• Login
    View Item 
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Computer Science and Engineering
    • View Item
    •   DSpace Home
    • College of Engineering (CEN)
    • Department of Computer Science and Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Big Data Energy Management, Analytics and Visualization for Residential Areas

    Thumbnail
    View/ Open
    Big Data Energy Management, Analytics and Visualization for Residential Areas.pdf (1.114Mb)
    Date
    2020
    Author
    Gupta, Ragini
    Al-Ali, A. R.
    Zualkernan, Imran
    Das, Sajal K.
    Advisor(s)
    Unknown advisor
    Type
    Peer-Reviewed
    Article
    Published version
    Metadata
    Show full item record
    Abstract
    With the rapid development of IoT based home appliances, it has become a possibility that home owners share with Utilities in the management of home appliances energy consumption. Thus, the proposed work empowers home owners to manage their home appliances energy consumption and allow them to compare their consumption with respect to their local community total consumption. This serves as a nudge in consumer's behavior to schedule their home appliances operation according to their local community consumption profile and trend. Utilizing the same common communication infrastructure, it also allows the utilities on different consumption levels (community, state, country) to monitor and visualize the energy consumption in their respective grid segments on daily, monthly, and yearly basis. A high-speed distributed computing cluster based on commodity hardware with efficient big data mathematical algorithm is employed in this work. To achieve this, two big data processing paradigms are evaluated with a set of qualitative and quantitative metrics with subsequent recommendations. One million smart meter data is simulated to access individual homes. With the utilization of distributed storage and computing cluster for handling energy big data, the utilities can perform consumer load analysis and visualization on a scale of one million consumers. This helps the utilities in providing consumers a more accurate representation of how much energy they are consuming with greater granularity and with respect to their local community. Consumer and Utility centric queries are developed to create a web-based real time energy consumption management system presented in terms of dashboard charts, graphs, and reports that can be accessed by the consumer and utility providers remotely.
    DSpace URI
    http://hdl.handle.net/11073/21391
    External URI
    https://doi.org/10.1109/ACCESS.2020.3019331
    Collections
    • Department of Computer Science and Engineering

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeriesThis CollectionBy Issue DateAuthorsTitlesSubjectsCollege/DeptArchive ReferenceSeries

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    DSpace software copyright © 2002-2016  DuraSpace
    Submission Policies | Terms of Use | Takedown Policy | Privacy Policy | About Us | Contact Us | Send Feedback

    Return to AUS
    Theme by 
    Atmire NV