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ABSTRACT 
 
 

Many industrial processes often exhibit significant non-linear behavior, and amine 

sweetening unit comprising absorption and regeneration towers is a typical example of 

such chemical processing plants. Conventional linear control schemes based on rigorous 

mathematical models, implemented in sweetening units, show poor performance and lead 

to off-specification products. Therefore, the need for advanced controls based on non-

linear model structure is required. The black-box approach of modeling and control an 

amine system using Artificial Neural Networks (ANNs) is studied in this thesis. As a first 

step, a rigorous model for steady state simulation of an amine unit in Abu Dhabi Gas 

Liquefaction Company (ADGAS) is developed. This model is used to study the effect of 

varying system operating and sizing parameters on  and  sweet gas 

concentrations. Desired  specification in the sweet gas can be maintained by 

operating the plant with low DEA concentration and/or low DEA solution temperature. In 

contrast, high solution concentration and/or high DEA temperature tends to increase  

removal from the process gas. Then, dynamic analysis of amine sweetening plant is 
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conducted on the developed rigorous simulation model. It aims to prioritize the system 

controlling variables, namely; DEA solution flow rate, DEA solution temperature, and 

reboiler duty as per their speed of response on sweet gas quality. Dynamic profiles of 

 sweet gas composition show that steam flow rate gives the shortest time constant 

among other controlling parameters. On the other side,   pick up is experienced to 

increase faster with the increase of DEA solution flow rate. 

SH2

2CO

Non-linear amine process needs to be operated under tight performance specifications to 

meet product quality and satisfy environmental considerations. Non-linear predictive 

control appears to be a well suited approach for this kind of problems. Because Artificial 

Neural Networks (ANNs) can provide good empirical models of complex nonlinear 

processes, dynamic data extracted from HYSYS are used to model amine plant applying 

ANN technique. Two NN models are developed for  and  separately because 

they expose different dynamic behavior when reacting with DEA solution. Feed-Forward 

Neural Networks (FNNs) are found to give very good match with rigorous plant data.  

SH2 2CO

In this work, the MPC model based control strategy was applied to amine absorption 

plant with view to control  and  composition in sweet gas. The FNN model is 

augmented in the MPC control structure as the plant model leads to NN-MPC. The 

performance of the proposed MPC structure under different model uncertainties has been 

investigated. The closed-loop performance and stability of the proposed NN-MPC 

depend on setting prediction and control horizons. Accordingly, it is desirable to 

minimize the performance objective determined by the cost functional using long 

horizons. However, from computational point of view using short horizons is preferred. 

The shorter the horizon, the less costly the solution of the on-line optimization problem. 
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1.0 INTRODUCTION 

1.1 Overview 
 
According to the International Energy Agency (IEA), natural gas will have a major share 

in the future energy supply of the world. Crude (sour) natural gas contains, in addition to 

 and higher hydrocarbons, various amounts of ,  and , as well as small 

amounts of gases such as and  vapor. The concentration of  and 

 in natural gases and associated gases varies from a few percent to as high as 70-80 

percent in certain reservoirs, particularly those with enhanced oil recovery (EOR). In 

these processes,  and  are considered to be impurities that must be removed 

from industrial gases. The removal of  from natural gas, known as gas sweetening, 

must be maximized to meet with pipeline specifications prior to its use in combustion 

applications. In addition, the removal of  from industrial gas streams has become 

important in the recent years. This has resulted from the environmental concern for a 

reduction of greenhouse gas emissions from industrial sources. Here,  is considered 

to be the largest contributor to the global warming problem, and is thus the major target 

for reduction.  

4CH SH2 2CO 2N

22 ,,, HArOHe OH 2 SH2

2CO

SH2 2CO
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The aqueous solutions of alkanolamines are considered the most commonly used 

sweetening agents in industrial plants. The amine process has been used commercially, 

since the early thirties. Monoethanolamine (MEA), diethanolamine (DEA), 

methyldiethanolamine (MDEA), diglycolamine (DGA), and diisopropanolamine (DIPA) 

are nowadays the most important alkanolamines used in absorption units for the removal 

of undesirable acid gases. Many industrial processes often exhibit significant non-linear 



behavior, and amine sweetening unit comprising absorption and regeneration towers is a 

typical example in chemical processing plants. Because amine processes make transitions 

over the equilibrium points of the system, conventional linear control schemes cannot 

cope with system’s non-linearity resulting in poor control performance. 

 

Abu Dhabi Gas Liquefaction Company (ADGAS) is reportedly experiencing some 

opportunity losses of its main product (LNG) contributed by mal-performance of Acid 

Gas Removal Units (AGRUs). An alternative method to overcome problems associated 

with those linear controllers is to implement model-based control algorithms. Indeed, 

developing a valid dynamic model of a process is often the major part of the work 

required to implement advanced control strategies. A traditional approach to modeling is 

to develop a model from first principles and estimate the values of the model parameters 

from process data. However, this procedure is often difficult and/or costly because the 

process may not be well understood or is to complex to model. Furthermore, the 

developed model may be based on simplifying assumptions that degrade in accuracy, bur 

is necessary in order to make it solvable for a real time application. An alternative 

approach to modeling is to identify the model non-parametrically from input/output data. 

Several non-parametric methods have been proposed to model non-linear systems. 

Artificial Neural Network (ANN) is one of the most commonly used non-parametric 

techniques in modeling and process control. 

 

ANNs have been used widely in the area of chemical mass transfer processes. A packed 

distillation column was used to demonstrate the use of an ANN for MPC in a pilot plant 

at the University of Texas at Austin by J. C. MACMURRAY and D. M. HIMMELBLAU 

 2  



in 1994. The column had the interesting feature of multiple changes in the sign of the 

process gains as the operating conditions changed. In addition, ANNs were used by R. 

Barrati, G. Vacca and A. Servida for modeling and control applications on two actual 

distillation columns: the butane splitter tower and the gasoline stabilizer. The two 

distillation columns are in operation at the SARAS refinery, Italy.  In both applications, 

significant improvement in the operation of columns was recorded.  

 

The main objective of this thesis it to utilize the concept of Neural Networks Model 

Predictive Controller (NN-MPC) in maintaining  and  composition in the sweet 

gas stream exiting the amine absorption unit within desired specifications. Due to the 

difference in reaction rates of  and , separately, with DEA solution, two 

adaptive controllers are to be designed to cope with varying feed gas quality. Moreover, 

the controlling operating parameters of ADGAS amine absorption unit are to be 

scheduled as per their speed of response. This can be achieved by building steady state 

and dynamic models using adequate process flow sheet simulators. 

SH2 2CO

SH2 2CO
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1.2 Research Objectives: 

1.2.1 Sensitivity Analysis of Operating & Sizing Parameters: 
• The effect of varying system operating & sizing parameters on sweet gas quality 

is to be inspected on a steady state model of ADGAS Acid Gas Removal Unit. 

The model is to be developed using Cheshire Design II simulator  

• Study cause-and-effect relationships between the input and output variables (i.e. 

effect of feed flow rate variation on sweet gas quality) 

• Detect operating behavior of the system 

• Re-sizing columns & existing packing characteristics 

 

1.2.2 Modeling: 
• Neural Network Modeling (NNM) technique is to be applied for obtaining a data-

driven model of Amine sweetening unit 

• Compare different frameworks & learning rules of Artificial Neural Networks to 

find out the best model representing the system 

• Data is to be extracted from ASPENTECH chemical simulation software 

(HYSYS-Version 3.2) 

 

1.2.3 Control: 
• Designing Neural Networks- Model Predictive Controller (NN-MPC) utilizing 

data extracted from HYSYS dynamic model 

• Due to the difference in the rate of reaction of  and , separately, with 

DEA solution, two adaptive controllers are to be designed to cope with varying 

feed gas quality 

SH2 2CO

1.3 Methodology: 

The general steps that will be used to navigate through this research, as demonstrated by 

Fig 1.1, are as follows: 
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Figure 1.1   Methodology of research 

 

1.3.1 Build Process Flow Diagram (PFD): 

Process Flow Diagram (PFD) of ADGAS Train-3 Acid Gas Removal Unit is to be 

developed in the workspace of CHEMSHARE DESIGN II 

 

1.3.2 Steady State Simulation: 

A steady state model of the foregoing PFD is used to extract data. Those simulated data 

are compared with corresponding design data in order to minimize the error between 

them via tuning the steady state model 

 

1.3.3 Sensitivity Analysis of Operating & Sizing Parameters: 

Once the error between simulated & design data is minimized, the steady state model is 

used to inspect the effect of varying operating & sizing system parameters on sweet gas 

quality 
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1.3.4 Dynamic Simulation: 

Because CHEMSHARE DESIGN II has only a steady state simulator, the dynamic 

simulation was carried out using ASPENTECH simulator (HYSYS-Version 3.2). The 

conditions of the converged model from step-2 were transferred into Process Simulation 

Diagram (PSD) of Amine unit in HYSYS. The steady state case was converted into 

dynamic one as follows: 

 

1. Converting From Steady State: 

To prepare the case for dynamic simulation, values will be installed to define pressure 

flow relations and PF specifications will be added to selected streams. The tray sizing 

utility will be implemented for sizing tray sections; all other unit operations will be 

sized. 

2. Adding Controllers: 

In this step, appropriate controllers will be installed and defined manually 

3. Preparing the Dynamic Simulation: 

In the last step, the Databook will be set-up. Changes will be made to key variables in 

the process and the dynamics behavior of the model will be observed. 

 

1.3.5 Modeling & Control: 

The Amine sweetening Unit is to be modeled using data-driven modeling technique (i.e. 

Artificial Neural Networks), and this model will be used to design a Non-linear Model 

Predictive Controller (NMPC) to adaptively re-schedule the system varying control gains 
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1.7 Structure of the Thesis: 

This thesis is organized into six chapters. Chapter 1 presents a brief overview and 

outlines the proposed objectives of this research. The methodology applied in this report 

is introduced as well. 

 

In Chapter 2, the fundamental aspects of neural networks are detailed. The general 

characteristics of a neural network have been summarized. This progresses on to listing 

the applications of ANNs in the area of chemical mass transfer processes to describe the 

extent of previous research on the topic. In addition, the theory of model predictive 

control is given. Because there is a colossal amount of intricate details within the fields of 

neural networks and model predictive control, this chapter aimed to give only overview 

of these two fields. In this chapter, physical modeling principles of chemical absorption 

processes are explained and the feasibility of applying model predictive controllers based 

on these linear models is given. 

 

Chapter 3 deals with the setting up of an amine absorption simulation model. To 

investigate the parameters affecting directly the proposed control scheme, different 

system parameters are tested on a steady state model developed using a chemical process 

simulator (CHEMSHARE DESIGN-II) on data extracted from Abu Dhabi Gas 

Liquefaction Company (ADGAS) plant. The sensitivity analysis carried out on this 

steady state model will filter out those parameters with neglected effect on sweet gas 
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quality. In chapter 3, a dynamic model built in (HYSYS) is analyzed to prioritize those 

controlling parameters as per their speed of response. The outcome of this analysis will 

offer a zero-investment option to ADGAS in dealing with their mal-performance of their 

sweetening units. 

 

In Chapter 4 the method of constructing an NN model of amine absorption dynamics for 

the MPC control is discussed. One approach of using an FNN for modeling the system 

forward dynamics is also provided. The FNN model is trained by using the data obtained 

from the amine unit’s dynamic responses to a set of step changed inputs within specific 

operational ranges. The NN models relating sweet gas constituents and controlling 

parameters are introduced as well. 

