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ABSTRACT

As unmanned systems become more and more important, reliability and in-
tegrity issues become definite, specially when being implemented with low-cost (or
sometimes are referred to as commercial-of-the shelf or COTS) sensors while being
designed to operate in remote, hazardous and harsh environments. As a result, fault
(and failure) detection and identification (FDI) is a must, and it is a crucial require-
ment in designing unmanned vehicles. In this thesis, integrity is defined as the ability
of the system to provide reliable navigation information, to monitor the health of the
aids, to detect abnormalities in their behavior, and to survive once a failure in one
of its components (whether they are sensors, actuators, mathematical models, and
computations) occurs. On the other hand, reliability is component dependent. A
navigation system is reliable as its most unreliable component. Therefore, integrity
implies reliability while reliability not necessarily implies integrity.

This thesis, mainly, discusses the issue of implementing a low-cost inertial
navigation system, aided with satellite navigation system. In doing so, a fault de-
tection and identification scheme must be involved and the performance of all the
system components must be verified. The FDI system should take into account types
of failures commonly occur, guarantee that all faults will be detected, assist design
specifications and respond as fast as possible to faults. On the other hand, it should
take into account the complexity of the implementation and its robustness in the
presence of mismodelling. Innovation-based techniques, in particular the χ2 SCT,
offer tradeoffs between complexity and performance and detect a large set of failures.
However, they are sensitive to filter tuning and have no fault identification ability.
On the other hand, the model-based approaches, in particular the multiple model
adaptive estimation (MMAE), have an outstanding decision making ability and are
insensitive to filter tuning. However, they require a priori knowledge on the system
and failure model and are computationally expensive. The integration of both tech-
niques can enhance the FDI performance of both systems. In this thesis a sequential
FDI algorithm is proposed. This algorithm employs an innovation-based technique
for fault detection and a model-based technique for identification.
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The performance of the χ2-MMAE sequential algorithm is simulated and tested
on actual IMU and GPS data. Results showed that the sequential algorithm has a
comparable identification ability as the MMAE algorithm with a substantial reduction
in computational requirements, since the filters bank was only allowed to operate
on segments of time where faults were detected. On the other hand, unlike the
MMAE algorithm where the performance of the filter was affected during no-fault
conditions, the sequential scheme guaranteed the consistency of the estimator in all
of its modes of operation and didn’t affect its performance during normal no-fault
modes of operation.
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Glossary of Terms

Conning: The cyclic motion of one axis due to rotational motion of the other two
axes (Sukkarieh, S., 2000). Such motion can result due to oscillatory motion
such as vibration being undetected by the inertial navigation system.

Dead reckoning: Types of navigation systems which rely on the continuous up-
dating of the position data derived from inputs of velocity components or speed
and heading generated from a known start position. Inertial navigation systems
are considered as sort of dead reckoning systems.

Disturbance: An unknown and uncontrolled input acting on a system (Gustafsson,
F., 2000).

Ellipsoid: A three-dimensional shape formed by rotating an ellipse about its minor
axis.

Ergodicity: A process is considered ergodic if all of its statistical parameters, mean,
variance, and so on, can be determined from arbitrary chosen member functions.
A sampled function is considered ergodic if its time-average statistics equal the
ensemble averages (Grewal, M. S., & Andrews, A. P., 2001).

Error: Deviation between a measured or computed value of an output variable and
the true, specified or theoretically correct value (Gustafsson, F., 2000).

Failure: Permanent interruption of a system ability to perform a required function
under specified operating conditions (Gustafsson, F., 2000).

Fault: Unpermitted deviation of at least one characteristic property of parameter
of the system from acceptable / ususal / standard condition (Gustafsson, F.,
2000).

Fault detection: Determination of faults present in a system and time of detection
(Gustafsson, F., 2000).

Fault isolation: Determination of kind, location and time of detection of fault.
Follows fault detection (Gustafsson, F., 2000).

Fault identification: Determination of the size and time-variant behavior of a
fault. Follows fault isolation (Gustafsson, F., 2000).
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Fault diagnosis: Determination of kind, size, location and time of fault. Follows
fault detection and includes fault isolation and identification (Gustafsson, F.,
2000).

Monitoring: A continuous real time task of determining the conditions of a physical
system, by recording information recognizing and indicating anomalies of the
behavior (Gustafsson, F., 2000).

Perturbation: An input acting on a system which results in a temporary departure
from current state (Gustafsson, F., 2000).

Residuals: Processed measurements. Kalman filter residuals, which are the dif-
ferences between state estimates predictions and the measurements predictions
are called innovations. They can be used as fault indicators, based on deviation
between measurements and model-equation-based computations.

Sagnac Effect: When computations for the satellite position are made in an ECEF
coordinate system, and during the propagation time of the satellite vehicle signal
transmission, a clock of the surface of the Earth will experience a finite rotation
with respect to an ECI coordinate system (Kaplan, E. D., & Hegarty,C. J.,
2006)

Sculling: A combination of linear and angular oscillatory motions of equal frequency
in orthogonal axes.

Symptom: Change of an observable quantity from normal behavior (Gustafsson,
F., 2000).

Time-Invariant System: A system is time-invariant if a time shift in the input
result in a corresponding time shift in the output. The output of a time-invariant
system depends on time differences and not on absolute values of time (Stremler,
F. G., 1990).
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Chapter 1

Introduction

1.1 Objectives

The main objective of this thesis is to design a low-cost inertial navigation system

(INS) and integrate it with the Global Positioning System (GPS), while achieving the

overall system integrity. In doing so, this thesis aims to:

• Understand the nature of inertial navigation, what is the information it can

provide and how accurate they are. Therefore, a detailed understanding of

inertial sensors characteristics is required and their effects on the mechanisation

process should be investigated. It is also important to look into the inertial

navigation computations and look for algorithms that can achieve reliability in

the mechanisation process.

• Understand the Global Positioning System (GPS) principles and to learn how

to read and process its observables.

• Implement an INS/GPS integrated navigation system using the Kalman filter.

This requires a detailed understanding of the Kalman filter equations and to

learn about filter consistency and tuning. The filter can take different forms,

such as loosely-coupled and tightly-coupled. Therefore, it is essential to under-

stand different filter implementations and what information they can provide.

• Address the issue of navigation system integrity. The fact that, for a navigation

system to achieve integrity it should have a fault detection and identification
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(FDI) (or simply diagnosis) algorithm. Therefore, different FDI algorithms

should be investigated.

• Test the reliability of the developed algorithms with actual inertial and GPS

data. This is considered as a first step towards real time automation where

the navigation algorithm will be implemented to provide navigation data to an

unmanned areal vehicle (UAV) control system.

1.2 The Navigation Problem

Unmanned mobile robots (such as unmanned vehicles) are usually designed to ac-

complish a certain task with minimum or no-human interaction. Being autonomous,

the navigation of unmanned robots takes a number of forms, which are represented

by the venn diagram of Figure 1.1. In autonomous navigation missions, it is essen-

tial for the unmanned vehicle to localize itself. The focus of this thesis falls in the

localization domain. In order for the robot to localize itself, it should estimate (at

least) its position and velocity. Position and velocity are relative quantities; they

have to be measured with respect to a reference. However, acceleration is an absolute

quantity. This motivated the utilization of accelerometers in autonomous vehicle im-

plementations. Integrating the accelerometers output yields the velocity. Integrating

the velocity once yields the position. In other words, inertial navigation is a form of

dead reckoning.

In order to remove undesired components from accelerometers measurements,

the vehicle orientation should be estimated. Gyroscopes, which measures vehicle rota-

tional velocity, were integrated with accelerometers to form an Inertial Measurement

Unit (IMU). In there beginnings, IMUs were implemented in gimballed configuration

(King, A., D., 1998), where gyros were used as the sensing elements in null-seeking

servos, with the output of each gyro connected to a servo-motor driving the appro-

priate gimbal, keeping the platform, on which accelerometers are mounted, aligned
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Figure 1.1: The navigation problem

in the inertial frame coordinates. Gimballed IMUs can be very accurate and reliable.

However, they are expensive, mechanically very complex, expensive to maintain and

extensive calibration has to be done. Strapdown Inertial Navigation Systems (SDINS)

overcome the disadvantages of the gimballed ones, but on the cost of computational

complexity. The gimbals were removed, and inertial sensors were strapped down onto

the mounting frame of the vehicle. Gyroscopes are used to measure the vehicle rota-

tional rates to estimate the pointing direction of accelerometers axes. Mechanisation

equations are utilized to serve this purpose and remove undesired components from

accelerometers measurements. In other words, while gimballed INS are mechanically

gimballed, strapdown INS are mathematically gimballed.

The integration of inertial systems errors cause there estimates to drift over

time. External aiding systems are integrated with inertial ones to bind these errors.

However, aiding systems might have their own weaknesses. For this reason, aiding

systems should be selected in such a way that they and the aided ones are natural

complements. The Global Positioning System (GPS) is the most popular aid for in-
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ertial systems.

Being implemented for commercial purposes, INS/GPS integrated systems

employ low-cost sensors. With such sensors, failures become more probable and the

system reliability degrades. To achieve integrity and therefore reliability, the system

health should be monitored. Therefore, fault detection and identification becomes an

essential requirements in mobile robotics implementations represented by figure 1.1.

1.3 Navigation System Integrity

High integrity navigation system design doesn’t have a particular procedure. It varies

from design to design. However, the general design may look like figure 1.2. The block

diagram highlights the major components of the navigation system. Design specifica-

tions are the motive behind this design. Typical design specifications may include the

maximum expected frequency of maneuvering and the required accuracy of the sys-

tem. The former determines the cutoff frequency of the required filter, and therefore

determines the maximum bandwidth of the sensors utilized, while the later determines

the maximum value of estimated covariance matrix, and therefore the accuracy of the

sensors employed. Therefore, sensors are selected such that they agree with design

specifications. One major step towards a high integrity design is the determination

of employed sensors errors characteristics, such as biases, misalignments, scale-factor

error, and random-walk through sensor calibration or manufacturer drawsheets. This

is a critical step in the design, since unexpected errors can rise from mismodelled

sensor parameters.

A system is reliable as it’s most unreliable component (Scheding, S., 1997),

and even the most reliable component can fail. Therefore, the design should contain

redundant information. This information can be provided by other sensors, such re-

dundancy is referred to as hardware redundancy, or by a mathematical model, which

is referred to as analytical redundancy. In fact, in systems where redundancy is em-
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Figure 1.2: General steps towards a high integrity navigation system design

ployed, it becomes (usually) impossible to distinguish between the actual source of

information and the redundant one. Redundancy is a must in systems with low-cost

components. In fact, redundancy can be an essential requirement to achieve design

specifications, if the previously selected sensors alone did not satisfy one of the de-

sign requirements. One example of such situations may rise if the previously selected

sensors did not satisfy the condition of required filter cutoff frequency and, therefore,

the redundant system should contain sensors such that the frequency response of the

actual sensors and the redundant ones are complementary (Scheding, S., 1997), and

redundancy (and therefore design specifications) is said to be achieved by the inte-

gration of natural complements.

The integration of actual information and redundant ones is considered by the

fusion filter. It estimated states of interest and provides required to calibrate sensors

under consideration. This online calibration compensates for low frequency faults due

to sensors biases and drifts. The fault detection and identification scheme extracts

information from the filter and utilizes them to generate residual, the residuals are

then used by the FDI system to detect faults. Once a fault is detected, the FDI

identifies the fault parameters. Based on its decision, the FDI system provides the

filter with information on how to do the fusion process. The FDI scheme should

consider the following:

• Since residuals are the bases of fault detection, the FDI scheme should guarantee

that all faults will be transmitted to the residuals. The frequency domain
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Figure 1.3: Different level of FDI implementations

may be utilized to guarantee faults detectability, and therefore, sensors are re-

selected such that their frequency domain become identical. Such scheme is

referred to as frequency redundancy (Scheding, S., 1997).

• Fault diagnosis may be implemented in different system levels, as shown in

figure 1.3. This guarantees that all faults will be detected and identified more

efficiently.

1.4 Analytical Redundancy or Hardware Redundancy?

Fault detection is cost effective method that is based on data consistency. Such con-

sistency requires redundant measurements to generate residuals on which the fault

detection process relies. Two types of redundant implementations exist, analytical

redundancy and hardware redundancy. Hardware redundancy is based on the utiliza-

tion of multiple aiding sensors, such as Global Positioning System (GPS) receivers,

wheel encoders, doppler radars and laser range finders, where the dimensions of the
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measurements vector becomes larger than that of the state estimate vector. Redun-

dant sensors may be identical, in term of their physical structure and quantities they

measure, or similar, by providing identical measurement quantities but operating by

different physical principles. Although, the utilization of similar sensors may im-

ply hardware redundancy, it is more common for similar redundant sensors to have

identical frequency responses. Therefore, the utilization of similar sensors that have

identical frequency characteristics is referred to as frequency redundancy (Scheding,

S., 1997). In other words, hardware redundancy implies identical hardware. However,

frequency redundancy implies identical frequency ranges.

Analytical redundancy is based on mathematical modelling of the system dy-

namics, such as the utilization of the mechanization equations of the inertial naviga-

tion system (INS) or the dynamic model of the vehicle driven by control commands.

It is the basis for residuals generation (Chow, E., Y. & Willsky, A. S., 1984). Forms

of analytical redundancy include direct redundancy, which makes direct relations

(algebraically related) between instantaneous outputs of sensors, and temporal re-

dundancy, which makes indirect relations based on histories between sensor outputs

and actuator inputs. Analytical redundancy in more reliable and cost effective than

hardware redundancy. In this thesis, analytical redundancy is provided through the

utilization of inertial navigation mechanisation equations. It is a self contained sys-

tem with high short term accuracy and immunity to jamming and interference.

1.5 Thesis Contributions

There are two main contributions in this thesis, and they are as follows:

• Development of INS/GPS navigation filter that achieves integrity.

This includes a detailed analysis on the Kalman filter operation, including fil-

ter consistency, tuning and integrity. It also includes investigation of different
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Kalman filter implementations. For the filter to be robust, fault detection and

identification techniques are applied to detect and diagnose failures. Simulations

as well as actual tests are included to verify the performance of the designed

algorithms.

• Implementing a sequential fault detection and identification scheme.

Sequential FDI is a new topic, never been addressed before. It aims to integrate

two different FDI schemes where they compensate for each other weaknesses.

The resulted scheme proved to have better performance than both methods

with the advantage of the reduction in overall system complexity.

1.6 Thesis Structure

The thesis structure is as follows:

Chapter 2 develops the required background for this thesis to achieve it’s

objectives. The chapter reviews the Kalman filter equations and discusses it’s most

critical issues from practical point of view. The Unscented Kalman filter is also

discussed as the most accurate and least expensive state of art in non-linear filter-

ing. The chapter then discusses adaptive techniques for Kalman filter tuning. These

techniques include the covariance matching approach (CMA), the multiple mmodel

adaptive estimation (MMAE), and artificial intelligent (AI) techniques.

Chapter 3 discusses inertial navigation systems (INS) and sets the basis re-

quired to develop an accurate and reliable inertial navigation algorithm. Mechaniza-

tion equations are discussed in both the local geographic or the NED and the ECEF

coordinate systems. However, it emphasizes more on the NED implementation since

the attitude of vehicle is more physically intuitive in the NED coordinates than in

the ECEF coordinates. Also, the NED coordinates separates the unstable vertical

axis from the more stable horizontal axes and provides a more intuitive schemes for

analyzing INS errors than the ECEF coordinates. The chapter then moves to discuss
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inertial sensor errors. It derives expressions for the general error equations. Finally,

the INS mechanisation is verified via simulation. First, for the case of accurate and

error free sensors. Then, when errors are introduced to inertial sensors.

Chapter 4 considers the issue of aiding an inertial navigation system using

the global positioning satellite navigation system. It discusses various aspects of the

GPS including principles, orbital parameters, calculating satellites and receiver posi-

tion using satellites ephemeris data. Two different navigation filter schemes are also

discussed, namely, the loosely-coupled and the tightly-coupled. Simulation and real

system performance are represented to verify the performance of the filter.

Chapter 5 looks at how a navigation system can achieve integrity. It is

stated that for the navigation system to achieve integrity it should have a fault de-

tection and identification scheme. The chapter provides a definition of fault, looks

at different fault classifications, and surveys various fault detection and identification

schemes. A new sequential fault diagnosis scheme is presented. This scheme employs

an innovation-based technique for fault detection and a model-based technique for

fault identification. The resulted sequential scheme achieves better fault detection

and identification than both systems. Finally, simulated as well as actual FDI per-

formance are presented to verify its performance.

Finally, Chapter 6 provides a conclusion for this thesis along with suggestions

for future work.



Chapter 2

Literature Review

2.1 Introduction

Literature is abundant with studies on Inertial Navigation Systems (INS), Global

Positioning Systems (GPS), Estimation theory and Kalman Filtering (KF) and Fault

Detection and Identification in Dynamic Systems. This chapter provides the back-

ground required for this thesis. However, some topics will be left for relevant chapters.

In particular this chapter addresses all aspects related to Kalman filtering in both

linear and nonlinear formats. It provides a detailed discussion on filter tuning, Inno-

vation consistency test and initialization. Before conclusions, this chapter provides

an advanced survey on the adaptive techniques applied to Kalman filtering.

The other thesis related topics, such as inertial navigation, GPS data process-

ing, Kalman filter implementations and fault detection and identification (or shortly,

fault diagnosis) techniques, are reviewed in their related chapters.

2.2 Estimation and The Kalman Filter

The Kalman filter is addressed by a huge number of books and theses, of which

the most interesting are (Maybeck, P. S., 1979), (Welck, G. & Bishop, G., 1997),

(Durrant-Whyte, H. F., 2001), (Grewal, M. S., & Andrews, A. P., 2001), (Sukkarieh,

S., 2000).
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2.2.1 The Linear Discrete-Time Kalman Filter

Assume that the system under consideration can be described by a simple linear,

discrete-time state transition equation of the form

x(k) = F(k)x(k − 1) + B(k)u(k) + G(k)w(k) (2.1)

where x(k − 1) is the previous estimated state at time k − 1, u(k) is a control input

vector, w(k) is an additive process (motion) noise, B(k) and G(k) are input and noise

transition matrices, F(k) is the state transition matrix, and x(k) is the predicted state

at the next time step k. Observations of the state of this system made at time k are

assumed also to follow a simple linear equation of the form

z(k) = H(k)x(k) + v(k) (2.2)

where z(k) is the observation made at time k, x(k) is the state at time k, H(k) is the

observation matrix (or model), and v(k) is an additive observation noise.

Both ,w(k) and v(k) are assumed to be Gaussian, uncorrelated and zero mean white

noises

E [w(k)] = E [v(k)] = 0, ∀k. (2.3)

with corresponding covariances

E
[
w(i)wT (j)

]
=

Q(k) i = j = k

0 i 6= j

(2.4)

and

E
[
v(i)vT (j)

]
=

R(k) i = j = k

0 i 6= j

(2.5)
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and since they are uncorrelated

E
[
w(i)vT (j)

]
= 0, ∀i, j. (2.6)

The Kalman filter is a set of predictor-corrector equations that is optimal in

the sense that it provides the Minimal Mean Squared Error (MMSE) and minimizes

the estimated error covariance. It estimates the states at time k given all observations

up to time k, x̂(k|k).

In this subsection, a brief discussion of the filter equation is included. A more detailed

derivation of the Kalman filter equation is listed in appendix C. The algorithm starts

by predicting an estimate of the state at time k given only information up to time

k − 1, which is called prediction, and is written as x̂(k|k − 1).

x̂(k|k − 1) = F(k)x̂(k − 1|k − 1) + B(k)u(k) (2.7)

Where x̂(k − 1|k − 1) is the state estimate at time k − 1 given all information up to

time k − 1.

The prediction uncertainty is represented by the covariance matrix P(k|k−1),

such that

P(k|k − 1) = F(k)P(k − 1|k − 1)FT (k) + Q(k) (2.8)

Where P(k − 1|k − 1) represents the variance of the error in the estimated states at

time k given all observations up to time k− 1. In a navigation system, equations 2.7

and 2.8 occur each time a sample from the dead reckoning sensor is obtained.

The correction stage starts when observations from external aiding sensors are ob-

tained. The estimated (corrected) states are given by

x̂(k|k) = x̂(k|k − 1) + W(k)ν(k) (2.9)
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Where W(k) is the Kalman gain and ν(k) is the innovation vector, given by

ν(k) = z(k)−H(k)x̂(k|k − 1) (2.10)

Where z(k) is the observation given only at time k and H(k)x̂(k|k−1) is the predicted

observation at time k. The Kalman gain is what minimizes the mean squared error,

and is computed by

W(k) = P(k|k − 1)HT (k)S−1(k) (2.11)

Where S(k) is the innovation covariance, and is computed by

S(k) = H(k)P(k|k − 1)HT (k) + R(k) (2.12)

Due to this correction stage, the covariance matrix is updated as follows

P(k|k) = (I−W(k)H(k))P(k−1|k−1)(I−W(k)H(k))T +W(k)R(k)WT (k) (2.13)

By looking into the Kalman filter equations, the following features can be

observed:

• The cyclic structure of the filter, where some computations are performed at

each time step.

• The covariance loop is independent of both the state estimate loop and the

observations. This implies that state covariance and the Kalman gain can be

computed off-line prior to state estimate prediction and correction.

• The Kalman filter is a weighted sum of the prediction and observation.

• It provides estimates of states which may not be a part of the observation vector

by means of the cross-correlation (i.e. off-diagonal elements of P(k)) between

the observed and unobserved states, which makes the Kalman filter operate as

an observer (Durrant-Whyte, H. F., 2001).
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2.3 Kalman Filter Tuning and Performance Characteristics

In this section a detailed analysis of the Kalman filter performance is introduced.

This analysis includes filter consistency and consistency diagnosis, filter initialization

and steady state performance, growth of uncertainty and the effect of sensors errors

on filter consistency. These concepts are discussed in (Durrant-Whyte, H. F., 2001)

and the math behind is represented by (Kreyszig, E., 1993).

A Kalman filter consists of two stages; the prediction stage where the process

model provides a predicted state estimate x̂(k|k − 1) with uncertainty of P(k|k −

1), and the correction (update) stage where observations z(k) (when they become

available) are used to enhance estimation uncertainty and produce a corrected state

estimate x̂(k|k−1) with less uncertainty P(k|k). The whole fusion process is centered

around the method by which predictions and observations are weighted. The Kalman

filter state estimate is a weighted average of the state prediction and observations.

x̂k|k = K
(1)
k x̂k|k−1 + K

(2)
k zk (2.14)

The gain matrices K
(1)
k and K

(2)
k are derived in such a way that the conditional mean

squared estimation error is minimized. The Kalman gain derived to serve this pur-

pose is calculated as in equation 2.11. The derivation of this gain requires an exact

knowledge of the process noise covariance matrix Q(k) and the measurement noise

covariance matrix R(k) representing the true model. However, this information is

not available in most of real time systems and the performance of the filter loses its

optimality. To implement a successful Kalman filter, it is essential to tune for these

matrices. The process of tuning is not random, the filter should pass a number of

tests to validate its performance. These test are introduced in next section and they

aim to prove the consistency of the filter.

Both tuning and fault diagnosis should provide methods for monitoring both
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stages of the Kalman filter. The conventional may is to compare estimations of both

stages with true system values. However, the true states are not usually available

for comparison and the only connection between the Kalman filter world of virtual

reality and the real world is the observations z(k). The innovation sequence serves as

a tool to validate the observations, check the consistency of prediction and to decide

a criteria to fuse both of them.

2.3.1 Filter Consistency

The consistency of static estimators is defined as convergence of the estimator to

the true value. For dynamic estimators no convergence of estimates occurs and

a filter is called consistent if its estimation errors are compatible with the filter-

calculated covariance. For an estimator to be consistent it must satisfy a couple of

requirements. They are the unbiasedness and the covariance matching requirements

(Durrant-Whyte, H. F., 2001)(Bar-Shalom, Y., Li, X. R., & Kirubarajan, T., 2001).

Definition 2.1

Two-Moment Conditions:

An estimate is said to be consistent if it is unbiased;

E [x(k)− x̂(k|k)] , E [δx(k|k)] = 0

and its actual covariance matches the filter-calculated (theoretical) covariance

E
[
(x(k)− x̂(k|k))(x(k)− x̂(k|k))T |Zk

]
, E

[
δx(k|k)δxT (k|k)

]
= P(k|k)

Filter gain depends on the covariance, so that consistency is necessary for filter op-

timality. Theorem 2.1 provides a criteria for testing the consistency of an estimator.
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Theorem 2.1

Statistical Tests for Filter Consistency:

Under the hypothesis that a filter is consistent, x(k) is the true value of state and

x̂(k) is the state estimate, the normalized state estimation error squared (NEES)

p(k) = (x(k)− x̂(k))TP−1(k|k)(x(k)− x̂(k))

is a χ2 distribution in n = dim(x(k)) degrees of freedom and

E[p(k)] = n

The NEES is utilized to check the consistency of the correction stage. How-

ever, in real situations the true state to be estimated is unknown and the difference

between the true state and the estimate of the state is replaced by the innovation;

that is the difference between the observations and the predicted observations. The

innovation sequence should be zero-mean (unbiased), white (uncorrelated) and has

covariance S(k) if the filter is operating correctly (Mehra, R. K., 1970).

