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ABSTRACT 

Loss of production and machine breakdown are critical challenges facing modern 

machining.  The main objective of this work is to develop an intelligent multi-sensor 

process condition monitoring that is able to predict the wear propagation in the cutting 

tool using information obtained from the analysis of cutting force  and acoustic emission 

(AE) signals generated during turning of steel.  The time domain for cutting forces and 

AE signals are processed for relevant features about fresh and worn tools.  Principal 

component analysis (PCA) is used to eliminate redundant and irrelevant features.  The 

most relevant features are used as inputs for the two classifier used in this investigation, 

namely, back propagation neural network (BPNN) and polynomial classifier (PC).  The 

classifiers parameters are optimized to achieve faster computations and better predictions.  

To improve accuracy, leave-one-out (LOO) method is used to train both classifiers.  LOO 

uses all the data samples for training the system.  Classifiers training is modeled by 

correlating the extracted features with the actual measured tool wear.  Comparing to 

BPNN, PC shows a dramatic reduction in training and prediction time.   The results show 

the effectiveness of PCA in selecting feature that retains as much as possible of the 
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variation in the original data.   Such a system is of vital importance to the automation of 

manufacturing facilities. Also the use of features enhances the accuracy of both method 

in comparison to the use of raw data. 
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CHAPTER 1: INTRODUCTION  

 

1.1 Preamble  

 
This master thesis investigates the use of mutli-sensors in tool conditioning 

monitoring in turning process.  This work studies the wear propagation in cutting tool 

during turning process.  Knowing the tool status leads to systematic replacement and 

maintenance schedule. In addition, catastrophic failures are minimized, better product 

quality are achieved, and resources are efficiently used.  This master thesis is part of 

ongoing studies on the tool condition monitoring.  To be so, a new sensor and a novel 

classification method are used.  Extensive experimental laboratory work is performed 

together with computer simulations to develop a model for the tool wear propagation.  

Results shows that tool wear prediction is successfully modeled.    

 
1.2 Scope of work 
 

The notion of machine/processes monitoring is associated with the automation of 

any process. In manufacturing, machine condition monitoring has been applied in many 

areas to monitor machine tool vibration, spindle life and tool wear.  Many sensors such as 

vibration and force sensors have been used for fault detection.   The scope of this work 

will be focused on indirect monitoring and detection of cutting tool wear progression 

while machining metals in turning operations.  In order to produce various tool wear 

progression schemes, cutting conditions are varied using the experimental design of 

Tagushi.  In this work, a new approach is proposed to overcome two main problems of 

existing approaches: namely high cost sensors on the one hand and computationally time 

consuming modeling techniques on the other hand.  In addition to a dynamometer, a 

highly cost force sensor, and low cost acoustic emission sensor are used.   Results form 

each sensor individually and combined are to be observed.  To predict tool wear two 

artificial intelligence schemes are applied.  First, a modified back-propagation neural 

network, using leave one out method, for better prediction accuracy has been 
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investigated. Second, polynomial classifier, which is a novel technique in pattern 

recognition with quicker convergence and better prediction accuracy, has been applied. 

To the best of the author knowledge and belief, no work has been published in this field 

by another person using the above-mentioned techniques.  The key of success of pattern 

recognition models is the relevant feature extraction.  This work analyzes the correlation 

between the output signal and the tool wear by the time domain analysis, statistical 

features, of the output signals.   

 

1.3 Thesis layout  

 
Chapter 2 provides a general background about tool wear in cutting tools and the 

nature of the acoustic emission generated during machining.  It also presents a review of 

machine condition monitoring and the various type of intelligent systems that have been 

used in this field.  Chapter 3 describes the methodological approach that is used and the 

experimental setup including specimen material, inserts, machine, and sensors.  In 

chapter 4, the modeling approaches that are used to model tool wear are presented.  Two 

discriminative models are described to predict tool wear and classify tool states, namely 

neural network and polynomial classifier.  Feature extraction and feature evaluation is 

also presented.  In chapter 5, signals acquired from sensors are analyzed.  Features 

extraction and the way to evaluate them are presented.  In addition, the two methods on a 

different dataset have been evaluated.  The results from both models are compared.  

Finally, chapter 6 concludes the thesis and includes a brief outline of the major outcome 

results, with some recommendations for future work 

.      
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CHAPTER 2: LITERATURE REVIEW  

 
2.1 Introduction  
 

With the increased global competition, demand for more environmentally benign 

manufacturing processes and increased production cost the manufacturing sector is 

vigorously working on enhancing the efficiency of manufacturing processes in terms of 

cost, quality and environmental impact.  One concept that poses itself in this direction is 

automation and unmanned manufacturing facilities to reduce overhead cost and enhance 

product quality.  Another fold to the solution is the use of newly engineered materials 

with high strength to weight ratio. Such materials would results in lighter products and 

more efficient engines with less harmful emissions to environment. The down side of the 

latter option is that such materials are difficult to cut materials in terms of their high tool 

wear rate.   

In manufacturing, metal cutting is a daily on going process.  Finishing cut is 

almost always used to achieve the design constraints on surface finish and to achieve the 

required design tolerances.  These two criteria are significantly affected by the state of 

the cutting tool.  Since cutting tool is at the heart of this process, its health status is 

crucial in industrial applications.  Therefore, the need for automated manufacturing 

systems, that are able to up-date the user with accurate information about the process, has 

increased.   

Business does not tolerate equipment failures, machine breakdowns, and material 

damage.  This can occur due overusing the consumable parts: for instant cutting inserts.   

As a result, companies worldwide tend to use smart monitoring technologies, which can 

predict any catastrophic failure.  At the same time, these companies insist on getting back 

value for money for their investment in tool condition monitoring (TCM) technologies.  

In this sense, more pressure will be for development of smart methods concerning such 

major economic concern.   TCM can save human lives, as they can take adequate steps 

before any machine failure.  All of this and more encourages the research community and 

the industrial sector to investigate and find out better ways to study this phenomenon. 
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2.2 Tool wear  

 
In metal machining, excess material is removed from the starting work piece so that the 

remaining part has the final desired shape.  This process is called material removal 

process.  The most important member in this process is a sharp cutting tool that is used to 

mechanically remove material.  In machining shear deformation of the work piece occurs 

for this removal process.  Figure 1 illustrates machining process.  

Cutting tool 

Work piece 

Chip 

Flank

Rake face

Shear deformation

  
Figure 1: Cross-sectional view of the machining process 

 

In this process, high forces and temperatures are generated.  This creates a very harsh 

environment for the tool.  In these extremely arduous conditions, three scenarios are 

possible for a tool failure   

a) The cutting force is too large and excessive, causing the tool to suddenly fracture.  

b) The cutting temperature is too high causing the tool material to soften and fail due 

the plastic deformation. 

c) Continuous removal process leads gradual wearing of the cutting edge.  This 

causes a loss of the tool shape and a failure.        
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Of the three possible tool failure modes, part c is preferred because it ensures the longest 

possible usage of the tool.  This is the optimum condition that ensures cost reduction, i.e. 

economical advantage.  

From figure 1 two main locations can exhibit the tool wear highlighted in point c at the 

top rake face and the flank.  This can classify the tool wear into a crater wear and flank 

wear [1].  The two locations are shown in figure 2. Crater wear is a concave section on 

the rake face of the tool.  It occurs due the chip sliding against the surface.  This type of 

wear can be measured either by its depth or its area.  The second type, “flank wear” 

results from rubbing between the newly generated flank face and work piece surface. It is 

measured by the width of the wear band.  