 

In chapter 5, the model-based control of amine sweetening process is performed by using 

the MPC method discussed in Chapter 2, based on the neural network modeling 

technique developed in Chapter 3. Two MPC controllers maintaining sweet gas quality at 

desired levels are designed by developing NN models relating plant outputs namely,  

 and  with DEA solution flow rate, DEA temperature, and the regeneration 

reboiler duty. Finally in Chapter 6 the conclusions of this thesis are given and some 

recommendations are offered. 

SH 2 2CO
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2.0 BACKGROUND 

2.1 Modeling of Amine Absorption Unit: 

Two physical modeling approaches for absorption processes are in common use: the 

equilibrium-based approach and the rate-based approach: 

2.1.1 Equilibrium-Based Approach: 

The equilibrium-based approach, as shown in Fig 2.1, is suitable for non-reactive 

systems. It assumes a theoretical stage in which the liquid and gas phases attain 

equilibrium. The performance of this stage is then adjusted by applying a tray efficiency 

correction factor. As, in practice, equilibrium is rarely attained since mass and heat 

transfer are actually rate processes that are driven by gradients of chemical potential and 

temperature, traditional equilibrium stage models and efficiency approaches are mostly 

inadequate for the description of chemisorption processes. 

 

 
 

Figure 2.1   Equilibrium Based Approach of Two-Film Theory 
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2.1.2 Rate-Based Approach: 

Accurate dynamic models for industrial reactive absorption processes have to be both 

rigorous enough in order to reflect the process complexity and simple enough to ensure 

feasibility of process simulations. 

 

Fig 2.2 shows different modeling approaches representing different complexities 

concerning the description of mass transfer and chemical reaction are presented. A 

comparison among these modeling approaches revealed that traditional equilibrium stage 

models and efficiency approaches are inadequate in this context. Therefore, rigorous 

models describing multi-component mass transfer accompanied by chemical reactions in 

reactive separation processes have been developed which are based on the 

Maxwell_/Stefan equations [31] 

 

 
Figure 2.2   Model complexity with regard to description of mass transfer and chemical reaction 
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The two-film theory, as demonstrated in Fig 2.3, which is suitable for the description of 

mass transfer in complex reactive absorption processes [30] has been applied for the 

dynamic simulation of different systems of components [31] 

 

 
 

Figure 2.3   Rate-based approach of two film theory 
 
 
This model takes into account diffusional interactions, the direct influence of chemical 

reactions on mass transfer and thermodynamic non-idealities and considers the impact of 

particular column internals on hydrodynamics. In contrast to classical two-film models, 

the chemical reaction kinetics and mass action laws are taken into account in the 

differential equations describing the liquid film region in order to avoid un-predictive 

correction parameters like enhancement factors. Although recent publications present 

approaches of enhancement factors for reversible and multi-step reactions, a general 

analytical expression could not be obtained and numerical techniques are required as well 

as simplifications such as irreversibility of reaction steps, equal diffusivities or limited 

reaction. The differential mass balance for the liquid film region leads to non-linear 
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concentration profiles and considers changing mass transfer rates along the film 

coordinate [30]: 
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Where: 

n  molar flux  )/( 2smmol
R  gas constant  )/3144.8( KmolJ
δ  film thickness  )(m
η  film coordinate 
 
Subscripts 
i  component index 
 
Superscripts 
lf  liquid film 

 

 

Additional driving forces in electrolyte systems are accounted for by the Nernst_/Planck 

equation including electrical potential gradients [30]: 
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Where: 

c  molar concentration  )/( 3mmol

effD  effective diffusion coefficient  )/( 2 sm

F  Faraday’s constant  )/1065.9( 4 molC×
n  molar flux  )/( 2smmol
R  gas constant  )/3144.8( KmolJ
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T  temperature )(  K
x  liquid mole fraction  )/( molmol

iz  ionic charge of component i  
η  film coordinate 
 
Subscripts 
i  component index 
m  solvent 
t  total 
 
Superscripts 
lf  liquid film 

 

 

The condition of electro neutrality which has to be satisfied everywhere in the liquid 

phase is used for the determination of the electrical potential. All mass and energy 

balances, e. g. the component material balance for the liquid bulk phase, are dynamic and 

consider the relevant hold-ups in the liquid phase for dynamic simulations and control 

issues which leads to a system of partial differential equations [30]. 

 

Although recent publications present approaches of enhancement factors for reversible 

and multi-step reactions, a general analytical expression could not be obtained and 

numerical techniques are required. The investigation of the dynamic column behavior 

requires some model reductions as well as simplifications such as reversibility of reaction 

steps, equal diffusivities or limited reaction orders [34]. Those model reductions will 

limit the calculation time allowing simple dynamic model, but the full dynamic behavior 

of chemisorption system will not be reflected via those simplified models. 
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Obtaining numerical solution of the simplified dynamic model equations is 

considered the current technique in limiting the calculation time. A chemisorption 

process will result in a system of differential and algebraic equations (DAE), which 

its solution requires initial values for the differential variables. This DAE system has 

to be implemented into a numerical solver which converts the DAE system into 

ordinary differential equations (ODE) by differentiating all algebraic expressions. The 

necessary number of differentiations to get a set of differential equations defines the 

index of this DAE system. There are two obstacles encountered in applying numerical 

solution technique pertaining to reducing high index problems; Firstly, a careful 

analysis of the whole system of equations with the choice of suitable initial conditions 

is required. Secondly, numerical solution solvers require the DAE system to be 

represented in state space, and accordingly, preventing exclusive appearance of 

algebraic variables in differential equations. Therefore, the need for dynamical 

representative technique has risen to overcome the above mentioned disadvantages of 

rate-based modeling approach. 

 

2.2 Model Predictive Control: 

The incipient interest in the applications of MPC can be dated back to the late 1970s. In 

1978, Richalet et al [27] presented the Model Predictive Heuristic Control (MPHC) 

method in which an impulse response model was used to predict the effect at the output 

of the future control actions. The control actions to be exerted on the system are 

determined by minimizing the error between the predicted and the desired outputs of the 

system, subject to the operation restriction [27]. In 1980, Culter and Ramaker proposed 
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the Dynamic Matrix Control (DMC) method in which a step response model was used 

[6]. During 1980s, MPC quickly became popular particularly in chemical process 

industry due to the simplicity of the algorithm and to the use of the impulse or step 

response model, which is preferred, as being more intuitive and requiring no previous 

information for its identification [13]. MPC has been used in over 2,000 industrial 

applications in the refining, petro-chemical, pulp and paper, and food processing 

industries [35] 

 

The basic structure of the MPC is illustrated in Fig 2.4, in which a model is used to 

predict the future plant outputs, based on past and current values of plant status and on 

the proposed optimal future control actions. These control actions are calculated by the 

optimizer by taking into account the cost function (where the future tracking error is 

considered) as well as the constraints. The objective of the MPC is minimization of the 

predicted output errors by adjusting control actions over a given horizon. 
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Figure 2.4   Basic Structure of MPC 

 

As a consequence, the predictive model plays a decisive role in determining the optimal 

control actions. Therefore the chosen model must be capable of capturing the system’s 

basic dynamic modes, so as to precisely predict the future outputs of the system. In 

addition, the model has to be simple enough to be implemented practically. 

 

Many systems are, however, in general inherently nonlinear. This, together with higher 

product quality specifications and increasing productivity demands, tighter environmental 

regulations and demanding economical considerations in the process industry require 

operating systems closer to the boundary of the admissible operating region. In these 

cases, linear models are often inadequate to describe the process dynamics and nonlinear 

models have to be used. This motivates the use of nonlinear model predictive control. 

Until recently, most industrial applications have relied on linear dynamic models. These 

dynamic models have been developed using empirical data obtained from plant testing. 
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Linear, rather than non-linear, models have been used because of the difficulty in 

developing a generic non-linear model from empirical data and also because of the 

computational expense involved in using non-linear models in the MPC formulation. 

2.2.1 Why Non-linear Model Predictive Control? 
 
Several factors have contributed to the widespread use of MPC in the process industries: 

• Multivariate Control: Industrial processes are typically coupled MIMO systems. The 

number of inputs and outputs can be large and the coupling can be significant. The 

MPC approach is well suited for MIMO applications. 

• Constraints: Constraints on the inputs and outputs of a process due to physical 

constraints and safety considerations are common in the process industries. An 

example of a physical constraint is the upper limit of an actuator. An example of a 

safety constraint is an upper limit on the temperature in an exothermic reactor. These 

constrains can be directly integrated into the control calculation using MPC. 

• Sampling Period: Unlike systems in other industries, such as automotive or aerospace, 

the open-loop settling time for most industrial processes is typically tens of minutes or 

hours rather than milliseconds. This relatively slow settling time translates to sampling 

periods measured in minutes. Because the sampling period is sufficiently long, the 

complex optimization calculations required to implement MPC can be solved at each 

sampling period. 

• Commercial Tools: Commercial tools that facilitate model development and controller 

implementation have allowed the proliferation of MPC in the process industries. These 

tools allow the user to build dynamic models based on empirical data, tune the 

controller for robustness in a simulation environment, and implement the controller on 
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the process in real time. In addition to these tools, service organizations that implement 

these MPC solutions have proliferated. 

 

2.3 Non-linear System Modeling and Prediction using Neural Networks: 

Artificial Neural Network is a computational structure capable of representing the 

nonlinear functional relationship between input and output variables. There are a number 

of configurations of the network available, with many training algorithms for each 

representation. There are several reasons for the growing use of (ANNs) in the field of 

chemical engineering [19]. First, recent advances in computer technology and parallel 

processing have made the use of ANNs more economically feasible than in the past. 

Second, since ANNs are composed of nets of nonlinear basis functions, they have the 

ability to evolve good process models from example data and require little or no a priori 

knowledge of the task to be performed. Third, ANNs allow many of the ideas of system 

identification and adaptive control originally applied to linear (or linearized) systems to 

be generalized to cope with more severe non-linearity because they have an inherent 

ability to approximate any arbitrary non-linear function. Thus, ANNs provides a possible 

way to identify the model of a non-linear system effectively.  

 

Based on their ability to learn sophisticated non-linear relationships, the effectiveness of 

ANNs has been successfully demonstrated by previous studies when employed to model 

complex non-linear systems [4,5,25,36,37,42] 
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ANNs generally consist of a number of interconnected processing elements called 

neurons. These processing elements are functions consisting of a summing junction and a 

non-linear operation (also known as activation function). How the neuron connections are 

arranged and the nature of the connections determine the structure of a network. How the 

strengths of the connections are adjusted or trained to achieve a desired overall behavior 

of the network, is governed by its learning algorithm. Thus ANNs can be classifies 

according to their structures and learning algorithms.  

 

In terms of their structures, ANNs can be divided into two major categories: feed-

forwarded NNs (FNNs) and recurrent NNs (RNNs). FNN is the structure in which signals 

flow from the input layer to the output layer via unidirectional forward connections. The 

neurons are connected from one layer to the next, but not within the same layer. The most 

commonly used FNN is the Multi-layer Perceptrons (MLP) [26]. Others are the 

Cerebellar Model Articulation Control (CMAC) network [1], the Learning Vector 

Quantisation (LVQ) network [15], the Group Method of Data Handling (GMDH) 

network [15], Radial Basis Function (RBF) network [14]. It has been proven that a 

multilayer feed-forward network can approximate any non-linear relationship between 

the inputs and the outputs to any predefined accuracy. FNN will be discussed in more 

details in Chapter 4 

 

RNN is another network structure in which the outputs of some neurons are fed back to 

the same neurons or to neurons in preceding layers. Signals can flow in both forward and 
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backward directions. The most notable RNN is the Hopfield network [16]. Some others 

are the Jordan network [21], the Elman network [8], and the time-lag network [41].  