Similar to Theorem 2.1, the normalized innovation squared (NIS) is used as a

test of unbiasedness for the innovation sequence. It is computed according to

q(k) = νT (k)S−1(k)ν(k) (2.15)

under correct filter assumptions, the NIS is χ2 in m degrees of freedom, where m is

the order of the observation vector, and

E[q(k)] = m (2.16)
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This test can be implemented by computing the moving average of the NIS sequence

for a number of N samples as follows

q̄ =
1

N

N∑
i=1

q(i) (2.17)

testing the hypothesis that Nq̄ is a χ2 random variable in Nm degrees of freedom, a

confidence interval (bounding set) [b1, b2] is constructed such that

P {q̄ ∈ [b1, b2]|H0} = 1−Q (2.18)

represents the (two-sided) percentage probability that a particular observation lies

within an ellipsoid (Van Trees, H., L., 1971). This percentage probability is also

referred to as the confidence level. Given a confidence level, the confidence interval

is calculated as follows

b1 =
χ2

Nm

(
Q
2

)
N

b2 =
χ2

Nm

(
1− Q

2

)
N

(2.19)

where χ2
Nm(x) is evaluated using tables from appendix F. The average q̄ should lie

between these boundaries if the filter is consistent (Kreyszig, E., 1993)(Bar-Shalom,

Y., Li, X. R., & Kirubarajan, T., 2001). This consistency test may also be imple-

mented in real time by checking that the NIS is χ2 with confidence level given by the

(one-sided) percentage probability such that

νT (k)S−1(k)ν(k) < γ (2.20)

where

γ = χ2
m (P {q̄ < γ|H0}) (2.21)
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The chi-square test of equations 2.15, 2.17, 2.19 and 2.21 is explained as follows,

if the innovation sequence is biased, the normalized innovation squared of equation

2.15 exceeds the threshold of 2.21. If the bias is significant, the moving average in

2.17 increases beyond the limits of the two-sided interval [b1, b2] determined by 2.19.

To estimate ones confidence interval, Chi-squared distribution in appendix F is used.

Given a confidence level (say 95%) and the number of degrees-of-freedom (DoF) the

Chi-squared distribution table is used to estimate the upper and lower confidence

limits and the threshold of equation 2.20.

The next step is the whiteness test for the innovation sequence. This is

conducted by means of the autocorrelation function of the innovation. The purpose

is to test that the innovation is indeed white with

E
[
ν(i)νT (j)

]
= S(i)δij (2.22)

The time-averaged (biased) autocorrelation used to test the whiteness of the innova-

tion sequence is given in (Durrant-Whyte, H. F., 2001) and (Bar-Shalom, Y., Li, X.

R., & Kirubarajan, T., 2001) as

Theorem 2.2

Test of Whiteness:

For an innovation sequence ν(k) to be white with a large enough number of samples

N , the time-averaged autocorrelation function given by

ρl(τ) = 1
N−τ

∑N−τ−1
i=0 νT (i)ν(i+ τ)

where l = 1, . . . ,m, is normally distributed with mean zero and variance 1
N

.

Thus, from theorem 2.2, the 95% confidence limits for ρl(τ) are ±1.96√
N

. In other

words, to test the whiteness of an innovation sequence, plot the values of the statis-
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tical autocorrelation function and check the number of times when its values exceeds

the 95% confidence limits. If this number is less than 5% of the total, the innovation

is white. It is important to remember that this test is based on the assumption of

large N . If N is small, other tests may be used (Mehra, R. K., 1970). A filter that

does not pass the whiteness test is considered to be operating in the suboptimal mode

of operation.

The last step in validating filter’s model, is to compare the actual innovation

covariance, computed by the left side of equation 2.22 with its theoretical value,

given by equation 2.12. This can also be accomplished if the innovation sequence is

compared with its corresponding estimated covariance.

2.3.2 Filter Tuning

The Kalman gain, obtained by equation 2.11, is based on the fact that the process

noise covariance matrix, Qk, and the observation noise covariance matrix, Rk, repre-

sent the true errors in the system. However, in most cases, this in not true and Qk

and Rk are unknown. The process of selecting appropriate values of these matrices

to achieve the optimal solution, which minimizes the conditional estimated squared

error, is referred to as filter tuning.

Tuning of the Kalman filter is a very hard process, which is usually left for

professionals. It takes much order of magnitude of the time required to implement

the filter itself. However, a simple procedure can be applied to tune the filter as close

as possible to its optimal performance. The consistency tests discussed in subsection

2.3.1 serves as indicators assisting the tuning process. This process is summarized in

Table 2.1. Figure 2.1 represents the relation between tuning parameters (Q and R)

and the levels of correction and correlation of the innovation sequence.
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Figure 2.1: Tuning membership function.

These steps results in a filter’s model which operates as close as possible to its

optimal performance. However, it does not guarantee for it to be a global optima.

Global optimality of the Kalman filter is an active research area. Artificial Intelligence

(AI) algorithms are utilized in different forms to search for the values of process and

measurement noise covariances Q(k) and R(k) which achieve global optimality. AI

algorithms utilized in Kalman filter optimization problem include Fuzzy Logic, Neural

Networks (NN) and Genetic Algorithms (GA) are addressed in subsection 2.4.3.

The tuning of the Kalman filter is critical for its performance. Table 2.2 shows

the effect of process and measurement noise covariance mismatching. The tuning

process starts by fixing one of Q(k) or R(k) and varying the other one. It is much

more sensitive to changes in R(k) than to changes in Q(k). So that, changing R(k)

represents coarse tuning, while changing Q(k) represents fine tuning. The diagonal

elements of R(k) and Q(k) depend on the noise levels of the sensors utilized which

can be obtained from the manufacturer data sheets or through experimentations

(Sukkarieh, S., 2000).
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Table 2.1: Steps used as a procedure for Kalman filter tuning process
Step Consistency

Test
Observations

Adjusting the
ratio Qk

Rk

Autocorrelation
function of
the innovation
sequence

Regardless of the absolute noise
level, a too small ration implies an
untrusted observations over pre-
dictions and the innovation se-
quence will be correlated

Setting the noise
values of Qk and
Rk

χ2 test of the
NIS and the
moving average
NIS

An NIS or a moving average NIS
that lies higher than its gating or
confidence interval respectively,
implies a high levels of Qk and Rk

Observing both
the innovation
sequence and its
covariance

The shape of
the innovation
sequence and its
relation to Sk

The innovation sequence must
look like white noise (unbiased
and zero-mean) and shows no
periodic-like behavior. By plot-
ting the innovation sequence with
the corresponding standard devi-
ation ±σ (which is the square
root of the corresponding diag-
onal element of Sk) and ±2σ
bounds, at least 95% of the inno-
vation sequence should fall within
the ±2σ bound

2.3.3 Initialization

The first step in implementing a Kalman filter is the selection of starting state esti-

mate vector x̂(0|0) and its corresponding uncertainty P(0|0). A low value of P(0|0)

represents high confidence in initial estimate x̂(0|0), and vise versa. Initial covariance

with all zero elements represents complete confidence in initial state, but it results

in a very slow converging filter. This is because the calculated Kalman gain depends

on state covariance which will be changing, according to equation 2.8, by an amount

equals to Q(k).

The true initial state is a random variable, which is assumed to be normally

distributed with mean x̂(0|0) and variance P(0|0). The initial state estimate has to be

consistent with its initial covariance. Therefore, initial state estimate and covariance
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Table 2.2: Effect of mismodeling the process and measurements noise covariances on
the operation of the Kalman filter
Mismatch
mode

Consequences Results of validation tests

Large Qk Prediction uncertainty grows ac-
cording to equation 2.8. When
observations become available,
predicted uncertainty of inertial
solution will be reaching a level
where correction will occur re-
gardless of observations accuracy

The innovation will show normal
behavior. However, the NIS will
be smaller than what would nor-
mally be expected and its moving
average falls below the lower limit
of its 95% confidence interval

Large Rk Implies an inaccurate observa-
tions, which will be less weighted
than what would be expected nor-
mally

The innovation will show normal
behavior. However, the NIS will
be smaller than what would nor-
mally be expected and its moving
average falls below the lower limit
of its 95% confidence interval

Small Qk Prediction uncertainty grows ac-
cording to equation 2.8. When
observations become available,
predicted uncertainty of inertial
solution will reach a level which
is lower than the true uncertainty
in inertial solution, the Kalman
gain will be smaller than what is
expected and observations will be
less weighted than what should
be, which results in less corrected
errors

Predictions will be more trusted
than what should be normally.
The innovation sequence will
show non-random correlated
behavior, which appears in the
time-averages autocorrelation
test. The NIS will be larger
than what would normally be
expected and its moving average
raises over the upper limit of its
95% confidence interval

Small Rk Implies accurate observation and
fusion occurs regardless of their
actual accuracy

The innovation sequence exceeds
the computed standard deviation.
The NIS will be larger than what
would normally be expected and
its moving average raises over the
upper limit of its 95% confidence
interval

matrix should pass the chi-squared test given by

x̂(0|0)TP(0|0)−1x̂(0|0) 6 b2 (2.23)
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where b2 is the upper limit of the 95% confidence interval calculated by equation 2.19

using the chi-square distribution (see appendix F) with corresponding number of DoF.

The choice of a reasonably good initial estimates improves convergence and is

essential in the convergence of the extended Kalman filter (Durrant-Whyte, H. F.,

2001). In simulations, the initial state estimate is generated with a mean equal to

the true initial state (which is fixed) and with covariance equal to the initial state

covariance (which is chosen such that the error is at most 2 times the corresponding

standard deviation) (Bar-Shalom, Y., Li, X. R., & Kirubarajan, T., 2001). Another

way of doing that, is to reverse the procedure by choosing an initial covariance and

then generating the initial estimate according to

x̂(0|0) = x(0|0) + ζ
√

P(0|0) (2.24)

where ζ ∈ [−2, 2] and the simplest method to choose an initial covariance is through

P(0|0) = α2Q(k) (2.25)

and a reasonable start is with α = 10. In real time implementation, the simplest

initialization method can be done by polynomial fitting of a number of consecutive

measurements.

It is a fact that initialization of the Kalman filter algorithms improves its con-

vergence. However, it does not affect its steady state performance. The steady-state

performance of the Kalman filter is uniquely determined by the values of process and

observation noise covariances, Q(k) and R(k).
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2.4 Adaptive Kalman Filter Techniques

One limitation of Kalman filter algorithm is the requirement of precise a priori knowl-

edge of system models and noise properties. Once the filter is tuned, both of estimated

Q(k) and R(k) guarantees the consistency of the state estimate and the optimiza-

tion of the filter. However, due to environmental changes (such as weather changes

or clouds, aircraft model variations, sensor failures and GPS signal blockage), Q(k)

and R(k) no longer represent the true noise condition and the filter loses its opti-

mality. Later is chapter 5 such situations will be referred to as faults. One approach

to compensate for environmental changes is by the utilization of what is described

as an adaptive implementation of the Kalman filter. By fusing adaptive estimation

theory into the Kalman filter equations, the integrated algorithms achieves an online

optimization scheme by providing updated estimates of Q(k) and R(k) that describes

the true (or as close as possible to the truth) process and sensor noise covariances.

This section provides an overview of the most popular adaptive implementations of

the Kalman filter.

2.4.1 Covariance Matching Approach (CMA)

The basic idea behind CMA (Jwo, D. J., & Chang, S. C., 2007) (Loebis, D., Chudley,

J., & Sutton, R., 2003), is to make the actual value of the innovation covariance Ŝ(k)

in consistence with its theoretical value S(k). The innovation sequence is used to

compute the actual covariance as follows .

Ŝ(k) =
1

M

N∑
i=i0

ν(i)νT (i) (2.26)

where M represents the number of samples in the estimation window, and i0 =

N −M + 1 is the first sample inside the estimation window. This actual covariance

is used to compute a new estimate of the measurement noise covariance matrix R̂ as
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follows

R̂(k) = Ŝ(k)−H(k)P−(k)HT (k) (2.27)

This new estimated value of measurement noise covariance is then used to compute

the Kalman gain as in equations 2.10 and 2.12 and to update the state covariance

matrix as in equation 2.13. The same approach applies for the process noise covariance

matrix Q̂, which is estimated as

Q̂(k) =
1

M

N∑
i=i0

∆x(i)∆xT (i) + P(k)− F(k)P(k − 1)FT (k) (2.28)

where, ∆x(k) = x(k) − x̂−(k). This equation can be written in term of estimated

innovation covariance Ŝ(k) as follows

Q̂(k) ≈ W(k)Ŝ(k)WT (k) (2.29)

2.4.2 Multiple Model Adaptive Estimation (MMAE)

The MMAE was initially proposed for GPS carrier-phase integer ambiguity resolu-

tion (Henderson, P. E., 2001). Models of equations 2.1 and 2.2 contain an unknown

parameter which varies slowly when compared to the states. Assume that the pa-

rameter can take on values that are discrete members of a finite set {a1, a2, ..., aK}.

MMAE uses a bank of, K, linear Kalman filters (Figure 2.2). Each elemental filter

is modelled with a different internal hypothesis based on a single member of the set

{a1, a2, ..., aK}. The Kalman filters are provided with the same measurement vector

z(k) and produce its own, hypothesis based, state estimate x̂(k) and innovation se-

quence ν(k). Due to the fact that each elemental filter is based on different internal

model, filters estimates and innovations will be different and the magnitude of the

innovation provides an indication of how adequately each of the models represent

the true operation mode. A hypothesis conditional probability weighting computer

makes use of each individual innovation sequence to assign relative probabilities to
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Figure 2.2: In MMAE, a bank of Linear Kalman filters is used to detect faults and
to provide a state estimate

each filter estimate. The output estimates of all filters are combined optimally using

these probabilistic average weights to produce one state estimate. Optimal weights

can be used also to estimate the correct parameter ai, where i ∈ {1, 2, ..., K}.

When implemented in fault detection and identification mode, each elemental

filter represents a failure model and its corresponding weight is the posteriori proba-

bility of that failure. This probability is used as failure indicator because it reflects

the likelihood that the observed set of measurements correspond to that particular

failure model.

As mentioned earlier in subsection 2.3.1, the innovation sequence is Gaussian

with zero mean and variance S(k). Therefore, the Gaussian density function is used

to describe the likelihood functions. The objective of MMAE is to get the joint con-
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ditional probability density function (PDF) for the state vector x(k) and parameter

set a conditioned on the realized measurement history Zk which is written, according

to Baye’s theorem (Bertsekas, D. P., & Tsitsiklis, J. N., 2000), as

fx(k),a|Z(k)(ξ, α|Z(k) = Zk) = fx(k)|a,Z(k)(ξ|a = α,Z(k) = Zk)fa|Z(k)(α|Z(k) = Zk)

(2.30)

The first term on the right side of equation 2.30 is the conditional density of hav-

ing state estimate x(k) given Kalman filter model of a and measurements history

Zk, which is analogous to the standard conditional density used in Kalman filter-

ing. Therefore, it is Gaussian with mean x̂(k|k) and variance P(k|k). The second

expression of equation 2.30 is the probability density of hypothesis a conditioned on

observation history up to Zk, which also Gaussian. It can be expressed as in (Ormsby,

C. D., 2003)

pi(k) ≡ prob
{
a = ai|Z(k) = Zk

}
(2.31)

pi(k) =
fz(k)|a,Z(k−1)(z(k)|a = ai,Z(k − 1) = Zk−1)pi(k − 1)∑K

j=1 fz(k)|a,Z(k−1)(z(k)|a = aj,Z(k − 1) = Zk−1)pj(k − 1)
(2.32)

where
K∑

i=1

pi(k) = 1 (2.33)

pi(0) =
1

K
∀i (2.34)

The conditional density function in equation 5.27 is the conditional density of

the measurements z at time k given the Kalman filter model of a ∈ {a1, a2, ..., aK}

and the measurements history Zk−1 represented as

fz(k)|a,Z(k−1)(z(k)|a = ai,Z(k − 1) = Zk−1) = βi(k) exp
{
−ανT

i (k)S−1
i (k)νi(k)

}
(2.35)

βi(k) =
1

(2π)
m
2 |Si(k)|

1
2

(2.36)
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where |Si(k)| is the determinant of the innovation covariance matrix, m is the dimen-

sion of the measurement vector z(k) and α is a scaling penalty (1
2

mostly).

The optimal state estimate is derived as (Ormsby, C. D., 2003)

x̂(k|k) =
K∑

i=1

x̂i(k|k)pi(k) (2.37)

Therefore, the optimal state estimate of a MMAE is the weighted sum of the elemen-

tal filter estimates, weighted by the probability that the hypothesis of that particular

filter in correct and based on the current measurements.

Equation 2.35 provides a powerful tool for fault identification and isolation.

As indicated earlier in subsection 2.3.1, the innovation alone is not enough to indicate

the performance of the filter. The innovation covariance provides a valuable infor-

mation of how accurate the innovation sequence behaves (that is for a filter to be

consistent, the innovation covariance should match the error in the innovation) and

this motivates the use of the normalized innovation squared computed by equation

2.15 in equation 2.35. For the elemental filter that provides the correct hypothesis,

the value of q(k) is the smallest among all other elemental filters. It’s probability

pi(k) becomes the largest and it’s contribution in the overall state estimation, given

by 2.37, is increased. Contributions from other elemental filters are isolated based on

how far their hypothesis are from the correct (highest weighted) one.

The covariance of this estimate is also derived in (Ormsby, C. D., 2003) and

is given by

P(k|k) = E
{

[x(k)− x̂(k)] [x(k)− x̂(k)]T |Z(k) = Zk
}

=
K∑

i=1

pi(k)
{
Pi(k|k) + [x̂i(k)− x̂(k)] [x̂i(k)− x̂(k)]T

} (2.38)
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Equation 2.38 indicates that the uncertainty in MMAE state estimation depends on

the overall state estimate x̂(k), each elemental filter estimate x̂i(k), each elemental

filter uncertainty Pi(k), and the likelihood pi(k) that each elemental filter provides

the correct state estimate provided a particular hypothesis. The MMAE state esti-

mate error covariance is not required for an online MMAE.

The optimal hypothesis parameter â(k) along with its covariance Pa(k) may

also be computed (Ormsby, C. D., 2003)

â(k) =
K∑

i=1

ai(k)pi(k) (2.39)

Pa(k) =
K∑

i=1

pi(k)
{[

ai(k)− âT (k)
] [

ai(k)− âT (k)
]T

}
(2.40)

In (Maybeck, P. S. & Hanlon, P. D., 1995) performance enhancements were

proposed. They include stripping the β term of equation 2.35, scalar penalty in-

crease, probability smoothing, increased residual propagation, Kalman filter tuning

and bounded conditional probabilities. Only the last three, which are residuals prop-

agation, filter tuning and bounded probabilities, are utilized in this work, particulary

in the implementation of the sequential algorithm discussed in chapter 5.

The number of elemental filters (hypothesis) in the bank and the size of the

bank depend on the number of expected failures and the number of hypothesis para-

meters. For example, if 5 failure modes are expected with each hypothesis formed by

varying 2 parameters, then 32 elemental filters are required. To avoid the potentially

large number of elemental filters needed for an MMAE bank, a moving bank MMAE

is implemented (Maybeck, P. S. & Vasquez J. R., 1999), (Maybeck, P. S. & Vasquez

J. R., 2004). In the moving-bank implementation, the number of elemental filters

in the bank is fixed and predetermined by the designer. In the previous example,

one might choose to build the system with 3 filters per parameter which reduces the

number of filters in the bank to 9.
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2.4.3 Artificial Intelligence Algorithms

Artificial intelligent algorithms utilized for Kalman filter adaptive tuning include fuzzy

logic, Genetic Algorithms (GA), and Neural Networks. In implementations where

fuzzy logic is used, such as (Loebis, D., Sutton, R., Chudley, J., & Naeem, W., 2004)

and (Oshman, Y., & Shaviv, I., 2000), the covariance matching approach (CMA)

is utilized to estimate a value for the sensor noise covariance R, this value is then

compared to a membership function and is adjusted such that the theoretical value

becomes equal to the actual value.

Genetic Algorithms are optimization algorithms based on the mechanics of

natural selection and natural genetics. In (Oshman, Y., & Shaviv, I., 2000) Genetic

Algorithms (GA) were used for filter tuning. In doing so, different hypotheses of

covariance matrices Q or R are selected as first generation individuals. Statistical

Consistency Tests (SCT), such as the χ2, are then utilized to form fitness functions

used to evaluate and join individuals to form the second generation. This process in-

volves three different operations, namely, reproduction, crossover, and mutation. The

next generation is created after applying all three operators. The same procedure is

applied to following generations and inconsistent individuals are removed, the remain-

ing consistent hypotheses form individuals of new population that are joint again via

the three operators to form the following generation. This process is repeated until

the most consistent (survived) filter hypothesis is selected as the optimal filer. GAs

are ideal for optimization problem on hand because they are very efficient when a

large search space is involved and they work well with stochastic object function.

Algorithms similar to GAs employed in optimization of the tuning process include

particle swarm optimization (PSO) (Jwo, D. J., & Chang, S. C., 2007).

Neural networks can be trained to map vehicle dynamics with corresponding

Kalman filter states, at the same rate of measurements update. After the output of
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the network meets a predetermined similarity threshold, it can be used to correct INS

measurements and estimate the value of the sensor noise measurement even with no

GPS measurements available. Neural networks are rarely employed in filter tuning. In

fact thy are mainly employed to bridge GPS outages and replace the GPS for short

periods of time. Therefore, neural networks are mainly utilized in fault detection

and identification applications, similar to that discussed in chapter 5. Examples of

neural networks applications in Kalman filter can be found in (Wang, J. J., Wang,

J., Sinclair, D., & Watts, L., 2006), (Wang, J. J., Wang, J., Sinclair, D., & Watts, L.,

1997), (Chiang, K. W., Noureldin, A., & El-Sheimy, N., 2004), and (Semeniuk, L., &

Noureldin, A., 2006).

2.5 Conclusions

This chapter has developed the required basic background that is essential to achieve

this research goals. In doing so, this chapter has:

• Listed the Kalman filter equations and discussed critical implementations issues.

Discussed the Unscented Kalman Filter (UKF) as being the state of art in sensor

fusion for navigation using the non-linear model for both the propagation of

mean and covariance. Although the UKF is not utilized in this work, it is a hot

subject for future work.

• Developed a stochastic framework for loosely coupled INS/GPS navigation. It

has done that by discussing the topics of filter consistency and tuning.

• Provided a detailed methodology for a simplified tuning procedure based on

the fact that under normal conditions the innovations should be zero mean,

white, uncorrelated and the corresponding moving average of the normalized

innovations squared (NIS) is χ2 distributed with a given order.

• Discussed the topics of filer initialization and steady state performance. It was

indicated that filter initialization affects the convergence time of the filter, while
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the steady state performance depends mainly on the noise covariances, Q and

R.

• Introduced the basics of adaptive Kalman filter implementations as sophisti-

cated and autonomous methods for filter tuning. These methods included the

covariance matching approach (CMA), the multiple model adaptive estimation

(MMAE), and artificial intelligent (AI) algorithms.

In fact, this chapter has built the essential knowledge required for next chapters

and necessary to achieve our goal, that is to implement an autonomous INS/GPS

navigation system that achieves integrity.



Chapter 3

Strapdown Inertial Navigation

3.1 Introduction

Before Newton formulated his mechanics (Halliday, D., Resnick, R., & Walker, J.,

1997), it was thought that the natural state of a body is when it was at rest and that

while a force was needed to move the body, keeping it moving at constant velocity re-

quired maintaining the effect of the force. Otherwise, it would naturally stop. Inertia

is the natural tendency of bodies to maintain constant translational and rotational

velocity, unless disturbed by forces or torques, respectively. An inertial reference

frame is a coordinate frame that is neither rotating nor translating and, therefore, at

which Newton’s laws of motion are valid. Inertial sensors, such as accelerometers and

gyroscopes, measure acceleration and rotational rate, respectively, with respect to

the inertial reference frame. Accelerations measured by three (not-necessary orthog-

onal) accelerometers, fixed such that their sensitive axes are oriented with one along

vehicle’s longitudinal axis, one transverse to the vehicle longitudinal axis, and one

vertical (Kelly, A, 1994), are integrated once to compute vehicle’s velocity. Then, the

computed velocity is then integrated to compute vehicle’s position. Gyroscopes are

utilized for coordinate system transformations, attitude representation, and removal

of undesired components such as the gravity component measured by the accelerom-

eters and misalignments. The mechanization equations developed in this chapter,

along with their error equations, are employed to free measured accelerations from

undesired components and calculate vehicle’s position, velocity and attitude. These

equation are derived in details in appendix C. Figure 3.1 shows the mechanization

process utilized to implement a strapdown inertial navigation system (SDINS).
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Figure 3.1: Typical Inertial Navigation System (INS) using the Direction Cosine
Matrix (DCM) approach utilized in this thesis

In this chapter, SDINS aspects that are most related to our objectives are

discussed. Mechanization equations and computational algorithms are discussed in

section 3.2. Error models, representations and characteristics are presented in section

3.3. Finally, performance verification and conclusions are listed in section 3.5.

3.2 Computation Algorithms

The transformation of body frame accelerations into the mechanization frame and the

removal of the gravitational component are the main purpose of attitude computa-

tions. To calculate the velocity and position of the vehicle, accelerations are integrated

one to compute the velocity and then once again to compute the position. This sec-

tion introduces the mechanization equations implemented for velocity and position

calculation (Titterton, D., & Weston, W., 2004),(Savage, P. G., 2006),(George, M. G.,

2007),(Ahmed, M. S., & Cuk, D. V., 2005). Two different mechanization frames are

considered, the navigational frame and the ECEF frame mechanizations. However,
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more attention is paid on navigational frame mechanization, since it is the frame con-

sidered in this work. An up-to-date strapdown mathematical frame is utilized, where

velocity / position equations are constructed using a Jordan-like attitude updating

approach (Savage, P. G., 2006). It generates an exact solution when provided with

exact position / velocity translation vector inputs.