Nose radius wear 

Notch wear

Crater wear 

Flank wear

 
Figure 2: Worn cutting tool  

 

Notch wear and nose radius wear are two types of flank wear.  The former occurs 

because of variation in the hardening between the outer surface and the internal material 

from previous machining or other reasons.  It is located on the original surface of the 

work piece.  The nose radius wear occurs on the nose radius of the tool.  Figure 3 

summarizes the types of the tool wear.  
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Figure 3: Types of tool wear 

    

Tool wear with time can be divided into three regions.  These regions can be 

identified in a wear growth curve.  Figure 4 depicts flank wear.  The first region is a 

break-in period, where a sharp tool wears rapidly.  It is followed by steady state wear, in 

which the wear is uniform.  The last region is the failure region, in which wear starts to 

accelerate, and temperature increases and tool eventually fails.    
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Failure region 

Break in period

Fracture failure Temperature failure Gradual wear 

Crate wear Flank wear 

Notch wear 

Nose radius wear 

Tool wear 

Time of cutting (min) 

Figure 4: Tool wear as a function of cutting time  
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2.3 Acoustic emission  
 

Acoustic emission is a transient elastic wave that is generated from rapid and 

spontaneous release of energy in material undergoing permanent deformation [2].  This 

wave is considered as a stress wave, which propagates through the material at 

approximately the speed of sound.  The stress wave can be attenuated, reflected, and/or 

distorted.  A piezoelectric transducer is used to detect acoustic emission.  It can be 

directly mounted on the specimen or indirectly, since the stress wave can propagate 

through the mechanical structures.  AE has been used to detect tool wear in turning 

machining.  Continuous and transient signals are the two types of AE signals acquired in 

turning.  The former is a low amplitude high frequency associated with plastic 

deformation during the cutting process in the workpiece, plastic deformation in the chip, 

frictional contact between the tool flank face and the workpiece resulting in flank wear, 

and frictional contact between the tool rank and the chip resulting in crater wear.  The 

transient or burst signal is a high amplitude, low frequency associated with collision 

between chip and tool, chip breakage, and tool fracture.  Therefore, the continuous part of 

AE signal is used to monitor tool wear.  The major advantage of using AE signals is that 

the frequency range of the AE signal is much higher than that of the machine vibration 

and environmental noise.   
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Figure 5: Typical AE signal in turning 
 
2.4 Machine condition monitoring  

 
In tool condition monitoring (TCM), the system gathers information about the 

overall process.  It is done through cues captured by different types of signals.  Each 

signal is generated from separate source, namely a sensor.  These signals represent 

various operation parameters such as cutting speed, energy consumption, sound and 

others.  Considerable research used acoustic emission, vibration, cutting force, and 

temperature sensors.  Some of them are used alone or combined, sensor fusion [3,4].   

After having these signals as inputs to TCM system, an intelligent system is 

needed to interpret them.  This system will make a conclusion about the status of the 

process, as output.  Different kind of decision making techniques have been used to 

predict tool wear.  Artificial Neural networks (ANNs) are a typical example of an 

intelligent system.  With ANNs, it is possible to create a system that is able to learn and 

adapt to any change in the operation parameters. It can be stated that multi-layer 
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perceptrons of the back propagation type is the ANN mostly used for this task.  The 

literature survey shows many authors have used this strategy [3-13].  Also, adaptive 

resonance theory (ART2) has been used to study the wear propagation [14-16].  Besides 

neural networks, several other methods have been used to predict tool wear such as 

support vector machine (SVM) [6,17-19].  Besides ANNs, other methods such as fuzzy 

logic and neurofuzzy [8,20,21], analytic hierarchy process [22], and group method of data 

handling (GMDH) can be used [23]. Each method has its pros and cons.   The most 

important question is how to make sure that the system is reliable? In other words, the 

system should be efficient and effective under test conditions that are unseen during 

training.  

In contrast to the direct measurement method, Astakhov [24] proposed to study 

the physical process that occurs in the tool-workpiece interface and use it to predict tool 

wear.  Astakhov indicated that, stress (normal and shear) are not the only reason to cause 

the tool wear in the flank contact face; a plastic deformation of the cutting wedge, called 

plastic lowering, is a major cause in the tool failure.  In studying the contact phenomena 

of the tool-workpiece interface, the author found “minimum tool wear at optimum cutting 

speed where the apparent friction coefficient is minimum.”   

The last observation in this paper relates the tool geometry with the flank wear. Using 

inserts of standard materials and shapes enables to have a correlation curve regardless of 

the work material or the cutting conditions.     

Li [25] reviewed the various acoustic emissions sensing (AE) research on tool 

wear in turning.  The AE is an effective indirect method in determining the tool wear.  

The major gain in using AE is its frequency range, which is much higher than those of the 

machine vibration and environmental noise.  Various signal processing techniques are 

used to extract the physical features of tool wear.  Time series analysis is used with 

Artificial Neural Network to get the autoregressive parameter (AR) and AR residual 

signal to analyze tool wear. It is found that the power of residual signal of AE increases 

with the increase of flank wear.   Fourier Transform (FT) proves that the magnitude of 

AE in the frequency domain is sensitive to the change in the tool wear.  The drawback of 

FT is the fact that it deals with AE as stationary signal, which it is not.  This will leads to 

average the signal on that duration. Unlike FT, Gabor Transform (GT) deals with non-
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stationary signals as a short data window.  But it can not deal with signals of patterns 

with different scales. The last technique is Wavelet Transform. It is able to detect and 

extract the AE feature to gradually increase in flank wear.          

Arul et al. [26] used AE sensing to study the effect of drilling parameters on thrust force 

and flank wear using glass fiber reinforced plastic composites as workpiece. It was found 

that the thrust force is affected by the feed rate significantly compared to the cutting 

speed.  Also, the minimum tool wear is associated with the optimum cutting conditions, 

and tool wear is proportional to drill feed. During, drilling the workpiece emits acoustic 

emission signals due to breakage of fiber glass.  These signals are used to monitor the AE 

RMS values.  The AE RMS values increases with increasing cutting speed to a certain 

level, after that it starts to decrease.     

Sun et al. [16] presented the importance of the careful selection for the training 

data sets in ANN.  It is important to extract the characteristic of tool wear process and 

ignore the irrelevant data, without compromising the generalization accuracy.  The study 

was carried out using an AE sensor and cutting force sensor.  To obtain the efficient data 

in tool condition monitoring support vector machine (SVM) is used.  SVM has the ability 

to select and reject sample data. In addition, the generalization error is categorized into 

three regions, where each region gives an indication about how much the samples 

contribute to the decision making.  Each of these regions has certain factor that ignores 

the irrelevant data.  This technique is able to select an efficient training set that is fast in 

performance without trading off the accuracy.       

Lu and Asibu [27] presented the tool wear based on the sound generated during 

turning process. Also, a dynamical model is established to relate the tool wear with the 

sound signal generated from the cutting process.  The asperities on the tool and the work 

piece considered as source of exciting the system to generate sound signals. The 

asperities are modeled as trapezoidal series that have height, spacing and size.  It was 

found that as the parameters of the asperities decrease the flank wear increases and 

signals shift to higher frequencies.     

Wong et al. [13] studied different ANNs for machinability data representation.  

Both feed-forward and back propagation were used.  The former was used to predict the 

best machining parameters, while the latter was used to train the network.  In the feed-
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forward mode a new neuron is introduced.  This neuron is a product neuron for non-linear 

input which is the depth of cut. Unlike the classical neuron, summation neuron, product 

neuron can have multiple neurons but weighted once. This will boost the processing of a 

signal coming from a product neuron comparing to a summation neuron.  The authors 

introduce a new method to train the neurons, called Reinforced Retraining (RR). It forces 

the solution away from local or weak minima towards global minima. Combining Steep 

Decent and RR methods converges into global minima eight times faster than Variable 

Learning Rate.  It was proven that non linear neuron network is better than classical 

neuron network.  

