Show simple item record

dc.contributor.advisorAbdalla, Jamal
dc.contributor.advisorHawileh, Rami
dc.contributor.authorMohamed, Khalid Mustafa Elradi
dc.date.accessioned2018-05-09T04:34:37Z
dc.date.available2018-05-09T04:34:37Z
dc.date.issued2018-03
dc.identifier.other35.232-2018.02
dc.identifier.urihttp://hdl.handle.net/11073/9307
dc.descriptionA Master of Science thesis in Civil Engineering by Khalid Mustafa Elradi Mohamed entitled, “Strengthening of Shear Deficient Beams with CFRP Laminates with Different Types of Anchorage Systems”, submitted in March 2018. Thesis advisor is Dr. Jamal Abdalla and thesis co-advisor is Dr. Rami Hawileh. Soft and hard copy available.en_US
dc.description.abstractRetrofitting and repairing deteriorating structures have been achieved using several techniques. Strengthening of Reinforced Concrete (RC) members in shear with externally bonded fiber reinforced polymer (FRP) plates and sheets has been commonly accepted. FRP de-bonding from the concrete substrate is one of the most common types of failure in shear strengthening of RC beams. Many shear strengthening methods have used different anchorage systems to solve the problem of the de-bonding of FRP laminates. The most common types of anchorage in use include full wrapping, U-wrapping, FRP-spikes, in addition to other types of mechanical anchorages. This study explores the use of groove-epoxy and bore-epoxy anchorages. In this investigation, 15 shear deficient rectangular RC beams were strengthened with carbon (CFRP) sheets and plates bonded by groove-epoxy anchorages of different widths and bore-epoxy anchorages of different depths and spacing. The beams were tested under four-point bending. The aim of this study is to investigate the feasibility of using epoxy-anchorages, specifically groove-epoxy and bore-epoxy to reduce or eliminate FRP de-bonding failure and increase the FRP strength that will lead to an increase in shear strength of aging beams. Both methods have shown an increase in the shear capacity when compared with the control beams and with the externally bonded reinforcement (EBR) strengthening method without anchorage. In the groove-epoxy anchorage method, the two medium grooves of 10 mm width showed the best performance among the groove widths while in bore-epoxy anchorage method, the large bores of 30 mm diameter showed the best performance among the bore diameters. Groove-epoxy anchors have increased the shear capacity by 112 % over the control beam and 52 % over the EBR strengthened beam. Bore-epoxy anchors have increased the shear capacity up to 68 % over the control beam and 20 % over the EBR strengthened beam. The shear strength of three specimens were predicted using the relevant codes of practice (ACI-440.2R-08, CAN/CSA-S806-02, FIB 14 and TR55). The prediction showed that CAN/CSA-S806-02 is the most accurate when compared with the other codes.en_US
dc.description.sponsorshipCollege of Engineeringen_US
dc.description.sponsorshipDepartment of Civil Engineeringen_US
dc.language.isoen_USen_US
dc.relation.ispartofseriesMaster of Science in Civil Engineering (MSCE)en_US
dc.subjectShear strengtheningen_US
dc.subjectshear deficient RC beamen_US
dc.subjectanchorage systemsen_US
dc.subjectReinforced Concrete (RC)en_US
dc.subject.lcshReinforced concrete constructionen_US
dc.subject.lcshCarbon fiber-reinforced plasticsen_US
dc.subject.lcshConcrete beamsen_US
dc.subject.lcshAnchorage (Structural engineering)en_US
dc.subject.lcshShear (Mechanics)en_US
dc.titleStrengthening of Shear Deficient Beams with CFRP Laminates with Different Types of Anchorage Systemsen_US
dc.typeThesisen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record