3.2.1 Navigation Frame Mechanization

Attitude Computations:

Attitude computation is the most critical part in the whole INS mechanization process,

specially in high dynamic applications. The ability of the strapdown algorithm to keep

track of body attitude accurately determines its performance (Titterton, D., & We-

ston, W., 2004). The conventional approach for attitude computation is to compute

the direction cosine matrix, relating the vehicle body reference frame to the reference

coordinate system. When navigating with respect to the local geographic frame, it is

required to solve the matrix differential equation of the form

Ċn
b = Cn

b Ω
b
ib −Ωn

inC
n
b (3.1)

The first term of equation 3.1, Cn
b Ω

b
ib, is required to update the DCM for vehicle

body motion. It is a function of the body rates sensed by the strapdown gyroscopes.

While the second term, −Ωn
inC

n
b , takes into account updating the DCM for navigation

frame rotations. This includes the rotation of the navigational frame with respect to

the earth frame, which is referred to as the transport rate, and the Earth’s rate of

rotation. The computation of equation 3.1 is carried out using two steps of direction

cosine rotations, the first takes care of body rotations and the second takes care of

local navigation frame rotations. Since local navigation frame rotates at much lower

rates than the body rotations, it can be implemented at the lower rate l computer

cycle (Ahmed, M. S., & Cuk, D. V., 2005),(Titterton, D., & Weston, W., 2004). The
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two rotation are described by equations 3.2 and 3.3

C
n(l)
b(k+1) = C

n(l)
b(k)C

b(k)
b(k+1) (3.2)

C
n(l+1)
b(k+1) = C

n(l+1)
n(l) C

n(l)
b(k+1) (3.3)

where

C
b(k)
b(k+1) the DCM which transforms vectors from body frame coordinates at

the k + 1 cycle to body frame coordinates at the k cycle

C
n(l)
b(k) the DCM which transforms vectors from body frame coordinates at

the k cycle to navigation frame coordinates at the l cycle

C
n(l)
b(k+1) the DCM which transforms vectors from body frame coordinates at

the k + 1 cycle to navigation frame coordinates at the l cycle

C
n(l+1)
n(l) the DCM which transforms vectors from navigation frame coordinates

at the l cycle to navigation frame coordinates at the l + 1 cycle

C
n(l+1)
b(k+1) the DCM which transforms vectors from body frame coordinates at

the k + 1 cycle to navigation frame coordinates at the l + 1 cycle

In equations 3.2 and 3.3, the terms C
b(k)
b(k+1) and C

n(l+1)
n(l) update the DCM for the

rotations of body and navigation frames respectively. To compute C
b(k)
b(k+1), equation

3.4 is used (Titterton, D., & Weston, W., 2004)

C
b(k)
b(k+1) = I + f1(σ̄) [σ×] + f2(σ̄) [σ×]2 (3.4)

f1(σ̄) =
sin σ̄

σ̄
(3.5)

f2(σ̄) =
1− cos σ̄

σ̄2
(3.6)

σ =

∫ tk+1

tk

ωb
ibdt = αk+1 + δαk+1 (3.7)

where σ is a rotation vector with direction and magnitude such that a rotation of the

body frame about σ, through an angle equal to the magnitude of σ and assuming that

that direction of the rate-vector ωb
ib is unchanging, will rotate the body frame from
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its orientation at the computer cycle k to its position at the computer cycle k + 1.

This angular vector is computed by equations 3.8-3.10

σ = αk+1 + δαk+1 (3.8)

α =

∫ t

tk

ωb
ibdt (3.9)

δαk+1 =

∫ tk+1

tk

α× ωb
ibdt (3.10)

Equations 3.7-3.10 can be rewritten as in 3.11

σx = ωb
ibx(tk+1 − tk) +

1

2
ωb

ib

2

x(tk+1 − tk)
2

σy = ωb
iby(tk+1 − tk) +

1

2
ωb

ib

2

y(tk+1 − tk)
2

σz = ωb
ibz(tk+1 − tk) +

1

2
ωb

ib

2

z(tk+1 − tk)
2

(3.11)

where (σx, σy, σz) are the components of σ and σ̄ is its magnitude, which is given in

equation 3.12

σ̄ =
√
σ2

x + σ2
y + σ2

z (3.12)

Finally, the skew matrix [σ×] in 3.4 is computed by equation 3.13

[σ×] =


0 −σz σy

σz 0 −σx

−σy σx 0

 (3.13)

Similar algorithm is used to compute C
n(l+1)
n(l) . Equation 3.4 is replaced by equation

3.14

C
n(l+1)
n(l) = I +

sin θ̄

θ̄
[θ×] +

1− cos θ̄

θ̄2
[θ×]2 (3.14)

where θ is an angle vector with direction and magnitude such that a rotation of the

navigation frame about θ, through and angle equal to the magnitude of θ, will rotate
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the navigation frame from its orientation at the computer cycle l to its position at

the computer cycle l + 1. θ is computed by 3.15

θ =

∫ tl+1

tl

ωn
indt (3.15)

An alternative approach carries the computation of both rotations at the moderate

k − cycle computer rate. In this approach equation 3.1 is replace by the differential

equation given in 3.16

Ċn
b = Cn

b Ω
b
nb (3.16)

where Ωb
nb is symmetric skew matrix of ωb

nb, and ωb
nb is the rotation rate of the body

frame with respect to the navigation frame measured in the body frame, which is

given by

ωb
nb = ωb

ib −Cb
n (ωn

ie + ωn
en) (3.17)

To solve equation 3.16, equations 3.4 - 3.13 are used. However, the rotation rate ωb
ib

must be replaced by ωb
nb which is the relative angular rate of the b frame relative to

n frame and it is given by

ωb
nb =


φ̇− ψ̇ sin θ

θ̇ cosφ+ ψ̇ cos θ sinφ

ψ̇ cos θ cosφ− θ̇ sinφ

 (3.18)

Velocity Computations:

The navigation equation expressed in the n frame is derived in appendix C and it is

as follows

V̇
n

e = C n
b f

b − [2Ωn
ie + Ωn

en]V n
e + gn

l (3.19)

Where, V n
e represents velocity with respect to the Earth expressed in the local geo-

graphic frame.

V n
e =

(
υN υE υD

)T

(3.20)
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f b is the specific force vector as measured by three orthogonal accelerometers and

resolved into the local geographic reference frame by C n
b .

f n = C n
b f

b =
(
fN fE fD

)T

(3.21)

ωn
en is the transport rate; the turn rate of the navigation frame w.r.t the ECEF frame,

and it is calculated by equations 3.22 and 3.23

ωn
en =


λ̇ cosϕ

−ϕ̇

−λ̇ sinϕ

 (3.22)

ϕ̇ =
1

(Rm + h)
vN

λ̇ =
1

(Rn + h) cosϕ
vE

ḣ = −VD

(3.23)

Rm and Rn are the meridian radius and curvature and prime (transverse) radius of

curvature respectively. With these two parameters, the Earth is modelled as a ref-

erence ellipsoid which approximates more closely to the true geometry. They are

computed by equations

Rm =
a(1− e2)

(1− e2 sin2 ϕ)3/2
(3.24)

Rn =
a

(1− e2 sin2 ϕ)1/2
(3.25)

where, e is the major eccentricity of Earth (= 0.0818191908426) and a is the equatorial

radius of the Earth or semimajor axis (= 6378137.000 m). ωn
ie is the turn rate of the
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earth expressed in the navigation frame

ωn
ie = C n

eω
e
ie =


− sinϕ cosλ − sinϕ sinλ cosϕ

− sinλ cosλ 0

− cosϕ cosλ − cosϕ sinλ − sinϕ




0

0

Ω

 =


Ω cosϕ

0

−Ω sinϕ


(3.26)

and Ω is the Earth turn rate with respect to i frame (= 7.292115167 × 10−5 rad/s).

The term gn
l combines accelerations due to gravity and centripetal acceleration. It is

given by equation 3.28

gn
l = gn − ωn

ie ×
(
ωn

ie × rned
veh

)
(3.27)

= gn − Ω2 (Rn + h)

2


sin 2ϕ

0

1 + cos 2ϕ

 (3.28)

gn represents the Earth’s gravitational field which varies with changes in the posi-

tion of the navigation system on the Earth or its height above the its surface. An

international model for the variation of gravity with latitude and height is given by

equations 3.29-3.30

gn =
(

0 0 g(h)
)T

(3.29)

g(h) =
g(0)

(1 + h/a)2 (3.30)

g(0) = 9.780318
(
1 + 5.3024× 10−3 sin2 ϕ− 5.9× 10−6 sin2 2ϕ

)
m/s2 (3.31)

For more details on Earth’s shape modelling and local gravity derivation refer to

appendix C.

Discretization: Equation 3.19 can be discretized in different forms. A simple and

straight-forward method, which utilizes rectangular integrations, is implemented in
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equation 3.32.

V n(k + 1) = V n(k) + ∆V n − [(Ωn
en + 2Ωn

ie)V
n(k)− gn

l ] (tk+1 − tk)

= V n(k) + C n
b f

b − [(Ωn
en + 2Ωn

ie)V
n(k)− gn

l ] (tk+1 − tk)
(3.32)

However, the unified mathematical framework proposed by (Savage, P. G., 2006) is

implemented instead. This algorithm is represented by equations 3.33-3.37

V n(k + 1) = V n(k) + C n
b (k)∆V n

sf (k + 1) + ∆V n
g (k + 1) (3.33)

where ∆V n
sf (k + 1) is the change in velocity due to specific force acceleration

∆V n
sf (k + 1) =

[
I + f2(σ̄) [σ×] + f3(σ̄) [σ×]2

]
ν (3.34)

Where f1(σ̄) and f2(σ̄) are as in 3.5 and 3.6, respectively, and

f3(σ̄) =
1

σ̄2
(1− f1(σ̄)) (3.35)

ν =

∫ tk+1

tk

f b.dt (3.36)

∆V n
g (k + 1) is the change in velocity due to gravity

∆V n
g (k + 1) =

∫ tk+1

tk

gn
l .dt (3.37)

Position Computations:

Once the vehicle’s velocity is calculated, it’s position can also be calculated simply

by the following differential equation

Ṗ
n

e = V n
e (3.38)
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Discretization: The unified mathematical framework of (Savage, P. G., 2006) is ex-

tended to position computation as follows

Pn(k + 1) = Pn(k) + V n(k)∆tk + C n
b (k)∆Pn

sf (k + 1) + ∆Pn
g (k + 1) (3.39)

Where, ∆Pn
sf (k + 1) is the change in position due to specific force acceleration

∆Pn
sf (k + 1) =

[
I + 2f3(σ̄) [σ×] + 2f4(σ̄) [σ×]2

]
Sν (3.40)

Where f2(σ̄) and f3(σ̄) are as in 3.6 and 3.35, respectively, and

f4(σ̄) =
1

σ̄2

(
1

2
− f2(σ̄)

)
(3.41)

Sν =

∫ tk+1

tk

ν.dt (3.42)

∆Pn
g (k + 1) is the change in position due to gravity

∆Pn
g (k + 1) =

∫ tk+1

tk

∆V n
g (k + 1).dt (3.43)

The algorithms used for attitude, velocity and position computations in equa-

tions 3.4, 3.33 and 3.39, respectively, hold for the assumption of constant angular

rate ωb
ib and constant specific force f b. For this case of constant inputs, the algorithm

input is the direct integral of angular rate/specific force vector components provided

by gyroscopes and accelerometers. However, for general motion ( non-constant in-

puts) the algorithms should be modified. Integrated angular rates and specific forces

are replaced by rotation and velocity/position translation vectors. For more details

on the unified approach in case of general motion refer to (Savage, P. G., 2006).

The computed position Pn(k+1) of equation 3.39 is the position of the vehicle

in the local geographic frame. To convert this position into a different coordinate
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frame, a reference is needed. It is conventional to select the starting point as reference

r llh
ref =

(
ϕ λ h

)T

ref
(3.44)

where (ϕ, λ, h) are the geodetic latitude, longitude and altitude respectively. The

reference position is then converted to ECEF coordinate frame.

r ecef
ref =


(Rn + h) cosϕ cosλ

(Rn + h) cosϕ sinλ

(Rm + h) sinϕ

 (3.45)

where Rm and Rn are as in equations 3.24 and 3.25 respectively. Vehicle displacement

is then converted into the ECEF coordinate frame using equation 3.47

Decef
veh = C e

nr
ned
veh (3.46)

r ecef
veh = Decef

veh + r ecef
ref (3.47)

where C e
n is computed by taking the transpose of C n

e computed using ϕ, λ and h of the

reference r llh
ref (appendix A). The position of the vehicle in the ECEF frame is simply

the summation of the reference position in the ECEF frame r ecef
ref and individual

displacement of the vehicle in the ECEF frame Decef
veh . To convert this position into

the geodetic coordinate, equation 3.45 should be reversed. Unfortunately it cannot

be reversed. However, it can be solved numerically for example using the iterative
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Newton-Raphson Method (Chapra, S., C., & Canale, R., P., ).

r llh
veh =

(
h ϕ λ

)T

veh
(3.48)

h =
√
r2
x + r2

y + r2
z − a (3.49)

ϕ = sin−1

(
rz

a+ h

)
(3.50)

λ = sin−1

(
ry

(a+ h) cosϕ

)
(3.51)

3.2.2 Earth-Centered Earth-Fixed Frame Mechanization

An Earth frame mechanisation is often used for autonomous vehicle navigation in

applications where a ground stations is used to command the vehicle. In brief, ECEF

mechanization is derived using appendix C and similar to the navigation frame mech-

anization it is summarized as follows

Attitude Computations:

Attitude computation in the ECEF frame is similar to that in the local geographic

frame except that an additional transformation to the ECEF frame is required. This

transformation is done using the following equation

C e
b = C e

nC
n
b

where C e
n was given given in equation 3.26

Velocity Computations:

V̇
e

e = C e
bf

b − (ωe
ie + ωe

ie)×V e
e + g e

l (3.52)

= C e
bf

b − 2 (ωe
ie ×V e

e) + g e
l (3.53)

= C e
bf

b − 2Ωe
ieV

e
e + g e

l (3.54)

and
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ωe
ie =


0

0

Ω


The term g e

l combines accelerations due to gravity and centripetal acceleration.

It is given by equation 3.56

g e
l = g e − ωe

ie ×
(
ωe

ie × r ecef
veh

)
(3.55)

= g e − Ω2 (R0 + h)


cosϕ cosλ

cosϕ sinλ

0

 (3.56)

g e = gn


− cosϕ cosλ

− cosϕ sinλ

− sinϕ

 (3.57)

The transformation of vectors from the ECEF frame into the local geographic

frame is summarized is Figure 3.2 and is done by reversing the procedure described

earlier to transform vectors from the local geographic frame into the ECEF frame.

3.3 Error Analysis

We aim to provide an online calibration for the IMU and the INS. The Kalman filter

is used to model the error dynamics. The state transition matrix F(k) in 2.1 models

the transition of errors with time and the noise transition matrix G(k) models the

contribution of the noise in the prediction process. The purpose of this section is to

explain the nature of errors in the INS estimates and derive a mathematical model

for both transition matrices, F(k) and G(k).
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Figure 3.2: Steps to transform components from the ECEF frame over into the local
geographic frame
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3.3.1 Sensor Errors

For simulation purposes, a generalized sensor error models can be represented as

follows (Titterton, D., & Weston, W., 2004)


δωx

δωy

δωz

 = BG + Bg


ax

ay

az

 + Bae


ayaz

azax

axay

 + Bai


ωyωz

ωzωx

ωxωy



+ SG


ωx

ωy

ωz

 + MG


ωx

ωy

ωz

 + wG

(3.58)


δfx

δfy

δfz

 = BA + Bv


ayaz

azax

axay

 + SA


ax

ay

az

 + MA


ax

ay

az

 + wA (3.59)

where

δωx, δωy, δωz represent errors in x, y, and z gyroscopes

δfx, δfy, δfz represent errors in x, y, and z accelerometers

BG 3× 1 vector representing gyroscopes residual fixed biases

Bg 3× 3 matrix representing gyroscopes g-dependent bias coefficients

Bae 3× 3 matrix representing gyroscopes anisoelastic coefficients

Bai 3× 3 matrix representing gyroscopes anisoinertial coefficients

SG 3× 3 diagonal matrix representing gyroscopes scale-factor errors

MG 3 × 3 skew matrix representing gyroscopes misalignments and cross-

coupling errors

wG 3× 1 vector representing gyroscopes random bias errors

BA 3× 1 vector representing accelerometers residual fixed biases
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Bv 3× 3 matrix representing accelerometers vibro-pendulous error coeffi-

cients

SA 3× 3 diagonal matrix representing accelerometers scale-factor errors

MA 3×3 skew matrix representing accelerometers misalignments and cross-

coupling errors

wA 3× 1 vector representing accelerometers random bias errors

However, terms such as anisoelastic, anisoinertial, and vibro-pendolous errors

mainly affect mechanical inertial sensors, and, therefore, they are neglected. It is im-

portant also to understand the nature of employed sensors, since such understanding

may simplify sensors error modelling. For example, if optical sensors such as ring

laser and fiber optic gyros were utilized, then all acceleration dependent error terms

is gyros measurements are usually insignificant and then can be neglected.

A spectral density - based sensor errors model that can be used in discrete-

time computer simulations is derived in (Crassidis, J., L., 2005) and is represented as

follows

bk+1 = bk + σu∆t
1/2Nu (3.60)

m̂k+1 = mk+1 +
1

2
[bk+1 + bk] +

[
σ2

v

∆t
+
σ2

u∆t

12

]1/2

Nv (3.61)

where

bk represents inertial sensor bias at time k

mk represents noise free inertial sensor measurements at time k

m̂k represents simulated inertial sensor measurements at time k

σu and σv represent rate random walk and angle random walk respectively

Nu and Nv represent zero mean normally distributed random variables with vari-

ances of one
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∆t = tk+1−tk is the IMU sample time

This model neglects scale factor, non-linearity and misalignment errors. In fact, most

IMU manufacturers build an embedded system that can compensate for the signif-

icant part of these errors such that they become negligible. On last observation on

equations 3.60 and 3.61 is that inertial measurements noise and bias estimates are

independent of vehicle’s position, velocity, and attitude and depends mainly on in-

ternal sensors characteristics. Therefore, they are unaffected by external noise such

jamming or interference. These are the main advantages of using inertial sensors as

dead reckoning systems.

Figure 3.3: The ”Crossbow” IMU400CD-100 inertial measurement unit (IMU) uti-
lized in this thesis.

For more practical simulation environment, errors may be extracted from ac-

tual sensor measurement. This can be done by fixing the IMU on flat surface and

taking sensors measurements for a relatively long period of time. Therefore, in this

case sensor measurements contains nothing but real-time sensor errors. Figures 3.4

and 3.5 represent measurements of a stationary ”Crossbow” IMU, shown in Figure

3.3, for a period of 7 hours, while the mean and variance of sensors bias are in table 3.1.
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Figure 3.4: Acceleration measurements of three orthogonal accelerometers in ”Cross-
bow” inertial unit. The noise measurements depicts a high bias stability for a period
of 7 hours, in spite of the 2 degrees variation in it’s internal components temperature.

Figure 3.5: Rotation rates measurements of three orthogonal gyroscopes in ”Cross-
bow” inertial unit. The noise measurements depicts a high bias stability for a period
of 7 hours, in spite of the 2 degrees variation in it’s internal components temperature.
However, the gyroscopes show a higher noise level than that of the accelerometers,
which is considered as a major source of error in the mechanization process.
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Table 3.1: Mean and variance of ”Crossbow” IMU components
Sensor Exp. Mean Datasheet

Mean
Variance

x-accelerometer −7.1mg 3.1358× 10−7

y-accelerometer 8.9mg < ±12mg 3.7967× 10−7

z-accelerometer −14.1mg 3.3861× 10−7

Roll rate gyro 1.3190deg/sec 0.0859
Pitch rate gyro 0.8125deg/sec < ±1deg/sec 0.0921
Yaw rate gyro 0.2096deg/sec 0.0792

Other than sensor errors, strapdown inertial navigation systems suffer from

a number of errors. In fact, because these errors are either motion dependent or

growing with time, inertial systems are unreliable even for relatively short periods.

These errors are summarized as follows:

• Initial alignment: Initial attitude errors result into misalignments in the initial

direction cosine matrix. During mechanization, all coordinate transformation

will have misalignment and the removal of gravity component will cause drifting

of the state estimates.

• Maneuvering-dependent: High levels of acceleration and rapid turn rates excite

error within the SDINS such as scale factor errors and cross-coupling. Compared

to IMU sample rates, higher frequency maneuvers give rise to computational

errors within the navigation system.

• Vibration-dependent: Since inertial sensors are fixed to vehicle surface, vibra-

tions results into conning and sculling. This oscillatory motion will be detected

by accelerometers. However, gyros have smaller bandwidth and therefore un-

able to detect small amplitude oscillations. This will result into inaccurate

estimation of the component of the gravity and will be inaccurately evaluated

as apparent vehicle motion.

• Computational: Attitude computation is the most critical in INS mechaniza-

tion. The transformations matrices in equation 3.4 and similarly 3.14 contains
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coefficients (f1(σ̄) and f2(σ̄) in equation 3.4) that are approximated once im-

plemented in real time. The order of the attitude algorithm depends on the

number of Taylor series expansion coefficients included in the computations.

Figure 3.6 represents the relationship between the order of the algorithm, the

drift rate and the relative magnitude between the sampling rate and the con-

tinuous rotation rate of the vehicle. The drift rate is a function of both the

sampling time and the continuous rate of rotation. This relation is derived in

(Titterton, D., & Weston, W., 2004) and is represented as

Ddc = ∆f
(
σ̄f1(σ̄) cos σ̄ − sin σ̄ + σ̄2f2(σ̄) sin σ̄

)
(3.62)

where ∆f is the sampling frequency

Figure 3.6: Attitude computation drift rates in o/hr caused by sampling a continuous
rotation rates of 20o/sec. The drift errors caused by reduced order computational al-
gorithm are kept small as long as the sampling rate is higher magnitude than vehicle’s
continuous rotation rate. It is also clear that the drift rate is significantly improved
by increasing the order of the algorithm rather than by increasing the sampling rate.

As sensors measurements are integrated with time, errors will be integrated
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too and the inertial solution will drift over time resulting into low-frequency faults in

the navigation system (Sukkarieh, S., Nebot, E. M., & Durrant-Whyte, H. F., 1999).

In the next section, position, velocity and attitude error equations are derived and

the state space model of inertial system state estimates are listed. The effect of sensor

measurements errors on system states will be also discussed.

3.3.2 Modelling of Error States

Error models are developed by perturbing the nominal differential equation whose

output yields the INS output states (Titterton, D., & Weston, W., 2004)(Sukkarieh,

S., 2000)(Kong, X., 2000) (Kim, J., 2004).

Using The Local Geographic Reference Frame as The Computer Frame:

As described in section 3.2.1, the orientation of the vehicle is expressed in terms of the

direction cosine matrix C n
b . Due to the misalignment of the reference frame stored in

the INS computer, the estimated DCM, denoted by C̃
n

b , may be written in terms of

the true direction cosine matrix, C n
b , and attitude errors by taking the transpose of the

matrix in A.5 and replacing the angles (φ, θ, ψ) by their misalignments (ψx, ψy, ψz):

C̃
n

b =


1 δψz −δψy

δψxδψy − δψz δψxδψyδψz + 1 δψx

δψy + δψxδψz δψyδψz − δψx 1

C n
b

=


1 δψz −δψy

−δψz 1 δψx

δψy −δψx 1

C n
b

= [I− [δψ×]]C n
b

(3.63)
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where sin δθ ≈ θ, cos δθ ≈ 1 , the product of error terms is zero and [δψ×] is a

symmetrical skew matrix of attitude errors, which is written as:

[δψ×] =


0 −δψz δψy

δψz 0 −δψx

−δψy δψx 0

 (3.64)

Rearranging equation 3.64 for [δψ×]

[δψ×] = I− C̃
n

b C
n
b

T (3.65)

Differentiating equation 3.65 yields

˙[δψ×] = − ˙̃C n
b C

n
b

T − C̃
n

b Ċ
n
b

T
(3.66)

Similar to equation 3.1, the differential of C̃
n

b is written as

˙̃C n
b = C̃

n

b Ω̃
b
ib − Ω̃n

inC̃
n

b (3.67)

Substituting equations 3.1 and 3.67 into 3.66, using equation 3.63 and arranging yields

(Titterton, D., & Weston, W., 2004), which is derived in appendix C

δψ̇ ≈ −ωn
in × δψ + δωn

in −C n
b δω

b
ib (3.68)

where

δψ =
(
δψx δψy δψz

)T

(3.69)

is the misalignment vector.

The misalignment vector is employed in equations 3.63 to calculated the up-
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dated DCM as follows

C n
b = [I− [δψ×]]−1C̃

n

b

= [I + [δψ×]]C̃
n

b

(3.70)

Similarly, velocity error equation may be estimated by perturbation of the

nominal equation of 3.19. The resulted error equation is written as

δv̇n
e = [fn×]δψ + C n

b δf
b − (2ωn

ie + ωn
en)× δvn

e − (2δωn
ie + δωn

en)× vn
e − δgn

l (3.71)

where

δv̇n
e = ˙̃vn

e − v̇n
e (3.72)

δf b = f̃ b − f b (3.73)

δvn
e = ṽn

e − vn
e (3.74)

δωn
ie = ω̃n

ie − ωn
ie (3.75)

δωn
en = ω̃n

en − ωn
en (3.76)

δgn
l = g̃n

l − gn
l (3.77)

If errors in Coriolis and gravity terms are ignored, then equation 3.71 can be written

as

δv̇n
e = [fn×]δψ + C n

b δf
b (3.78)

Finally, perturbation of equation 3.38 results in position error equation of

δṗn
e = δvn

e (3.79)

Thus, the propagation of velocity and position errors are functions of the specific

force transformed over to the local geographic reference frame, fn, the misalignment

of the frame, δψ, and inaccuracies in the measurements of the accelerometers, δf b,
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transformed over to the navigation frame via C n
b .