Sun et al. [19] presented the support vector ma chine (SVM) as strategy for NN 

learning for different cutting conditions. SVM is used to evaluate the set of AE data and 

to extract and differentiate relevant data during cutting process.  This work not only 

focuses on the relevant data but also it selects the minimum set of features. In the 

experiment, 25% of data patterns were used in the training set, and 75% of data patterns 

were used in the testing set.  This allows for covering all cutting range and tool 

conditions to study effectiveness of this feature selection process in tool condition 

monitoring. 

Ghosh et al. [7] presented an ANN-based sensor fusion model for tool condition 

monitoring (TCM) for a face milling process. Flank wear was predicted using sensor 

fusion technique, from extracted features cutting forces, spindle vibration, spindle 

current, and sound pressure. In face milling only when the cutting tool is in contact with 

the work-piece signals carry useful data on cutting tool condition. Therefore, it is 

important to extract the relevant data. Beside the forces, current, voltage and input power 

are good source of information about the tool wear.  It was noticed that TCM based on 

power is reliable comparing to force based using dynamometer.    

Dimla and Lister [12] used ANN to predict tool condition online.  This method added 

intermediate classifications for the tool between the end states of “worn” or “sharp”. This 

gives more reliability for the system and reduces the cost.  Attempts to study the effects 

of changing the cutting conditions, such as tool materials and cutting area, on the ANN, 

revealed that the ANN was not able to adapt the new settings.   
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Samanta et. al. [6] compare ANN and SVM in bearing fault detection.  Genetic 

Algorithms were used, substantially, to decide about the input features and classifier’s 

parameters.  Two set of results are obtain, with and without auto-selection of feature 

selection. Three comparisons were made based on (a) sensor location, (b) signal pre-

processing, and (c) number of features.  From the results obtained, SVM was better in 

performance and in time required for training.  Kuo [10] combine ANN and Fuzzy logic 

to estimate tool wear using multi sensors inputs (force, vibration, and acoustic).  Time 

series and frequency analyzer were used to extract features.  Then, these extracted 

features were used as inputs for Error Back-Propagation Network (EBPN) and Counter-

Propagation Network (CPN) analyzer.  Results showed EBPN forecasts better that CPN, 

yet it required longer training time. When using multi-sensors, FNN can predict tool wear 

better than multiple regression and ANN and less time required for training.  Kuo found 

out that non-uniformly distributed hardness of work piece causes unpredictable amount 

tool wear.        

Silva et al[14] used a hybrid AI system that consist of two ANNs, namely self-

organizing map (SOM) and adaptive resonance theory (ART), linked with a fuzzy logic 

to monitor tool wear.  The fuzzy functions are used to compare the prediction of the two 

ANNs, in order to decide which one is more reliable.  SOM showed better feature 

extraction than ART, however, it needs longer training time. Taylor filter was used to sort 

out the misclassification from the ANN due to the noise detected by the sensors.  Li et al 

[29] studied the tool wear and cutting force relation using coated carbide inserts, while 

using vertical milling machine.  The results showed that flank wear, which was the major 

reason for tool failure, is more significant in the up milling than in the down milling.  The 

force generated was affected by the tool wear as well as the thermal effect due to the 

frictional engagement between the insert and the workpiece during cutting.   Sikdar and 

Chen [30] presented the relationship between the flank wear area and the cutting forces in 

turning operation.  They found that the more the flank wear the higher the friction 

between the tool and the workpiece, which leads to increase in the forces magnitude in all 

directions.  The rate of change in the axial and radial force components was found to be 

higher than the tangential one when the tool is about to fail.  They also found radial force 
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is larger than the axial one when the tool begins to fail.  A mathematical model was 

developed to understand the relation between flank wear and cutting forces.     

Huang et al [31] presented a fault detection and diagnosis based on an observer 

model for CNC milling center.  This model was used to predict tool wear with relation to 

the cutting forces.  Tool wear is considered to be a state variable, and cutting forces and 

other variable to be observed.  A dynamometer was used to measure cutting forces and a 

camera system was mounted to visualize tool wear.  The authors indicated that this 

observer is limited to the same setup used in their test.  This means for any deviations in 

the material or cutting tool the model is not valid anymore. This restriction made the 

system to be identified each time a new material or inserts is used.        

Oraby and Hayhurst [32] tried to avoid the machining parameters in determining tool life 

for center lathe machine.  They studied the tool life using non-linear analysis technique 

based on the forces ratios.  A model for measuring tool wear and another one for tool life 

are developed, based of force ratios.  The model demonstrated a good prediction 

capability and good agreement with the results from the experiments. 

Choudhury and Kishore [33] presented in their work a mathematical model to relate flank 

wear with the ratio of feed force to cutting force.  Flank wear increased linearly with the 

increase in machining parameters and the diameter of the workpeice.     

Santanu and Chattopadhyay [21] applied Analytic Hierarchy Process model to predict the 

tool status during machining, and to tell in what category the tool is; sharp, workable, or 

worn out.  The cutting forces and flank wear were used to formulate this model.  This 

method was able to estimate the state of tool wear, however, some cases of overlapping 

between categories occurred.      

Li et al [20] presented different approach for tool monitoring through estimating the 

cutting force using a current sensor installed in the ac servomotor for the CNC turning 

machine.  Using neuro-fuzzy inference system this measurements can be structured to 

detect tool wear.  This method focuses mainly in the last stage of the tool wear, when the 

tool reaches its useful life.  This method is not applicable for light cuts.     

Choudhury and Rath [34] investigated, in milling, the relation between the flank wear 

and the tangential force coefficient and other cutting parameters to estimate tool wear.  A 

mathematical model, using least square model, was developed to find tool wear.  The 
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results showed increase in the tool wear with the increase in depth of cut and feed. 

Cutting speed had negligible effect on the tangential force coefficient.  

 

2.5 Summary  

This chapter gives a general background about tool wear in cutting tools and the 

nature of the acoustic emission generated during machining and its types.  The chapter 

also reviews many of the classification methods used in machine condition monitoring.  

The experimental setup and methodology is presented in the next chapter.        
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CHAPTER 3: DATA COLLECTION AND EXPERIMENTAL WORK  

 

3.1 Experimental setup  

In this machining experiment, mild steel is chosen as a workpiece material.  The 

workpiece dimensions are 300mm in length and 80mm in diameter.  Mild steel contains a 

low amount of carbon, which makes it neither extremely brittle nor ductile, significant 

amount of manganese along with lesser amount of phosphorus and sulfur.  The chemical 

composition and mechanical properties of the material are given in Table 1.     
 
Table 1: Specification of  workpiece [35] 
C  0.15-0.2% 

Mn 0.6-0.9% 

P 0.04% 

S 0.05% 

Tensile strength  634MPa 

Yield strength 386MPa 

Hardness 197HB 

 

The cutting experiments were carried out on a CNC lathe machine using coated carbide 

inserts.  A platform kistler dynamometer, attached to the tool holder, is used to measure 

the cutting forces in the three directions, namely tangential, axial (feed) and redial forces.  

Figure 6 shows the experimental setup, the piezoelectric AE sensor, kistler model 815B, 

is placed on the upper surface of the dynamometer using powerful magnetic clamp. 
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Figure 6: Experimental set up 

 

 

3.2 Experimental procedure  
 

According to the design of experiments, the three main machining parameters 

(cutting speed, feed, depth of cut) are set according to their effect on the tool wear.  Five 

levels of cutting speed, three levels of feed rate, and one level of depth of cut, are listed in 

Table 2.  Since depth of cut has the least effect on tool wear, it kept constant. This will 

comprehensively cover the entire parameter space with precise and concise results.     

 
 
Table 2: Machining parameters 
Levels Cutting speed   (v,m/min) Feed rate     (f,mm/rev)  Depth of cut (d,mm) 

1 110 0.15 1 

2 130 0.2  

3 150 0.3  

4 170   

5 190   
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Initial runs are carried out at different machining parameters as presented in Table 2 

using a fresh cutting tool.  These runs are to examine the effect of machining parameters 

on the signals acquired.  Next, runs are conducted to achieve progressive tool wear 

conditions.   

