• Login
    View Item 
    •   DSpace Home
    • College of Arts and Sciences (CAS)
    • Department of Mathematics and Statistics
    • View Item
    •   DSpace Home
    • College of Arts and Sciences (CAS)
    • Department of Mathematics and Statistics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Folding and unfolding in periodic difference equations

    Thumbnail
    View/ Open
    folding_and_unfolding.pdf (361.0Kb)
    Date
    2014
    Author
    Al-Sharawi, Ziyad
    Cánovas, Jose
    Linero, Antonio
    Advisor(s)
    Unknown advisor
    Type
    Peer-Reviewed
    Article
    Preprint
    Metadata
    Show full item record
    Abstract
    Given a p-periodic difference equation xn+1 = fn mod p(xn), where each fj is a continuous interval map, j = 0, 1, . . . , p − 1, we discuss the notion of folding and unfolding related to this type of non-autonomous equations. It is possible to glue certain maps of this equation to shorten its period, which we call folding. On the other hand, we can unfold the glued maps so the original structure can be recovered or understood. Here, we focus on the periodic structure under the effect of folding and unfolding. In particular, we analyze the relationship between the periods of periodic sequences of the p-periodic difference equation and the periods of the corresponding subsequences related to the folded systems.
    DSpace URI
    http://hdl.handle.net/11073/16700
    External URI
    https://doi.org/10.1016/j.jmaa.2014.03.060
    Collections
    • Department of Mathematics and Statistics

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeriesThis CollectionBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeries

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Submission Policies | Terms of Use | Takedown Policy | Privacy Policy | About Us | Contact Us | Send Feedback

    Return to AUS
    Theme by 
    Atmire NV