Perturbation of The ECEF Frame Using The True Frame Approach:

Similar to equation 3.63, the misalignment is represented in the skew matrix form

[δφ×] as

C̃
e

b = [I− [δφ×]]C e
b (3.80)

rearranging equation 3.80 yields

[δφ×] = I− C̃
e

bC
e
b
T (3.81)

and differentiating gives

˙[δφ×] = −C̃
e

bĊ
e
b

T − ˙̃C e
bC

e
b
T (3.82)

The propagation of the the true , C e
b, and evaluated, C̃

e

b, transformation matrices is

as follows

Ċ
e

b = C e
bΩ

e
be (3.83)

˙̃C e
b = C̃

e

bΩ
e
be (3.84)

Substituting into equation 3.82 gives

˙[δφ×] = −C̃
e

b [C e
bΩ

e
be]

T −
[
C̃

e

bΩ
e
be

]
C e

b
T

= −C̃
e

b

[
Ω̃e

be −Ωe
be

]
C e

b
T

(3.85)

Perturbation of the rotation update matrix gives

δΩe
be = Ω̃e

be −Ωe
be (3.86)
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therefore

˙[δφ×] = −C̃
e

bδΩ
e
beC

e
b
T (3.87)

or rearranging into

C̃
e

b =
− ˙[δφ×]

δΩe
beC

e
b
T

(3.88)

substituting equation 3.88 into equation 3.80 yields

˙[δφ×] = −[I− [δφ×]]C e
bδΩ

e
beC

e
b
T

= −C e
bδΩ

e
beC

e
b
T + [δφ×]C e

bδΩ
e
beC

e
b
T

(3.89)

ignoring the product of the terms δφ× and δΩe
be, then the skew matrix of attitude

error becomes

˙[δφ×] = −C e
bδΩ

e
beC

e
b
T

= −C e
bδΩ

e
beC

b
e

= − [C e
bδω

e
be×]

(3.90)

Gyros measure the total rotation of the body frame with respect to the inertial

frame transformed into the body frame, ωb
ib. This includes the rotation of the body

with respect to the earth, ωb
be, plus the the rotation of the earth with respect to the

inertial frame, ωe
ie transformed over to the body frame. Then,

ωb
be = ωb

ib −C b
eω

e
ie (3.91)

Given that the rotation rate of the earth is known (i.e. δωe
ie = 0), the error form of

this equation becomes

δωb
be = δωb

ib (3.92)

substituting equation 3.92 into equation 3.90 yields

˙[δφ×] = −C e
b

[
δωb

ib×
]
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or

δφ̇ = −C e
bδω

b
ib (3.93)

Thus, the propagation of attitude errors in the Earth frame equals errors in gyros

measurements transformed over to the earth frame via C e
b. Therefore, since attitude

computation is critical in inertial navigation mechanization, then gyros are the most

critical components in inertial measurement units (IMU). Equation 3.93 proves that

attitude error computation through perturbation in the ECEF frame as the true frame

is independent of the position (Sukkarieh, S., 2000).

From the Earth frame velocity equation given in 3.54, the evaluated velocity

is written as

˙̃v e
e = C̃

e

b f̃
b − [2ω̃e

ie × ṽ e
e] + g̃ e

l (3.94)

by perturbation and using equation 3.80

δv̇ e
e = ˙̃v e

e − ṽ e
e

=
[
C̃

e

b f̃
b −C e

bf
b
]
− [2ω̃e

ie × ṽ e
e − 2ωe

ie × v e
e] + [g̃ e

l − g e
l ]

= C e
b

[
f̃

b − f b
]
− [δφ×]C e

b f̃
b − δ [2ωe

ie × v e
e] + δg e

l

(3.95)

Ignoring Coriolis and gravity error terms results in

δv̇ e
e = C e

bδf
b − [δφ×]C e

b f̃
b

= C e
bδf

b − [δφ×]f̃
e

(3.96)

then

δv̇ e
e = [f̃

e×]δφ+ C e
bδf

b (3.97)

That is, the propagation of velocity errors in the ECEF frame is a function of the

acceleration error in the ECEF frame due to the misalignment [f̃
e×]δφ, and the errors

in acceleration measurements transformed over to the ECEF frame. The position
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error equation is simply given by

δṗe
e = δve

e (3.98)

Equations 3.93 and 3.97 describes attitude and velocity errors propagation respec-

tively. The only terms that need to be determined are the errors in accelerometers

measurements δf b and the errors in gyros measurements δωb
ib. These two terms are

experimentally evaluated and on-line updated during the integration process as de-

scribed in subsections 3.3.1 and 4.4.1.

Since perturbation of the nominal navigation states is considered, the resulted

error equations become linear and a linear filter is employed. On the other hand,

a generalized non-linear error model for low-cost INS integration can be found in

(Giroux, R., Gourdeau, R., & Landry, R., J., 2004b) and (Giroux, R., Gourdeau, R.,

& Landry, R., J., 2004a). In such cases, a non-linear filter such the extended of the

unscented Kalman filters must be employed. However, in practice, it is more common

in cases where non-linear filter is desired to use the actual system estimates as filter

states instead of estimates errors.

3.4 Performance Verification

In this section, the accuracy of the implemented INS mechanization is verified. This is

an important step in the design of INS/GPS navigation systems, since the accuracy of

the implementation is vulnerable to computational errors which in turn can affect the

whole accuracy of the implementation. Figures 3.7, 3.8 and 3.9, shows errors in INS

mechanisation when sensors are assumed clean and the performance of these sensors

resembles expensive sensors performance. Figure 3.10 shows the simulated trajectory

when the ”CrossBow” IMU extracted noise of Figures 3.4 and 3.5 are applied to the

simulated accelerations and rotational rates. This Figure depicts the fact that, when

low -cost sensors are employed, the unaided navigation system in unreliable even for
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short periods.

3.5 Chapter Summary

The focus of this chapter was on the development on an inertial navigation system

based on low-cost inertial sensors. In doing so this chapter has

• Developed the inertial navigation equations in both the local geographical frame

and the EFEF frame.

• Discussed the implementation of the mechanization equations using a unified

mathematical frame work, where computational errors in one state computation,

namely, attitude, velocity and position are independent of each other.

• Discussed errors commonly associated with low-cost inertial sensors and devel-

oped the general error equations. Moreover, it discussed issues relating attitude

computations, and it was shown that there is a trade off between the order of

the attitude algorithm and the sampling rate of the IMU. It was stated that:

◦ The bandwidth of the gyros employed is critical in SDINS design. If vibra-

tion exceeds the bandwidth of the gyros, it wont be detected and it will

be considered as translational motion resulting into errors in calculated

velocity and position. However, vibration absorbers may be employed to

attenuate for frequencies above the cutoff of the gyros.

◦ The ration of sampling rate to maximum expected continuous rotation rate

of the vehicle should be higher than 1.

◦ Attitude computation error can be efficiently reduced by increasing the

order of the attitude algorithm.

• Developed the navigation error equations in the local geographical frame. These

equations as considered as the process model in the Kalman filter implementa-

tion.
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Finally, this chapter provided the necessary background and methods to de-

velop an appropriate low-cost inertial navigation system.

Figure 3.7: Error in INS computed position with bias and noise free inertial sensors.
In such environments, errors are due to INS mechanization.



3.5 Chapter Summary 62

Figure 3.8: Error in INS computed velocity with bias and noise free inertial sensors.

Figure 3.9: Error in INS computed attitude with bias and noise free inertial sensors.
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Figure 3.10: Once bias and noise are applied to inertial measurements, the IMU
(dashed line) becomes unreliable for navigation even for a very short period of time
compared to the noise free case (solid line).



Chapter 4

GPS Aided Inertial Navigation Systems

4.1 Introduction

Early spaced-based radio-navigation aids (or simply Satellite navigation systems),

namely the US Navy Navigation Satellite System which was referred to as TRANSIT

and the Russian Tsikada system, provided a two-dimensional high accuracy position-

ing service since 1964. While industry has used the Starfix system since 1986. One

Limitation of such systems is its very low update rates (10 to 15 minutes) which made

them acceptable for use on low-dynamic platforms, such as shipboard navigation. Al-

though, It had been developed by the Government of the United States, namely the

Department of Defence, since 1969, it was in 1994 when the Global Positioning Sys-

tem (GPS) was declared ready for aviation use. Other satellite navigation systems

include the European Union GALILEO satellite system, which is expected to be op-

erational in 2008, the Russian GLONASS system, The Chinese BeiDou system and

the next generation INMARSAT (Tsui, J. B.Y., 2000),(Kaplan, E. D., & Hegarty,C.

J., 2006),(Kelly, A, 1994)

SDINSs, discussed in the previous chapter, provides an inertial-based local-

ization. However, they grift with time. Biases and drifts are low frequency faults in

inertial navigation systems. The GPS provides another localization solution. How-

ever, it is relatively unreliable. The GPS signal can be in error due to multipath and

change in satellite geometry. It requires a line-of-sight (LOS) communication link to

communicate efficiently with the receiver. In fact, these are sources of high frequency

faults in GPS fixes. In fact, the IMU and the GPS are the natural complements of



4.2 GPS Observables 65

each other. SDINS low frequency faults are corrected by GPS low frequency fixes

(1Hz for the ”Novatel” receiver). On the other hand, high frequency faults in the

GPS fixes are corrected by the high frequency estimates of the SDINS.

In this chapter, fundamentals of the GPS and data processing are first dis-

cussed in section 4.3. Loosely and tightly coupled Kalman filter configurations are

discussed in section 4.4. Finally, simulated results and real tests are represented in

sections 4.5 and 4.6, respectively.

4.2 GPS Observables

For absolute state estimates, the C/A code pseudoranges and the Doppler frequency

information (also known as delta ranges) from all available satellites in view are used

to form the measurement equations. The precision of the solution is affected by

the number of satellites in view, geometry of the available satellites referred to as

Geometric Dilution of Precision (GDOP), and the precision in range determination.

The peudorange measurement from satellite to receiver is represented as (Abdel-

Hafez, M., 2003)

ρsv
r = rsv

r − c
[
∆tsv −∆tu −∆tsvtrop −∆tsvion −∆tsvmp

]
+ εsveph + ηsv

U (4.1)

where

ρsv
r represents measured pseudorange between the satellite vehicle (SV)

and user (U)

∆tsv represents the satellite clock bias (in seconds)

∆tu represents the receiver clock bias (in seconds)

∆ttrop represents tropospheric delay (in seconds)

∆tion represents ionospheric delay (in seconds)

∆tsvmp represents multipath delay
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εsveph represents ephemeris error (in meters)

ηsv
U represents satellite and receiver noise and hardware delays (in meters)

c represents speed of light

rsv
r represents the geometric range between satellite (SV) and receiver (U),

given by

rsv
r =

√
(xsv − xu)2 + (ysv − yu)2 + (zsv − zu)2 (4.2)

where

xsv, ysv, zsv represent the satellite (SV) position in the ECEF coordinate system

and predicted with the ephemeris information (in meters)

xu, yu, zu represent the receiver position in the ECEF coordinate system and

predicted by the INS (in seconds)

The corresponding measurements prediction matrix H is obtained by lineariz-

ing around the nominal user position xu, yu, zu. With n satellites in the view, H is

formulated as follows

r1 =
√

(x1 − xu)2 + (y1 − yu)2 + (z1 − zu)2 + Cb (4.3)

r2 =
√

(x2 − xu)2 + (y2 − yu)2 + (z2 − zu)2 + Cb (4.4)

r3 =
√

(x3 − xu)2 + (y3 − yu)2 + (z3 − zu)2 + Cb (4.5)

rn =
√

(xn − xu)2 + (yn − yu)2 + (zn − zu)2 + Cb (4.6)
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where Cb = c∆tu

H =
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1



(4.7)

The difference between predicted and measured (after the removal of all the

error terms) is then used to compute the error in the position and clock bias of the

receiver using least squares

∆x =
(
HTH

)−1
H∆ρ (4.8)

or the Kalman filter as in appendix E (George, M. G., & Sukkarieh, S., 2005)(George,

M. G., & Sukkarieh, S., 2007)

4.3 GPS Basic Concepts

The GPS satellite constellation consists of 24 satellites arranged in 6 orbital planes

with 4 satellites per plane. Navigation and range data are transmitted on two dif-

ferent frequencies, L1 (1575.42 MHz) and L2 (1227.60 MHz). The initial purpose of

this dual frequency transmission is to eliminate the ionospheric errors introduced by

the propagation of the GPS satellite signal through the atmosphere. Each satellite

generates two different codes; a short code referred to as Coarse / Acquisition or C/A

code and a long code referred to as the precision or P-code. The P-code provides the

Precision Positioning System (PPS) and is encrypted by a Y-code to form a P(Y)
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code. In order to receive the P(Y) code, one must have the classified Y-code. The

Y-code code is only available for US authorized military and government users. The

P(Y) code is a 6.1871×1012 bit long code transmitted at 10.23 Mbps (10.23 MHz) on

both the L1 and L2 frequencies. It repeats every one week and forms a segment of a

master code of approximately 2.35× 1014 bits master code. Each satellite is assigned

a segment.

Figure 4.1: GPS data format

The C/A code is a 1023-bit code transmitted at 1.023 Mbps (1.023 MHz) on

the L1 frequency only. It repeats every 1ms and carries the Standard Positioning

System (SPS) intended for the civil community.
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Figure 4.1 (Tsui, J. B.Y., 2000) shows the GPS data format (Tsui, J. B.Y.,

2000) (Kayton, M., & Fried, W. R., 1997). The first row shows a C/A code. The

second one shows a navigation data bit with rate of 50 Hz; it is 20 ms long and contains

20 C/A codes. The third row represents a word that is 600 ms long and contains 30

data bits. Ten words make a subframe that is 6 seconds long and contains 300 bits.

The fifth row shows a page (or frame) containing the GPS navigation message. It

spans for 30 seconds and consists of five subframes. The complete data set is 12.5

minutes long. It contains 25 pages and is referred to as superframe. Subframe 1 of

each navigation frame contains Issue of date clock (IODC), GPS system week number,

GPS system Time-Of-the Week (TOW) and clock correction parameters. Subframes 2

and 3 contain Issue of date ephemeris (IODE) and ephemeris data. Subframes 4 and 5

contain Almanac; that is, the data describe the long-term parameters, and ionospheric

correction model. Subframes 1, 2 and 3 repeats every 30 seconds. Subframes 4 and 5

contain 1
25

of almanac data, so that a complete data message requires the transmission

of 25 full 1500-bit frames, or 12.5 minutes.

4.3.1 GPS System Error Budget

Orbital (Ephemeris) Error

A satellite orbit can be described by six Keplerian parameters, of which three are

orientational and the other three are dimensional, The six parameters are shown in

(Fig. 4.2) and are as follows:

1. Orientational parameters

• Inclination of the orbital plane with equatorial plane, i.

• The argument of the perigee, ω.

• Geocentric longitude of the ascending line of nodes (or argument of lati-

tude), Ω.
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2. Dimensional parameters

• The semimajor axis of the ellipse, a.

• The eccentricity of the orbit, e.

• The time of the perigee passage or the true anomaly, v.

Figure 4.2: Satellite orbit

Perturbations, such as variations in the Earth’s gravitational field between the

perigee and the apogee and gravitational attraction of the moon, cause the orbital

plane to vary from its elliptical path. The navigation message contains the ephemeris

data which consists of parameters required to correct for these perturbations, Table

4.1 summarizes the ephemeris parameters while the detailed description of these pa-

rameters and their processing can be found in (GPS Standards, 1995) and a friendly

representation can be found in (Tsui, J. B.Y., 2000) and (Kayton, M., & Fried, W.
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R., 1997). These corrections are generated using a curve fit of the control segment’s

best prediction of each satellite’s position at the time of upload.

Ephemeris are used to calculate satellites positions. Given coarse time of a

satellite signal transmission (GPS timing and time calculation is explained in appen-

dix D), Table 4.2 lists the sequence of calculating the satellite position at time of

transmission. This position is still need to be corrected for different effect such as

receiver clock bias, sagnac effect (effect of the Earth rotation), atmospheric delays,

and the satellite clock bias. These effects will be discussed in next subsections and

later the complete process will be summarized by flow charts.

As shown in (Fig. 4.3), ephemeris errors are generally smallest in the radial

direction, which provides the ranging measurements. The components of ephemeris

errors in the along-track and the cross-track directions are much larger. However,

they do not affect ranging information. Selective availability (SA), which is an er-

ror deliberately added by the US Department of Defence, works by corrupting the

ephemeris data and increase the radial error component. On the other hand, dither-

ing of satellites clock is the dominant of SA implementation. Errors in ephemeris

data will result in satellite position error in the range of 1-6 meters and in the order

of 0.8 meters in pseudorange measurements (Kaplan, E. D., & Hegarty,C. J., 2006).

Clock Errors

GPS satellites and receivers contain internal clocks that control GPS system timing

operations. Typical satellite and receiver clocks are shown in (Fig. 4.4(a)) and (Fig.

4.4(b)), respectively. However, these clocks drift with time resulting in a degrada-

tion in the navigational solution. The navigation message from the satellite includes

parameters describing the satellite’s clock bias and drift. They are predicted by the
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Table 4.1: Ephemeris parameters
Parameter Description Unit
M0 Mean anomaly at reference time semicircle
∆n Mean motion difference from computed value semicircle/s
e Orbital eccentricity dimensionless√
A Square root of the semimajor axis meters

1
2

Ωe Longitude of ascending node of orbit plane at
weekly epoch

semicircle

i0 Inclination angle at reference time semicircle
ω Argument of perigee semicircle

Ω̇ Rate of right ascending semicircle/s
IDOT Rate of inclination angle semicircle/s
Cuc Amplitude of the cosine harmonic correction to ar-

gument of latitude
radians

Cus Amplitude of the sine harmonic correction to ar-
gument of latitude

radians

Crc Amplitude of the cosine harmonic correction to the
orbit radius

meters

Crs Amplitude of the sine harmonic correction to the
orbit radius

meters

Cic Amplitude of the cosine harmonic correction to an-
gle of inclination

radians

Cis Amplitude of the sine harmonic correction to angle
of inclination

radians

t0e Reference time at ephemeris computations seconds
IODE Issue of data - ephemeris dimensionless

control segment. However, perturbations in satellite position and instability in its

clock causes this predictions to be in error. Since the range between the satellite and

the user is a function of time, Satellite clock error can result in position error in the

range of 2 meters (Kelly, A, 1994). Satellite clock bias is given by

∆tSV = af0 + af1(t− toc) + af2(t− toc)
2 + ∆tr − tGD (4.9)

Where af0 is the satellite clock bias in seconds, af1 is the clock drift in seconds per

seconds, af2 is frequency drift (aging) in seconds per seconds squared, ∆tr is the

relativistic error correction term, tGD and toc are the group delay differential and the
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Table 4.2: Calculating satellite position from ephemeris

Step Equation Description of Computation
1. tk = tc − t0e Time from ephemeris reference epoch t0e

2. n0 =
√

µ
A3 Computed mean motion

3. n = n0 + ∆n Corrected mean motion
4. Mk = M0 + ntk Mean anomaly at time tk
5. Mk = Ek − e sinEk Iterate to solve Kepler’s equation for mean

anomaly at time tk

6. v1 = cos−1
(

cos Ek−e
1−e2 cos Ek

)
True anomaly from cosine at time tk

7. v2 = sin−1
(√

1−e2 sin Ek

1−e cos Ek

)
True anomaly from sine at time tk

8. vk = v1sign(v2) True anomaly at time tk
9. φk = vk + ω Argument of latitude at time tk
10. δφk = Cus sin 2φk + Cuc cos 2φk Second harmonic correction to argument of

latitude at time tk
11. δrk = Crs sin 2φk + Crc cos 2φk Second harmonic correction to orbit radius

at time tk
12. δik = Cis sin 2φk + Cic cos 2φk Second harmonic correction to inclination

angle at time tk
13. uk = φk + δφk Corrected argument of latitude at time tk
14. rk = A(1− e sinEk) + δrk Corrected orbit radius at time tk
15. ik = i0 + δik + IDOT · tk Corrected inclination angle at time tk
16. x́k = rk cosuk x coordinate of satellite position in orbital

plane at time tk
17. ýk = rk sinuk y coordinate of satellite position in orbital

plane at time tk
18. Ωer = Ωe + Ω̇ · tk − Ω̇ie · tc Corrected longitude of ascending node at

time tk and accounting for Earth’s rotation
19. xk = x́k cos Ωer − ýk cos ik sin Ωer ECEF x coordinate of satellite position at

time tk
20. yk = x́k sin Ωer − ýk cos ik cos Ωer ECEF y coordinate of satellite position at

time tk
21. xk = ýk sin ik ECEF z coordinate of satellite position at

time tk

GPS epoch time obtained from the ephemeris data.
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Figure 4.3: Components of ephemeris errors

(a) Atomic clock (b) Quartz clock

Figure 4.4: Atomic clock located in GPS satellites and Quartz clock located in re-
ceivers (http://www.wikipedia.org).

Atmospheric Errors

Atmospheric delay can be classified into two types: non-dispersive associated with

the troposphere and dispersive associated with the ionosphere. The two layers affect

the propagation of the satellite signal transmission in different ways. The troposphere

extends nominally from 8 to 40 km above the surface of the Earth. The characteristics

of the troposphere is affected by changes in its temperature, humidity and pressure.

Water and other atmospheric constituents cause changes in the index of refraction.
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On the other hand, the ionosphere is above 50 km from the surface of the Earth. It

consists of ionized air. Changes in the ionization level also affect the refractive indices

of ionospheric layers, which in turn affect the propagation of the satellite transmitted

signal.

The total atmospheric delay is given by:

∆ta = ∆ttrop ±∆tion(f) (4.10)

Where f is the frequency of the carrier of the satellite transmitted signal. The (+)

sign is used for code pseudorange, while the (-) sign is used for the phase range

(Farrell, J. A., & Barth, M., 1998).

Tropospheric delay is modelled in different ways (Farrell, J. A., & Barth,

M., 1998)(Kayton, M., & Fried, W. R., 1997)(Tsui, J. B.Y., 2000)(Kaplan, E. D., &

Hegarty,C. J., 2006). It is normally modelled as having two components, a dry one and

a wet one. The wet components exists in at lower levels of the troposphere which has

higher water-vapor contents than the higher levels, where the dry component exists.

The wet components is difficult to be modelled and accounts for approximately 10%

of total tropospheric delay. An example of troposphere delay modelling is the Chao

model.

∆ρdry = 2.276× 10−5P (4.11)

Fdry =
1

sin(E) + 0.00143
tan(E)+0.0445

(4.12)

∆ρwet = 4.70× 102 e
1.23

T 2
+ 1.705× 106α

e1.46

T 3
(4.13)

Fwet =
1

sin(E) + 0.00035
tan(E)+0.017

(4.14)

∆ρtrop = ∆ρdryFdry + ∆ρwetFwet (4.15)

Where ∆ρ is in meters. The Chao model requires additional components to be mea-

sured, such as the atmospheric pressure P, the temperature in Kelvin T and the
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partial pressure of water vapor e. This makes this model expensive.

Another simplified models are, for example, the Magnavox and the Collins

models, are as follows

∆ρM =
2.208

sin(E)
(e
−hr
6900 − e

−hs
6900 ) (4.16)

∆ρC =
2.4225

0.026 + sin(E)
e
−hr

7492.8 (4.17)

Where hr and hs are the receiver and satellite altitude in meters, respectively.

A more simplified model is as follows

∆ρtrop =
2.47

0.0121 + sin(E)
(4.18)

It is important to know whether the GPS receiver used is compensating for tro-

pospheric delay or not before starting to implement the correction algorithm. Typ-

ical tropospheric delays may reach 30 meters for satellites at low elevation angles (E ).

Ionospheric delay is frequency dependent. Dual frequency receivers can elimi-

nate ionospheric delays by using dual frequency ranging measurements as follows

∆ρL1 =
f 2

L2

f 2
L2 − f 2

L1

(ρL1 − ρL2) (4.19)

where

∆ρL1 is the pseudorange measurements ionospheric error on L1.

fL1 is the L1 frequency = 1575.42 MHz.

fL2 is the L2 frequency = 1227.60 MHz.

ρL1 is the measured pseudorange on the L1 frequency.

ρL2 is the measured pseudorange on the L2 frequency.

However, when single frequency receivers are utilized, Ionospheric errors be-

comes time dependent and a different models is implemented (GPS Standards, 1995).
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Relativistic Errors

Due to the elliptical shape of satellites orbits and the fact that a satellite is closer

to the Earth at perigee and further at apogee, the satellite velocity is not constant

(higher at the perigee and slower at the apogee). This will cause the satellite clock

to run slower and then faster respectively. The relativistic error correction term ∆tr

in equation D.4 is applied to compensate for this satellite clock variation.

Another relativistic error is the error introduced to the calculated satellite

positions by the rotational rate of the Earth, termed as the Sagnac effect. This effect

appears when the ECEF coordinate system is utilized, since this frame is rotating

with respect to the ECI reference frame and due to this rotation, the actual position

of satellites change while the satellite signal is travelling a way towards the Earth.