A tool conditioning monitoring setup, with the characteristics shown in Table 3, 

employing MATLAB software [36], is used for acquiring the sensory signals.  In each 

run, all the sensory signals from the three cutting forces in the feed, radial and tangential 

cutting directions are measured, using the dynamometer with Kistler Type 9251A force 

transducer. Cutting force is used to estimate tool wear and the actual cutting force is 

measured by a force dynamometer at a sampling rate of 1 kHz.  The three components of 

the cutting force are amplified with Kistler type 5070 charge amplifier and then plotted 

using Daynoware software [37]. At the same time, the continuous AE signals are also 

recorded, using Kistler Type 8152A.  In order to avoid signal attenuation, the AE sensor 

should be placed as close to the cutting zone as possible as described in [38].   
 

Table 3: Machining monitoring setup 
Sensors 

     Cutting Forces 

        3 x 9251A Kistler quartz force sensor  

        3 x 1 Channel Kistler 5070 charge amplifier  

     Acoustic emission  

        AE sensor Kistler 815B  

        Kistler 5152B2 coupler 

 

Acquisition board and software 

     National Instruments PCI-6132 

     MATLAB 7.2 

 

Prior to machining runs, Nielsen-Hsu method [39, 40], or pencil lead break test, is 

performed. This test checks the transmission of AE signal in workpiece and tool material.  

The piezoelectric AE sensor detects signals above 50 kHz and up to 400 kHz. To 

minimize the influence of noise signals and aliasing errors, signals coming out of the AE 
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sensors are passed through an AE band-pass filter (Piezotron Coupler 5125B) between 

200 kHz and 1 MHz.  The band-pass filter reduces the influence of disturbances such as 

noise or other non-measurable contributions [41]. The amplifier has a gain of 20/40 dB.  

This gain must be small as possible to avoid any signal distortions [39].  The signals are 

sampled using National Instruments data acquisition card at 1.5 MHz sampling 

frequency.  Then the data are transferred to and stored in the PC.  Runs are periodically 

interrupted, the coated carbide insert is taken out of the tool holder, and tool wear is 

measured using a microscope.  Maximum flank wear is recorded.  This procedure is 

continued, in steps of two seconds of machining, until the tool wear reaches around 0.8 

mm.      

 
3.3 Signal pre-treatment  
 

In industrial environment, a combination of mechanical, electrical, and acoustic 

signals are highly present in signals acquired from any machining center, whether it is 

during machining time or off machining.  In turning, useful information about tool status 

is only acquired when the tool is in direct contact with the workpiece.  Therefore, to have 

reliable tool wear monitoring a signal pretreatment is essential, before extracting features. 

It is important to extract the part of the acquired signal during the time the tool is 

actually removing material, since this part only encloses information about the tool life. 

Force and AE sensors start acquiring signals few seconds before tool-workpiece 

engagement and stay few seconds after disengagement. Therefore, the first step is to 

remove the non-machining signal part, which may exist at either ends of both force and 

AE signals.  Figure 7 depicts this procedure for one force signal before and after 

treatment.  The arrows indicate where the actual cutting starts and ends.           
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Figure 7: Force signal pre-treatment 

 

Whereas the cutting force signal needs only removal of non-machining part form both 

signal ends, AE signal needs further treatment.  As mentioned earlier, during machining 

continuous AE signal gives information about tool wear.  However, AE signals combine 

both continuous and transient information. Some burst signals with high peak amplitude, 

not related to tool wear, are due to the friction between the tool and workpiece.  Hence, it 

is mandatory to eliminate these burst from AE signal to have true information about tool 

wear.  To do this, a floating threshold value [20] that is higher than the AE mean signal 

level is defined.  Any part of the signal crossing this value is considered transient and is 

filtered out of the continuous AE signal.  Values below the floating point gives 

information about tool wear and is used in the analysis.  Figure 8 shows part of original 

and filtered AE signals.               
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Figure 8: AE signals pre-treatment 

 

3.4 Summary  

This chapter presented the setup used to carry out the experimental runs.  

Integration between hardware and software platforms is provided.  Machining parameters 

and conditions to be covered are determined in a way to give a wide range of tool wear 

possibilities.  The next chapter describes how to utilize the acquired signals and how to 

correlate them with tool wear levels.        

 20



CHAPTER 4: MODELING AND SIMULATION OF TOOL WEAR 

USING ANN AND PC 
 

4.1 Introduction  
Classifying the wear state of a cutting tool is a classical and yet unsolved problem 

in manufacturing. Hence, it is mandatory to incorporate some degree of artificial 

intelligence in metal cutting machines.  The efficiency of the machine intelligence 

determines the reliability of the tool wear monitoring system and should be able to reform 

the relationship between the parameters monitored and the tool wear propagation as these 

parameters change.  In this sense, the system should be able to generalize, i.e. to predict 

reasonable tool wear values for parameters not encountered.   

 

4.2 Feature extraction  
 

As indicating in the system architecture diagram, Figure 6, sensory signals 

patterns are related at the end to the state of the tool.  Therefore, it is important to build a 

relationship between signal patterns and tool wear.  It is clear that the collected signals 

will have a certain level of redundancy and randomness that bear no useful information 

about the classification of the signal.  In this sense it is important to create a system 

which is able to extract features that are concise and representative of the relevant 

information in the signal.  This task in tool wear monitoring is crucial and challenging.  

Different signal processing techniques can be used to extract features from the sensory 

signal.  Extracting features form signals should be simple and meaningful.  In other 

words, it should not be too computationally intensive and feature vectors should be well 

correlated.  Two major domains are used in feature extraction: time domain and 

frequency domain.  Very often, the two domains are combined [10,14-17,19,23]. Most 

commonly used are time series analysis, fast Fourier transform (FFT), and wavelet 

transform.  Time series analysis is used in this thesis.  In cutting force signals, average 

values, RMS values, changes in signal levels such as increments or decrements [42, 43], 

the ratio of different cutting force components [32,33,45] and much more are used as 
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time series features in previous publications.  Parameters of probability distributions 

(statistical features), which is an important class of time domain, is implanted.  Previous 

studies have shown that statistical features can be indicative of tool wear [46-49].  A 

change in statistical features corresponds to a change in the tool wear.  The following 

statistical features are extracted from a sensory signal: mean, standard deviation, 

variance, kurtosis and skewness.  A brief mathematical description of these features 

follows:  

The mean value x   of a signal ( )tx  over an interval T is  

( )

T

dttx
x

T

∫
= 0

 
 

The standard deviation σ   of a signal ( )tx  over an interval T is  

( )( )∫ −=
T

dtxtx
T 0

2  1σ  

The variance   of a signal  over an interval 2σ ( )tx T is  

( )( )∫ −=
T

dtxtx
T 0

22  1σ  

The kurtosis K of a signal  over an interval ( )tx T is 

∫=
T

dtx
T

K
0

4
4

1
σ

 

The skewness of a signal  over an interval S ( )tx T is 

∫=
T

dtx
T

S
0

3
3

1
σ

 

 

Other classes of time domain, which are beyond the scope of this thesis, are presented in 

previous studies [47-54].  Coefficients of a time series model which is used to describe 

the measured signal such as autoregressive (AR), moving average (MA), and 

autoregressive moving average (ARMA) are used as features to predict tool wear [10, 48, 
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49].  A number of model coefficients can be chosen based on the model order.  Signal 

characteristics are represented using these model coefficients.   

Fast Fourier transform (FFT) has been used extensively in spectral analysis [50-

52].  The power level of a signal in different spectral band is indicative for tool wear 

change.  FFT shows great results in the frequency domain but it is not efficient in the 

time domain and loses signal information.  To overcome this, a new technique in signal 

processing has been proposed.  It is the wavelet analysis.  It has been previously applied 

to monitoring of machining process with great success [9,53,54].  Wavelet analysis is 

able to deal with discontinuities in higher derivative, breakdown point, and self-

similarity. In this sense, with wavelet analysis more information about tool status can be 

obtained.  