 

Good process models are essential for the implementation of most advanced control 

algorithms. Indeed, developing a valid dynamic model of a process is often the major part 

of the work required to implement advanced control strategies. A traditional approach to 

modeling is to develop a model from first principles and estimate the values of the model 

parameters from process data. However, this procedure is often difficult and/or costly 

because the process may not be well understood or is too complex to model. Furthermore, 

the developed model may be based on simplifying assumptions that degrade in accuracy, 

but is necessary in order to make it solvable for a real time application. An alternative 

approach to modeling is to identify the model non-parametrically from input/output data. 

Several non-parametric methods have been proposed to model non-linear systems. ANN 

is one of the most commonly used non-parametric techniques in modeling and process 

control. 

 

Narenda and Parthasarathy (1990) and Hunt (1992) both present an overview of the 

issues pertaining to the use of ANNs for process modeling, identification, and control. 

There are two general approaches have been evolved in using ANNs for process 

modeling, identification, and control. One centers on using neural networks as the 

process controller. The network is trained to identify the inverse dynamics of the process 

to be controlled, and is then used to directly control the process. The other, and preferred, 

approach is to develop an ANN model of the process that in turn is then used for some 
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type of model based control such as model predictive control. This latter methodology is 

the more commonly reported application of neural networks for control of chemical 

processes. 

 

Neural networks have the remarkable capability of capturing system dynamics and 

approximating the behavior of the plant under different operating conditions. They are 

used to estimate the unknown non-linear dynamics and to compensate for them [39]. 

They are cost-effective, easy to implement and data-driven. They have been implemented 

successfully in different modeling areas where non-linearity and complexity are major 

issues. 

 

2.4 Neuro-MPC Controllers for MIMO Non-linear Systems: 
 
 To overcome the problems resulting from using linear models in the MPC, some 

researchers have tried to extend MPC to use non-linear models. The technique Joseph et 

al. used is to obtain a non-linear model through system analysis to help the control 

calculation arrive at an appropriate action [22]. The predictive methods using such non-

linear models have also been made adaptive by estimating the parameters of the model 

that are most likely to change [22]. This requires the model to be of the correct structure, 

otherwise steady state offsets from the set points may result despite parameter adaptation. 

Selecting such an accurate structure requires significant analysis and a prior knowledge 

of the system. However, due to the complexity of the practical systems, or lack of 

knowledge of critical parameters of the systems, in many cases it is impossible to obtain a 

suitable physically founded system model in an analytical way. 
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An alternative method to overcome the above problems is to use ANNs as non-linear 

black box models to predict the dynamic behavior of the systems. There have also been 

many reports on using ANNs for non-linear system control. Psaltis et al. proposed 

general learning architectures to learn the plant inverse dynamics for the FNN based 

feed-forward controller [26]. Narendra and Parthasarathy developed generalized ANN 

models for both identification and control of non-linear systems. Hunt and Sbarbaro used 

ANNs for non-linear internal control [20]. Fang and Dissanayake used an NN in time-

optimal trajectory planning [11]. An extensive review on applying ANNs to control has 

also been given by Hunt et al. [20] 

2.4.1 Properties, Advantages, and Disadvantages of NMPC: 

In general, using an infinite prediction and control horizon, i.e. Tp and Tc is desirable to 

minimize the performance objective determined by the cost. However, the open-loop 

optimal control is often formulated in a finite horizon manner and the input function is 

parameterized finitely, in order to allow a (real-time) numerical solution of the nonlinear 

open-loop optimal control problem. It is clear, that the shorter the horizon, the less costly 

the solution of the on-line optimization problem. Thus it is desirable from a 

computational point of view to implement MPC schemes using short horizons. But, when 

a finite prediction horizon is used, the actual closed-loop input and state trajectories will 

differ from the predicted open-loop trajectories, even if no plant models mismatch and no 

disturbances are present [34, 35]. This fact is depicted in Figure 6 where the system can 

only move inside the shaded area as state constraints of the form Xx ∈)(τ  are assumed. 
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This makes the key difference between standard control strategies, where the feedback 

law is obtained a priori and 

 

 

Figure 2.5   Simplified MPC Scheme 
 

NMPC where the feedback law is obtained on-line and has two immediate consequences. 

Firstly, the actual goal to compute a feedback such that the performance objective over 

the infinite horizon of the closed loop is minimized is not achieved. In general it is by no 

means true that a repeated minimization over a finite horizon objective in a receding 

horizon manner leads to an optimal solution for the infinite horizon problem [29]. In fact, 

the two solutions differ significantly if a short horizon is chosen. Secondly, if the 

predicted and the actual trajectories differ, there is no guarantee that the closed-loop 

system will be stable. It is indeed easy to construct examples for which the closed-loop 

becomes unstable if a (small) finite horizon is chosen. Hence, when using finite horizons 

in standard NMPC, the stage cost cannot be chosen simply based on the desired physical 

objectives. 
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From the remarks given so far and from the basic NMPC setup, one can extract the 

following key characteristics of NMPC: 

• NMPC allows the use of a nonlinear model for prediction.  

• NMPC allows the explicit consideration of state and input constraints. 

• In NMPC a specified performance criteria is minimized on-line.  

• In NMPC the predicted behavior is in general different from the closed loop 

behavior.  

• The on-line solution of an open-loop optimal control problem is necessary for 

the application of NMPC.  

• To perform the prediction the system states must be measured or estimated. 

 

The Non-linear Model Predictive Controller (NMPC) has been successfully applied on a 

packed column used for absorption process with partial state reference model, of an 

absorption packed column. The absorption column, being experimented, used a solution 

of Diethanolamine (DEA) as the absorbent to decrease the concentration of  in a gas 

mixture below a desired value. It is to be emphasized that MPC based on linear models is 

acceptable when the process operates at a single set point and the primary use of the 

controller is the rejection of disturbances. Because Amine absorption process make 

transitions over the non-linearity of the system, linear MPC often results in poor control 

performance. To properly control this process, a non-linear model is needed in the MPC 

algorithm. 

2CO
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In addition, there is on going PHD research at the University of Newcastle Upon Tyne-

UK on absorption and de-sorption of Carbon Dioxide from Monoethanolamine (MEA) 

solutions using Higee Technology. 
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3.0 SIMULATION OF AMINE SWEETENING UNIT 
 
 
This chapter describes ADGAS amine sweetening unit along its operating conditions. 

Steady state analysis of the process is conducted on the developed rigorous model. The 

effect of system operating parameters on  and  sweet gas concentrations is 

inspected. Then, this steady state model is converted into dynamic model using process 

flow sheet simulator (HYSYS). Dynamic analysis of the process results in prioritizing the 

amine unit controlling parameters, namely; DEA solution flow rate, DEA solution 

temperature, and reboiler duty as per their speed of response. This offers ADGAS a 

viable alternative to maintain throughput across their facilities at desired rate despite any 

feed disturbance. 

SH 2 2CO

 

3.1 Description of Amine Sweetening Unit: 
 

The general process flow for an amine sweetening plant is demonstrated in the simplified 

process schematics released from ADGAS plant. Fig 3.1 shows the absorption section, 

whereas Fig 3.2 shows the regeneration section. The process flow scheme varies little, 

regardless of the aqueous amine solution used as the sweetening agent. The 

Diethanolamine, due to its reactivity and availability at low cost, is the most generally 

accepted and widely used of the many available alkanolamines solvents for removal of  

 and  from natural gas streams. The primary pieces of equipment of concern are 

the absorber column and stripper column, together with the associated piping, heat 

exchange, and separation equipment. 

SH 2 2CO
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Figure 3.1   DEA absorption system 
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Figure 3.2   DEA regeneration section 
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The sour gas containing  and/or  will nearly always enter the plant through a 

scrubber to remove any free liquids and/or entrained solids. The sour gas then enters the 

bottom of the absorber column and flows upward through the absorber in intimate 

counter-current contact with the aqueous amine solution. Sweetened gas leaves the top of 

the absorber and flows to a dehydration unit before being considered ready for sale. 

SH 2 2CO

 

Lean amine solution from the bottom of the stripper column is pumped through an amine-

amine heat exchanger and then through a water or air-cooled exchanger before being 

introduced to the top of the absorber column. The amine moves downward through the 

absorber counter-current to the sour gas, and absorbs acid gas constituents from the gas 

stream. Rich amine solution flows from the bottom of the absorber through the amine-

amine heat exchanger and then to the top of the stripper column. 

 

The amine-amine heat exchanger serves as a heat conservation device and lowers total 

heat requirements for the process. A part of the absorbed acid gases will be flashed from 

the heated rich solution on the top of the stripper. The remainder of the rich solution 

flows downward through the stripper in counter-current contact with vapor generated in 

the reboiler. The reboiler vapor (primarily steam) strips the acid gases from the rich 

solution. The acid gases and the steam leave the top of the stripper and pass overhead 

through a condenser, where the major portion of the steam is condensed and cooled. The 

acid gases are separated in a separator and sent to the flare or to processing. The 

condensed steam is returned to the top of the stripper as reflux. 
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Rich amine solution leaves the bottom of the absorber at an elevated temperature due to 

the heat of reaction released when acid gases react with the amine. For this reason heat 

exchange on the lean amine solution in the amine-amine exchanger does not cool it 

sufficiently for many processes. The amine cooler serves to lower the lean amine 

temperature to the 100ºF range. Higher temperatures on the lean amine solution will 

result in excessive amine losses through vaporization and also lower acid gas carrying 

capacity in the solution because of temperature effects 

 

The primary reactions of the diethanolamine with  and  are: SH 2 2CO
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Important to note is the presence of water or steam on the left-hand side of both the 

carbon dioxide reactions. This presence of water undoubtedly accounts for the fact that 

carbon dioxide is much more difficult to strip from the alkanolamine solutions by steam 

than is . SH 2

The reactions shown above proceed to the right at low temperatures and to the left at 

higher temperatures. This is the reason that hydrogen sulfide and carbon dioxide can be 

absorbed by alkanolamine solutions at ambient temperatures. At elevated temperatures 
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(as exist in the stripper column) the reactions are reversed with the sulfide and carbonate 

salts being decomposed and the acid gases released in the stripper column 

 

3.2 Simulation Strategy: 
 

Steady-state simulation has been a useful tool for the design and rating of single process 

equipment, as well as for complete plants. Even for day-to-day plant operations, steady 

state simulation has been stretched to its maximum by applying it to extract process 

information and operating conditions that might be evolving with time.  

 

Dynamic simulation is the tool of choice to reproduce the expected behavior of still-to-

be-built plants, as well as to match the operating conditions of already functioning assets. 

Notwithstanding, the immediate advantage that can be anticipated in implementing a 

dynamic simulation in real plants is the testing and checking of process control strategies. 

That is the reason why the first process industries that have incorporated dynamic 

simulation as a common working tool have been the oil-and-gas and refining ones, where 

controlling and maintaining the productive processes inside a very thin operating interval 

ensures a continuous flow of on-spec product, crucial aspect of such low added value 

type of industries. In this section, analysis is conducted on developed steady state and 

dynamic rigorous models of ADGAS amine sweetening unit. The controlling parameters 

are the DEA solution flow rate, DEA solution temperature, and reboiler duty. The 

disturbing parameters are the feed flow rate,  and  mole fractions in the feed 

gas. 

