Show simple item record

dc.contributor.advisorAl Jarrah, Mohammad Amin
dc.contributor.authorAlshoubaki, Ahmad
dc.date.accessioned2014-09-21T07:36:10Z
dc.date.available2014-09-21T07:36:10Z
dc.date.issued2014-03
dc.identifier.other35.232-2014.13
dc.identifier.urihttp://hdl.handle.net/11073/7507
dc.descriptionA Master of Science thesis in Mechanical Engineering by Ahmad Alshoubaki entitled, "Autopilot Design and Commercial Autopilot Evaluation Using Flybarless Helicopter," submitted in March 2014. Thesis advisor is Dr. Mohammad Amin Al Jarrah. Available are both soft and hard copies of the thesis.en_US
dc.description.abstractIn its effort to develop unmanned autonomous systems research capabilities, the College of Engineering is adding a rotary wing UAV to its research activities. The current thesis goal is to use the Maxi Joker 3 commercially-off-the-shelf (COTS) electric RC helicopter as a platform and fit it with a commercial autopilot system to serve as a benchmark for future AUS rotary wing in-house autopilot development. To achieve this goal, the thesis develops the helicopter flight simulator with added hardware-in-the-loop simulation capabilities to aid the rapid prototyping of flight control laws and the guidance algorithms. Rigorous flight dynamics simulation model was implemented with Matlab/Simulink environment. Hardware-in-the-loop simulation was carried out using the freescale MPC555 32 bits microcontroller based autopilot hardware developed in house. Flight tests data was used to refine the dynamics models and improve the simulation. The thesis developed autopilot for aircraft attitude control for hover flight conditions. The control lows are based on PID successive loop closure architecture using the linearized helicopter model. The tuned gains were simulated using the nonlinear model. The in house autopilot hardware-in-the- loop- simulation showed promising results compared with flight test data collected with the Micropilot commercial autopilot test results. Later, the in house autopilot was fitted to the MaxiJocker 3 aircraft for flight test evaluation. Limited flight test data showed excellent results compared with the Micropilot commercial autopilot test results.en_US
dc.description.sponsorshipCollege of Engineeringen_US
dc.description.sponsorshipDepartment of Mechanical Engineeringen_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesMaster of Science in Mechanical Engineering (MSME)en_US
dc.subjectRotary wing UAVen_US
dc.subjectHover modelen_US
dc.subject6-dof flybarless helicopter modelen_US
dc.subjectcommercially available autopiloten_US
dc.subject.lcshAutomatic pilot (Helicopters)en_US
dc.subject.lcshDrone aircraften_US
dc.titleAutopilot Design and Commercial Autopilot Evaluation Using Flybarless Helicopteren_US
dc.typeThesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record