 

4.2.1 Feature assessment criteria  

 
Principal components analysis (PCA), also known as Karhunen-Loeve 

transformation [18], is used extensively in feature extraction from high dimensional data 

set with interrelated variables [55-59].  It shows high ability in eliminating redundant and 

irrelevant information in any signal.  Neuroscience, face recognition and image 

compression are high dimensional and complex systems. In such systems, where sensory 

signal are equivocal, redundant and inexplicit, PCA provides efficient way to extract the 

most relevant features.  Too many variables can be delusive and awkward.  This simple 

technique is an ideal solution to reduce dimensionality without loss of information.   

Transforming highly dimensional and correlated data set to new coordinate system 

produces a new set, uncorrelated and smaller in size, of variables [60].  This new set is 

the principal components.  It retains as much as possible of the variation in the original 

data.   

In general [56], sensory signal is represented in data matrix X, representing M 

observations of N variables as 
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With a known covariance matrix ∑ . 

 

A linear function, that has maximum variance, is presented such that XT
1δ 1δ  is a vector 

of N constants N111  , 12 , , δδδ K , so that  

 

∑
=

=++++=
N

i
iiNN

T xxxxxX
1

11111313121211111 δδδδδδ K  

 

Where iδ  is an eigenvector for ∑ corresponding to its eigenvalue iλ .  Another linear 

function is presented, which is uncorrelated with the previous one, .  These 

steps are stopped when the linear function is computed.   should have a 

maximum variance, which is  uncorrelated with , ,…, . These linear 

functions are the principal components (PC).  Although N PCs can be computed, a much 

lower number should be sufficient to represent most of the variation in the original data 

[60].  Derivations for the first principal component is presented next; for further 

information please refer to [55, 60].      

XT
2δ XT

1δ

XT
Nδ XT

Nδ

T
N 1−XT

1δ XT
2δ Xδ

As stated above, the linear function must maximize the variation in the data 

set.   Therefore the vector 

XT
1δ

1δ  maximizes the variance of the projections in the new 

coordinate system, ( ) 111 δδ XXVar TT

1

δ= .  This optimization derivation is true if the sum of 

squares of elements of δ  equals to one, i.e. .  Lagrange multipliers,11 δδ T λ , ensure this 

maximization.   
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)1(),( 11111 −−∑= δδλδδλδ TTL  

 

Differentiating with respect to 1δ  

 

( ) 0                                 0 111 =Ι−∑→=−∑ δλλδδ N  

 

Where is an identity matrix.  This proves, NI 1δ is the largest eigenvector corresponding 

the largest eigenevalue of∑ . In addition, λ is the largest eigenvalue.  

 

In short, the principle component of X is , where XT
iδ Ni ,,2 ,1 K= , N being the size of 

the data set. ( ) i
T
i XVar λδ = , where iλ is the ith largest eigenvalue of , and ∑ iδ is the 

corresponding eigenvector.  

 

4.3 Modeling strategy 

 
Modeling or decision-making strategies which have been used in this work, for 

controlling the machining process are discussed in this section.  Modeling strategies are 

divided into two categories: discriminative and generative models.  The latter is out of the 

scope of this work.  Discriminative model minimizes the error of a training sampling 

data. It creates the boundary between classes of data.  This is easier than trying to find the 

variation within one sample.  This gives the privilege, for discriminative models, of 

having the highest performance in classification problems.  Multilayer perceptrons 

(MLP) and polynomial classifier (PC) are discriminative models implemented in this 

investigation.  
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4.3.1 Neural network  

 
An artificial neural networks (ANN) operates in the same way of human brain.  

Numerous and tremendous applications of artificial neural networks have been applied in 

science, mathematics, medicine, and business as well.  ANN consists of a number of 

structural constituents called neurons.  A neuron has the ability to perform fast 

computations such as pattern recognition.  Figure 9 shows a model of a neuron.  The 

three basic element of a neuron are [56]:  

 

• A set of synapses characterized by a weight or strength of its own. 

• An adder for summing the input signals weighted by respective synapses of 

the neuron.  

• An activation function for limiting the amplitude of the output of a neuron.     

 

Among different architectural models of neural networks, multi-layer perceptrons of 

back-propagation type is most used [61,62].  Basically, MLPs consist of three major 

layers, namely, input layer, hidden layer, and output layer.  The input signal propagates in 

the forward direction in each layer.  Back-propagation neural network (BPNN) uses the 

error-correction learning rule where the error signal propagate thorough the network in 

the backward direction against the direction of synaptic connections in order to adjust the 

weight. Thus, the name back- propagation.  Figure 10 shows the architectural structure of 

multi-layer perceptrons.     
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Figure 9: Nonlinear model of a neuron 

 

For a neuron i ,Figure 9 can be expressed in mathematical terms  

 

 

and 

 

where are input signals; are the synaptic weights of neuron i; 

 is the bias;  is the linear combiner output; 
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a hyperbolic tangent or sigmoid. The latter is used in this study. And is the output 

signal which is the tool wear in this study.  Knowing the basic parameters of single 

neuron the output of BPNN can be obtained as follows:    
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where  are the desired response of neuron j and the actual output of the 

same neuron, respectively.  An instantaneous error energy for the same neuron in defined 

as

( ) ( )nynd ii  and 

( )nei
2

2
1 .  To obtain the total error energy over all the neurons take the summation of all  

the neurons in the output layer as  

( ) ( )∑
∈

=ℜ
Di

i nen 2

2
1  

where the set D includes all the neurons in the output layer.  Then, the error back-

propagate through the network to adjust the weights until an acceptable error tolerance is 

achieved through training process.  The weights are adjusted by the following amount     

( ) ( )
( )nw
nnw

ij
ij ∂

∂ℜ
−=Δ γ  

where γ  is the learning rate parameter of the back-propagation algorithm.     

 
Figure 10: Architectural graph of  MLP 
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4.3.2 Polynomial classifier  

Polynomial classifier is considered as a discriminative model [63].  In the 

classifier, the input vectors (feature vectors) are represented as .  They are the 

basis terms of a high dimensional polynomial vector, 

Nxx ,...,1

( )xφ  . To illustrate more, for 

second order polynomial input vector, say,  

then .  These terms are of the form  where 

is less of equal to the polynomial degree. Figure 11 shows polynomial classifier using 

two-dimensional feature vector.  

[ ]txxx 21=

iki xx ...2( ) [ txxxxxxx 2
221

2
1211=φ ] ix 1

k

 

 
Figure 11: Architectural graph of polynomial classifier 

 

 

The main aim of the classifier is to distinguish the input vector of relevant data ( )relxφ , 

from those of the irrelevant data ( )irrelxφ  in the polynomial vector ( )xφ .  In other words, 

creating the boundary. This can be done using the following inner product ( )wxi .φ , where 

are adjustable parameter to create a hyper plane inw ( )xφ .  This product produces a score 

for each , and is then averaged.  The total score will beix ( )wx
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output of the classifier is one for the relevant data vectors and zero for irrelevant data 

vectors. 
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The mean-square error is used to classify the outputs, and to compare the actual and the 

desired output.  It is important to keep this error as minimum as possible, in this case the 

optimum conditions are obtained. Mean-square error calculated as  

 

( ) ( ) ⎥
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= =
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Where and are the data of relevant data and irrelevant data respectively. relN irrelN

 

The training procedure can be formulated using matrix form.   is a matrix whith 

rows of the polynomial expansion of the relevant data (feature inputs). 
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In the same way the matrix for irrelevant data is  
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Then to combine both matrices  
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Then mean-square error becomes  
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Where is the ideal output.  This means it contains ones then zeros.  To solve 

the above equation use the normal equation method  

o relN irrelN

oMMwM tt =  

Expand it to be  

( ) 1t
relirrel

t
irrelrel

t
rel MwMMMM =+  

 