SH 2 2CO
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Figure 3.3   Amine system parameters 
 

 

3.3 Sensitivity Analysis of Steady State Model: 

Sensitivity analysis is carried out on steady state model developed using process flow 

sheet simulator (CHEMSHARE DESIGN-II). The effect of varying operating and sizing 

parameters on  and  sweet gas composition is studied. The operating parameters 

are those mentioned-above disturbing and controlling parameters. The sizing parameters 

are the number of trays in absorption column, and number of trays in regeneration 

column. The outcome of this analysis is to visualize the effect of those parameters on 

sweet gas quality and deleting non-effecting controlling parameters before designing 

model-based control in Chapter 5 

SH 2 2CO
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Figure 3.4   Steady state model developed using CHEMSHARE simulator 
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3.3.1 Sensitivity Analysis of Operating Parameters: 
 

• Amine Concentration: 

From operational aspect, the simplest variable to explore is increasing the amine 

concentration. However, this is not always feasible because it will adversely affect mass 

and heat transfer efficiency due to viscosity increase. In addition, it will increase DEA 

solution boiling point causing higher heat duty for the regeneration system. Moreover, the 

system will be exposed to severe corrosion problems in the lean/rich exchanger and 

reboiler caused by rich acid gas loadings after increasing solution concentration. Fig 3.5 

shows the sweet gas quality as a function of weight percent amine. It can be seen that 

both and concentrations decreased with increasing amine concentration. Based 

on Fig 3.5, DEA higher than 24 weight percent or greater is required to achieve the 

specified acid gas removal. At that concentration, DEA tends to pick up a large amount 

of acid gases and may cause corrosive conditions. Accordingly, increasing the amine 

concentration is not a viable option in this case. 

SH 2 2CO

 

Table 0.1   Effect of lean DEA solution strength on sweet gas quality 
 

Lean DEA Strength 
(wt%) 

H2S (ppmv) Ex. 
DEA Absorber 

CO2 (ppmv) Ex. 
DEA Absorber 

15 5.19 56.86 
16 5.09 56.04 
17 5.18 56.04 
18 5.12 56.03 
19 5.04 55.45 
20 4.92 54.68 
21 4.55 52.97 
22 4.7 53.45 
23 4.56 52.97 
24 4.39 52.6 
25 4.22 52.29 
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Figure 3.5   Effect of lean DEA solution strength on sweet gas quality 

 

• DEA Solution Temperature: 

The simulator was used to study how lean amine temperature affects the  

and composition of the sweet gas while holding all other process variables constant. 

Obviously, the duty in the lean amine cooler and the amine and water makeup are 

adjusted to account for increases in lean amine temperature. 

SH 2

2CO

 Fig 3.6 Shows the acid gas concentration in the sweet gas on a per volume inlet gas flow 

rate basis for 20 weight percent DEA solution. In investigating the effect of trim cooler 

temperature, the competition between thermodynamic equilibrium and kinetically limited 

absorption may be exploited. Concerning sweet gas concentration, it starts 

decreasing as the lean amine temperature increases. The higher temperature increases the 

kinetic effect to a greater extent relative to the decrease in solubility. However, the 

2CO
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solubility dominates the kinetics and the  sweet gas concentration increases with 

corresponding increase of lean solution temperature. 

SH 2

Table 3.2   Effect of DEA solution temperature on sweet gas quality 
 

 
 

0

1

2

3

4

5

6

7

0 5 10 15 20 25

Lean DEA Solution Temperature (Deg. C)

H
2S

 (p
pm

) E
xi

tin
g 

D
EA

 A
bs

or
be

r

50

51

52

53

54

55

56

57

C
O

2 
(p

pm
) E

xi
tin

g 
D

EA
 A

bs
or

be
r

H2S

CO2

 

Figure 3.6   Effect of DEA solution temperature on sweet gas quality 
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Temperature variation of the lean amine appears to have an effect on the amount of  

absorbed. This may be important for removing significant amounts of  from the inlet 

stream. Accordingly, the lean amine temperature is to be varied based on acid gas 

concentration in the sour gas to meet desired specification. 

2CO

2CO

 

• Steam Flow Rate: 

The regeneration heat requirement of the amine sweetening unit can be assessed via two 

variables: steam flow rate and reboiler duty. In the steady state model, the steam flow rate 

was varied to study the effect of regeneration heat input on sweet gas quality.  

 

Table 3.3   Effect of reboiler duty on sweet gas quality 
 

Train-3 DEA Regenerator Performance 
DEA Regenerator 
Reboiler's Steam 

Rate (tons)/ Reboiler 
Duty (KW) 

H2S (wt%) 
in Lean 

DEA 
solution 

H2S 
(ppmv) Ex. 

DEA 
Absorber 

CO2 
(wt%) in 

Lean DEA 
Solution 

CO2 
(ppmv) 

Ex. DEA 
Absorber 

15 / 8730 0.382 11.1 0.451 56.95 
16 / 9312 0.355 9.84 0.429 56.3 

16.5 / 9600 0.344 9.3 0.418 56.02 
17 / 9890 0.333 8.76 0.411 55.93 

18 / 10476 0.362 8.21 0.446 55.85 
19 / 11058 0.341 7.4 0.429 55.81 
20 / 11640 0.322 6.72 0.413 55.78 
21 / 12222 0.317 6.52 0.414 55.74 

21.5 / 12513 0.297 5.83 0.393 55.28 
22 / 12804 0.29 5.6 0.386 55.11 

22.5 / 13095 0.283 5.36 0.38 54.96 
23 / 13386 0.276 5.13 0.374 54.82 

23.5 / 13677 (Base) 0.269 4.92 0.368 54.68 
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Figure 3.7   Effect of reboiler duty on sweet gas quality 

 

 

From Fig 3.7, it can be clearly seen that increasing steam flow rate decreases the acid gas 

concentration in the sweet gas. The more steam the greater heat input into the 

regeneration column and, subsequently, the more acid gases released out from the rich 

amine solution. It is to be mentioned that Train-3 regeneration reboiler in ADGAS is 

currently operating at 20 tons of steam per hour. Based on simulation results, the design 

steam flow rate of 23.5 tons/hr corresponds to  and  sweet gas concentrations of 

1ppm and 54.7ppm, respectively. It can be concluded that the design reboiler duty could 

be utilized to reduce  slip in the sweet gas, whereas no room available for further 

improvement in  pickup 

SH 2 2CO
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• DEA Solution Flow Rate: 

The effect of manipulating DEA solution flow rate on acid gas concentrations in the 

sweet gas is inspected using CHEMSHARE DESIGN-II. 

Table 3.4   Effect of DEA solution flow rate on sweet gas quality 
 

Percentage of Lean 
DEA Solution Rate 

(%) 

DEA Solution Flow 
Rate (m3/hr) 

H2S (ppmv) Ex. 
Train-1 DEA 

Absorber 

CO2 (ppmv) Ex. 
Train-1 DEA 

Absorber 
80 100 5.35 80.41 
85 106.25 5.24 75.59 
90 112.5 5.13 61.11 
95 118.75 5.03 57.90 

100 125 4.92 54.68 
105 131.25 4.88 52.27 
110 137.5 4.85 49.86 
115 143.75 4.81 47.44 
120 150 4.78 45.03 
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Figure 3.8   Effect of DEA solution flow rate on sweet gas quality 
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Fig 3.8 shows the acid gas concentration in the sweet gas as a function of lean amine rate 

for 20 weight percent DEA. Obviously, increasing DEA solution flow rate contributes 

positively in improving acid gas quality. This contribution varies among the two acid gas 

constituents based on their rate of reaction with DEA. The faster rate of reaction of  

contributes to more efficient removal of this constituent from rich amine solution. In 

contrast, slight improvement was observed in  sweet gas concentration. This 

operating variable accounts for reducing acid gas concentration in the sweet gas. 

However, it can be used mainly to remove significant amounts of  from the inlet 

sour stream. 

2CO

SH 2

2CO

 

• Sour Feed Flow Rate: 

While holding process variables unchanged, absorption removal of  and  is a 

function of inlet stream conditions. These conditions can be visualized from two 

versions: quantitative and qualitative. The quantitative part can be located in stream’s 

rate, whereas the qualitative side is represented by stream’s composition. Concerning to 

inlet sour stream’s rate, the steady state model developed using CHEMSHARE DESIGN-

II is used to investigate its effect on concentrations of  and  in the sweet gas. 

Fig 3.9 demonstrates the simulation results where it can be stated that increasing inlet 

acid load would reduce acid gas quality. The difference in reaction rate with DEA reflects 

on the corresponding concentrations of  and  in the sweet gas. Accordingly, 

with the same acid load applied into the system, there was 40 percent increase in  

SH 2 2CO

SH 2 2CO

SH 2 2CO

2CO
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concentration from its initial value. In contrast, only 15 percent difference was observed 

with  concentration. SH 2

Table 3.5   Effect of acid gas rate on sweet gas quality 
 

Percentage of Feed 
Flowrate (%) Acid Gas Rate H2S (ppmv) Ex. 

DEA Absorber 
CO2 (ppmv) Ex. 
DEA Absorber 

-10% 21735.207 10.6 48.28 
-5% 22942.7185 10.83 52.64 

100 (Base) 24150.23 11.01 54.68 
5% 25357.7415 11.74 62.83 
10% 26565.253 11.58 65.39 
15% 27772.7645 12.26 71.46 
20% 28980.276 12.09 73.48 
25% 30187.7875 12.3 77.31 
30% 31395.299 12.54 81.08 
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Figure 3.9   Effect of acid feed rate on sweet gas quality 
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• H2S/CO2 Ratio: 

The qualitative aspect of inlet sour stream is inspected by varying  to  ratio 

while holding all other variables unchanged. Fig 3.10 shows the interaction between inlet 

feed composition and sweet gas quality. The higher  to  ratio, the higher  

slip in the sweet gas. The concentration of  decreased monotonically by almost 80 

percent after increasing c to from 0.5 to 3 

SH 2 2CO

SH 2 2CO SH 2

2CO

2CO

Table 3.6   Effect of H2S/CO2 Ratio on sweet gas quality 
 

Effect of H2S/CO2 Ratio on Train-3 DEA Absorber 
Performance 

H2S / 
CO2 
Ratio 

H2S 
(ppmv) 

Feed To 
DEA 

Absorber 

CO2 
(ppmv) 

Feed To 
DEA 

Absorber 

H2S 
(ppmv) 

Ex. DEA 
Absorber

CO2 
(ppmv) 

Ex. DEA 
Absorber 

0.5 600 1200 2.41 83.78 
1 600 600 3.31 41.4 

1.5 900 600 4.45 41.06 
2 800 400 4.56 27.28 

2.5 750 300 4.98 20.49 
3 750 250 4.81 16.95 
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Figure 3.10   Effect of H2S/CO2 ratio on sweet gas quality 

3.3.2 Sensitivity Analysis of Sizing Parameters: 
 
Amine sweetening unit is a typical example of mass transfer operation accompanied by 

reaction. Therefore, inspecting the effect of mass transfer rate on sweet gas specification 

can be done by varying the number of equilibrium stages in each of the two packed 

columns.  

Based on simulation results, the number of equilibrium stages required to meet sweet gas 

specification are 15.5 and 17.5 for  and , respectively. On the other hand, 8 

equilibrium stages in the regenerator column are required versus a corresponding double 

figure for (please refer to Figs 3.11 & 3.12). Increasing number of regenerator 

equilibrium stages will reduce  composition in the sweet gas. It can be concluded 

that the regeneration section of Amine sweetening unit has the dominant effect on  

specification. 