The Sagnac effect can result into position error on the order of 30 meters (Kaplan,

E. D., & Hegarty,C. J., 2006).

Multipath Errors

Among all previously mentioned GPS measurement errors, multipath is on of the

most significant errors. Multipath is the reception of reflected or diffracted replicas of

the desired signal. It varies significantly in magnitude depending on the environment

within which the receiver is located, satellite elevation angle, receiver signal process-

ing, antenna gain pattern, and signal characteristics. In land vehicle applications

multipath can result from near buildings, trees and other reflecting surfaces. How-

ever, in Unmanned Arial Vehicle (UAV) applications, the only source of multipath is

the reflection by the aircraft body surfaces. Multipath mitigation techniques include

antenna siting, removing or modification of reflective structures in the vicinity of the

antenna, replacing the antenna closer or farther (based on the environment) to the

ground. Some of GPS antennas are designed to attenuate multipath. Moreover, some

of GPS receivers have an embedded multipath processing (GPS Standards, 1995).



4.4 Filter Structure 78

In INS/GPS integrated systems, multipath has a significant effect on filter’s

decision. In places where multipath occurs, the measurement noise covariance matrix

R is no longer represent the noise level in GPS measurements and filter decision,

represented by the magnitude of the Kalman gain, is no longer reflect the uncertainty

in the measurements.

4.3.2 Experiments - Ephemeris Data Processing / Calculating Satellites Positions

The flow chart of figure 4.5 shows the process of calculating satellite and receiver

positions from ephemeris broadcasts, while the flow chart of figure 4.6 magnifies the

step of calculating the user position using any kind of estimators (i.e. Kalman filter

or least-squares) and the correction of satellite positions.

Data were taken for the Australian Center for Field Robotics (ACFR) data

base. This set of data includes pseudo-ranges measurements, ephemeris parameters

and receivers estimates of receiver position and clock bias. These estimates are useful

to check the accuracy of the computation. Figure 4.7 shows projections of calculated

satellites positions on the Earth’s surface, while figures 4.8 and 4.9 shows estimated

clock bias and errors in estimated position and clock bias respectively. Finally, Fig-

ure 4.10 shows trajectories of the estimated position and calculated by previously

described algorithm and the position computed, internally, by the GPS receiver em-

bedded software.

4.4 Filter Structure

Once both GPS observations and INS estimates are ready, they become inputs to the

Kalman filter. GPS/INS integration techniques varies with respect to filter’s structure

and the integration scheme. The filter can be constructed in loosely or tightly coupled

format, while the integration can take the form of direct or indirect feedback. In this
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Figure 4.5: Satellites positions were calculated through ephemeris data processing
while receiver position and clock bias were estimated by a least-squares estimator
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Figure 4.6: Iteration of estimated receiver position and clock bias and calculated
satellites positions
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section, the filter structure is discussed. The state space representations of both

techniques are listed in appendix E.

4.4.1 Loosely and Tightly Coupled Configurations

In the loosely coupled configuration or decentralized filtering, the navigation solution

estimated from the GPS receiver is blinded with the solution estimated from the

INS. This configuration is sometimes referred to as cascaded configuration, since

position and velocity measurements provided by the GPS receiver are in the first

place estimates of a first stage filtering that is implemented within the receiver. This

cascaded configuration results in degradation in accuracy when the number of viewed

satellites drops bellow four or the satellites geometry becomes poor (Weiss, J., D. &

Kee, D., S., 2001)(George, M. G., & Sukkarieh, S., 2005)(George, M. G., 2007).

Figure 4.7: Calculated satellites positions (red dots) and estimated receiver position
(blue triangle)

The tightly coupled configuration reduces the influence of the number of satel-

lites and their geometry on the integration performance by operating directly on the
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Figure 4.8: Estimated receiver clock bias (solid line) and receivers calculated clock
bias (dashed line)

Figure 4.9: Differences between estimated receiver position and clock bias and the
calculated ones by the GPS receiver
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Figure 4.10: Estimated and measured receiver position

raw measurement of ranges (and delta ranges) between the receiver and GPS satel-

lites, and blend these measurements with INS estimates to form innovations used

in the update stage. A tightly coupled configuration has only one central Kalman

filter, so that it is referred to as centralized filtering. (Fig. 4.11) shows both config-

urations in term of observations and how innovations are calculated, while Table 4.3

shows how innovations are formulated for both loosely and tightly coupled integra-

tion techniques. It also compares between both linear and nonlinear filter structures.

The detailed state space representation of both techniques is tabulated in appendix E.

For our purpose, only loosely-coupled configuration is considered and lever arm

is to be considered insignificant in small size vehicles. For more details on lever arm

compensation and level arm error state estimation refer to (Abdel-Hafez, M., 2003)

and (Hong, S., Lee, M., H., Chun, H., H., Kwon, S., H. & Speyer, J., L., 2006), for

tightly coupled implementation using the quaternion approach refer to (Abdel-Hafez,
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M., 2003) and for the DCM approach refer to (George, M. G., 2007)(George, M. G.,

& Sukkarieh, S., 2005).

Figure 4.11: The major difference between loosely and tightly coupled configuration
is in term of how the innovation is computed

Table 4.3: Different Kalman filter implementations
Loosely-coupled Tightly-coupled

Linear δx̂m
kf = δxm

ins + W[z−Hδxm
ins] δx̂ecef

kf = δxecef
ins + W[δρecef −Hδxecef

ins ]

z =

(
rm

gps − rm
ins

vm
gps − vm

ins

)
δρecef = ρecef

meas − ρecef
pred

Non-linear x̂m
kf = xm

ins + W[z− h(xm
ins)] x̂ecef

kf = xecef
ins + W[ρecef

meas − ρecef
pred]

z =

(
rm

gps

vm
gps

)
ρecef

pred = |recef
sat − recef

ins |
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4.4.2 Discretization

The Jacobian matrix Jf (k) at time tk in discrete time is calculated as

JF(k) =
∂Fk(xk)

∂xk

≈ I +
∂Fk(tk, xtk)

∂xk

dt

= I + Jc(tk)dt

(4.20)

where Jc(tk) is the continuous time jacobian matrix at time tk. It follows from

equation 4.20 that, the discrete time transition matrix is computed by

F(k) = I + Fdt+
(Fdt)2

2!
+ · · · (4.21)

While the discrete-time process noise covariance matrix is computed by (Sukkarieh,

S., 2000)

Q(k) =
1

2

[
F(k)G(k)Qc(k)G(k)TF(k)T + G(k)Qc(k)G(k)T

]
dt (4.22)

4.5 Performance Verification - Simulations

This section presents a series of simulated results to verify the performance of the

navigation filter. The performance of the estimator is analyzed in terms of filter

tuning and limited satellite availability. The simulated trajectory and sensor readings

were generated by the Aerosondi model in MATLAB. The first part of this section

deals with simulation environment. It highlights aircraft control commands used to

generate the path and sensors noise characteristics. Next, filter tuning results are

presented to emphasize the discussion. Finally, a GPS outage is simulated.
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4.5.1 Simulation Environment

In this simulation, the ”Crossbow” IMU is considered. Spectral noise, given by equa-

tions 3.60 and 3.61, is used to simulate the IMU. As shown earlier is section 3.3.1, this

noise model contains constant bias component, random noise component and random

walk. Figure 4.12 shows the bank angle control command applied to simulate the

trajectory of figure 4.13.

Figure 4.12: The bank angle command applied to simulate the trajectory. The sim-
ulated trajectory undergoes five rotations all to the right.

The trajectory contains a series of rotations at constant altitude as represented

by figure 4.14. The rotations are all to the right, which resembles a typical trajectory

that occurs in typical UAV missions. In subsection 4.5.3 limited satellite availability

is considered for two different scenarios. First, while travelling in straight lime path

between 522 − 567 seconds. Then, while steady turn between 875 − 920 second.

The motivation behind the selection of such maneuvers is to highlight the rule of

uncertainty growth in the mitigation of GPS failures. This rule will be discussed later

in chapter 5. Table 4.4 shows parameters used for filter initialization and starting the

tuning process.
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Figure 4.13: The simulated trajectory developed for algorithm validation. The dashed
line represent the truth, the dotted line represents the GPS position, and the solid
one represents the INS/GPS solution.

Figure 4.14: Vehicle altitude where the solid line represent the truth, the dashed line
represents the INS/GPS solution.
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4.5.2 Simulation - Filter Tuning

As indicated earlier in subsection 2.3.1, innovation whiteness and unbiasedness tests

are key considerations in the validation of the Kalman filter model. Figure 4.15 shows

the NIS (or χ2) consistency test. The moving average is within the 95% confidence

limits, depicting the fact that the computed innovation covariance is in consistence

with position and velocity innovations. This may also be proved by just looking

into the innovation and its corresponding covariance. Figure 4.16 and 4.17 represent

position and velocity innovation respectively. To test for whiteness, the autocorre-

lations of the position and velocity innovations are constructed in figures 4.18 and

4.19, respectively. The two figures depict the fact that the innovation sequences are

uncorrelated. The three listed tests prove the fact that under normal (no-failure)

mode, the innovation sequence is zero-mean, white and has covariance of S(k).

Table 4.4: Simulated Kalman filter parameters
Parameter Value Unit Description

σfb (0.1, 0.1, 0.1) m/s/
√
hr Accelerometers random walk

σωb (2.0, 2.0, 2.0) deg/
√
hr Rate gyros random walk

σ∆fb (0.56, 0.62, 0.58) mg Accelerometers short term bias stabil-
ity

σ∆ωb (0.29, 0.30, 0.28) deg/s Rate gyros short term bias stability
σr0 (0.5, 0.5, 0.5) m Initial position uncertainty
σv0 (0.5, 0.5, 0.5) m/s Initial velocity uncertainty
σΨ0 (0.01, 0.01, 0.01) deg Initial attitude uncertainty
σrgps (2.0, 2.0, 3.0) m GPS receiver position observations er-

ror
σvgps (1.0, 1.0, 2.0) m/s GPS receiver velocity observations er-

ror

Figures 4.20, 4.21 and 4.22 show position, velocity and attitude errors respec-

tively. The uncertainty in estimated position and velocity errors represent the state

accurately, while this is not the case for attitude errors where observability (Abdel-

Hafez, M., F., 2006), which depends on vehicle maneuvers, affects the update of
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Figure 4.15: The χ2 test proves the consistency of the innovation sequence with its
covariance; the moving average is within the 95% confidence interval

Figure 4.16: Position innovations along with its 2σ uncertainty
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Figure 4.17: Velocity innovations along with its 2σ uncertainty

Figure 4.18: Since less than 5% of the position innovations autocorrelation function
components lie outside the confidence line, the position innovations are considered
uncorrelated and the filter is optimal.
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Figure 4.19: Similar to the position innovations, less than 5% of the velocity in-
novations autocorrelation function components lie outside the confidence line. The
velocity innovations are considered uncorrelated and the filter is optimal.

attitude uncertainty specially while the simulated aircraft turns with constant bank

angle or travels in straight line with no change in accelerations. Moreover, the growth

of position and velocity uncertainty shows some short spikes. This is due to jumps

in GPS fixes being detected. The detection of such jumps was implemented using

the χ2 gating function. The implementation of such a technique will be discussed in

detail in chapter 5.

Finally, to show the GPS/INS integration corrects INS errors, figures 4.23,4.24

and 4.25 show position, velocity and attitude errors both when stand alone IMU

navigation is considered and when fusing IMU predictions with GPS observations.

4.5.3 Simulation - Effect of Limited Satellites Availability

In this subsection, a GPS outage is simulated to show its effect on the Kalman filter

estimates. As indicated earlier, the outage is simulated during two periods of 45

seconds. First, while travelling in straight line and then while steady turn. Figures
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Figure 4.20: Simulated INS/GPS position errors along with its 3σ uncertainty

Figure 4.21: Simulated INS/GPS velocity errors along with its 3σ uncertainty
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Figure 4.22: Simulated INS/GPS attitude errors along with its 3σ uncertainty

Figure 4.23: Position errors when INS is operating alone (dotted line) versus when
aided by GPS fixes (solid line).
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Figure 4.24: Velocity errors when INS is operating alone (dotted line) versus when
aided by GPS fixes (solid line).

Figure 4.25: Attitude errors when INS is operating alone (dotted line) versus when
aided by GPS fixes (solid line).
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Figure 4.26: Position errors of the loosely-coupled filter showing two intervals of GPS
outage. The simulated aircraft underwent the first low-availability between 522-567
seconds while travelling in straight line, and then between 875-920 while steady turn.
During GPS outages, and disregarding the vehicle maneuvering, the uncertainty of
the error explodes and the estimator is on INS alone. However, this effect is bigger
in the case while turning.

4.26, 4.27, and 4.28 show position, velocity and attitude errors, respectively.

4.6 Performance Verification - Land Vehicle Test

After simulation has been used to validate the performance of the algorithm, it is used

in this section to process actual IMU-GPS data. Data was logged using a MATLAB

code running on a laptop. The inertial measurement unit utilized in the test was

the ”Crossbow” IMU shown in figure 4.29, with the internal inertial sensors shown in

figures 4.31 and 4.32, while the GPS receiver used is the ”Novatel Smart Antenna”.

This receiver is rugged and accurate, it has a less than 5 meters position accuracy

and less than 0.05 m/s velocity accuracy. In the following subsections, two actual

tests results are represented. The utility and the platform are shown in figures 4.34

and 4.33, respectively. As indicated earlier in subsection A.2, when DCM approach
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Figure 4.27: Velocity errors show similar behavior to that of position errors due to
GPS outage.

Figure 4.28: Attitude errors show similar behavior due to that of both position and
attitude errors due to GPS outage.
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was discussed, the initial orientation of the vehicle is required to calculate the initial

DCM. Therefore, a digital compass is used to get the initial orientation (Nebot, E.

M., & Durrant-Whyte, H. F., 1999).

At the beginning of the test, the components are allowed to worm up for few

seconds. IMU measurements are used to calculate the values of inertial sensors bi-

ases (Nebot, E. M., & Durrant-Whyte, H. F., 1999), while GPS receiver position and

velocity measurements are used to initialize the SDINS algorithm.
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Figure 4.29: The ”Crossbow” IMU400CD-100 utilized in this thesis.

Figure 4.30: The Novatel ”Smart Antenna” GPS utilized in this thesis. The position
measurement accuracy of this rec
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Figure 4.31: Sensors utilized in this thesis. In the upper left corner appear two
dual-axis accelerometers (±4g each) and below appear three single-axis gyroscopes
(±100◦/h each).

Figure 4.32: Three orthogonal accelerometers and three orthogonal gyroscopes assem-
bly in ”Crossbow” IMU utilized in this thesis. It provides measurements at maximum
sample rate of 133 sample per second.
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Figure 4.33: The INS/GPS platform used in the field test. It contains a 6DoF
IMU, a GPS receiver, and a digital compass. The digital compass is only used for
initialization.

Figure 4.34: The vehicle utilized in the test with the platform mounted on its roof.
Since the vehicle is considered as a small size vehicle, then the lever arm between the
location of the IMU and the center of the vehicle gravity is neglected.
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4.6.1 Test No.1

Figures 4.35 and 4.36 show three accelerometers and three gyroscopes measurements,

respectively. Position innovations are shown in figures 4.37 and velocity innovations

are in figure 4.38. Figure 4.39 shows the test trajectory represented by GPS observa-

tions and INS/GPS estimations. Figure 4.40 highlights the performance of the filter

during rotational motion.

Figure 4.35: Accelerations measurements of three orthogonal accelerometers in the
”Crossbow” IMU
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Figure 4.36: Angular rotations measurements of three orthogonal gyros in the ”Cross-
bow” IMU

Figure 4.37: Position innovations showing a correlated behavior. This is due to
incorrect IMU sampling time, since it was assumed constant, and mistuning in process
and observation noise covariance matrices.
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Figure 4.38: Similar to position innovations, velocity innovations show a correlated
behavior.

Figure 4.39: Real test trajectory representing GPS position (+) and INS-GPS solution
(solid).
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Figure 4.40: The loosely-coupled linear filter shows a poor performance at corners.
The fact that, due to the nature of the filter where attitude and bias estimates are
zeros during prediction, and are only available once GPS becomes available, the filter
estimates deviate and this deviation becomes significant at corners. Moreover, incor-
rect IMU sample time and mistuning caused incorrect mechanisation which magnified
this effect.

4.6.2 Test No.2

In this test, different trajectory was selected. Figures 4.41 and 4.42 show measure-

ments of the three accelerometers and three gyroscopes, respectively. Position and

velocity innovations are shown in figures 4.43 and 4.44, respectively. Finally, the

tested trajectory is represented in figure 4.45 by the GPS fixes and the INS/GPS

navigation filter solution.
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Figure 4.41: Accelerations measurements of three orthogonal accelerometers in the
”Crossbow” IMU

Figure 4.42: Angular rotations measurements of three orthogonal gyros in the ”Cross-
bow” IMU
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Figure 4.43: Unlike the first test, the position innovations this time resemble white
noise behavior. This is because the IMU data was logged using different software and
the sample time used in INS mechanisation is accurate.

Figure 4.44: Similar to position innovations, velocity innovations resemble white noise.
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Figure 4.45: Actual test trajectory representing GPS position (+) and INS-GPS
solution (solid)

4.6.3 Test No.3

The third test was conducted in Sheikh-Zayed Seaport. The test trajectory is shown

on the map in figure 4.46. The filter estimated trajectory is shown in figure 4.47.

Position and velocity innovations are shown in figures 4.48 and 4.49, respectively,

with corresponding 2σ uncertainty boundaries. Position and velocity autocorrelation

functions are represented by figures 4.50 and 4.51, respectively. These figures highlight

the operation of the filter, and verify its performance. Finally, figure 4.52 shows the

effect of correct filter tuning and IMU sampling time on SDINS mechanisation and

Kalman filter operation compared to previous test represented by figure 4.40.
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Figure 4.46: Sheikh-Zayed seaport where land vehicle test was conducted. The test
trajectory contained three complete loops with approximately 4Km length each.

Figure 4.47: Estimated SDINS/GPS vehicle trajectory
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Figure 4.48: Position innovations with 2σ uncertainty boundaries between which 95%
of innovations should lie

Figure 4.49: Velocity innovations with 2σ uncertainty boundaries between which 95%
of innovations should lie
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Figure 4.50: Position innovations autocorrelation function with 95% confidence
boundaries

Figure 4.51: Velocity innovations autocorrelation function with 95% confidence
boundaries
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Figure 4.52: Effect of filter tuning and correct sampling time on attitude and bias
estimates of the filter and the mechanisation process.

4.7 Chapter Summary

The focus in this chapter was to discuss the implementation of GPS-aided-INS sys-

tems. During the discussion the GPS principles were introduced including GPS ba-

sics, observables and Error budget. The most common GPS errors were discussed,

modelled and corrected for. A model for the GPS pseudorange signal was given in

which all significant error sources were compensated for. Basics for GPS satellites

positioning including GPS orbital parameters, ephemeris parameters, ephemeris data

processing and satellite position calculation were introduced. Algorithms for satellite

positioning through ephemeris data processing were explained in two detailed flow

charts and then tested using real time GPS receiver pseudoranges and ephemeris

data. These topics formed the backbone knowledge required to implement a tightly-

coupled navigation filter.

This chapter also introduced the loosely and tightly coupled filters, and dis-
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cussed the effect of low satellite availability on both of them. It was stated that the

tightly-coupled distinguished performance over the loosely-coupled is due to the fact

that the tightly-coupled filter operates directly on the GPS row measurements, while

the loosely-coupled depends on the GPS receiver internal filter’s position and veloc-

ity estimates, which are inaccurate at low GPS availability, because the embedded

receiver’s filter is implemented as a reduced order filter.

Finally, the GPS-aided-INS navigation filter was tested and verified using ac-

tual GPS and IMU data sets. This chapter has achieved a major step toward the

implementation of a high integrity navigation system. Integrity issues will be dis-

cussed in the following chapter, where the implementation loop will be completed.



Chapter 5

Fault Diagnosis

5.1 Introduction

The main purpose of this work is to develop a commercial low-cost autonomous UAV

navigation algorithm with a Cost-Of-The-Shelf (COTS) inertial sensors and a GPS

receiver. The utilization of such low grade equipments, which implies low reliability,

requires the development of a high integrity navigation (localization) loop. Integrity

implies the robustness of the system against failures and the ability of the the system

to survive once a failure in one of its components (whether they are sensors, actuators,

mathematical models or even computations) occurs. Without integrity the real time

implementation of autonomous navigation system will be impossible. Standards are

required to define design requirements to achieve integrity. A survey of NASA and

military reliability and fault tolerance standards applied to robotics can be found in

(Cavallaro, J. R. & Walker, I., D., 1994). These standards include handbooks, parts

specifications, and documents describing procedures and programs for failure modes

and effect analysis (FMEA) and reports standards.

There are a number of issues that must be considered when designing a fault diagnosis

system. Among them the most important are:

• Types of failure modes that can be considered.

• Complexity of the implementation.

• Overall system performance.

• The robustness of the system in the presence of mismodeling.
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Sensor characteristics along with its operational environment determine types

of expected failures. In (Bhatti, U. I., & Ochieng, W. Y., 2007) failure modes and

models of GPS-aided-INS systems were discussed. Modes were divided into groups

based on their effect on the integration process and on each individual component of

the integrated system. In this thesis, The classification of faults will be discussed in

section 5.3

Complexity of the implementation increases the cost of the system in terms

of hardware (for systems with hardware redundancy) and software (for systems with

analytical redundancy). In fault diagnosis systems, it is more favorable for the detec-

tion algorithm to be as simple as possible and for the identification or/and isolation

algorithm to be as efficient as possible. Fault detection can be implemented (as will

be represented later) as a binary decision whether a fault has occurred or not. On

the other hand, efficiency implies that there should be a trade-off between the level

of complexity and performance.

The more complex the system model and the more model-dependent the tech-

nique, the more tolerated the system to sensitivity issues. The robustness of the

system is measured by its resistance to changes due to mismodeling errors. In (Han-

lon, P. D., & Maybeck, P. S., 2000), the mismodeling of Kalman filter system matrices

was discussed in term of its effect on the mean and covariance of the residuals. Such

mismodeling can result from mismodeling of the state transition matrix due to er-

rors in state estimates, mismodeling of system matrices due to reduced order filter

implementation or mismodeling of system dynamics and can result into false alarms

or faults not to be detected. In (Hanlon, P. D., & Maybeck, P. S., 2000) expres-

sions for the mean and covariance of the Kalman filter residuals in the presence of

mismodeling in the input control matrix, output matrix, and state transition were

derived. However, the effect of mismodeling in the process noise covariance matrix

Q and the sensor noise covariance matrix R were neglected. This resulted into the
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conclusion that the conditional covariance matrix of the residuals is not dependent

on the Kalman filter model, and it is only dependent on the covariance of the mea-

surements. The motivation behind the assumption that Q and R represent the true

model was to focus on system matrices variations because they commonly occur in

failure detection applications considered by (Hanlon, P. D., & Maybeck, P. S., 2000)

where MMAE was used. In this thesis, the characterization of the Kalman filter resid-

uals in the presence of mismodeling in Q and R will be discussed when FDI results

are introduced is section 5.5.

The overall performance of the system is measured by its tolerance to false

alarms and how fast it detects and diagnoses failures. Therefore, a successful FDI

system should have the following characteristics:

• Guarantees that all the modelled and the unmodelled faults will be detected.

• Doesn’t affect system performance during no-fault condition. The performance

of the system is reflected, as previously discussed in section 2.3.1, in the consis-

tency of the estimator. It is essential always to understand that, filter consis-

tency implies its optimality.

• Assists design specifications, including filter’s cutoff frequency (highest fre-

quency maneuvers), the required accuracy (function of the estimated covariance

matrix) and minimum cost sensors;

• Responds fast to faults.

• Offers a trade off between complexity and FDI performance.

This chapter discusses mainly the detection and identification of any unex-

pected behavior of the INS/GPS navigation system. The organization of this chapter

is as follows. First, section 5.2 reviews architectures of available FDI systems and
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surveys it’s most common techniques. Next, section 5.3 classifies faults by their na-

ture and modelling. Kalman filter - based fault diagnosis systems are discussed in

section 5.4. Finally, performance validation tests are represented to highlight the

system performance.

5.2 FDI: Terminology and Structure

In section 2.2 the Kalman filter was formulated. The filter model resembles the true

model under four important assumptions (Maybeck, P. S., 1979):

• Predictions and observations are assumed Gaussian variables described by the

first and second order statistics (mean and variance).

• The process and observation noise terms are assumed white, uncorrelated with

covariances Q(k) and R(k), respectively.

• The model is assumed linear (doesn’t hold for cases where the unscented filter

is employed).

• The system is of stated order.

The system is said to be operating normally, if the previously listed assumptions hold.

The mode of operation where these assumptions hold is referred to as normal mode or

no-fault or no-failure mode of operation. On the other hand, if one of these assump-

tions becomes void, then the Kalman filter no longer produces a consistent estimates

and the system is said to be in fault. Operation modes where such situations occur

are referred to as fault or failure modes of operation.

The first two assumptions, namely Gaussianness and whiteness, are model de-

pendent. Therefore mismodelling in Kalman filter system matrices makes the filter

fail. Moreover, there is no mathematical model is able to describe the real word.
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However, the mathematical model should be able to capture major changes in ve-

hicle dynamics. As indicated previously in subsection 3.3.1, where sensor errors are

discussed, the frequency of the model (which is, basically, the sampling rate of the

IMU) should be higher in order of magnitude than the highest frequency of vehicle

maneuvers (cut-off frequency), while neglecting higher frequency dynamics such as

vibrations. The fact that, this is the reason why the Kalman filter frequency response

should resemble the frequency response of a low-pass filter (Scheding, S., 1997). On

the other hand, mismodelling in system matrices F and H will cause the predictions

to be in error. While mismodelling in Q and R will cause the Kalman gain, and

therefore the fusion decision, to be in error.