Where 1 is a vector of ones. Let , then  irrel
t
irrelrel

t
rel MMMMR +=

1t
relMRw =  

R can be decomposed into and .  This approach is constructive in classification 

problem, since the two components of 

relR irrelR

R ( and ) do not change with respect to the 

training data set.  Evaluating these two matrices is the most important part in the 

computation; hence, both matrices are calculated separately.  And the last thing is 1t
relM is 

ed as entries to relR .   

relR irrelR

obtain

 

4.3.3 Leave One Out  

 
In classification algorithm, it is important to use as much training data as possible in 

order to get accurate results [19]. In pattern recognition, the data is divided in to training 

set and testing set.  This means, potential part of the collected data are not involved in the 

training process.  Less data is available.  To overcome this, Leave One Out (LOO) 

method is used.  LOO uses all the data available in training and testing.  Training in LOO 

is done using all but one data point, which is used for the testing.  In more details, 

suppose that you have data consist of n feature vectors [ ]ni zzzzz ,,,, 321 K= .  Then, LOO 

trains the pattern recognition techniques n times, leaving out one of the vectors to be 

tested. Below is a further explanation: 

 

1. First training set  [ ]nz , test for  zzz ,,,, 432 K 1z
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2. Second training set  [ ]nz , test for  zzz ,,,, 431 K 2z

3. Third training set [ ]nz ,test for  zzz ,,,, 421 K 3z

M  

      n.   Last training set [ ], test for  1321 ,,,, −nzzzz K nz

 

LOO is applied with feed forward back propagation neural network (LOONN) and the 

polynomial classifier (LOOPC) to predict and to classify the status of the tool after 

machining.   

 

4.4 Summary  
 

This chapter presents the statistical features that are extracted from cutting force 

and acoustic emission signals.  Also it introduces the way PCA can judge and evaluate 

the importance of each feature, then eliminates redundant features.  It also reviews the 

two classification methods used in pattern recognition; from feeding inputs to the 

classifier all the way to the output result.  From the literature review, presented in chapter 

2, and to the author knowledge it can be stated polynomial classifier, presented in chapter 

4, has never been used in tool wear detection.  Next chapter presents the results neural 

network and polynomial classifier.       
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CHAPTER 5: RESULTS AND DISCUSSION  

 
 
5.1 Introduction  
 

A total of 113 experiments are carried out with a coated carbide sharp tool edge.  

The flank wear appearance is measured intermittently according to the prescribed 

intervals using an optical microscope.  Tool wear commences as a results of a single or a 

combination of the wear mechanisms mentioned in chapter 1.  Unlike the finish cutting 

process, a gradual uniform flank wear is observable in these experiments due the large 

magnitude of depth of cut.  It is noticed under the optical microscope that a prominent 

sticking material, built up edge, of the workpiece formed on the rack face.     

Figure 11 depicts typical cutting forces signals in turning operation.  Forces in the 

three directions are presented in the time domain.  When the tool engages and disengages 

with the workpiece significant variations in the values of cutting forces, and little 

variations during the steady cutting process are noticed.  Because of the tool is still fresh 

at the beginning of the cutting, the tool wear has a minor effect of on the chip 

deformation and thickness.  Down spikes in the force signals are noticed.  This is due the 

chip braking.  As the tool wear developed the chip get thicker and larger in deformation.  

This increases the spikes magnitude.  As the cutting distance gets longer, this problem 

becomes more significant and hence the cutting forces increase.              
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Figure 12: Force signals in the three axes 
 

In Chapter 1, the nature of AE is discussed.  Figure 12, shows an AE signal 

generated while machining.  As in the cutting forces signal, a significant variations in the 

values of AE when tool enters and exits with the workpiece are observed.  Continuous 

and transient signals are recorded from tool wear and chip breakage, respectively.  The 

former, is only used to test gradual wear.  Both RMS and raw AE signal are recorded, the 

latter, contains a very high frequency which make it not feasible to record or analyze 

[38,45].  Thus, RMS signals are used for the statistical analysis only.  AE RMS values 

can be correlated to the development of wear in tools [19].  The peaks in Figure 12 below 

are related to the intensity of the source in the material producing an AE signal.           
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Figure 13: RMS and raw AE signals 
 

The intelligent monitoring system consists of two separate classifiers: back-

propagation neural network and polynomial classifier. The former classifier is chosen due 

to its unsupervised learning capabilities and has demonstrated a great ability in  this field 

in the previous publications [62].  While for the later classifier, to the best of the author 

knowledge, it has never been used in such application.  The main objective of both is to 

be able to predict the present tool wear.  In order to do so, relevant features from cutting 

force and acoustic emission signals, that correlate with the tool wear most, are to be 

determined externally and the task of the classifiers is to determine the relationship 

between the incoming data and the tool wear.  As mentioned in chapter 4, in multiple 

sensory signals, PCA shows efficient way to extract the most relevant statistical features.  

Among all extracted statistical features, mean and standard deviation of AE signal [19] 

and the maximum value of the three force components are the most highly correlated 

with tool wear.  The remaining features demonstrated no potential correlation with tool 

wear.    
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The AE statistical features are used in PCA in the following order: mean, standard 

deviation, variance, kurtosis, and skew to generate coefficients for five principal 

components.  Now the original data mapped into the new coordinate system defined by 

the principal components.  The mapped data is the same size as the input data matrix, the 

AE features in this case. Figure 13 plots of the first two columns of mapped data shows 

the ratings data projected onto the first two principal components.    
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Figure 14: AE data projected in PCA 

 

 

Note the outlying points in the right half of the plot (points 102 & 108); PCA allows the 

elimination of some outliers generated from sporadic noisy signals picked up by the 

sensors.  Then, the variance of the new mapped data can be found in order to know which 

principal component has the highest variability.     
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Figure 15: Variation of AE features 

 

The preceding figure shows that the only clear break in the amount of variance accounted 

for by each component is after the second component. However, the first component by 

itself explains around 50% of the variance, so more components are probably needed. It 

can be observed that the first two principal components, which are representing the mean 

and the standard deviation, explain roughly more than 90% of the total variability in the 

standardized ratings and the remaining features demonstrated no correlation with tool 

wear, so that might be a reasonable way to reduce the dimensions in order to visualize the 

data. Table 4 shows the percent of the total variability explained by each principal 

component of AE features.   

 

 

 

 

 

 37



Table 4: Total variability of AE features 
AE Feature  Percent of the variability 

Mean 52.4443 

Standard deviation 43.1631 

Variance 3.6279 

Kurtosis 0.6617 

Skew 0.1031 

     
 

In the same way, seven cutting force statistical features are used in PCA in the following 

order: max, mean, median, standard deviation, variance, kurtosis, and skew to generate 

coefficients for seven principal components.  Now the original data mapped into the new 

coordinate system defined by the principal components.  Figure 15 plots of the first two 

columns of mapped data shows the ratings data projected onto the first two principal 

components.    
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Figure 16: Force data projected in PCA 
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This data is very scattered and it is not easy to detect or eliminate outliers. The next 

figure shows the principal components with the highest variability.  First component by 

itself explains around 60% of the variance, so more components are probably needed. It 

can be shown that the first two principal components explain roughly more than 80% of 

the total variability in the standardized ratings, so that might be a reasonable way to 

reduce the dimensions in order to visualize the data.  It is decided to use the first three 

components (maximum value of X, Y, Z cutting force) because they cover almost 90% of 

the total data.    
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Figure 17: Variation of AE features 
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5.2 Results from ANN and PC 
 

A clear variation in both sensors output is observed as cutting conditions changed.  