SH 2 2CO

2CO

SH 2
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Table 3.7   Effect of number of DEA absorber trays on sweet gas quality 
 

No. Trays in DEA 
Absorber / No. Trays 
in DEA Regenerator 

H2S (ppmv) Ex. 
Train-1 DEA 

Absorber 

CO2 (ppmv) Ex. 
Train-1 DEA 

Absorber 
14 / 8 5.05 87.59 
15 / 8 5.03 74.82 
16 / 8 4.97 63.94 
17 / 8 4.92 54.68 
18 / 8 4.9 45.58 
19 / 8 4.87 40 
20 / 8 4.86 34.24 
21 / 8 4.83 29.32 
22 / 8 4.83 25.14 
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Figure 3.11   Effect of number of DEA absorber trays on sweet gas quality 
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Table 3.8   Effect of number of DEA regenerator trays on sweet gas quality 
 

No. Trays in DEA 
Absorber / No. Trays 
in DEA Regenerator 

H2S (ppmv) Ex. 
Train-1 DEA 

Absorber 

CO2 (ppmv) Ex. 
Train-1 DEA 

Absorber 
17 / 5 7.25 55.91 
17 / 6 6.57 55.63 
17 / 7 5.49 54.97 
17 / 8 4.92 54.68 
17 / 9 4.53 54.43 
17 / 10 4.22 54.24 
17 / 11 3.97 54.12 
17 / 12 3.5 52.7 
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Figure 3.12   Effect of number of DEA regenerator trays on sweet gas quality 
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3.3.3 Discussion of Sensitivity Analysis Results: 
 

ADGAS facility discussed here should not be thought of as being representative of 

general conditions since, in gas processing; there really is no general case. Each case 

must be considered on an individual basis due to a wide range of conditions and 

requirements for gas processing units. However, a few generalities or guidelines can be 

inferred for other facilities. If the objective is to slip as much as possible while 

meeting the  specification, use Diethanolamine (DEA) at low concentration and 

flow rate. In addition, use as few theoretical equilibrium stages as possible and operate 

the absorber at the lowest temperature possible. Because absorption is kinetically 

controlled, decreasing the contact time and temperature tends to increase the amount of 

slip. The limits of solution concentration, flow rate and equilibrium stages depend 

on the  specification. The cold absorber temperature also enhances  solubility. 

Facilities with this objective tend to be fairly stable as the inlet gas composition increases 

in concentration. 

2CO

SH 2

2CO

2CO

SH 2 SH 2

2CO

If the objective is to achieve a certain concentration, then the problem is more 

complicated. Attempts should be made to increase the amine concentration. Moreover, 

increasing the lean amine temperature increases pickup; however, there is a limit to 

the maximum temperature. This temperature depends on amine concentration, inlet gas 

composition, and the amount of pickup. Increasing the lean amine temperature 

decreases  pickup and increases amine and water losses. 

2CO

2CO

2CO
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3.4 Dynamic Simulation: 

One obvious limitation of steady state modeling is that it tells us nothing about the 

dynamic response of the system undergoing change in its operating conditions. 

Accordingly, it is difficult to compare the dynamic disturbance rejection capability of 

different system variables.  

 In this thesis, step response system identification is not of interest. The main target is to 

obtain dynamic input-output data that can be used for neural network modeling. Training 

data for the ANN model are extracted from HYSYS rigorous dynamic model of amine 

sweetening unit. The system is excited by varying its disturbing and controlling variables 

with reference to design values listed in Table 3.9. Due to HYSYS convergence 

problems, the manipulated variables will not be fixed at their nominal design values. 

Increasing the fidelity of the neural network model is coincided with enriching its 

dynamics data. Accordingly, a small sampling interval time of 20 msec is selected. In 

addition, 15 percent of static values obtained at the end of each run are added to those 

collected dynamic data. A total of 48 runs to the dynamic model are used to excite the 

amine absorption system and 21,000 data sets are collected. 

HYSYS process simulator is used also to address the dynamic behavior of the operating 

variables in amine sweetening unit. The operating conditions being investigated are the 

disturbing and control variables affecting sweet gas quality. This will setup the basis to 

prioritize the operating parameters as per their dynamic response, and eventually provide 

the panel operator with fast tracking hints in capturing system upsets.  
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Table 3.9   Design conditions of amine sweetening plant 
 

Component  Design Value Unit 
SOUR GAS - Molar Flow 1245.18 kgmole/h 
SOUR GAS - Comp Mole Frac (H2S) 0.0172   
SOUR GAS - Comp Mole Frac (CO2) 0.04   
DEA TO CONT - Std Ideal Liq Vol Flow 43.41 m3/h 
DEA TO CONT - Temperature 35.12 C 
Reboiler - Duty 10986810.29 kcal/h 
SWEET GAS - Comp Mole Frac (H2S) 0.000004400   
SWEET GAS - Comp Mole Frac (CO2) 0.000000131   
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Figure 3.13  HYSYS dynamic model of amine absorption plant 
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3.4.1 Dynamic Simulation of Disturbing Variables: 
 

The disturbing parameters are those parameters affecting sweet gas quality. They include 

the sour gas flow rate and the acid load represented by   &  feed gas 

concentrations. A dynamic analysis of disturbing variables will help in visualizing their 

effect on the system and accordingly give better explanations on the general performance 

of the plant. The disturbing variables being experimented are namely; sour gas flow rate, 

  and mole fractions in the feed gas. Fig 3.14 shows the dynamic profile of 

amine plant variables due to changing the feed flow rate from 1245 to 1260 kmoles/hr. 

Dynamic profile of system variables after increasing the  mole fraction in the feed 

gas from 0.0172 to 0.01978 weight percent is shown in Fig 3.15. The dynamic data in 

response to increasing  feed gas composition from 0.0413 to 0.047495 are shown in 

Fig 3.16. It can be observed that HYSYS adjust the manipulated variables to cope with 

changing the system disturbing variables. 

SH 2 2CO

SH 2 2CO
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Figure 3.14   Dynamic data in response to changing feed flow in feed flow from 1245 to 1260 
kgmoles/hr 
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.  
Figure 0.15   Dynamic data in response to changing H2S mole fraction in the feed gas from 

0.0172 to 0.0198 weight percent 
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Figure 3.16   Dynamic data in response to changing CO2 mole fraction in the feed gas from 0.04 

to 0.047 weight percent 
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3.4.2 Dynamic Simulation of Manipulated Variables: 
 
Manipulated parameters are those control variables used in marinating sweet gas quality 

at desired specifications. They include DEA solution flow rate, temperature of DEA 

solution and regeneration heat input represented by reboiler duty.  

Fig 3.17 shows the dynamic profile of amine plant variables due to changing the DEA 

solution flow rate from 43.4 to 49.9 . Dynamic profile of system variables after 

increasing DEA solution temperature from 35.12 to 37.4 is shown in Fig 3.18. The 

dynamic data in response to increasing reboiler duty from 10,986,810 to 12,634,832 

kcal/hr. are shown in Fig 3.19. It can be noted that system disturbing variables are 

maintained unchanged at their fixed design values after increasing the values for 

manipulated variables. 

hrm /3
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Figure 3.17   Dynamic data in response to increasing DEA solution flow rate from 43.4 to 49.9 

m3/hr 
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Figure 3.18   Dynamic data in response to increasing DEA solution temperature from 35.12 to 

37.4 Deg. C 
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Figure 3.19   Dynamic data in response to increasing reboiler duty from 10,986,810 to 12,634,832 

kcal/hr 
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3.4.3 Discussion of Dynamic Simulation: 
 

Dynamic analysis is conducted on rigorous HYSYS model to obtain dynamic data 

necessary for ANN modeling and to prioritize the system controlling parameters as per 

their speed of response on sweet gas quality. The controlling variables, as has been 

mentioned earlier, are: DEA solution flow rate, DEA solution temperature, and reboiler 

duty.  

 
If the objective is to meet a certain  specification in the sweet gas, then increasing 

steam flow rate into regeneration reboiler is recommended. The other two alternatives 

would carry no capital investment but there will be an extra operational cost accompanied 

with them. These alternatives arranged as per their code of response as: the DEA solution 

temperature and DEA solution flow rate. 

SH 2

 

On the other hand, if the objective is to meet a certain  specification in the sweet gas, 

then the three controlling parameters could be used. Increasing DEA solution circulation 

would be at the top of the list due to its fast speed of response. Both DEA temperature 

and regeneration steam flow rate show almost similar dynamic responses. Subsequently, 

increasing DEA solution temperature is preferred because it is a cheaper option. 

2CO
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4.0 NEURAL NETWORK MODELING FOR 

AMINE SWEETENING UNIT 
 
 

In this chapter a method of using Artificial Neural Networks (ANNs) to model the 

amine sweetening unit dynamics in a predictive way for the implementation of the 

model-based control strategy is proposed. First, an overview of neural networks is 

attained. Next, the learning methods available for training a neural network are given. 

Finally, the simulation results are presented and discussed. 

 

4.1 Introduction: 

 
Mechanistic models are difficult to establish using analytical methods. In a real 

application, obtaining accurate models using analytical methods is impractical for amine 

absorption unit trajectory tracking through MPC. When there are some parameter 

uncertainties in the prediction model or the structure of the prediction model is different 

from that of the real system, greater control errors or even system instability may be 

caused. 

 

Since the late 1980’s, artificial neural networks (ANNs) have found wide applications in 

the engineering field, because of the development in ANN’s learning algorithms and 

computer technology. Most engineering researchers are interested in the following two 

properties of ANNs. The first is the ANNs’ learning and universal approximation ability 

[18]; that is ANNs could be used to approximate any non-linear mapping relationship 

between the inputs and outputs. The second is ANNs parallel processing abilities [33]. 
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Based on the above two properties, engineering researchers have successfully applied 

ANNs to many engineering areas, such as pattern recognition [2], non-linear system 

identification [4,5], and control [8,37]. 

 

4.2 Overview of Artificial Neural Networks (ANNs): 

An artificial neural network is actually a network of interconnected elements. The models 

of these elements were inspired from the studies of the biological nervous systems so 

these elements are called neurons. Fig 4.1 depicts the schematic structure of a neuron. It 

is shown that a neuron receives n inputs =1, 2, …., n, which can be either from the 

external source or the other neurons. Each input is manipulated by a scalar , 

ix

iw

 

 

Figure 4.1   Structure of a neuron 
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. Each input is manipulated by a scalar , known as the weight, and summed together 

with a bias  to form the intermediate value y. Finally, a non-linear transfer function 

(.) is applied to calculate the output of the neuron. The equation can be expressed as: 

iw

ow

f

)( oii xxwfu +∑=                                                                                             (4.1) 

To form a network structure, the inputs and outputs of the neurons are connected in some 

way. Due to its simplicity and successful implementation in other mass transfer 

processes, feed-forward neural network (FNNs) is to be used in this work 

 

4.1.1 Feed-Forward Neural Networks (FNNs): 
 
A general fully connected feed-forward multilayered neural network can be described in 

Fig 4.1, where the information propagates only in one direction (as indicated by the 

arrows). Each processing unit (denoted by a circle) is a neuron, and the interconnections 

between neurons are called synapses. The neuron first calculates the weighted sum of all 

synaptic signals from the previous layer plus a bias term, and then generates an output 

through its activation function. The input layer consists of only “fan-out” units. Each fan-

out unit simply distributes an input to all neurons of the first hidden layer. 

 

Fig 4.2 illustrates a one-hidden-layer FF network with inputs  and output nxx ,....,1 y) . 

Each arrow in the figure symbolizes a parameter in the network. The network is divided 

into layers. The input layer consists of just the inputs to the network, followed by a 

hidden layer, which consists of any number of neurons, or hidden units placed in parallel. 
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Each neuron performs a weighted summation of the inputs, which then passes a nonlinear 

activation function, also called the neuron function. 

 

 
 

Figure 4.2   One Hidden Layer Feed-Forward Network 
 

Mathematically the functionality of a hidden neuron is described by 

                                                                                                           (4.2) 

, where the weights { , } are symbolized with the arrows feeding into the neuron. 

