• Login
    View Item 
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Electrical Engineering
    • View Item
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Electrical Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterization of transection spinal cord injuries by monitoring somatosensory evoked potentials and motor behavior

    Thumbnail
    View/ Open
    1-s2.0-S0361923019306732-main.pdf (7.391Mb)
    Date
    2020
    Author
    All, Angelo H.
    Al-Nashash, Hasan
    Mir, Hasan
    Luo, Shiyu
    liu, Xiaogang
    Advisor(s)
    Unknown advisor
    Type
    Peer-Reviewed
    Article
    Postprint
    Metadata
    Show full item record
    Abstract
    Standardization of spinal cord injury (SCI) models is crucial for reproducible injury in research settings and their objective assessments. Basso, Beattie and Bresnahan (BBB) scoring, the traditional behavioral evaluation method, is subjective and susceptible to human error. On the other hand, neuro-electrophysiological monitoring, such as somatosensory evoked potential (SSEP), is an objective assessment method that can be performed continuously for longitudinal studies. We implemented both SSEP and BBB assessments on transection SCI model. Five experimental groups are designed as follows: left hemi-transection at T8, right hemi-transection at T10, double hemi-transection at left T8 and right T10, complete transection at T8 and control group which receives only laminectomy with intact dura and no injury on spinal cord parenchyma. On days 4, 7, 14 and 21 post-injury, first BBB scores in awake and then SSEP signals in anesthetized rats were obtained. Our results show SSEP signals and BBB scores are both closely associated with transection model and injury progression. However, the two assessment modalities demonstrate different sensitivity in measuring injury progression when it comes to late-stage double hemi-transection, complete transection and hemi-transection injury. Furthermore, SSEP amplitudes are found to be distinct in different injury groups and the progress of their attenuation is increasingly rapid with more severe transection injuries. It is evident from our findings that SSEP and BBB methods provide distinctive and valuable information and could be complementary of each other. We propose incorporating both SSEP monitoring and conventional BBB scoring in SCI research to more effectively standardize injury progression.
    DSpace URI
    http://hdl.handle.net/11073/16636
    External URI
    https://doi.org/10.1016/j.brainresbull.2019.12.012
    Collections
    • Department of Electrical Engineering

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeriesThis CollectionBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeries

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Submission Policies | Terms of Use | Takedown Policy | Privacy Policy | About Us | Contact Us | Send Feedback

    Return to AUS
    Theme by 
    Atmire NV