The features extracted from processing the force and acoustic emission output influence 

neural network and polynomial classifier performance the most.  The measurement of 

performance for both classifiers consisted simply of the percentage error of the prediction 

compared with the actual wear value. To visualize the results, plots of prediction results 

against the measured ones are presented.  The average percentage error at each wear level 

is selected as the final performance measure.  The decision making techniques are 

capable of generalizing over a small range of cutting conditions and this capacity differ 

between the two classifiers, as will be shown in the following sections.   

 
5.2.1 Results from ANN model  
 

In artificial intelligent decision making strategies, the training data and testing 

data should cover all of the possible cutting conditions range and tool status so as to 

validate the effectiveness of this feature selection process. Thus in every trial, data 

patterns are partitioned into two parts randomly: 25% of data patterns are used in the 

training set, and 75% of data patterns in the testing set.  This partitioning avoids data 

patterns concentrating on some cutting conditions.  All the settings of NN are kept the 

same in training and testing processes. This ensures accurate comparison for the results.  

This conventional procedure partitioning method could not produce satisfactory results.  

Figure 17, demonstrates the results of one prediction run for neural network with average 

accuracy of 26.85% (the absolute value of the difference between the measured and 

predicted value divided by the measured value).     
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Figure 18: Conventional NN for prediction tool wear 

 
This unsatisfactory result is due the small size of the available training data points.  To 

increase the accuracy of the system it would be necessary to add more training data, 

which cover various cutting conditions.  Hence, allowing the neural network to learn 

better the correlated effect of the tool wear and the cutting conditions.  This implies, in 

one hand, to have a large enough training set that reflects a large range of cutting 

conditions; in the other hand, this requires a large number of experiments in a large cost 

and time consuming.  To improve the performance of the system, without running more 

experiments, leave one out technique is used.  Leave one out enables the system to use all 

the data points for training and leave one data point for testing.   

Three main feature groups are used in the system, namely, cutting conditions features, 

cutting forces features, and acoustic emissions features.  Every group is used in a separate 

neural network to predict tool wear.  The output of each network is multiplied by a 

certain weight.  Weights are chosen using the least square (LS) method.  Then, the final 

tool wear value is the sum of all networks outputs, as shown in Figure 18.  The data is 

normalized so that the distribution of all variables has zero mean and unit covariance. 
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Figure 19: Prediction tool wear using least square 
    

Table 5 presents the features used from machining parameters, cutting force (Fx, Fy, and 

Fz), and acoustic emission.  Features are grouped in six sets as follows  

• S1 includes all machining parameters, all cutting force, and all acoustic emission.            

S1= [X1,X2,X3,F1,F2,F3,F4,F5,F6,F7,AE1,AE2,AE3,AE4,AE5] 

• S2 includes all machining parameters, and all cutting force.  

S2= [X1,X2,X3,F1,F2,F3,F4,F5,F6,F7] 

• S3 includes all machining parameters, and all acoustic emission.            

S3= [X1,X2,X3, AE1,AE2,AE3,AE4,AE5] 

• S4 includes all machining parameters, the best cutting force, and the best acoustic 

emission.            

S4= [X1,X2,X3,F1,AE1,AE2] 

• S5 includes all machining parameters, the best cutting force                                     

S5= [X1,X2,X3,F1] 
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• S6 includes all machining parameters, and the best acoustic emission            

S6= [X1,X2,X3, AE1,AE2] 

The machining parameters are an essential part among all feature sets.  Among the six 

feature sets, S1 included all extracted features, in addition to the machining parameters, 

from force and AE signals, and S2 and S3 are separated features of force and AE signals, 

respectively.  Finally, S4 to S6 are the reduced feature sets produced by PCA technique.  

The eliminated features from S4 to S6 are the ones with very low corresponding PCA 

parameters.  However, this elimination must be verified by corresponding testing sets of 

the six feature sets, and the testing accuracy provides an indicator of features 

contribution.   

 
Table 5: Feature list 
Index  Description 

X1 Cutting speed 

X2 Feed rate 

X3 Machining time 

F1 Force maximum value 

F2 Force median value 

F3 Force mean value 

F4 Force standard deviation 

F5 Force variance 

F6 Force kurtosis 

F7 Force skewness 

AE1 Acoustic emission mean value 

AE2 Acoustic emission standard  deviation 

AE3 Acoustic emission variance 

AE4 Acoustic emission kurtosis 

AE5 Acoustic emission skewness 

 
To compare the learning ability of different feature set, Tables 6-8 show the training and 

testing results for prediction and classification of tool wear, of three different cutting 

conditions, of six trials under the feature sets.   
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Table 6: NN trial 1 (v = 130 m/min, f = 0.15 mm/rev) 
Feature set Training time (s) Prediction Accuracy Classification Accuracy 

S1 - 87.2 % 100 % 

S2 945 86.77 % 100 % 

S3 174 86.09 % 90 % 

S4 - 85.83 % 90 % 

S5 155 84.75 % 100 % 

S6 126 84.63 % 100 % 
 
  
Table 7: NN trial 2 (v = 170 m/min, f = 0.2 mm/rev) 
Feature set Training time (s) Prediction Accuracy Classification Accuracy 

S1 - 88.13 % 100% 

S2 945 87.6 % 100% 

S3 174 78.74 % 100% 

S4 - 77.25 % 100% 

S5 155 76.07 % 100% 

S6 126 75.89 % 100 % 

 
 
Table 8: NN trial 3 (v = 190 m/min, f = 0.15 mm/rev) 
Feature set Training time (s) Prediction Accuracy Classification Accuracy 

S1 - 93.87 % 100% 

S2 945 93.73 % 100% 

S3 174 90.35 %  84% 

S4 - 91.27 % 84% 

S5 155 91.01 % 100% 

S6 126 89.44 % 100 % 

 
In Tables 6-8, among the six feature sets S1 shows always the highest prediction 

accuracy.  Thus, it can be concluded that the redundant features, which are eliminated by 

PCA, may still provide some useful information.  However, S1 requires more training 

time comparing to others.  The second column shows the training time.  The number of 
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extracted features determines the computation time requires by the neural networks, 

therefore the smaller the number of features used as inputs to the neural networks the 

shorter it takes for decision-making.  The over all accuracy of the results is in the range of 

high 80s and low 90s.  S6, in contrast of S1, shows the lowest accuracy.  Comparing to 

other feature set, S6 has the fastest in convergence speed, i.e. it requires the least training 

time.  It is a compromise between better results with slow computation process or slightly 

lower deceptive results with fast convergence.  The last column presents the system 

capability in classifying the tool state. The tool is identified as fresh of worn.  The tool 

flank wear of 0.3 mm, which is suggested by ISO 3685, is used as a criterion to identify 

tool state.  Flank wear in the fresh tool state is overestimated sometimes by 

approximately 0.3mm.  Over all the system achieve a successful classification percentage 

of 100% for all worn states.           

The following figures presents measured and predicted amount of tool wear 

through LOONN, using the above sets.  Figure 19 presents the results using S1 set as 

inputs. A good matching between measured and predicted values is noticed. Cutting 

speed v=150 m/min, feed rate f = 0.15 m/rev, depth of cut d = 1 mm. Average accuracy is 

92.04%. While Figure 20 presents tool wear prediction using S4 set.  Cutting speed 

v=170 m/min, feed rate f = 0.15 m/rev, depth of cut d = 1 mm. Average accuracy is 

89.02%.  Figure 22 presents tool wear prediction using S6 set.  Cutting speed v=150 

m/min, feed rate f = 0.15 m/rev, depth of cut d = 1 mm. Average accuracy is 90.07 Figure 

23 presents tool wear prediction using S6 set.  Cutting speed v=170 m/min, feed rate f = 

0.15 m/rev, depth of cut d = 1 mm. Average accuracy is 85.1%.  
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Figure 20: Measured and predicted tool wear through LOONN using S1 set 
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Figure 21: Measured and predicted tool wear through LOONN using S4 set 
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Figure 22: Measured and predicted tool wear through LOONN using S6 set 
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Figure 23: Measured and predicted tool wear through LOONN using S2 set 

 
 
5.2.2 Results from polynomial classifier model  
 

When developing new techniques to solve a given problem, there is always a 

chance that those techniques may fail or perform slightly not as good as other existing 

techniques. This section will determine whether the polynomial classifier model may be 

applied in tool condition monitoring system to detect tool wear. To achieve this it is 

necessary to re-run the same simulations used in the previous section. 