The network output is formed by another weighted summation of the outputs of the 

neurons in the hidden layer. This summation on the output is called the output layer. In 

the above figure, there is only one output in the output layer since it is a single-output 

problem. Generally, the number of output neurons equals the number of outputs of the 

approximation problem. 
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The neurons in the hidden layer of the network in Fig 4.2 are similar in structure to those 

of the perceptron, with the exception that their activation functions can be any differential 

function  

The number of layers and the number of hidden neurons in each hidden layer are user 

design parameters. The general rule is to choose these design parameters so that the best 

possible model with as few parameters as possible is obtained. In practice, many 

experiments with different design have to be conducted in order to achieve the most 

suitable neural network.  

 

Figure 4.3    Multilayer Feed-Forward Network 
 

As shown in Fig 4.3, a multilayer feed-forward neural network consists of several layers 

with different functions. The input layer is the one that receives inputs and typically 

performs no function other than buffering of the input signal. The outputs of the network 

are generated from the output layer. Any layer between the input and output layer is 

called a hidden layer because it is internal to the network and has no direct contact with 

the external environment. The neurons in a hidden layer and the output layer perform 

some activation functions. The most commonly-used activation functions can be found in 
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Table 4.1. Such a feed-forward neural network has been proven to have universal 

function approximation properties with only one hidden layer of sigmoid neurons [7] 

Table 4.1   Commonly-used Activation Functions 
 

Type of Functions Functions 

Linear  

Sigmoid  

Hyperboilc Tangent 
 

xxf =)(

))exp(1/(1)( xxf −+=

))2exp(1/())2exp(1()( xxxf = − − +

 

4.3 Training of a Neural Network: 

It can be seen from section 4.2 that the output of the neuron, consequently the network, is 

determined by the values of the weights and biases of the network. To obtain the correct 

values of these parameters, a neural network has to go through a procedure, named 

learning (or training). There are three main categories of learning methods: supervised, 

reinforcement and unsupervised learning. In this thesis, only the supervised learning 

method is used. 

To perform the supervised learning, samples, also called teacher, i.e. the correct 

relationship of the inputs and the outputs, must be provided. During the network training 

process, some learning algorithm should be used to adjust the weights and biases of the 

network to minimize the error between the outputs in the samples and the overall network 

outputs. The basic training algorithm is called the back-propagation. The feed-forward, 

back-propagation architecture was developed in the early 1970¹s by several independent 

sources [40]. This independent co-development was the result of a proliferation of 
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articles and talks at various conferences which stimulated the entire industry. Currently, 

this synergistically developed back-propagation architecture is the most popular, 

effective, and easy to learn model for complex, multi-layered networks. This architecture 

has spawned a large class of network types with many different topologies and training 

methods. Its greatest strength is in non-linear solutions to ill-defined problems.  

The typical back-propagation network has an input layer, an output layer, and at least one 

hidden layer. There is no theoretical limit on the number of hidden layers but typically 

there is just one or two. The in and out layers indicate the flow of information during 

recall. Recall is the process of putting input data into a trained network and receiving the 

answer. Back-propagation is not used during recall, but only when the network is 

learning a training set.  

 
 

Figure 4.4   Feed-Forward Back-propagation Network 

The number of layers and the number of processing element per layer are important 

decisions. These parameters to a feed-forward, back-propagation topology are also the 

most ethereal. There is no quantifiable, best answer to the layout of the network for any 
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particular application. There are only general rules picked up over time and followed by 

most researchers and engineers applying this architecture of their problems.  

Rule One: As the complexity in the relationship between the input data and the desired 

output increases, then the number of the processing elements in the hidden layer should 

also increase.  

Rule Two: If the process being modeled is separable into multiple stages, then additional 

hidden layer(s) may be required. If the process is not separable into stages, then 

additional layers may simply enable memorization and not a true general solution.  

Rule Three: The amount of training data available sets an upper bound for the number of 

processing elements in the hidden layers. To calculate this upper bound, use the number 

of input output pair examples in the training set and divide that number by the total 

number of input and output processing elements in the network. Then divide that result 

again by a scaling factor between five and ten. Larger scaling factors are used for 

relatively noisy data. Extremely noisy data may require a factor of twenty or even fifty, 

while very clean input data with an exact relationship to the output might drop the factor 

to around two. It is important that the hidden layers have few processing elements. Too 

many artificial neurons and the training set will be memorized. If that happened then no 

generalization of the data trends will occur, making the network useless on new data sets.  

Once the above rules have been used to create a network, the process of teaching begins. 

This teaching process for a feed-forward network normally uses some variant of the Delta 

Rule, which starts with the calculated difference between the actual outputs and the 
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desired outputs. Using this error, connection weights are increased in proportion to the 

error times a scaling factor for global accuracy. Doing this for an individual node means 

that the inputs, the output, and the desired output all have to be present at the same 

processing element. The complex part of this learning mechanism is for the system to 

determine which input contributed the most to an incorrect output and how does that 

element get changed to correct the error. An inactive node would not contribute to the 

error and would have no need to change its weights.  

To solve this problem, training inputs are applied to the input layer of the network, and 

desired outputs are compared at the output layer. During the learning process, a forward 

sweep is made through the network, and the output of each element is computed layer by 

layer. The difference between the output of the final layer and the desired output is back-

propagated to the previous layer(s), usually modified by the derivative of the transfer 

function, and the connection weights are normally adjusted using the Delta Rule. This 

process proceeds for the previous layer(s) until the input layer is reached.  

There are many variations to the learning rules for back-propagation network. Different 

error functions, transfer functions, and even the modifying method of the derivative of 

the transfer function can be used. The concept of momentum error was introduced to 

allow for more prompt learning while minimizing unstable behavior. Here, the error 

function, or delta weight equation, is modified so that a portion of the previous delta 

weight is fed through to the current delta weight. This acts, in engineering terms, as a 

low-pass filter on the delta weight terms since general trends are reinforced whereas 
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oscillatory behavior is canceled out. This allows a low, normally slower, learning 

coefficient to be used, but creates faster learning.  

Another technique that has an effect on convergence speed is to only update the weights 

after many pairs of inputs and their desired outputs are presented to the network, rather 

than after every presentation. This is referred to as cumulative back-propagation because 

the delta weights are not accumulated until the complete set of pairs is presented. The 

number of input-output pairs that are presented during the accumulation is referred to as 

an epoch. This epoch may correspond either to the complete set of training pairs or to a 

subset.  

4.4 Training and Validation of ANN Models: 

The scope of this thesis is to have the two constituents of the sweet gas stream, namely; 

 and , at desired specifications. The dynamic response of each constituent 

differs according to the kinematics and reaction rules controlling constituent’s reaction 

with DEA. Subsequently, two neural network models are to be developed in 

correspondence with different dynamic behavior. To model the forward dynamics of each 

sweet gas component, a fully connected feed-forward neural network is used in this 

section. The NN model has a structure of 6 inputs subdivided equally into disturbing and 

controlling parameters. The disturbing parameters are the sour feed flow rate, the  

acid gas concentration, and the  acid gas concentration. The controlling parameters 

are the DEA flow rate, the DEA temperature, and the reboiler duty.  

SH 2 2CO

SH 2

2CO
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In modeling both feed-forward networks, the same structure is selected to characterize 

both networks. Each network has an input layer with 6 neurons, a hidden layer with 40 

neurons and the output layer with one neuron representing the sweet gas constituent. The 

activation function used in each neuron in the input and hidden layers is the hyperbolic 

tangent sigmoid transfer function. The activation function used in each neuron in the 

output layer is the linear transfer function. The algorithm used to train the neural network 

model is the standard back-propagation. The back-propagation network training function 

is the Bayesian regularization back-propagation function. Moreover, the back-

propagation learning function is selected to be the gradient descent with momentum 

weight and bias. The network's performance is measured according to the mean of 

squared errors. 

The accuracy of the obtained NN model is viewed through the network active cost 

showing the squared error difference between actual and simulated output values. 

Secondly, the general performance of the network could be assessed via the plot of 

desired and simulated data sets. The higher the deviation between these two data sets the 

lower the fidelity of the model. Finally, the quality of the network training is checked by 

performing a linear regression between the network outputs and the targets. 

Designing a model-based controller requires the availability of a dynamic model for 

system as well as neural networks setting the relationship between controlling & output 

parameters. Eight neural networks are to be viewed based on the above assessment 

framework to satisfy the controller design requirements. The neural network models for 

 and  sweet gas concentrations are presented in this chapter. The remaining six SH 2 2CO
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networks are establishing the relationship between controlling parameters and sweet gas 

composition. Modeling those networks is required before developing the model 

predictive controller. They will be addressed in details in Chapter 5. 

• Neural network predictor for H2S sweet gas concentration: 
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Figure 4.5   Learning Curve: NN model of 6 plant inputs and 1 plant output (H2S) 

 70  



 

Figure 4.6   Rigorous Vs.  ANN Plot: NN model of 6 plant inputs and 1 plant output (H2S) 

 

 
 

Figure 4.7   Best Linear Fit: NN model of 6 plant inputs and 1 plant output (H2S) 
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• Neural network predictor for CO2 sweet gas concentration: 
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Figure 4.8   Learning Curve: NN model of 6 plant inputs and 1 plant output (CO2) 
 

 
Figure 4.9   Rigorous Vs.  ANN plot: NN model of 6 plant inputs and 1 plant output (CO2) 
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Figure 4.10   Best Linear Fit: NN model of 6 plant inputs and 1 plant output (CO2) 
 
 
 
Neural networks prediction show a very good match with rigorous plant data. Obtaining 

the optimum performance indicated by the best fit line, shown in Figs 4.4 & 7, is possible 

with only 500 training epochs for the two above prediction models. It is to be emphasized 

that those training parameters specified in MATLAB m-file (please refer to appendix-1) 

are the best obtained after experimenting other alternatives available in the MATLAB 

Neural Network toolbox. The recurrent network is not a feasible option due to relatively 

huge data involved in this application. The Levenberg-Marquardt function could not be 

selected as a back-propagation training function due to high memory requirements by this 

function. Accordingly, the Bayesian regularization function was set as the training 

transfer function. 
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5.0 NEURO-MPC CONTROL OF AMINE SWEETENING UNIT 
MANIPULATOR 

 

5.1 The principles of Non-linear Model Predictive Control: 

In general, the model predictive control problem is formulated as solving on-line a finite 

horizon open-loop optimal control problem subject to system dynamics and constraints 

involving states and controls. Fig 5.1 shows the basic principle of model predictive 

control. Based on measurements obtained at time t, the controller predicts the future 

 

Figure 5.1   Basic Principle of MPC 
 
dynamic behavior of the system over a prediction horizon Tp and determines (over a 

control horizon Tc≤Tp) the input such that a predetermined open-loop performance 

objective functional is optimized. If there were no disturbances and no model-plant 

mismatch, and if the optimization problem could be solved for infinite horizons, then one 
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could apply the input function found at time t= 0 to the system for all times t ≥ 0. 

However, this is not possible in general. Due to disturbances and model-plant mismatch, 

the true system behavior is different from the predicted behavior. In order to incorporate 

some feedback mechanism, the open-loop manipulated input function obtained will be 

implemented only until the next measurement becomes available. 

 

 The time difference between the recalculation/measurements can vary, however often it 

is assumed to be fixed, i.e the measurement will take place every d sampling time-units. 

Using the new measurement at time t + δ , the whole procedure – prediction and 

optimization – is repeated to find a new input function with the control and prediction 

horizons moving forward. 