The third assumption, that is linearity, is desirable because linear systems are

easier to manipulate. However, when the system becomes highly non-linear, linearisa-

tion by perturbation of the system nominal equations or by calculating the Jacobian

about nominal point becomes inadequate and the filter fails. Therefore, non-linear

filters such as the unscented filter must be employed.

Reduced order filters are usually implemented in systems where the fill order

state vector contains redundant information. However, reducing the order of the state

vector by removing some of its states, such as removing the biases states, results into

degradation in the overall performance of the system. The effect of reduced order

state vector when the full vector dimension is required is similar to the effect of

mismodelling in the system matrices, since it neglects some of important system

dynamics.

5.2.1 FDI System Structure

Figure 5.1 shows the general components of an FDI system. It is composed of two ba-

sic stages, residual generation and decision making. Residual generation is responsible

for generating the residuals, which carry failures signatures or indicators, utilized by
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the decision making stage. The decision making stage calculates statistics, based on

the residuals, and provides a decision on the system mode of operation. This decision

may include states and/or parameters estimation.

Figure 5.1: General architecture of FDI systems.

FDI techniques were surveyed by (Willsky, A. S., 1976) and (Yang, Q., 2004).

In (Willsky, A. S., 1976), Two different designs were introduced; failure sensitive fil-

ters, where a complete redesign of the filter is performed to include failures, and failure

monitors, where an auxiliary system is designed to monitor the operation of the nom-

inal filter. The later design has an advantage over the former since it does not affect

the filter during no-fault mode of operation. In (Yang, Q., 2004), the FDI problem was

classified into two main categories based on their operational requirements. Model-

based, where a priori knowledge of system dynamics is required, and data-driven,

where a history of observations and system estimates are required to build up a data

base. Examples of modelled-based approaches include the multiple-hypothesis filters

and parity space, while data-driven approaches may include statistical classifiers and

artificial intelligence. The Ven diagram in Figure 5.2 demonstrates the two FDI basic

stages with their related techniques, while Table 5.1, briefly, describes various FDI

techniques (Sukkarieh, S., Nebot, E. M., & Durrant-Whyte, H. F., 1998), (Sukkarieh,

S., Nebot, E. M., & Durrant-Whyte, H. F., 1999), (Maybeck, P. S. & Hanlon, P. D.,

1995), (Rago, C., Prasanth, R., Mehra, R. K., & Fortenbaugh, R., 1998), (Hashimoto,

M., Kawashima, H., Nakagami, T. & Oba, F., 2001), (Hashimoto, M., Kawashima,

H., Nakagami, T. & Oba, F., 2003), (Goel, P., Dedeoglu, G., Roumeliotis, S. I. &
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Sukhatime, G. S., 2000), (Da, R. & Lin, C., F., 1995), (Willsky, A. S. & Jones, H.,

L. , 1974), (Willsky, A. S., Chow, E., Y., Gershwin, S., B., Greene, C., S.,, Houpt,

P., K. & Kurkjian, A., L., 1980).

Figure 5.2: Stages of a typical FDI system with different implementations.

5.3 Classification of Faults

Faults classification plays a major rule in understanding the expected types of faults

and how the system will behave under faulty conditions. Faults may be classified ac-

cording to their behavior, models, and effect on the navigation system. In GPS/INS

systems, faults may be classified into high frequency faults caused by jumps in the

GPS receiver observations and low frequency faults in the IMU (Sukkarieh, S., Nebot,

E. M., & Durrant-Whyte, H. F., 1998)(Sukkarieh, S., Nebot, E. M., & Durrant-

Whyte, H. F., 1999). High frequency faults are mainly due to multipath and changes

in satellites geometry, while low frequency faults may result from inertial sensors bi-

ases and the misalignment of the unit. IMU faults are impossible to diagnose during

fusion process; bias estimates of the filter are supposed to provide an online com-

pensation of INS biases and drifts. However, fault diagnosis of IMU faults before

the fusion process is achievable through inertial sensors calibration (Titterton, D.,

& Weston, W., 2004)(Nebot, E. M., & Durrant-Whyte, H. F., 1999)(Chatfield, A.,
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B., 1997)(Abdel-Hafez, M., F., 2006), where the IMU is operated for a long enough

period while the vehicle is stationary and before it starts moving.

In (Bhatti, U. I., & Ochieng, W. Y., 2007) failure modes were classified into

groups with each group representing a single component of a GPS-aided-INS sys-

tem with MEMS inertial sensors. In this thesis, only sensor (i.e. GPS) faults are

considered. Failure modes are divided into two groups, based on their effects on

the performance of the GPS, hard failures and soft failures. A hard failure results

in total sensor failure (i.e., the sensor reads nothing but noise, stop reading at all

or stuck at a constant value) (Roumeliotis, S. I., Sukhatime, G. S. & Bekey G. A.,

1998a), (Roumeliotis, S. I., Sukhatime, G. S. & Bekey G. A., 1998b). A soft failure

results into degradation in sensor accuracy. Such a failure can occur due to several

reasons, such as, incorrect modelling of orbital parameters, jamming, interference,

atmospheric errors, multipath and low availability.

When implemented in MMAE mode, hard failures are modelled by zeroing

the corresponding row of the output matrix H(k) (Hanlon, P. D., & Maybeck, P.

S., 2000). For example, if failure affects the jth observation of the measurements

vector, then the failure mode is modelled by zeroing the jth row of the H(k). The

corresponding jth element of the innovation sequence becomes

νj(k) = zj(k) (5.1)

The corresponding elements of the innovation covariance are

Sj,j(k) = Rj,j(k) (5.2)

Sj,k(k) = 0 ∀ k 6= j, k = 1, . . . ,m (5.3)

Sk,j(k) = 0 ∀ k 6= j, k = 1, . . . ,m (5.4)
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Table 5.1: The most Common Fault detection and identification techniques
Method Description
Failure Redesign the filter to keep it sensitive to new data.
sensitive Require a priori knowledge on faults effect on innovations.

Optimality is sacrificed.
Voting High degree of hardware redundancy (at lest three).
systems Redundant sensors must be exactly alike.

Easy to implement (only binary decisions).
Provide fast detection of hard failures.
Difficulties in detecting soft failures.

Innovation- Utilize the residuals (innovations) as fault signature.
based Employ analytical redundancy to map sensors-to-innovations.

Easy to implement.
Internal performance indications of the filter.
Require no a priori knowledge neither on system dynamics nor on failure modes.
Become model dependent in systems with analytical redundancy (such as INS).
Detect abrupt-pulsate changes in sensor measurements.
Can be implemented in various design levels.
Detect an infinite set of faults.
Cause no performance degradation during no-failure mode.
Sensitive to filter tuning.
Fail to detect slowly occurring faults.
Offer tradeoffs between performance and complexity.

Multiple- Utilize a bank of filters each with different failure mode.
hypothesis Contain a conditional probability weighting computer.

Utilize the Gaussian probability distribution function as fault signature.
Provide an optimal state estimate via probabilistic weighting of different hy-
pothesis.
Guarantees filter convergence.
Insensitive to filter tuning (although, an appropriate pre-tuning enhances bank
performance).
Covers a wide range of failures, when implemented in moving bank mode.
Require a priori knowledge on both system dynamics and failure modes.
Difficulties in diagnosis of abrupt-pulsate changes in sensor measurement.
Computational complexity. Of all the methods, they are the most complex.
Optimality is sacrificed during no-failure mode.
Finite transit time to converge to appropriate failure mode.
Require identical hypothesis parameters in order to converge to exact fault
mode.

Geometric Utilize predictions and updates uncertainties as fault signatures.
methods Overlapping uncertainties indicate no-failure mode.

Fail to detect faults when running on prediction for long periods.
Parity space Utilize analytical redundancy.

Check the consistency of the process model, sensor measurements, and com-
mand inputs.

Artificial Data-driven techniques.
Intelligence Considered autonomous only in systems with finite/limited failure modes.

Require a priori knowledge on expected failures.
Require sufficient amount of memory.
Difficulties in fault detection. Should be integrated with a fault detection
technique.
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and its contribution in the normalized innovation squared is

qj(k) = zT
j (k)R−1

j,j zj(k) (5.5)

which should be minimal since it is consistent, if the filter was properly pre-tuned.

Then the hypothesis is correct and will have higher probability.

On the other hand, soft failures are modelled by varying the measurement

error noise covariance matrix Rk (White, N. A., Maybeck, P. S., & DeVilbiss, S. L.,

1998). All elemental filters will have similar innovation, and the only difference is

in R(k). The hypothesis that satisfies the true condition will have minimum NIS

(or closer to one, when smaller values of R(k) are modelled) and will have higher

probability.

5.4 Kalman Filter - Based FDI

This section, studies the effect of sensor faults on the Kalman filter innovations and

innovations covariance matrix. Expressions for both are derived and related to the

FDI problem. In the second part, multipath is simulated and three different FDI

implementations are applied to diagnose that fault.

5.4.1 Formulation of the FDI Problem

The Kalman filter model was represented in chapter 2.2. However, it represented her

again to derive an expression for the innovation and the innovation covariance under

fault conditions.
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If the system is modelled as a linear time-invariant following equations

x̂(k|k − 1) = F(k)x̂(k − 1|k − 1) (5.6)

ẑnf (k) = H(k)x̂nf (k|k − 1) (5.7)

znf (k) = H(k)x(k) + v(k) (5.8)

zf (k) = H(k)x(k) + v(k) + n(k) (5.9)

n(k) =
M∑
i=1

Li(k)µi(k) (5.10)

where

n(k) represents failure modes which are unknown and arbitrary functions

of time and are zero when there is no fault

(·)nf (k) represents vector under no-fault conditions

(·)f (k) represents vector under fault conditions

µi models the time-varying amplitude of a fault

Li are fault transition functions that map a fault to the corresponding

observation which are monic so that µi 6= 0 implies Liµi 6= 0

Therefore, under no-fault conditions, the innovations are defined as

νnf (k) = znf (k)− ẑnf (k)

= znf (k)−H(k)x̂nf (k|k − 1)
(5.11)

On the other hand, under fault conditions

νf (k) = zf (k)− ẑf (k)

= znf (k) + n(k)−H(k)x̂f (k|k − 1)
(5.12)

Assume perturbation of x̂f (k|k − 1) such that

x̂f (k|k − 1) = x̂nf (k|k − 1) + δx̂ (5.13)
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then, equation 5.12 becomes

νf (k) = znf (k)−H(k)x̂nf (k|k − 1) + n(k)−H(k)δx̂

= νnf (k) + n(k)−H(k)δx̂
(5.14)

Equation 5.14 implies that, the innovations under fault conditions are not only biased

due to the fault vector n(k), but also accumulates errors over time due to drifts in the

state estimates represented by δx̂ transformed into the innovations space via H(k).

Therefore, the innovation under fault condition are biased.

The innovation covariance is estimated as follows;

Sf (k) = E
[
νf (k)νf (k)

T
]

= E
[
νnf (k) + n(k)−Hδx̂)(νnf (k) + n(k)−Hδx̂)T

] (5.15)

since νnf (k), n(k), and δx̂ are uncorrelated, equation 5.15 becomes

Sf (k) = E
[
νnf (k)νnf (k)

T
]
+ E

[
n(k)n(k)T

]
+ E

[
Hδx̂δx̂THT

]
= Snf (k) + H∆P(k|k− 1)HT + N(k)

= HP(k|k − 1)HT +
[
R(k) + H∆P(k|k − 1)HT + N(k)

] (5.16)

where

∆P(k|k − 1) is state prediction error covariance due to fault. It represents the error

in state estimates uncertainty due to δx̂

N(k) represents the covariance of the fault modes vector n(k)

Equation 5.16 implies that, under fault conditions the sensor noise covariance

must be increased so that the innovation and its covariance become consistent. In

fact, this explains the methodology by which the MMAE identifies the fault and

produces a consistent state estimates.
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5.4.2 High Integrity Navigation Design

As indicated earlier in section 5.1, to design a high integrity navigation system the

fault detection and identification algorithm should meet the design requirements.

These requirements include detectability of all modelled and unmodelled faults, doesn’t

sacrifice filter’s optimality during no-fault, fast response time and offers complexity-

performance tradeoff. On the other hand, the detection algorithm should be as simple

as possible while having an efficient detection ability. The only detection scheme that

satisfies all these requirements is innovation based detection. Therefore, in this thesis

the fault detection is based on the innovation sequence and is implemented through

the gating of the normalized innovation squared (NIS) given by equation 2.20 and is

rewritten here again

q(k) = νT (k)S−1(k)ν(k) ≤ γ (5.17)

where ν(k) is the innovation sequence given by equation 2.10, S(k) is the inno-

vation covariance given in equation 2.12 and γ is a percentage probability determined

prior to the fusion process which grantees that a particular observation lies within

an ellipsoid (level of confidence). The NIS is a χ2 distributed in m DoF, where m is

the dimension of the measurements vector, and the gating value is selected from the

Table in appendix F (12.59 in the case of 3-D position and 3-D velocity). However,

this value is sometimes relaxed to best suit the environment and the probability re-

gion allowed. If the NIS is less than that particular gate and the filter was properly

pre-tuned, then the Kalman filter model represented by Q(k) and R(k) resembles the

true model of the system. On the other hand, if the NIS exceeds the gating threshold,

then a fault must have occurred and the fault detection stage sets an alarm.

In spite of its simplicity, the implementation of this fault diagnosis is crucial.

The rejection of GPS fixes may result in a continuous deviation of INS estimates

which will results in increasing innovations and continuous rejection of GPS fixes,
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so that the loop will never enter the correction stage. As a result, filter tuning is a

critical step in filter implementation. Tuning the Kalman filter, it is important to

consider the following scenarios (Sukkarieh, S., Nebot, E. M., & Durrant-Whyte, H.

F., 1998), (Sukkarieh, S., Nebot, E. M., & Durrant-Whyte, H. F., 1999):

• During rejection of GPS fixes, the Kalman filter stays in the prediction stage.

The uncertainty in INS estimates will grow according to Q. If Q is set to larger

value, states will be updated using the first available GPS fix irrespective to its

accuracy. Similar situation will result if R is set to small value.

• If Q is set to small value, INS estimates will be less corrected. During the

rejection of GPS fixes, due to faults such as multipath, the filter stays in the

prediction stage. However, due to small value of Q, the uncertainty grows in

smaller rate and there is a risk of the INS missing all GPS fixes. Which in turn

results into a diverging solution.

• A small value of Q and large value of R imply a more trusted predictions over

observations and the innovation will be correlated.

• If the gating function is applied, a small value of R will result into more rejection

of GPS fixes. Once GPS observations are validated, more weight will be applied

to the innovation which will result into a larger correction of INS predictions.

If the GPS fixes are noisy, then the corrected INS states will be noisy too.

Figure 5.3 shows the membership function between the level of correlation and the

selected value of the sensor noise covariance R when the gating function is employed.

Moreover, the gating function is only a detection scheme. It doesn’t identify or isolate

failures. Therefore, even though a single Kalman filter is enough for fault detection.

Fault identification requires a bank of Kalman filters. For the filter bank to span the

entire failure space, it should be implemented as a moving bank. In this thesis, the

moving-bank MMAE scheme discussed previously in section 2.4.2 is utilized to isolate

the fault and form the optimal state estimate along with the required parameter that
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models the failure.

Figure 5.3: Tuning membership function when the χ2 gate is applied.

As discussed earlier in section 5.2.1, thresholding and MMAE, each of them

has its own drawbacks. However, both schemes can be utilized in a sequential man-

ner, where each of them compensates for the other weaknesses. Figure 5.4 indicates

the effect of one scheme on the other. Among all of these effects the most important

is the reduced computational cost, enhanced no-failure performance and decreased

effect of convergence time of the MMAE bank. On the other hand, even though an

innovation based approach is utilized, the implementation is no longer sensitive to

the tuning process and can detect slowly changing ramp failures.

The implementation of this sequential scheme is represented by the block dia-

gram in Figure 5.5. The FDI system is implemented with a fixed nominal filter that

is independent of the bank, and a filters bank consisting of K elemental filters imple-

mented as moving bank. The innovation based algorithm monitors the innovations of

the nominal filter, once a fault is detected a fault alarm is set and sent to the MMAE

algorithm. The MMAE algorithm starts tuning for the appropriate value of sensor

noise covariance matrix through the utilization of the Gaussian probability density
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Figure 5.4: FDI design tradeoffs between innovation-based and moving bank MMAE
schemes. Arrows directions indicate the compensation effect of one scheme advantages
on the other scheme disagvantages.

function, and calculated as follows,

aMMAE(k) =
K∑

i=1

pi(k)ai (5.18)

RMMAE(k) = aMMAE(k)RMMAE(k − 1) (5.19)

where

pi(k) represents the ith elemental filter hypothesis probability at time k.

ai represents the ith elemental filter hypothesis parameter.

aMMAE represents the filters bank optimal estimated failure parameter at time

k.

RMMAE(k) represents the filters bank optimal estimated failed sensor noise covari-

ance at time k.
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and the bank is centered at RMMAE. However, due to transit time requirements of

the bank, the consistency of the bank’s estimate must be checked before it’s optimal

state estimate is calculated. An algorithm similar to the χ2 gating is implemented

at the FDI system level. The filter bank residuals utilized for consistency test are

generated as follows;

qMMAE(k) =
K∑

i=1

pi(k)qi(k) (5.20)

where

qi(k) represents the ith elemental filter calculated NIS.

qMMAE(k) represents the filter bank calculated NIS.

Then, qMMAE(k) is compared with a threshold selected as in equations 2.20

and 2.21. If the filter bank’s innovations are consistent with the probabilistic weighted

sensor noise covariance RMMAE(k), the MMAE algorithm continues and the optimal

state estimate x̂(k|k) along with it’s uncertainty P(k|k) are calculated as in equations

2.37 and 2.38, respectively. On the other hand, if this condition is not satisfied, the

filter bank is considered inconsistent, so that it doesn’t enter neither the prediction

stage nor the correction stage and the algorithm’s estimates are taken as the predic-

tions of the fixed nominal filter. This process is repeated until one of them, i.e. the

fixed nominal or the filters bank, becomes consistent and it’s estimates are selected

as the optimal solution.

Figure 5.5: FDI Methodology

This sequential implementation enhances the overall performance as follows:
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• Since both scheme’s estimates are consistency checked, optimality is guaranteed

during fault and no-fault conditions.

• The filters bank is only allowed to operate on segments of time where a fault

has been declared. Therefore, computational complexity is reduced.

• The effect of the filters bank convergence time is eliminated since it is consis-

tency checked.

• The effect of tuning on the fixed nominal filter is eliminated since, as discussed

in section 2.4.2, the MMAE is an adaptive technique.

• Slowly changing ramp faults are detected and identified.

Figure 5.6: The bank angle command applied to simulate the trajectory. The sim-
ulated trajectory undergoes five rotations all to the right. The two intervals where
faults are simulated lie between 522-567 while travelling in straight line and 875-920
while steady turn.
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5.5 Performance Verification - Simulation

In this section, Errors are introduced to GPS observations in two different scenarios.

First, while the vehicle in travelling in straight line. Then, while steady turning. Both

failures of GPS signal last for 45 seconds and varies in magnitude for both position

and velocity observations. For the same trajectory discussed earlier in section 4.5.

The command input to the bank angle is shown here again, in Figure 5.6. These

errors are composed of multipath and low satellite availability commonly occur in

INS/GPS systems. These errors where introduced to the GPS signal as random noise

and ramp signal, respectively. Table 5.2 represents the parameters of added noise to

simulate failures in GPS signal.

Table 5.2: Simulated failure noise parameters
Parameter Straight Line Steady Turn

522-567 sec 875-920 sec
Position 1σ 10.0 m 12.0 m
Velocity 1σ 5.00 m/s 6.00 m/s
Position slope 0.15 m/s 0.15 m/s
Velocity slope 0.10 m/s/s 0.10 m/s/s

The MMAE is configured with five banks, while the sequential implementa-

tions contains one extra fixed nominal filter. The five hypotheses are [100,10,1,0.1,0.01].

Figures 5.7 and 5.8 show the innovations, while 5.9 and 5.10 show the autocorrela-

tion function of the innovations when χ2-squared FDI is used. The continuous jumps

of GPS fixes were detected, and failure of GPS sensor was declared. The rejection

of GPS fixes and accumulation of inertial sensor biases (which include zero biases,

misalignments, scale factor errors, random errors, random walk and computational

errors) cause drifts in the navigational solution and the filter remains in the pre-

diction stage. Once the uncertainty becomes consistent with its innovation, GPS

observations are validated and the filter enters the update stage. Figures 5.11 to 5.13

show estimated errors. The gating function shows a poor FDI performance against
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unexpected navigation system failures. However, designed to reject failures, the filter

can be re-tuned to place less weighting on observations. This is accomplished by

decreasing the covariances in the process noise matrix Q(k) which places more trust

on INS predictions and increasing covariances in the sensor noise covariance matrix

R(k). This method increases the autocorrelation of the innovation, and the filter is

in the suboptimal mode of operation (Sukkarieh, S., 2000). Finally, Figure 5.14 shows

the χ2 consistency test. The test shows an in consistent innovations during failures.

Similar failure scenarios are now represented to both the MMAE and sequen-

tial algorithms. Figures 5.15 to 5.18, show the innovations and their corresponding

autocorrelations. Unlike the innovation-based case, The innovation looks consistent,

zero mean and uncorrelated. Similar results are shown in Figures 5.19 to 5.22 for the

sequential case, which show similar behavior.

Figure 5.7: Position innovations and its 2σ uncertainty when innovation-based FDI
is used to detect and diagnose failures between 522-567 sec (straight line motion) and
between 875-920 sec (rotational motion).
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Figure 5.8: Velocity innovations and its 2σ uncertainty when innovation-based FDI
is used to detect and diagnose failures between 522-567 sec (straight line motion) and
between 875-920 sec (rotational motion).

Figure 5.9: Auto-correlation of the position innovation depicts the fact that contin-
uous rejection of GPS position due to mismodelling in its noise covariance increases
the correlation of the innovation sequence.
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Figure 5.10: Auto-correlation of the velocity innovation depicts the fact that contin-
uous rejection of GPS position due to mismodelling in its noise covariance increases
the correlation of the innovation sequence.

Figure 5.11: Error in estimated position along with its 3σ uncertainty when
innovation-based FDI is used to diagnose failures between 522-567 sec (straight line)
and 875-920 sec (steady turn).
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Figure 5.12: Error in estimated velocity along with its 3σ uncertainty when
innovation-based FDI is used to diagnose failures between 522-567 sec (straight line)
and 875-920 sec (steady turn).

Figure 5.13: Error in estimated attitude along with its 3σ uncertainty when
innovation-based FDI is used to diagnose failures between 522-567 sec (straight line)
and 875-920 sec (steady turn).
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Figure 5.14: The χ2-test of the innovation sequence when innovation-based FDI is
used to detect and diagnose failures between 522-567 sec (straight line motion) and
between 875-920 sec (rotational motion).

Figure 5.23 shows the simulated path and the estimated trajectory when the

three methods are applied. Figure 5.24 magnifies the segment where failures occurred

while travelling in straight line. On the other hand, Figure 5.25 shows the segment

where failures occurred while the aircraft was undergoing a rotational motion. For

more demoncentration on the performance of the sequential MMAE algorithms, Fig-

ure 5.26 shows the percentage of time when the filters bank in the sequential imple-

mentation was utilized to identify failures. Figure 5.27 shows the Gaussian conditional

probabilities of the five elemental filters, while Figure 5.28 shows the estimated noise

covariance RMMAE for the six positions and velocities observations. Finally, the op-

timal estimate of the bank’s hypothesis in the sequential algorithm is represented in

Figure 5.29.
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Figure 5.15: Position innovations and its 2σ uncertainty when MMAE is used to
detect and diagnose failures between 522-567 sec (straight line motion) and between
875-920 sec (rotational motion).

Figure 5.16: Velocity innovations and its 2σ uncertainty when MMAE FDI is used to
detect and diagnose failures between 522-567 sec (straight line motion) and between
875-920 sec (rotational motion).
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Figure 5.17: Unlike the case of innovation-based FDI, the auto-correlation of the
position innovation depicts the fact that the innovations sequence when MMAE is
used to reject errors introduced to GPS signal are indeed uncorrelated.

Figure 5.18: Unlike the case of innovation-based FDI, the auto-correlation of the
velocity innovation depicts the fact that the innovations sequence when MMAE is
used to reject errors introduced to GPS signal are indeed uncorrelated.
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Figure 5.19: Position innovations and its 2σ uncertainty when sequential Chi-MMAE
is used to detect and diagnose failures between 522-567 sec (straight line motion) and
between 875-920 sec (rotational motion). This depicts the fact that the MMAE has
compensated for the Chi-squared inability to detect slow changing ramp failures and
applied an online filter tuning.

Figure 5.20: Velocity innovations and its 2σ uncertainty when sequential Chi-MMAE
is used to detect and diagnose failures between 522-567 sec (straight line motion) and
between 875-920 sec (rotational motion).
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Figure 5.21: Similar to the MMAE case , the auto-correlation of the position innova-
tion depicts the fact that the innovations sequence when the sequential algorithm is
used to reject errors introduced to GPS signal are indeed uncorrelated.

