vt‘%"
and I*(0%/dx* )v;%” are established. In Section 5, we show that
v;@“h(x) is a classical solution to (11).

2. Continuity

Fix some value T > 0 and for every function f : [0,T] x
[0,00) — R set

def
If t.x)], S sup sup|f(tx)|. (14)
te[0,T]

x20

Furthermore, define

R def - R
v."h(x) = lim v7"h(ux),
e h) (su)— (£,1) S (1)

st (15)
voh(x) S lim o vYh(ux),
(s,;u) — (t,1)
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where (s,u) € [0,T] x [0, 00). One easily gets from (5) that
v (x) = v/ h (x)

< Jt e e E max (h (x&)s V?ﬁ:h (xﬁs)) nds

0

t | (16)

_ J e e " Emax (h(xE,),vth (xE,)) nds

0
T g
< (e ) - o] s

. (e}

yielding
[ h o) - v/ h )|
17)

< (1= | (x) - v ()

which is possible only if IIT/;%”h(x) - gflz“h(x)lloO = 0, showing
that vt@”h(x) is continuous.

3. Lipschitz Property

We show here that v;%"h(x) is Lipschitz with respect to x.

Lemma 2. Under the assumptions of Theorem 1, for every x >
0 and every € > 0,

|vt‘92”h (x+¢) - vt‘%”h (x)' < "h' "OO €. (18)

Proof. Note first that because h is Lipschitz, for every 0 < «, 8
there exists a quantity y, with [y| < ||h'||OO such that

h@=h(p)+y(a-p). (19)
Let 7, and 7., be, respectively, the optimal (exercisable)
stopping time for the randomized American option with

maturity t when &, = x and when &, = x + &.

Step 1. Note first that when &, = x + ¢, the stopping time 7, is
suboptimal and therefore

G0 = B (054 0, )
> E(eh((x+9)E,)
= E(e ™ h(xE, ) +ye T, )

- v‘t%”h (x)+E (ye_”"’q'rxs)

(20)

for some random variable y satisfying |y| < [h']l,. Hence,
since & is risk neutral,

W) = v ) 2 - W] E (e e)

, (21)
-,

Step 2. By definition,

vt@”h (x+e)=E (e‘”mh ((x +¢) Efw))
(22)
- E (e—rrx+eh (x€1x+£) + ye*T‘rx»fssETxﬂ)

for some random variable y satisfying |y| < [h']l - By
suboptimality of 7,,, when &, = x, we conclude that

v/ (x + &) = v/"h (x) < E(ye ek, )

<[l Bl e ) = e

(23)

4. C? Solution

Define
{(2) def exp (\/Eoz + <r - %02> s) , (24)

and for functions f : R — R and integers £ > 0 and s > 0,
let

(e [ @) @z @)

where ¢ is the probability density function of a standard
normal random variable. Note that if f is bounded then

[€” (D> 167 D] 2 W @9)

For any family of functions f, : R — R,0<t < T, set
def
I £l =" sup 1fillo- (27)
0<t<T

A consequence of Lemma 2 is that since /1 is bounded and
Lipschitz,
m,h (x) f max (h (x), v;%”h (x)) (28)

is also a bounded Lipschitz function. It follows from
Theorem A.1in Appendix that E, (m,(£,)) is infinitely differ-
entiable and that there exist constants «, such that

e L (m, (£)) = v 6V mh (x)

< Jao| Vit [, (), -

Because ||m Ao, < [|hll,, it follows from (5) that

xivt@“h (x)

Ox
= eintx% &,h(x)
t 0
+ J e ™ <xe_m—Ex max (m,, (Eu))> du  (30)
0 ax

O
=e txa%th(x)

t
+J e oy ufl(ﬁfymt_uh (x)ndu.
0



Using Lemma A.2 in Appendix we get

HI%ah =l )l < o], e

From this we obtain
“I%vj@"h < ||+ Ihloo VT || . (32)

For a fixed n, set
h( ) — max (h (2), v "h (z)) (33)

which is Lebesgue almost everywhere since m, /4 is Lipschitz.
Note that

R (L

) < 0. (34)

Again, from Theorem A.l in Appendix, there exist constants
B, and B, such that

xzefma—zE max (m,, (£,))
o2 X my, (Sy (35)

=BG (1m/h) (x) + v G (Im!h) (x).

The fact that [[Tm'h]|, < co implies that

2 0
x"e ™ —E, max(m

O0x?
< (1Bl + 18| vai ") Jrm!n]

This in turn yields

(36)

x* X — "h(x)

aZ

) 0
X @%,h (x)

‘ 2
+ J o (x2€_m%Ex max (mu (gu))) du (37)

0

nt 2 O
=™ 28 ~&,h(x)

1
+ Jt e_"”Zﬁe \/ﬁ_gﬁ’f) (Im:_u) (x) du.
0 £=0

As E(m,(x¢,)) is infinitely differentiable with respect to x >
0, function x? exp(—ru)(a2 /axZ)Ex max(m,(&,)) is continu-
ous in x > 0 and, with (36), dominated convergence gives
that x?(9? /axz)v;%”h(x) is continuous. From Theorem A.1 in
Appendix we obtain that, for some constant K,

\/—x %h(x)

sup sup
0<t<T 0<x

< o
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and hence

\/_x vt "h(x)

sup sup
0<t<T 0<x

R R T

+|B,| T |rm/n|_
5. Classical Solution
Recall G{'h from (8). Equation (7) can be rewritten as
t
v/"h (x) = U, (h) (x) +I U,_, (G'h) (x)du, (40
0

from which it follows that, for 0 < t,t + e < T,

Ry Ry
(US _I>vt‘%”h(x) _ Verh — v, "h (x)
€ € (41)
1 t+e
-7 j Ut+£—u (Gzh) du.
€ Ji
Letting & go to zero, we get
AV h(x) = Qv;%nh (x) - G'h(x), (42)

ot
where A is the infinitesimal generator of the GBM. In other

words,

2V;@"h (x) = Av""h (x)

ot
+ max (h (x) - vt@"h (x), 0) no (43)

- vtgz"h (x)r.

6. Conclusion

In this paper, we showed that the exercisability randomized
American option is a classical solution (and therefore the only
classical solution) to the canonical penalized problem. This
relationship can be extended to a broader class of models than
the Black-Scholes model. Indeed, the key property is to obtain
uniform bounds for x*(9/0x* )& h(x) in terms of powers of
1/+/s as in Theorem A.1 in Appendix.

Appendix

Theorem A.l. If h is a bounded Lipschitz function then for
every integer k > 0 and every s > 0 there exist real numbers
Q... 0, such that

h(x) = Zag “69n(x). (A)
Ifadditionally k > 1, there exist real numbers 3, . . ., Bi_y, such
that
o ak © (11!
— & h(x) = Z Bos G0 (1h) (x).  (A2)



Journal of Function Spaces

Proof. See [22, Th. 4.1] where the assumption that /4 is poly-
nomially bounded, continuous, and piecewise continuously
differentiable with polynomially bounded derivative can be
replaced by our assumptions on h without any change in
the argument, as a Lipschitz function is Lebesgue almost
everywhere differentiable and absolutely continuous allowing
the required integration by parts. O

Lemma A.2. Ifhisabounded Lipschitz function then for every
s>0

xi%sh (x) =& (In') (x).

i (A3)

Proof. As h is Lipschitz it is Lebesgue almost everywhere
differentiable and the proof of [22, Lemma 6.3] can be
followed without any change. O
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