 

It is to be noted that in the above figure, the input is depicted as arbitrary function of 

time. For numerical solutions of the open-loop optimal control problem it is often 

necessary to parameterize the input in an appropriate way. This is normally done by using 

a finite number of basis functions, e.g. the input could be approximated as piecewise 

constant over the sampling time δ . 
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5.2 Mathematical Formulation of Non-linear MPC: 
 
The prediction algorithm uses the output of the plant’s model to predict the plant’s 

dynamics to an arbitrary input from the current time  to some future  . This is 

accomplished by time shifting equations for  and by  resulting in  
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Where is the output function for the  node of the hidden layer, is the 

activation level of the  node’s output function, nh is the number of hidden nodes in 

hidden layer,  is the weight connecting the  hidden node to the output node,  is 

the weight connecting the  input node to the  hidden node,  the bias on the  

hidden node, the bias on the output node. The first summation of (5.2) breaks the input 

into two parts. 
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Using quadratic cost function and the predictive model, it is possible to calculate the 

optimal control strategy for a non-linear model predicted by using NN. The cost function 

in predictive control is chosen as: 
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Where r is the required process output, is the NN model output, u is the process input, 

 and  define the prediction horizon, the control horizon and 

ny

1N 2N uN λ  is a sequence of 

control weighting factors. A suitable choice for  is to make it equal to the process 

delay between input and output.  is then set to define the prediction horizon beyond 

this point and it represents the number of time-steps in the future for which the process 

response is recursively predicted as a result of the proposed control action sequence 

executed over the control horizon . Control actions after the 

control horizon are held constant equal to the value 

1N

2N

)1(),...,( −= uNkuku uN

)1( −+ uNku .  

5.3 Simulink Model of the Amine Sweetening Unit: 
 

Because  and  react differently with DEA solution, two model predictive 

controllers are to be implemented in the amine sweetening plant. The Simulink NN 

predictive controller block is utilized in this regard. The FNN models of the plant, 

developed earlier in Chapter 4, are converted into Simulink models using MATLAB 

command gensim. Each model sets the relationship between the plant six inputting 

variables (disturbing and controlling) and a single plant output (i.e. ). Fig 5.2 shows 

the first MPC to be implemented in the plant in order to control  outlet. As shown in 

Fig 5.3, normalization is considered due to large scale of data used in this study. Three 

MPC blocks, as shown in Fig 5.4), are used and each block is responsible for sending a 

particular control signal (i.e. DEA solution flow rate) to the amine plant based on 

specified set-point of outlet variable. The embedded NN model in each MPC block 

determines the control signal value required to reduce the error between desired and 

SH 2 2CO

SH 2

SH 2
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actual plant outlet values. Those models are FNN models developed before using the 

controller with network specifications specified in Table 5.1.  The training and testing 

results in developing those models are presented in section 5.4. Fig 5.5 shows the second 

MPC scheme to be implemented in amine gas plant for controlling  sweet gas 

concentration. 

2CO

 
Figure 5.2   Simulink Model of Proposed MPC controlling H2S outlet 

 
 

 
Figure 5.3   Sub-block of amine sweetening unit 
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Figure 5.4 Sub-block of NN-MPC 

 

 
Figure 5.5   Simulink model of  proposed MPC controlling CO2 outlet 

 
 
 
 
 
 

 79  



Table 5.1   Characteristics of NN-MPC models 
 

Type of network FNN 

Size of hidden layer 10 

No. Delayed plant inputs 2 

No. Delayed plant outputs 2 

Training Samples 10,000 

Validation Samples 10,000 

Training Epochs 200 

Training Function trainlm 
 

 

5.4 Training of the NN Predictive Model: 
 

This part discusses the training of the three FNN prediction models foe each MPC 

controller. Here the training data foe each FNN prediction model are obtained by 

recording the controlling variables and the plant output concentrations during the running 

of the amine sweetening unit dynamic model. To develop those data driven input-output 

relationships, a fully connected feed-forward neural network is used in the plant 

identification sub-block in the NN Predictive Controller Simulink block. 
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• NN model relating controlling variable (DEA flow) and plant output (H2S): 
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Figure 5.6   Learning Curve: NN model relating DEA flow & H2S 

 

0 1 2 3

x 105

25

30

35

40

45
Input

0 1 2 3

x 105

0.5

1

1.5

x 10-3Plant Output

0 1 2 3

x 105

-15

-10

-5

0

5
x 10

-4 Error

time (s)
0 1 2 3

x 105

0.5

1

1.5

x 10
-3 NN Output

time (s)
 

Figure 5.7   Training Data: NN model relating DEA flow & H2S 
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Figure 5.8   Validation Data: NN model relating DEA flow & H2S 
 

• NN model relating controlling variable (DEA temperature) and plant output (H2S): 

0 1 2 3 4 5 6 7 8 9 10 11
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

11 Epochs

Tr
ai

ni
ng

-B
lu

e 
 V

al
id

at
io

n-
G

re
en

Learning Curve: Performance is 1.49909e-008, Goal is 0

 
Figure 5.9   NN Model relating DEA temperature & H2S 
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Figure 5.10   Training Data: NN model relating DEA Temp & H2S 
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Figure 5.11   Validation Data: NN model relating DEA temp & H2S 
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• NN model relating controlling variable (reboiler duty) and plant output (H2S): 
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Figure 5.12   Learning Curve: NN model relating reboiler duty & H2S 
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Figure 5.13   Training Data: NN model relating reboiler duty & H2S 
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Figure 5.14   Validation Data: NN model relating reboiler duty & H2S 
 
 
 
• NN model relating controlling variable (DEA flow) and plant output (CO2): 
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Figure 5.15   Learning Curve: NN model relating DEA flow & CO2 
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Figure 5.16   Training Data: NN model relating DEA flow & CO2 
 

0 5 10

x 104

43.45

43.5

43.55

43.6

43.65
Input

0 5 10

x 104

1.5

2

2.5

3

3.5

x 10-5Plant Output

0 5 10

x 104

-20

-15

-10

-5

0

5
x 10-6 Error

time (s)
0 5 10

x 104

1.5

2

2.5

3

3.5

x 10-5 NN Output

time (s)
 

Figure 5.17   Validation Data: NN model relating DEA flow & CO2 
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• NN model relating controlling variable (DEA temperature) and plant output (CO2): 
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Figure 5.18   Learning Curve: NN model relating DEA temperature & CO2 
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Figure 5.19   Training Data: NN model relating DEA temperature & CO2 
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Figure 5.20   Validation Data: NN model relating DEA temp & CO2 
 
 
• NN model relating controlling variable (reboiler duty) and plant output (CO2): 
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Figure 5.21   Learning Curve: NN model relating reboiler duty & CO2 
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Figure 5.22   Training Data: NN model relating reboiler duty & CO2 
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Figure 5.23   Validation Data: NN model relating reboiler duty & CO2 
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To model the dynamic behavior of the amine sweetening unit, six fully connected feed-

forward neural networks are used in this section. Each FFN model has a structure of 1 

input and 1 output as per the requirement of the Simulink block. One hidden layer with 

40 neurons is used in the six concerned networks. The algorithm used to train the network 

is the standard back-propagation. 

 

5.5 Simulation Results of NN-MPC: 

There are three factors to be considered prior to implementing the proposed NN-MPC 

scheme in the amine absorption plant, namely; closed loop performance, stability, and 

computational efficiency. In general, using an infinite control and prediction horizon, i.e. 

Tc and Tp is desired to minimize the performance objective determined by the cost 

functional [28]. However, the open-loop control problem that must be solved on-line, is 

often formulated in a finite horizon manner and the input function is parameterized 

finitely, in order to allow a real-time numerical solution of the non-linear optimal control 

problem. Thus, it is desirable from a computational point of view to implement NN-MPC 

schemes using short horizons, but when a finite prediction horizon is used, the actual 

closed-loop actual trajectory will differ from the predicted open-loop trajectory, even if 

no model plant mismatch and no disturbances are present [23,28]. Accordingly, the 

computational power will determine the prediction horizon length required to avoid 

sacrificing stability and performance of NN-MPC scheme.  

Using the optimization toolbox in MATLAB, two different prediction horizons are used 

in order to demonstrate the effect of horizon length on controller performance. This is 

conducted on the proposed NN-MPC scheme, shown in Fig 5.2, used to control  SH 2
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sweet gas concentration. The NN-MPC design parameters for short and long horizons are 

listed in Tables 5.2 and 5.3, respectively.  

 

Table 5.2   Design Parameters for NN-MPC with short horizon 
 

Prediction Horizon (Tp) 7 

Control Horizon (Tc) 2 

Control Weighting Factor 0.05 

Searching Parameter 0.001 
 

Table 5.3   Design Parameters for NN-MPC with long horizons 
 

Prediction Horizon (Tp) 280 

Control Horizon (Tc) 260 

Control Weighting Factor 0.05 

Searching Parameter 0.001 
 

 

To test the performance of the proposed model predictive control strategy, the desired 

trajectories of plant outputs are generated by inputting the system a group of step 

excitations.  

Table 5.3 shows the step changes carried out on the plant in order to monitor the tracking 

error of controlling  sweet gas concentration. The tracking error represents the 

difference between the actual and desired concentrations. 

SH 2
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Table 5.4   Step excitations for test case 
 

Variable Unit Initial Value Final Value 

Feed Flow Rate  
kgmoles/hr 1220 1240 

H2S Mole Fraction 
in Feed Gas 

weight 
percent 0.014 0.018 

CO2 Mole Fraction 
in Feed Gas 

weight 
percent 

    

 
Table 5.5   Desired values for H2S and CO2 in the sweet gas stream 

 

Variable Unit Initial Value Final Value 

Desired H2S 
ppm 

0.0018 

Desired CO2 
ppm 

0.000037 

 
 
It is to be noted that  mole fraction in the feed gas was set unchanged in evaluating 

NN-MPC performance for  control because it was concluded from Chapter 3 that it 

is not a main factor contributing to  sweet gas concentration. On the other side,  

mole fraction in the feed gas was fixed in testing the performance of NN-MPC for  

control in the sweet gas 

2CO

SH 2

SH 2 SH 2

2CO

 

5.5.1 Performance Test for NN-MPC Scheme Controlling H2S Sweet Gas Concentration: 
 
• Feed Flow Rate: 
 
Figs 5.24-26 show the dynamic behavior of the system controlling parameters is 

presented in response to a step change in feed flow rate carried out on NN-MPC scheme 

with short horizon  
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Figure 5.24   Dynamic profile of DEA flow rate in response to step change in feed flow rate 
(short horizon of H2S NN-MPC) 
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Figure 5.25   Dynamic profile of DEA temperature in response to step change in feed flow rate 

(short horizon of H2S NN-MPC) 
 

 93  



1 2 3 4 5 6 7 8 9 10

x 104

3.2899

3.2899

3.2899

3.2899

3.2899

3.29

3.29

3.29

3.29

3.29

3.29
x 106

Time (seconds)

R
eb

oi
le

r D
ut

y 
(k

ca
l/h

r)

 
Figure 5.26   Dynamic profile of reboiler duty in response to step change in feed flow rate (short 

horizon of H2S NN-MPC) 
 

The dynamic behavior of  sweet gas concentration, associated with a short horizon 

specification, in response to above mentioned step change in feed flow rate is shown in 

Fig. 27 

SH 2
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Figure 5.27   Dynamic profile of H2S sweet gas concentration in response to step change in feed 
flow rate for NN-MPC with short horizon 

 
The dynamic profile of system controlling parameters after increasing the length of 

prediction and control horizons are presented in Figs 5. 28-30 
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Figure 5.28   Dynamic profile of DEA flow rate in response to step change in feed flow rate (long 
horizon of H2S NN-MPC) 
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Figure 5.29   Dynamic profile of DEA temperature in response to step change in feed flow rate 
(long horizon of H2S NN-MPC) 
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Figure 5.30   Dynamic profile of reboiler duty in response to step change in feed flow rate (long 
horizon of H2S NN-MPC) 
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The improvement in tracking error reduction between actual and desired  can be 

seen in Fig 5.31 
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Figure 5.31   Dynamic profile H2S sweet gas concentration in response to step change in feed 
flow rate for NN-MPC with long horizon 