Experiments performed for neural network are individually selected to be repeated using 

the new decision making model.  The same methods applied in the previous section to 

train neural network are used here to compare the two models.  In addition, the same 

feature sets are used as inputs for polynomial classifier.   

Tables 9-11, present the result obtained using the polynomial classifier for the same 

machining parameters used in the previous section.   
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Table 9: PC trial 1 (v = 130 m/min, f = 0.15 mm/rev) 
Feature set Training time (s) Prediction Accuracy Classification Accuracy 

S1 - 77.58 % 100 % 

S2 1.490337 77.60 % 100 % 

S3 0.768242 76.47 % 100 % 

S4 - 85.28 % 100 % 

S5 0.472064 73.07 % 100 % 

S6 0.259504 77.26 % 100 % 

 
Table 10: PC trial 2 (v = 170 m/min, f = 0.2 mm/rev) 
Feature set Training time (s) Prediction Accuracy Classification Accuracy 

S1 - 90.44 % 100 % 

S2 1.490337 90.41 % 100 % 

S3 0.768242 90.67 % 100 % 

S4 - 89.98 % 100 % 

S5 0.472064 91.41 % 100 % 

S6 0.259504 90.62 % 100 % 

 

 
Table 11: PC trial 3 (v = 190 m/min, f = 0.15 mm/rev) 
Feature set Training time (s) Prediction Accuracy Classification Accuracy 

S1 - 96.82 % 100 % 

S2 1.490337 96.83 % 100 % 

S3 0.768242 95.34 %  100 % 

S4 - 95.08 % 100 % 

S5 0.472064 95.24 % 100 % 

S6 0.259504 95.29 % 100 % 

  
In tables 9-11, the first order model is used.  All the sets give almost the same 

performance accuracy, i.e. redundant values do not affect the polynomial classifier 

adversely in terms of performance.  The computational decision making time, in all 

experiments is dramatically low, less than two seconds.  It should be point out that the 

reduced features sets in cutting force and AE requires 70% less computational time 
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comparing to the full features sets.  In terms of overall classification performance, the 

polynomial classifier shows a great ability at rate of 100% in identify worn out tools.  

Flank wear in the fresh tool state is overestimated sometimes by approximately almost 

0.2mm.  

The following figures presents measured and predicted amount of tool wear 

through LOOPC, using the above sets.  Figure 24 presents the results using S6 set as 

inputs. A good matching between measured and predicted values is noticed. Cutting 

speed v=110 m/min, feed rate f = 0.15 m/rev, depth of cut d = 1 mm. Average accuracy is 

87.15%. While Figure 25 presents tool wear prediction using S2 set.  Cutting speed 

v=170 m/min, feed rate f = 0.15 m/rev, depth of cut d = 1 mm. Average accuracy is 

95.64%. Figure 26 presents tool wear prediction using S1 set.  Cutting speed v=150 

m/min, feed rate f = 0.15 m/rev, depth of cut d = 1 mm. Average accuracy is 78.01%.  

Figure 27 presents tool wear prediction using S1 set.  Cutting speed v=170 m/min, feed 

rate f = 0.15 m/rev, depth of cut d = 1 mm. Average accuracy is 85.78%.   
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Figure 24: Measured and predicted tool wear through LOOPC using S6 set 
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Figure 25: Measured and predicted tool wear through LOOPC using S2 set 
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Figure 26: Measured and predicted tool wear through LOOPC using S1 set 
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Figure 27: Measured and predicted tool wear through LOOPC using S4 set 

 
5.3 Comparison between neural network and polynomial classifier  
 

Based on the above results, both the BPNN and PC, each acting alone, have a 

large capability to classify and predict the development of tool wear.  The training time 

has a large effect on the performance of the system.  The content of the data used in 

training the system has a potential effect on the prediction error.  BPNN shows better 

results when more features are used, with the consequence of more training time is 

required, which results in very slow prediction.  On the contrary, more data does not add 

to PC neither any extra information nor better significant prediction.  It should be point 

out that the slowest training time in PC is less than two seconds, while BPNN need at 

least two minute for the fastest training time.  It has been claimed that tool monitoring 

system should be independent from the machining parameters [41].  However, it has been 

observed that this not the case.  This matches the results in [14,19].  Both approaches 

have shown that prediction accuracy is better by adding machining parameters as input 

features.                     

 54



5.4 Summary  
In this chapter, cutting force and acoustic emission signals acquired in some of 

used cutting ranges are presented and analyzed.  It has been demonstrated that PCA is 

able to detect and eliminate the majority of outliers. This improves monitoring system 

performance.  Results from neural network and polynomial classifier analyzed.  The 

capability, accuracy, and time efficiency of both classifiers are compared.     
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CHAPTER 6: CONCLUSION AND RECOMMENDATION FOR 

FUTURE WORK  
 
6.1 Conclusion 
 

In this thesis the use of intelligent multi sensor in process condition monitoring is 

studied.  The presented methodology involves collecting cutting force and acoustic 

emission signals while machining mild steel workpiece. The relationship between the 

acquired signals and the machining parameters, under different tool wear states with 

different cutting condition using experimental design, is investigated.  Two main 

approaches are considered.  The first is the conventional multilayer perceptron back 

propagation neural network.  The second approach is the major novel contribution of this 

thesis, using polynomial classifier in tool condition monitoring.       

Statistical features are extracted from the raw signals which contain an enormous 

amount of information.  In order to overcome the difficulties associated with having too 

many features acquired from multiple sensory signals, PCA technique has demonstrated 

effectiveness in features dimensionality reduction.  Those features have been interpreted 

by the two intelligent approaches. 

Back propagation neural network and polynomial classifier can predict and 

classify different tool wear states based on the sensory information.  The effectiveness of 

both proposed decisions making models have been demonstrated in experimental trials.  

The experimental test results indicate that the proposed methodology results in a good 

agreement between the predicted and measured tool wear.  The prediction accuracy 

between the two approaches is interchangeable. Comparing to neural network, 

polynomial classifier shows a significant improvement in the training time. Polynomial 

classifier requires maximum of two seconds for decision-making.  Finally, it has been 

proved that the sensory signal acquired from low cost sensor and easy to mount, i.e. AE 

sensor comparing to dynamometer that is expensive and bulky, correlate very well with 

the tool wear.  Further analysis is worthwhile in order to build intelligent monitoring 

system for turning using the proposed approaches. 
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6.2 Recommendation for future work 
 

Although a lot of work has been presented in this field, still the improvement for a 

robust, reliable, and universal intelligent monitoring system is unlimited.  The 

improvement involves hardware and software.  The above results are quite encouraging, 

however there are many avenues for further improvement and research for future 

extension by 

• Using different type of inserts, coated (with different type of coating) and 

uncoated and covering a wider range of cutting conditions 

• Adding different types of sensors, and the so-called dual-mode sensors that permit 

a simultaneous measurement of two different types of signals [2] 

• Using industrial experiments employing same or different cutting conditions 

ranging from normal to aggressive  

• Studying the effect of tool geometry of the tool wear propagation  

• Appling new techniques for feature extractions in the frequency domain and the 

time-frequency domain 

•  Improving the already used intelligent decision making techniques and trying 

unsupervised neural networks, such as ART2  
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