Figure 5.22: Similar to the MMAE case , the auto-correlation of the position innova-
tion depicts the fact that the innovations sequence when the sequential algorithm is
used to reject errors introduced to GPS signal are indeed uncorrelated.
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5.6 Performance Verification - Actual Test

In this section the FDI performance of the χ2, MMAE, and their sequential imple-

mentation is verified on actual inertial and GPS data. In doing so, random noise is

introduced to actual GPS observations. The data used is that of Sheikh-Zayed seaport

test presented earlier in section 4.6. In that test, χ2 SCT-based FDI was implemented

in both sensor level and individual observation level. This can be noticed by look-

ing into Figure 4.48 and Figure 4.49 where spikes in the 2σ uncertainty boundaries

represent jumps in one or more of the GPS fixes and the whole GPS package was

discarded. Figure 5.30, shows filter estimated trajectory and corrupted GPS data.

Figure 5.31 shows the resulted trajectory due to corrupted GPS logs with no FDI

implemented. Figure 5.32 and Figure 5.33 show the resulted trajectory when the χ2

SCT is applied when the filter is operated as optimal and suboptimal, respectively.

To test the MMAE algorithm, a bank with five elemental filters was implemented

with hypotheses and initial probabilities of

a = [100, 10, 1, 0.1, 0.01]

p(0) = [0.025, 0.20, 0.55, 0.20, 0.025]

which are neither too coarse nor too fine. The sequential scheme is implemented with

extra independent and nominal filter for fault detection. Figure 5.34 and Figure 5.35

show resulted trajectory when MMAE is used alone and when the sequential scheme

is employed. Figure 5.37 compares the performance of both implementations while

cornering and during normal mode of operation.



5.6 Performance Verification - Actual Test 142

Figure 5.23: 3D view of the simulated trajectory, the GPS fixes (dots), innovations-
based algorithm (solid gray), MMAE (dotted black), and sequential Chi-MMAE (solid
black).

Figure 5.24: The straight line trajectory where failure occurred. The chi-squared algo-
rithm (dashed gray) shows a poor performance compared to the sequential algorithm
(solid black), which shows a better result than the MMAE (dashed black).
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Figure 5.25: Two dimensional vehicle position showing the rotational path segment of
the simulated trajectory where failure occurred. The chi-squared algorithm (dashed
gray) shows a very poor trajectory compared to the sequential algorithm (solid black)
In fact, the chi-squared performance is even worse than that while travelling in
straight line. The sequential algorithm shows a better result than the case when
MMAE alone was employed (dashed black). However, both algorithms show a de-
graded performance than that while travelling in straight path specially when the
simulated aircraft reached the corner of the turn, this is due to the fact that while
turning the attitude errors are larger than that while travelling in straight line. More-
over, for the MMAE to diagnose this failure effectively, it should converge to identical
value of noise covariance. In this case, it is obvious that the bank converged to a value
higher than the true noise covariance and starts to show a behavior similar to that of
the innovation-based.

5.7 Summary and Conclusions

The focus of this chapter has been on achieving integrity of the INS/GPS navigation

systems. I discussed mainly sensor faults. It was stated that, for a navigation system

to achieve integrity it should guarantee that all the expected and unexpected faults

must be detected. The FDI system shouldn’t also affect the nominal operation of the

filter. It should have fast response time and assist design specifications. The detection
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algorithm should be as simple and fast as possible, while the identification algorithm

should be as efficient as possible. Moreover, the whole FDI algorithms should prove

tradeoffs between complexity and performance, such that a more complex system may

become desirable in order to achieved a successful identification problem. In order to

achieve this goal, this chapter has:

• Provided a detailed definition and identification of the terms faults, failures,

no-fault mode and fault mode. These terminologies were discussed from the

Kalman filter point of view, such that a mode was considered a failure mode

if one of the filter assumptions, namely, Gaussianness, whiteness, linearity and

state vector order, become void.

• Discussed the general structure of an FDI system and surveyed related DFI

algorithms.

• Provided a classification of failure modes based on their effects and how they

are modelled in FDI systems. The first class of failures results into complete

operational failure of the sensor. This kind of failures were termed hard failures.

The other class of failures result into degradation in sensor’s behavior. This kind

of failures were termed soft failures.

• Discussed modelling of hard and soft failures in multiple model filters banks,

where soft failures are modelled as a change in sensors noise covariance, while

hard failures are modelled by zeroing the corresponding row in the measurement

transition matrix H.

• Provided a formulation for the innovations and the innovations covariance at

fault conditions. It was stated that during failure mode of operation, the in-

novations and biased and have covariance that it larger in order of magnitude

than that during no-failure mode of operation.

• Discussed the design of high integrity navigation, and focussed mainly on the
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Chi-squared algorithm performance as a detection scheme and on the MMAE

algorithm as a complete FDI scheme.

• Proposed a sequential implementation of the chi-squared detection and MMAE

identification to reduce computational complexity and provide solutions for

most common FDI problems.

• Provided simulated results where faults were introduced to the GPS observa-

tions during two different motion trajectories, straight line motion and while

steady turn. Both algorithms, MMAE and sequential provided similar per-

formance in the case of straight motion. However, the sequential algorithms

showed better performance in rotational motion.

This then provides the necessary background and methods to develop an ap-

propriate and robust GPS-aided-INS navigation systems for autonomous mobile ro-

bots.



5.7 Summary and Conclusions 146

Figure 5.26: As expected from the sequential FDI algorithm, in this failure alarm
plot, a 1 represents detection of fault, and the filters bank was only activated during
segments of time when a failure was detected. Figures show the percentage of time
when the bank was activated.

Figure 5.27: Gaussian probabilities of the five elemental filters in the sequential im-
plementation.
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Figure 5.28: The estimated GPS noise covariance during the while simulation repre-
sents the fast response of the detection and identification algorithms in the sequential
FDI algorithm.

Figure 5.29: The optimal estimated hypothesis aMMAE of the filters bank in the
sequential algorithm.
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Figure 5.30: GPS data was corrupted by adding noise. Noisy GPS data are rep-
resented by circles while the filter estimated trajectory with actual GPS data are
represented by the solid line.

Figure 5.31: With no FDI implemented, the estimated trajectory is jumping to follow
the noisy GPS observations.
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Figure 5.32: With χ2-based FDI, inconsistent GPS observations are neglected and the
filter remains in the prediction stage. This is represented by the drifting lines due to
integration of inertial sensors errors. Once uncertainty reaches the level of consistency,
observations are validated and the filter enters the update stage. When updated,
the position is closer to the error free trajectory than the noisy GPS observations
representing a successful tuning.
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Figure 5.33: One solution to overcome the effect of GPS position observations jumps
is to tune the filter as suboptimal. This is done by increasing the value of GPS
position uncertainty in R(k). However, suboptimality affects the performance of the
filter in places other than where multipath is detected.

Figure 5.34: Employing MMAE as FDI scheme resulted into a successful fault iden-
tification.
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Figure 5.35: The sequential χ2-MMAE scheme results into similar FDI performance
as that of the MMAE approach during GPS failure.

Figure 5.36: When sequential χ2-MMAE scheme is applied, the filters bank is allowed
to operate only on segments of time where faults are detected. In this alarm plot, a
1 represents a fault alarm, while a 0 represents a nominal (no-fault) operation.
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Figure 5.37: Unlike the MMAE FDI case (bold dashed line), the sequential (solid line)
implementation did not affect the performance of the filter during no-fault conditions
(light dashed line). This is because once the filter is in the nominal case, estimates
are provided by the nominal filter which was initially tuned.



Chapter 6

Thesis Conclusions and Future Work

6.1 Conclusions and Summary of Contributions

This thesis has provided a mean for aiding inertial navigation sensors with GPS data.

In doing so, the thesis has discussed principles of inertial navigation. It has de-

rived the equations required for the local geographic (NED) and the Earth-Centered

Earth-Fixed (ECEF) frames mechanisations. Local geographic frame was chosen for

implementation because attitude of vehicle is more physically intuitive in the NED

coordinates than in the ECEF coordinates. Also, the NED coordinates separates

the unstable vertical axis from the more stable horizontal axes and provides a more

intuitive schemes for analyzing INS errors than the ECEF coordinates. Unlike con-

ventional SDINS mechanisations, a unified mathematical frame work has been used

for computations, which resulted into significant reduction in mechanisation errors,

and the direction cosine matrix approach was selected for attitude representation in

the mechanisation process. To achieve inertial system reliability, inertial sensor errors

have been analyzed and modelled. The computational algorithms for the mechanisa-

tion equations were discussed and were verified on simulated data. A comparison was

conducted between the case of error free inertial sensors and when conventional low-

cost inertial sensor errors are introduced. Results showed that, when low-cost inertial

sensors are employed the SDINS becomes unreliable even for a short period of time.

It was also stated that attitude computations are the most critical. The accuracy of

attitude computation depends on the bandwidth of inertial sensors employed, mainly

the gyroscopes, and the order of the algorithm. Errors in attitude computations can

be reduced by increasing the bandwidth of the gyroscopes. However, errors can be
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reduced more rapidly and effectively by increasing the order of the algorithm. On the

other hand, the effect of high frequency undesired motion such as vibrations may be

reduced by employing shock absorbers. The general navigation error equations were

derived in the NED and ECEF coordinates. These equations describe how uncertain-

ties in one state affects uncertainties in other states, and therefore, lie the rules for a

successful filter tuning.

This thesis also discussed The Kalman filter as being the best algorithm for

providing navigational solution through the fusion of different solutions based on their

accuracy. Different aspects of Kalman filter implementation were discussed. It was

stated that for the filter to be operating correctly the innovations should be zero

mean, white and uncorrelated. Also, the normalized innovation squared should be χ2

distributed and its moving average should lie inside a confidence interval, computed

from the χ2 distribution tables with a given level of confidence and degrees of free-

dom. Based on filter innovations behavior, filter tuning was discussed and a simplified

tuning algorithm was implemented. The details of a loosely-coupled and a tightly-

coupled INS/GPS data fusion algorithms using the Kalman filter were presented. In

doing so, GPS observables, mainly pseudoranges, GPS satellite orbital parameters,

ephemeris data processing and calculating satellites and receiver positions were dis-

cussed and all algorithms were verified via actual data processing.

A loosely-coupled linear filter was implemented. The state vector included

fifteen states (NED positions, NED velocities, Euler angles and accelerometers and

gyros biases). The performance of the filter was verified on simulated data before pro-

ceeding to actual data that was post-processed. Results represented filter testing for

whiteness and unbiasedness, position and velocity innovations and innovations auto-

correlations. Results showed the effect of filter tuning on attitude and bias estimates,

specially while cornering. The effect of maneuvering on the observability of the at-

titude states uncertainty was introduced. Simulated maneuvers included right-hand
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rotations with few straight line motions. Results showed that attitude uncertainty

grows significantly while travelling in straight line with no change in vehicle acceler-

ation, while attitude states become observable while banking.

The vulnerability of low-cost INS/GPS systems to failures compromises the

consistency of the estimator and therefore the integrity of the navigation system.

Therefore, the navigation algorithm should provide a mean of supervising the inte-

gration process. While this implies that the filter should be adaptive, the navigation

algorithm should detect faults in any of its components, whether it is hardware or

software, and take the required reaction to identify and isolate the faulty party. The

fault diagnosis system should:

• Guarantee the detectability of all faults. In doing so, the frequency domain can

be utilized to make sure that all faults will be transmitted to the innovations.

• Do not affect the performance of the navigation system during no-fault condi-

tion.

• Assists design specifications, including highest frequency maneuvers, required

accuracy and minimum cost.

• Have short response time.

• Offer tradeoff between complexity and FDI performance.

This motivated the investigation of different approaches to fault detection and identi-

fication. Process reliability has been already considered by modelling of inertial sensor

errors, designing a reliable mechanisation, including bias error states in the filter es-

timated state vector (Scheding, S., 1997), designing appropriate maneuvers and by

appropriate tuning. Therefore, only aiding sensors faults were discussed. Failures (or

faults) were identified as situations where at least one of the Kalman filter assump-

tions becomes void. These assumptions include; filter states and observations are
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assumed gaussian random variables, the process and observations noise are assumed

white, uncorrelated with known covariance, the system is assumed linear (works with

linear filter implementation only), and the state vector of the assumed order.

The fault detection and identification problem was viewed as having two pri-

mary stages; residuals generation and decision making. The residual generation stage

is responsible for the generation of filter residuals which carry failure signature and

therefore to make sure that faults are transmitted to the residuals. On the other

hand, decision making is responsible for the detection of faults and making decisions

regarding the fusion process. Decision making can take the form of a binary decision

whether something went wrong or not, or it may include parameters and/or states

estimation. Sensor failures were classified into two categories, soft failures and hard

failures. Soft failures results into degradation of sensors accuracy, such failure can

occur from multipath, atmospheric errors, jamming/interference and errors in orbital

and ephemeris parameters. Soft failures are modelled as increment in the sensor noise

covariance matrix. On the other hand, a hard failure results into a huge degradation

in the sensor performance, such failure can occur from power failure, physical damage

and low satellites availability. Hard failures are modelled by zeroing the correspond-

ing row in the sensor observations transition matrix H(k). The FDI problem was

formulated. It was stated that under fault conditions the innovations are simply the

innovation under no fault condition plus a vector representing the fault effect on the

innovations. Therefore, under faulty conditions, the innovations are biased. On the

other hand, the innovation covariance required to maintain the consistency of the

estimator increases during faults.

Finally, the problem of high integrity navigation system design in real-time was

discussed, where an innovation-based technique, namely the χ2, was selected as the

detection scheme and the MMAE scheme was selected for fault identification and pa-

rameters/states estimation. Both techniques were implemented in a sequential form,
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where the fault identification stage is activated by the detection stage once a fault

is detected. When tested on actual inertial and GPS data, such a sequential imple-

mentation produced comparable identification ability as the MMAE alone approach

and reduced system complexity, where the identification approach is allowed only to

operate in segments of time where faults are detected. On the other hand, unlike the

MMAE algorithm where the performance of the filter was affected during no-fault

conditions, the sequential scheme guaranteed the consistency of the estimator in all

of its modes of operation and didn’t affect its performance during normal modes of

operation. It also provided a mean of checking the consistency of the estimator for

both FDI stages.

6.2 Future Work

As a continuation from this work, the future focus should be on the improvement of

the estimator performance. Since the linear loosely-coupled filter was used in this

thesis and as it was discussed in section 4.6 when real tests were represented, the

estimator considers the linearity of the dynamic model as well as the states. There-

fore, a nonlinear filter, such as the unscented Kalman filter (UKF) must be used

(Julier, S., & Uhlmann, J., K., 1996), (Julier, S., & Uhlmann, J., K., 1997), (Julier,

S., Uhlmann, J. & Durrent-Whyte, H., F., 2000), (Lefebvre, T., Bruynincks, H., & De

Schutter, J., 2001), (Julier, S., Uhlmann, J. & Durrent-Whyte, H., F., 2002), (Haykin,

S., 2001), (Crassidis, J., L., 2005), (Zhang, P., Gu, J., Milios, E., E. & Huynh, P.,

). The UKF has better performance than the EKF, because it propagates both the

mean and the covariance through the nonlinear model, and has less computational

cost than the EKF, because it does not compute the Jacobian. The UKF should

be built in the tightly-coupled configuration. As discussed earlier in section 4.4, raw

GPS measurements and ephemeris data should be used to form the filter observa-

tions. The fact that, both the loosely-coupled and tightly-coupled filters have similar

performance when the GPS signal from at least four satellites is available. However,
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during low-availability of GPS signal, the performance of the tightly-coupled filter

overcomes that of the loosely-coupled one. This degradation in the loosely-coupled

filter compared to the tightly-coupled one is because the loosely-coupled filter uses

the position and velocity estimates of the reduced order filter (because it does not

include attitude and biases states) implemented in the GPS receiver.

The observability of the filter states should be thoroughly investigated. As it

was represented in section 4.5, unlike position and velocity errors, the uncertainty of

attitude errors does not represent the state accurately. In fact, the uncertainty in-

crease while the vehicle is travelling in straight line and constant acceleration, this is

more obvious in the heading case, and it is updated once the vehicle is turning. This

leads to a conclusion that, even though attitude and bias estimates are not directly

observed by the filter, they can become observable by maneuvering. Therefore, as

a part of the path planning, the effect of vehicle maneuvering and dynamics on the

Kalman filter states observability must be investigated.



Appendix A

Attitude Representations

A transformation matrix is required to transform accelerations sensed by strapdown

accelerometers into the desired coordinates frame. This transformation matrix con-

sists of the roll, pitch and yaw angles. Attitude computation is critical in inertial

systems; errors in estimated attitude cause significant errors in computations when

integrated over time. Algorithms available include Euler representation, direction

cosine matrix and the quaternion approach (Sukkarieh, S., 2000)(Titterton, D., &

Weston, W., 2004) (George, M. G., 2007)(Abdel-Hafez, M., 2003)(Nebot, E. M.,

2005).

Regardless of the type of the attitude representation employed, the result will

be identical. However, they differ in term of the computational requirements (which

is dimensional dependent) and the amount of errors introduced due to discretisation

or simplification of the computations. In this thesis, the direction cosine approach is

utilized, since it is commonly used in low-cost inertial navigation systems, offers the

best representation, has minimal trigonometric calculations and the least expensive

(Sukkarieh, S., 2000).

A.1 Euler Representation

Euler representation is the easiest to understand. Body rates, sensed by strapdown

gyroscopes, are used to compute the three Euler angles (roll φ, pitch θ and yaw ψ).
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Equation A.2 is used to compute Euler angles from sensed body rates

Ψ̇ = Eωb
ib (A.1)

=


1 sin φ sin θ

cos θ
cos φ sin θ

cos θ

0 cosφ − sinφ

0 sin φ
cos θ

cos φ
cos θ

ωb
ib (A.2)

where

Ψ̇ =


φ̇

θ̇

ψ̇

 (A.3)

and φ̇, θ̇ and ψ̇ are Euler rates. Estimated Euler angles are then used to compute the

desired Euler transformation matrix in equation A.5. This transformation is derived

by three rotation sequence which can be written as three direction cosine matrices.

C n
b =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 (A.4)

=


cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ


(A.5)

A.2 The Direction Cosine Matrix

The direction cosine approach attempts to solve the general matrix differential equa-

tion

Ċ = CΩ (A.6)
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where Ω is the skew matrix formed from the elements of the turn rate vector ω, for

example

Ċ
n

b = C n
b Ω

b
nb (A.7)

where

Ωb
nb =

[
ωb

nb×
]

(A.8)

and C n
b is the DCM transforming vectors from the body frame coordinates into

navigation frame coordinates. The DCM approach procedure is as follows:

• Initial orientation of the vehicle, represented by Euler angles, is estimated by

initial alignment of the IMU.

• Initial C n
b is computed by equation A.5.

• Body rotations, sensed by strapdown gyros, are used to estimate Ωb
nb.

• Equation A.7 is then used to update the DCM.

The direction cosine approach in the attitude algorithm utilized in this work.

A.3 The Quaternion Approach

In the Quaternion approach the transformation from one frame to another is accom-

plished by a single rotation about a vector q through an angle q. It contains four

parameters; i.e., three to describe the vector and one to describe the magnitude of the

angle of rotation. The quaternion may be calculated from elements of the direction

cosine matrix as follows

q(i) =


1
2

√
1 + C n

b 11 + C n
b 22 + C n

b 33

1
4q(1)

(C n
b 32 −C n

b 23)

1
4q(1)

(C n
b 13 −C n

b 31)

1
4q(1)

(C n
b 21 −C n

b 12)

 (A.9)
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The discretization of the quaternion approach (Sukkarieh, S., 2000) starts by inte-

grating gyro outputs to determine the change in the angle in the body frame

φ =

∫
ω.dt (A.10)

φ =
√
φ2

x + φ2
y + φ2

z (A.11)

Then, the quaternion operator is formulated as

h(i) =


δ

γφx

γφy

γφz

 (A.12)

where γ =
sin φ

2

2
and δ = cos φ

2
. Finally, the quaternion is updated as follows

q(i+ 1) =


q(i)1 −q(i)2 −q(i)3 −q(i)4

q(i)2 q(i)1 −q(i)4 q(i)3

q(i)3 q(i)4 q(i)1 −q(i)2

q(i)4 −q(i)3 q(i)2 q(i)1

h(i) (A.13)

To obtain accelerations in the desired mechanization frame, the quaternion is

used to transform measured accelerations in the body frame into the mechanization

frame. If the mechanization frame is selected as the navigation frame, then accelera-

tion data is transformed as follows

f n = f bC n
b

= q(i+ 1)f bT
q∗(i+ 1)

(A.14)

It is less expensive to convert quaternion back into C n
b than to use the complex
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formula, then

C n
b =


(q2

1 + q2
2 − q2

3 − q2
4) 2 (q3q2 − q1q4) 2 (q2q4 + q1q3)

2 (q2q3 + q1q4) (q2
1 − q2

2 + q2
3 − q2

4) 2 (q31q4 − q1q2)

2 (q2q4 − q1q3) 2 (q3q4 + q1q2) (q2
1 − q2

2 − q2
3 + q2

4)

 (A.15)

and the direction cosine approach is applied to transform body accelerations into the

desired mechanization frame.



Appendix B

Earth’s Shape, Reference Frames and

Coordinate Systems

Inertial navigation systems varies with respect to the coordinate system in which

navigation equations are mechanized. In this chapter two concept are discussed, ref-

erence frames and coordinate systems (Kelly, A, 1994). Reference frames are physics

related, for example, the Earth’s rotational rate with respect to the inertial frame

is represented as Ωie. In this example the reference frame is the inertial frame. On

the other hand, coordinate systems are mathematics related. Their main purpose is

visual or reduction of computational complexity (George, M. G., 2007). Back to the

previous example, if navigational frame mechanization is desired, then the Earth’s

rotational rate with respect to the inertial frame must be transformed into the lo-

cal level frame. This is represented as Ωn
ie. In this example, the reference frame is

the inertial frame, while the coordinate system is the local level (or navigation) frame.

B.1 Modelling of the Earth’s Shape

The surface of the Earth is irregular in shape and can be modelled in different ways

(Titterton, D., & Weston, W., 2004). Topographic models, which represent the phys-

ical shape of the Earth and the mean level of the oceans, and the Geodetic models,

which yields a surface ’the geoid’ that is everywhere perpendicular to the local gravity

component.
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Table B.1: WGS-84 ellipsoid parameters
Parameter Value Unit Relations
Semimajor axis a 6378137 m
Semiminor axis b 6356752.3142 m

Eccentricity of the
Earth ellipsoid e

0.0818191908426 dimensionless e =
√

1− b2

a2

Second eccentricity é
√

0.00673949674228 dimensionless é =
√

a2

b2
− 1

Flattening (Elliptic-
ity) f

0.00335281066474 dimensionless f = a−b
a

Earth’s angular veloc-
ity Ωie

7.292115× 10−5 rads

Earth’s Gravitational
Constant µ

3986004.418× 108 m3s2

Mass of the Earth M 5.9733328× 1024 Kg
Speed of the Light c 2.99792459× 108 ms
Pi π 3.1415926535898 dimensionless

For GPS applications, the standard physical model of the Earth is the World

Geodetic System 1984 (WGS-84). In WGS-84 the Earth’s shape is ellipsoidal, where

cross-sections of the Earth parallel to the equatorial plane are circular and the equa-

torial cross-section has radius 6, 378.137km (which is the mean equatorial radius of

the Earth). While the cross-sections of the Earth normal to the equatorial plane

are ellipsoidal. The semimajor axis, a, coincides with the equatorial diameter of the

earth and has the same length as the equatorial radius. While the semiminor axis, b,

coincides with the polar diameter of the Earth and has a radius of 6, 356.7523142km.

The WGS-84 parameters and relations are summarized in table B.1.

The WSG-84 standards define the parameters of the ellipsoid. However, the

surface of the Earth is not flat. It contains surfaces with different heights (terrain).

The surface of the earth, that is everywhere normal to gravity is referred to as the

geoid. It corresponds to the global mean sea level. The geodetic hight is the hight

above the surface of the ellipsoid. This surface provides no physical reference point for

measurement. It is the geoid, i.e. mean sea level, that offers much more convenient
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Figure B.1: The ECI reference frame

vertical reference (Titterton, D., & Weston, W., 2004). The measured height above

the geoid is referred to as topographic height.

B.2 Earth Centered Inertial (ECI) Reference Frame

The inertial frame can be defined as one in which Newton’s lows apply. Such as frame

must intuitively be non-accelerating and non-rotating. The most common choice for

this frame is the Earth Center Inertial frame (ECI) as shown in Figure ??. The origin

of the frame is at the Earth’s geometric center with its z axis pointing up through

the geometric north pole, its x axis pointing to the vernal equinox and its y axis

completing the orthogonal right-handed set. This frame does not rotate with the

Earth.

B.3 Coordinate Systems

The coordinate systems considered in this thesis are Earth stabilized systems, i.e.

systems which maintain orientation referenced in variance ways to the Earth. These

coordinate systems are represented in table B.2.
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Table B.2: Earth stabilized coordinate systems
Coordinate
system

Description Representation

Geodetic coordi-
nate system (llh)

(1) Fixed w.r.t rotating Earth (2) Ori-
gin: Earth’s geometric center (3) Geo-
detic Latitude: angle between the ellip-
soid normal vector and its projection
into the equatorial plane (4) Geocen-
tric latitude: angle relative to the el-
lipsoid geometric center (5) longitude:
angle relative to Greenwich, England
(6) Height: minimum distance between
user and reference ellipsoid

Earth Centered
Earth Fixed
(ECEF)

(1) Fixed w.r.t rotating Earth (2) Ori-
gin: Earth’s geometric center (3) z-
axis: points up through north pole (4)
x-axis: points to zero longitude (5) y-
axis: completes the set

Local Level Co-
ordinate System
(ES)

(1) Fixed to the Earth’s surface at a
defined latitude, longitude and height
(2) x-axis: points to the local north (3)
y-axis: points to the local east (4) xy-
plane: tangential to the Earth’s surface
(5) z-axis: points to the Earth’s center
(6) Used for navigation in small areas

Geographic Co-
ordinate System
(NED)

(1) a local level frame defined at the
vehicle’s current position (2) Moves
with the vehicle (3) x-axis: tangent
to Earth’s surface and points to the
north (4) y-axis: tangent to Earth’s
surface and points to the east (5) z-
axis: completes the set and positive to
down (6) Most common mechanization
system (7) Useful for large missions



Appendix C

Derivations

This chapter provides derivations of mathematical formulations of the strapdown

inertial navigation and Kalman filter algorithms utilized in this thesis. It is considered

as a part of its literature survey.