 
 
• H2S Mole Fraction in Feed Gas: 
 
The dynamic behavior of amine plant controlling variables with response to a step change 

in  mole fraction in the feed gas from 0.0172 to 0.01972 weight percent is 

demonstrated in Figs 5.32-34. Those dynamic responses are for short prediction and 

control horizons of NN-MPC 
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Figure 5.32   Dynamic profile of DEA flow rate in response to step change in H2S feed mole 
fraction (short horizon of H2S NN-MPC) 
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Figure 5.33   Dynamic profile of DEA temperature in response to step change in H2S feed mole 

fraction (short horizon of H2S NN-MPC) 
 

 98  



1 2 3 4 5 6 7 8 9 10

x 104

3.2899

3.2899

3.2899

3.2899

3.2899

3.29

3.29

3.29

3.29

3.29

3.29
x 106

Time (seconds)

R
eb

oi
le

r D
ut

y 
(k

ca
l/h

r)

 
Figure 5.34   Dynamic profile of reboiler duty in response to step change in H2S feed mole 

fraction (short horizon of H2S NN-MPC) 
 
The high tracking error, shown in Fig 5.35, indicated that the length of the specified 

horizon is not adequate 
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Figure 5.35   Dynamic profile of H2S sweet gas concentration in response to step change in H2S 
feed mole fraction (short horizon of H2S NN-MPC) 
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Subsequent to resetting the prediction and control horizons to 280 and 260, respectively, 

the tracking error has dropped significantly. Figs 5.36-38 show the dynamic behavior of 

the system controlling variables and Fig 5.39 shows the corresponding  sweet gas 

concentration 
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Figure 5.36   Dynamic profile of DEA flow rate in response to step change in H2S feed mole 
fraction (long horizon of H2S NN-MPC) 
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Figure 5.37   Dynamic profile of DEA temperature in response to step change in H2S feed mole 
fraction (long horizon of H2S NN-MPC) 
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Figure 5.38   Dynamic profile of reboiler duty in response to step change in H2S feed mole 

fraction (long horizon of H2S NN-MPC) 
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Figure 5.39   Dynamic profile of H2S sweet gas concentration in response to step change in H2S 
feed mole fraction (long horizon of H2S NN-MPC) 

 
 
5.5.2 Performance Test for NN-MPC Scheme Controlling CO2 Sweet Gas Concentration: 

Next, the performance of NN-MPC controlling  composition in sweet gas is 

evaluated by applying step changes, listed in Table 5.4, in feed flow rate and  mole 

fraction in the feed gas. The lengths of prediction and control horizons utilized in this 

performance test are those in Tables 5.2 and 5.3 for short and long horizons, respectively. 

2CO

2CO

The dynamic behavior of amine sweetening unit controlling variables, with short horizon 

specification, in response to step change in feed flow rate are shown in Figs 5.40-42 
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• Feed Flow Rate: 
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Figure 5.40   Dynamic profile of DEA flow rate in response to step change in feed flow rate 
(short horizon of CO2 NN-MPC) 
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Figure 5.41   Dynamic profile of DEA temperature in response to step change in feed flow rate 

(short horizon of CO2 NN-MPC 
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Figure 5.42   Dynamic profile of reboiler duty in response to step change in feed flow rate (short 
horizon of CO2 NN-MPC) 
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Figure 5.43   Dynamic profile of CO2 sweet gas concentration in response to step change in feed 

flow rate (short horizon of CO2 NN-MPC) 
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In order to overcome the NN-MPC mal-performance, shown in Fig 5.43, longer 

prediction and control horizons were used. Figs 5.44-46 show the dynamic behavior of 

amine plant control variables in response to the same step change applied earlier on feed 

flow rate. The  sweet gas composition is shown in Fig 5.47 2CO
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Figure 5.44   Dynamic profile of DEA flow rate in response to step change in feed flow rate (long 
horizon of CO2 NN-MPC) 
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Figure 5.45   Dynamic profile of DEA temperature in response to step change in feed flow rate 

(long horizon of CO2 NN-MPC) 
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Figure 5.46   Dynamic profile of reboiler duty in response to step change in feed flow rate (long 

horizon of CO2 NN-MPC) 
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Figure 5.47   Dynamic profile of CO2 sweet gas concentration in response to step change in feed 

flow rate (long horizon of CO2 NN-MPC) 
 
 
• CO2 Mole Fraction in Feed Gas: 

Figs 5.48-50 show the dynamic responses of system control variables in response to a 

step change in  mole fraction in the feed gas with short horizons specified for NN-

MPC and Fig 5.51 shows the  sweet gas concentration. 

2CO

2CO
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Figure 5.48   Dynamic profile of DEA flow rate in response to step change in CO2 feed mole 
fraction (short horizon of CO2 NN-MPC) 
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Figure 5.49   Dynamic profile of DEA temperature in response to step change in CO2 feed mole 

fraction (short horizon of CO2 NN-MPC) 
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Figure 5.50   Dynamic profile of reboiler duty in reponse to step change in CO2 feed mole 

fraction (short horizon of CO2 NN-MPC) 
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Figure 5.51   Dynamic profile of CO2 sweet gas concentration in response to step change in CO2 

feed mole fraction (short horizon of CO2 NN-MPC) 
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Next, longer horizons are used to increase the efficiency of  NN-MPC. The 

prediction and control horizons are set to 280 and 260, respectively.  

2CO
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Figure 5.52   Dynamic profile of DEA flow rate in response to step change in CO2 feed mole 

fraction (long horizon of CO2 NN-MPC) 
 

 110  



0 100 200 300 400 500 600
35.122

35.124

35.126

35.128

35.13

35.132

35.134

35.136

35.138

35.14

35.142

Time

D
E

A
 T

em
pe

ra
tu

re
 (D

eg
. C

)

 
Figure 5.53   Dynamic profile of DEA temperature in response to step change in CO2 feed mole 

fraction (long horizon of CO2 NN-MPC) 
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Figure 5.54   Dynamic profile of reboiler duty in response to step change in CO2 feed mole 

fraction (long horizon of CO2 NN-MPC) 
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Figure 5.55   Dynamic profile of CO2 sweet gas concentration in response to step change in CO2 

feed mole fraction (long horizon of NN-MPC) 
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6.0 Conclusion and Recommendations 
 

6.1 Summary and Conclusions: 

In this thesis a dynamic rigorous model of amine sweetening unit was built using 

HYSYS. This simulation model was treated as the “real” plant after it had been validated. 

Steady state and dynamic analysis and control system design were carried out utilizing 

this simulation model. 

 

The MPC model based control strategy was applied to amine absorption plant with view 

to control  and  composition in sweet gas. Process modeling is required for 

MPC control. However, rigorous mechanistic model can not be used for implementation 

of MPC because of computational limitation. Therefore, neural network technique for 

modeling has been developed for amine sweetening plant. Feed-forward neural network 

(FNN) has been employed for deriving input-output prediction model. The input-output 

data to train this FNN model were extracted from the dynamic responses calculated by 

HYSYS dynamic simulation. Obtaining a Recurrent Neural Network (RNN) model was 

not a feasible option in this application because of its long computational time. Moreover, 

the large scale of data and high number of system parameters limited the choice of NN 

modeling dynamics. The FNN is augmented in the MPC control structure as the plant 

model leads to NN-MPC. 

SH 2 2CO

 

The performance of the proposed MPC structure under different model uncertainties has 

been investigated. It was found that closed-loop performance and stability of the 
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proposed NN-MPC depend on setting prediction and control horizons. It is desirable to 

minimize the performance objective determined by the cost functional using long 

horizons. However, from computational point of view using short horizons is preferred. 

The shorter the horizon, the less costly the solution of the on-line optimization problem. 

MPC shows good performance in terms of both regulatory (disturb rejection) and servo 

(set point tracking) control actions. The multivariable nonlinear nature of the proposed 

NN-MPC makes it a good candidate to replace the existing conventional single loop PID 

linear controllers. However, real-time implementation of NN-MPC is feasible if the 

computational load is manageable without sacrificing stability and performance. 

 

6.2 Recommendations: 

Based on the results of the sensitivity analysis conducted on steady state and dynamic 

models of amine sweetening unit, the control parameters were prioritized as per their 

speed of response on sweet gas specifications. Maintaining , on fast-track basis, 

could be achieved by increasing steam flow rate into regeneration reboiler. On the other 

side, increasing DEA solution flow rate would be preferred over increasing DEA solution 

temperature or reboiler duty because of it fast response. This selection offers a zero-

investment choice for ADGAS in marinating plant throughput across their facilities at a 

fixed rate.   

SH 2

 

The main problem with the NN-MPC controller is its long computational time and thus it 

is difficult to implement in real time. Therefore the real time application of the NN-MPC 

should be the future research topic. Advancements in computer technology and future 
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development of fast and efficient numerical solution methods will enable real-time 

implementation of MPC on large scale plants. 
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APPENDICES 
 

MATLAB Code for FNN Modeling 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

clc 
clear  
% Load data  
data=dlmread('test1.txt'); 
X1=data(:,1); X2=data(:,2);X3=data(:,3); 
X4=data(:,4);X5=data(:,5);X6=data(:,6); 
Y1=data(:,7); 
X1=[X1 X2 X3 X4 X5 X6]; Y1=[Y1]; 
[sample,c]=size(X1');  
% Prepare Inputs and Targets 
abc=sortrows([X1 X2 X3 X4 X5 X6 Y1 ],2); 
p=abc(:,1:6)'; 
t=abc(:,7)'; 
%Normalizing data 
  
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t); 
%pn=p; tn=t; 
%Principal compoent analysis 
[R,Q] = size(pn) 
n=1:1:Q; 
% Divide data into Training, Validation and Testing sets 
iitr = 1:1:Q; 
iitst= 1:2:Q; 
iival= 1:2:Q; 
  
ptr = pn(:,iitr); ttr = tn(:,iitr); 
val.P = pn(:,iival); val.T = tn(:,iival); 
test.P = pn(:,iitst); test.T = tn(:,iitst); 
  
% Create the feedforward Network 
Net=newff(minmax(ptr),[1 40   1],{ 'tansig' 'tansig' 'purelin'}, 
'trainbr'); 
  
% Set training parameters 
Net.trainParam.epochs=1500;         % Maximum number of epochs 
Net.trainParam.show=50;              % Period of showing calculation 
progress 
Net.trainParam.lr=0.1;              % Algorithm learning rate 
Net.trainParam.goal=1e-10;            % Optimisation goal 
Net.trainParam.min_grad=1e-10;        % Minimum gradient 
Net.trainParam.mem_reduc=1;          % Memory reduction parameter 
Net.trainParam.max_fail=550; 
Net.performFcn = 'msereg'; 
Net.performParam.ratio = 0.5; 
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% Train the network 
time0 = cputime;   
[Net,tr]=train(Net,ptr,ttr,[],[], val,test); 
time = cputime-time0;  
[str,errmsg] = sprintf('The CPU time = %d sec',time); disp(str); 
  
% Plot errors 
figure(1) 
plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf) 
legend('Training','Validation','Test',-1); 
ylabel('Squared Error'); xlabel('Epoch') 
  
% Simulate the network 
an = sim(Net,pn); 
  
% Un-normalize the data 
a = postmnmx(an,mint,maxt); 
  
figure(2) 
plot(n,a,n,t,'+') 
  
% Perform a linear regression between the network outputs 
(unnormalized) and the targets 
% to check the quality of the network training. 
for i=1:1 
figure(i+2) 
[m(i),b(i),r(i)] = postreg(a(i,:),t(i,:)); 
end 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 121  



ADGAS Process Flow Diagrams (PFDs): 
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