C.1 Strapdown Inertial Navigation System (SDINS) Equations

In this section, equations of strapdown inertial navigation are derived. They include

the development of different attitude representations, derivation of velocity and po-

sition dynamics, and derivation of the local gravity component. For more detailed

discussion on inertial navigation equations refer to (Kelly, A, 1994).

C.1.1 Mechanization Equations

Assume an arbitrary rigid body that is located in the ECEF, as represented by figure

C.1. For the time being, ignore the m-frame and assume that the body is really

located in the ECEF frame. The ECEF velocity of the body is expressed as

ve =

(
dp

dt

)e

(C.1)

The Coriolis theorem is the connection between different frames; it represents velocity

in one frame as it would be seen on another frame. By applying Coriolis theorem

(
dp

dt

)i

= ve + Ωie × p (C.2)
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Figure C.1: The position of the assumed body with respect to different coordinate
frames.

and by taking the derivative of equation C.2

(
d2p

dt2

)i

=
(ve

dt

)i

+ Ωie ×
(
dp

dt

)i

+ Ω̇ie × p (C.3)

Since the angular acceleration of the Earth’s rotation is zero, Ω̇ie = 0. Then, by

substituting equation C.2 into equation C.3

(
d2p

dt2

)i

=
(ve

dt

)i

+ Ωie × (ve + Ωie × p)

=
(ve

dt

)i

+ Ωie × ve + Ωie × (Ωie × p)

(C.4)

Now, return to figure C.1, assume the m-frame. This is referred to as the mechaniza-

tion frame. By applying Coriolis theorem

(
dve

dt

)i

=

(
dve

dt

)m

+ ωim × ve (C.5)

substituting into equation C.4 yields

(
d2p

dt2

)i

=

(
dve

dt

)m

+ (ωim + Ωie)× ve + Ωie × (Ωie × p) (C.6)

(
d2p
dt2

)i

is the total inertial acceleration of the body under consideration. This quantity

is the sum of the gravitational acceleration and the specific force measured by the



C.1 Strapdown Inertial Navigation System (SDINS) Equations 170

inertial sensors.

f i + gm(p) =

(
dve

dt

)m

+ (ωim + Ωie)× ve + Ωie × (Ωie × p) (C.7)

where

(ωim + Ωie)× ve is the Coriolis acceleration term.

Ωie × (Ωie × p) is the centripetal acceleration term.

f i is the specific force acceleration sensed by accelerometers.

g(p) is the gravitational acceleration component (that is posi-

tion dependent) in the mechanization frame.(
dve

dt

)m
is the acceleration of the body in the mechanization frame.

ωim is the angular rate of rotation of the mechanization frame

with respect to the inertial frame.

Ωie is the angular rate of rotation of the Earth with respect to

the inertial frame.

ve is the ground velocity of the body in the ECEF.

p is the position of the body in the mechanization frame.

Since

both the gravitational and centripetal accelerations are position dependent, they are

combined to form the local gravity vector

gl(p) = gm(p)− Ωie × (Ωie × p) (C.8)

and the navigation equation becomes

(
dve

dt

)m

= Ci
bf

b − (ωim + Ωie)× ve + gl(p) (C.9)

As stated by the i upper-script, equation C.9 was derived with respect to the iner-

tial frame and the velocity assumed was with respect to the ECEF. The navigation
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equation in C.9 can be expressed in different coordinate frames as

(
dve

dt

)m

= Cm
b f b − (ωm

em + 2Ωm
ie)× vm + gm

l (p) (C.10)

where ωm
em is the transport rate, which is the angular rate of rotation of the mecha-

nization frame with respect to the ECEF frame, and ωm
im = ωm

ie + ωm
em. For example,

if the navigation frame is considered as the mechanization frame, then equation C.10

becomes

v̇n = Cn
b f

b − (ωn
en + 2ωn

ie)× vn + gn
l (p) (C.11)

In the next subsection, an expression for the local gravity component is derived.

C.1.2 General Error Equations

Attitude Equations

Here we derive error equations in attitude computation. The analysis starts by navi-

gation frame case and then generalize it for other coordinate frame systems.

Starting by equation C.12

C̃n
b = [I− [δψ×]]Cn

b (C.12)

where

C̃n
b is the estimated DCM.

Cn
b is the true DCM.

δψ× is the skew symmetric matrix of misalignments.

rearranging and differentiating for [δψ×] results into

˙[δψ×] = − ˙̃Cn
b C

n
b

T − C̃n
b Ċ

n
b

T
(C.13)

given that

Ċn
b = Cn

b Ω
b
ib −Ωn

inC
n
b (C.14)
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taking its transpose results into

Ċn
b

T
= −Ωb

ibĊ
n
b

T − Ċn
b

T
Ωn

in (C.15)

this equation may also be written in term of estimated DCM as

˙̃Cn
b = C̃n

b Ω̃
b
ib − Ω̃n

inC̃
n
b (C.16)

using equations C.14 and C.16 to replace ˙̃Cn
b and Ċn

b

T
in equation C.13 results into

˙[δψ×] =
(
−C̃n

b Ω̃
b
ib + Ω̃n

inC̃
n
b

)
Cn

b
T + C̃n

b

(
Ωb

ibC
n
b

T −Cn
b

TΩn
in

)
= −C̃n

b Ω̃
b
ibC

n
b

T + Ω̃n
inC̃

n
b C

n
b

T + C̃n
b Ω

b
ibC

n
b

T − C̃n
b C

n
b

TΩn
in

= −C̃n
b

[
Ω̃b

ib −Ωb
ib

]
Cn

b
T + Ω̃n

inC̃
n
b C

n
b

T − C̃n
b C

n
b

TΩn
in

(C.17)

By employing equation C.12, equation C.17 becomes

˙[δψ×] = −[I− [δψ×]]Cn
b

[
Ω̃b

ib −Ωb
ib

]
Cn

b
T + Ω̃n

in[I− [δψ×]]Cn
b C

n
b

T − [I− [δψ×]]Cn
b C

n
b

TΩn
in

= −[I− [δψ×]]Cn
b

[
Ω̃b

ib −Ωb
ib

]
Cn

b
T + Ω̃n

in[I− [δψ×]]− [I− [δψ×]]Ωn
in

(C.18)

By applying small angle perturbation given by

δΩn
in = Ω̃n

in −Ωn
in (C.19)

δΩb
ib = Ω̃b

ib −Ωb
ib (C.20)

equation C.18 becomes

˙[δψ×] = −[I− [δψ×]]Cn
b δΩ

b
ibC

n
b

T + δΩn
in − Ω̃n

in[δψ×] + [δψ×]Ωn
in

≈ δΩn
in + [δψ×]Ωn

in −Cn
b δΩ

b
ibC

n
b

T
(C.21)
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and by doing an element by element comparison, the attitude error equation becomes

˙δψ ≈ δωn
in −Ωn

inδψ −Cn
b δω

b
ib (C.22)

Velocity Equations

Starting from equation C.11 and applying perturbation of the nominal state results

into

δv̇n = ˙̃vn − v̇n

= C̃n
b f̃

b −Cn
b f

b − (ω̃n
en + 2ω̃n

ie)× ṽn + (ωn
en + 2Ωn

ie)× vn + g̃n
l (p)− gn

l (p)

(C.23)

substituting for

δv̇n
e = ˙̃vn

e − v̇n
e (C.24)

δf b = f̃ b − f b (C.25)

δvn
e = ṽn

e − vn
e (C.26)

δωn
ie = ω̃n

ie − ωn
ie (C.27)

δωn
en = ω̃n

en − ωn
en (C.28)

δgn
l = g̃n

l − gn
l (C.29)

C̃n
b = [I− [δφ×]]Cn

b (C.30)

gives

δv̇n
e = [fn×]δψ + C n

b δf
b − (2ωn

ie + ωn
en)× δvn

e − (2δωn
ie + δωn

en)× vn
e − δgn

l (C.31)

If errors in Coriolis and gravity terms are ignored, then

δv̇n
e = [fn×]δψ + C n

b δf
b (C.32)
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C.1.3 The Local Gravity Component

Accelerometers provide measurements of the difference between the acceleration with

respect to the inertial frame and the gravitational acceleration at the location of

the navigational system. For a precise removal of the gravitational component, it is

necessary to model accurately the local gravitational field. Since navigation frame

mechanization is considered in this thesis, derivations will be relative to the naviga-

tion frame. However, if other frames mechanizations are considered, then the same

procedure should be applied.

Given vehicle position in spherical coordinates; i.e. geodetic latitude (ϕ for simplic-

ity), longitude (λ) and altitude (h), then the vehicle position in the ECEF is given

by

recef
veh =

(Rn + h) cosϕ cosλ

(Rn + h) cosϕ sinλ

(Rm + h) sinϕ

(C.33)

Then, the position of the vehicle in the navigation frame is expressed by

rned
veh = Cn

e r
ecef
veh

=


− sinϕ cosλ − sinϕ sinλ cosϕ

− sinλ cosλ 0

− cosϕ cosλ − cosϕ sinλ − sinϕ

 recef
veh

=


−(Rn + h) cosϕ sinϕ+ (Rm + h) cosϕ sinϕ

0

−(Rn + h) cos2 ϕ− (Rm + h) sin2 ϕ



=


r1

0

r3



(C.34)
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The centripetal acceleration in the navigation frame is calculated by

Ωn
ie ×

(
Ωn

ie × rned
veh

)
(C.35)

where

Ωn
ie = Cn

eΩ
e
ie =


− sinϕ cosλ − sinϕ sinλ cosϕ

− sinλ cosλ 0

− cosϕ cosλ − cosϕ sinλ − sinϕ




0

0

ΩEarth

 =


ΩEarth cosϕ

0

−ΩEarth sinϕ


(C.36)

Therefore;

Ωn
ie × rned

veh =


0

r1ΩEarth sinϕ+ r3ΩEarth cosϕ

0

 (C.37)

and the centripetal acceleration in the navigation frame becomes

Ωn
ie ×

(
Ωn

ie × rned
veh

)
=


−r1Ω2

Earth sin2 ϕ+ r3Ω
2
Earth sinϕ cosϕ

0

−r1Ω2
Earth sinϕ cosϕ− r3Ω

2
Earth cos2 ϕ



=
Ω2

Earth(Rn + h)

2


sin 2ϕ

0

1 + cos 2ϕ


(C.38)

The other component of the local gravity is the gravitational acceleration due

to the Earth’s gravity. The derivation of this component requires accurate modelling

of Earth’s gravity.

Given the geodetic latitude ϕ and altitude h, the local gravity component at the
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surface of the geoid can be written as

g(ϕ, h) =9.780327(1 + 5.324× 10−3 sin2 ϕ− 5.8× 10−6 sin2 2ϕ)

− (3.0877× 10−6 − 4.4× 10−9 sin2 ϕ)h+ 7.2× 10−14h2 m/s2
(C.39)

C.2 The Kalman Filter

If the system model is assumed time invariant, then the steady state Kalman filter

model is given by

x(k) = F(k)x(k − 1) + B(k)u(k) + G(k)w(k) (C.40)

z(k) = H(k)x(k) + v(k) (C.41)

(C.42)

In equation C.40 we assumed that no mismodeling exists between the Kalman filter

model and the true system model and so the Kalman filter model represented by

matrices F(k), B(k), G(k), and H(k) represents the true system model.

Kalman filter state estimate propagation equation based on the Kalman filter

model is

x̂(k|k − 1) = F(k)x̂(k − 1|k − 1) + B(k)u(k) (C.43)

ẑ(k) = H(k)x̂(k|k − 1) (C.44)

C.2.1 Propagation of Means

x̂k|k−1 = E
[
xk|Zk−1

]
= E

[
Fkxk−1 + Bkuk + Gkwk|Zk−1

]
= FkE

[
xk−1|Zk−1

]
+ Bkuk + GkE

[
wk|Zk−1

]
= Fkx̂k−1|k−1 + Bkuk

(C.45)

Finding the recursive linear estimator, we assume that the estimate x̂k|k is a linear



C.2 The Kalman Filter 177

sum of the prediction x̂k|k−1 and the observation zk. That is

x̂k|k = K
(1)
k x̂k|k−1 + K

(2)
k zk (C.46)

where K
(1)
k and K

(2)
k are both time varying gain matrices chosen to minimize the

conditional mean squared estimation error given by

Lk = E
[
δxT

k|kδxk|k|Zk
]

= trace
[
E

[
δxT

k|kδxk|k|Zk
]]

= trace[Pk|k]

(C.47)

where

δxk|k = x̂k|k − xk (C.48)

If the estimate x̂k|k is assumed unbiased, i.e. the conditional expected error is zeros,

then by equations C.46 and C.48

δxk|k = x̂k|k − xk

= K
(1)
k x̂k|k−1 + K

(2)
k zk − xk

= K
(1)
k x̂k|k−1 + K

(2)
k Hkxk + K

(2)
k vk − xk

= K
(1)
k [xk + δxk|k−1] + K

(2)
k Hkxk + K

(2)
k vk − xk

= [K
(1)
k + K

(2)
k Hk − 1]xk + K

(1)
k δxk|k−1 + K

(2)
k vk

(C.49)

Then

E
[
δxk|k−1|Zk

]
=

[
K

(1)
k + K

(2)
k Hk − 1

]
E

[
xk|Zk

]
= 0 (C.50)

so that

K
(1)
k = 1−K

(2)
k Hk (C.51)
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Let Wk = K
(2)
k , then by equation C.46

x̂k|k = [1−WkHk]x̂k|k−1 + Wkzk

= x̂k|k−1 + Wk[zk −Hkx̂k|k−1]
(C.52)

C.2.2 Propagation of Variances

Pk|k−1 = E
[
[xk − x̂k|k−1][xk − x̂k|k−1]

T |Zk−1
]

= E
[
[Fk(xk − x̂k−1|k−1) + Gkwk][Fk(xk − x̂k−1|k−1) + Gkwk]

T
]

=FkE[(xk − x̂k−1|k−1)(xk − x̂k−1|k−1)
T ]FT

k + GkE[wkw
T
k ]GT

k

+ FkE[(xk − x̂k−1|k−1)w
T
k ]GT

k + GkE[wk(xk − x̂k−1|k−1)
T ]FT

k

= FkE[(xk − x̂k−1|k−1)(xk − x̂k−1|k−1)
T ]FT

k + GkE[wkw
T
k ]GT

k

= FkPk−1|k−1F
T
k + GkQGT

k

(C.53)

Px,z = E
[
(xk − x̂k|k−1)(zk − ẑk)

T
]

= E
[
(xk − x̂k|k−1)

(
Hk(xk − x̂k|k−1) + vk

)T
]

= E
[
(xk − x̂k|k−1)

]
HT

k + E
[
(xk − x̂k|k−1)v

T
k

]
= Pk|k−1H

T
k

(C.54)

Sk = E
[
(zk − ẑk)(zk − ẑk)

T
]

= E
[
(Hk(xk − x̂k|k−1) + vk)(Hk(xk − x̂k|k−1) + vk)

T
]

=HkE
[
(xk − x̂k|k−1)(xk − x̂k|k−1)

T
]
HT

k + E[vkv
T
k ]

+ HkE
[
(xk − x̂k|k−1)v

T
k

]
+ HT

k

[
(xk − x̂k|k−1)

Tvk

]
= HkE

[
(xk − x̂k|k−1)(xk − x̂k|k−1)

T
]
HT

k + E[vkv
T
k ]

= HkPk|k−1H
T
k + Rk

(C.55)

The uncertainty in estimate x̂k|k is described by the covariance matrix Pk|k.
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This covariance is derived as follows

Pk|k = E
[
δxT

k|kδxk|k|Zk
]

(C.56)

where, from C.52

δxk|k = x̂k|k − xk

= (1−WkHk)x̂k|k−1 + Wkzk − xk

= (1−WkHk)x̂k|k−1 + Wk[Hkxk + vk]− xk

= (1−WkHk)x̂k|k−1 − (1−WkHk)xk + Wkvk

= (1−WkHk)δxk|k−1 + Wkvk

(C.57)

so that

Pk|k = E
[
δxk|kδx

T
k|k|Zk

]
=(1−WkHk)E

[
δxk|k−1δx

T
k|k−1|Zk

]
(1−WkHk)

T

+ WkE
[
vkv

T
k

]
WT

k

+ 2(1−WkHk)E
[
δxk|k−1v

T
k

]
WT

k

= (1−WkHk)Pk|k−1(1−WkHk)
T + WkRkW

T
k

(C.58)

C.2.3 The Kalman Gain

The gain matrix Wk is assumed to minimize the conditional mean squared estimation

error given by C.47, that is
∂Lk

Wk

= 0 (C.59)

from the fact that for any matrix A and a symmetric matrix B;

∂

∂A

(
trace(ABAT )

)
= 2AB (C.60)
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equation C.59 becomes

∂Lk

Wk

= −2(1−WkHk)Pk|k−1H
T
k + 2WkRk = 0 (C.61)

and then

Pk|k−1H
T
k + WkHkPk|k−1H

T
k + WkRk = 0 (C.62)

Rearranging provides

Wk =
Pk|k−1H

T
k

HkPk|k−1HT
k + Rk

(C.63)

or, in more detailed expression

Wk =
(FkPk−1|k−1F

T
k + GkQGT

k )HT
k

Hk(FkPk−1|k−1FT
k + GkQGT

k )HT
k + Rk

(C.64)



Appendix D

GPS Time and Reference Systems

For an accurate processing of GPS row measurements, the GPS satellite time at

the time of transmission must be accurately determined. This chapter discusses all

aspects related to satellite time determination. For more detailed analysis on satellite

time and reference systems refer to (Kaplan, E. D., & Hegarty,C. J., 2006), (Tsui, J.

B.Y., 2000), (Kelly, A, 1994).

D.1 Satellite Navigation Time Scales

Time is an issue that requires careful attention in the description of astronomical,

physical, and geodic phenomena. The Solar day is determined from subsequent merid-

ian transits of the Sun, which is measured in days of 86400 seconds duration. However,

due to orbital motion of the Earth around the Sun, the Sun’s right ascension changes

by approximately one degree per day which contributes into 4 minutes reduction in

day time from the Solar day resulting into what is referred to as the Siderial day

(approximately 23hr56min4sec.1). It is equal to the time between successive meridian

passage of the vernal equinox.

The GPS system time is referenced to the Universal Time Coordinate (UTC).

The UTC is a time scale that is composed of two time scales, namely, the International

Atomic Time (TAI) based on atomic second and the Universal Time 1 (UT1) based

on the Earth’s rotation with respect to the Sun. An epoch in GPS system time is

measured by the number of seconds elapsed since SaturdaySunday midnight and the

week number. The epoch time is transmitted in the ephemeris data. GPS weeks are

numbered sequentially from week 0, which began on 0 hours (midnight) January 6,
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1980. Both the week number, 10-bits, and the time of the week (TOW), 19-bits, form

the Z count (Tsui, J. B.Y., 2000).

D.2 The GPS System Time at the Time of Transmission

For accurate calculation of satellite position, the GPS transmission time is essential.

However, at start, the actual transmission time is unavailable due to system errors

and delays. These errors include satellite clock bias, atmospheric delays and the effect

of the Earth’s rotation, referred to as ’Sagnac’ effect. GPS system timing and delays

are represented in figure D.1. The sagnac effect is not represented in this figure, but

it will be introduced during the discussion.

where

Figure D.1: GPS system timing

Ts is the GPS system time at which signal left the satellite.

Tu is the GPS system time at which signal would have reached the user in the

absence of errors.

∆tD is the satellite link propagation error.

T́u is the GPS system time at which the signal reached the receiver with ∆tD

∆tsv is the satellite clock bias.

∆tu is the receiver clock bias.

ρ is the satellite’s measured pseudorange.

c is the speed of light.

r is the geometric range.
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Therefore, the geometric range and the measured pesudorange are related as follows

ρ

c
= (T́u + ∆tu)− (Ts + ∆tsv)

= (T́u − Ts) + ∆tu + ∆tD −∆tsv

=
r

c
+ ∆tu + ∆tD −∆tsv

(D.1)

then

r = ρ− c[∆tu + ∆tD −∆tsv] (D.2)

where

∆tD = (∆tIono + ∆tTropo) + ∆tMP + ∆tHW + ∆tNoise (D.3)

is the total satellite link propagation error and

∆tIono is the ionospherical delay component.

∆tTropo is the tropospherical delay component.

∆tMP is the delay component due to multipath.

∆tHW is the hardware delay component.

∆tNoise is the receiver noise component.

To calculate the positions of GPS satellites, the GPS time at the time of transmission

is required. However, this time is difficult to be calculated since the satellite clock bias

and the receiver clock bias are unknown. The satellite clock bias may be calculated

by

∆tSV = af0 + af1(t− toc) + af2(t− toc)
2 + ∆tr − tGD (D.4)

where

af0 is the satellite clock bias in seconds.

af1 is the clock drift in seconds per seconds.

af2 is frequency drift (aging) in seconds per seconds squared.

∆tr is the relativistic error correction term.

tGD is the group delay differential obtained from the ephemeris data.
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toc is the epoch time obtained from the ephemeris data.

and

∆tr = Fes

√
as sinE (D.5)

F =
−2
√
µ

c2
(D.6)

where

µ is the Earth’s universal gravitational parameter.

c is the speed of light.

es is the satellite orbit eccentricity.

as is the satellite orbit semimajor axis.

E is the eccentric anomaly obtained by solving Kepler’s equation.

On the other hand, to solve for E the GPS system time at the time of transmission

is also required. To solve this conflict, a course value of this time can be obtained as

the the course GPS system time at time of transmission corrected for transit time tc,

where

tc = tu −
ρi

c
(D.7)

This time still needs to be corrected for other factors, specified by figure D.1. There-

fore, once Kepler’s equation is solved for E and the satellite clock bias may be com-

puted and a better estimate of tc can be obtained by

tc = tu −
ρi

c
−∆tSV (D.8)

This time is still a course time, since E was computed using the previous course time.

This process is iterated, until no change (based on predetermined threshold value)

is detected on the value of the satellite clock bias or on tc, and a better estimate of

the GPS system time at the time of transmission is obtained. Unfortunately, this is

still a course time, since the receiver clock bias is unknown. The receiver clock bias

wont become available until least squares (or Kalman filter) is applied to solve for

position and receiver clock bias errors. Once the receiver clock bias is available the
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course GPS time at the time of transmission is updated as follows

tc = tu −
ρi

c
−∆tSV −∆tu (D.9)

This is also still a course time, since satellite positions were calculated based on the

previous course time. The updated course time is then used again to calculate the

satellites positions and the new satellites positions are used to get a better estimate

of the receiver clock bias. This process is also iterated until no change on the receiver

clock bias (based on predetermined threshold value) is detected.



Appendix E

Loosely and Tightly Coupled Configurations

In this chapter, loosely and tightly linear Kalman filter state space formulations are

represents. In short, table E.1 summarizes Kalman filter model matrices for both the

loosely coupled and tightly coupled linear systems.

where

δx(t) = F(t)δx(t− 1) + G(t)w(t) (E.1)

Fins =


0 I 0

0 −2ωe
ie× (Ce

bf
b)×

0 0 −ωe
ie×

 (E.2)

Fcoupled =


0 0

Ce
b 0

0 −Ce
b

 (E.3)

Fbiases =

 0 0

0 0

 (E.4)

Fclock =
(

0
)

(E.5)

w(t) =

 wgyro(t)

waccl(t)

 (E.6)
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Table E.1: Different Kalman filter implementations
Loosely-Coupled-Linear Tightly-Coupled-Linear

State Vector
(
δPe δVe δΨ δf b δωb

ib

)T (
δPe δVe δΨ δcb δf b δωb

ib

)T

δx̂ 15× 15 16× 16

Measurement
Vector

(
rm

gps − rm
ins

vm
gps − vm

ins

) (
ρecef

meas − ρecef
pred

)
δx̂ 6× 1 m ×1

State Transi-
tion

(
Fins Fcoupled

0 Fbiases

)  Fins 0 Fcoupled

0 Fclock 0
0 0 Fbiases


F 15× 15 16× 16

Observation
Transition

(
I6×6 0

)


∂r1

∂x
∂r1

∂y
∂r1

∂z
∂r1

∂Cb
∂ r2

∂x
∂r2

∂y
∂r2

∂z
∂r2

∂Cb
...

...
...

...
∂rn

∂x
∂rn

∂y
∂rn

∂z
∂rn

∂Cb


H 6× 15 m× 4

Initial State
Covariance


σ2

r 0 0 0 0
0 σ2

v 0 0 0
0 0 σ2

Ψ 0 0
0 0 0 σ2

∆fb 0
0 0 0 0 σ2

∆ωb




σ2

r 0 0 0 0 0
0 σ2

v 0 0 0 0
0 0 σ2

Ψ 0 0 0
0 0 0 σ2

Cb
0 0

0 0 0 0 σ2
∆fb 0

0 0 0 0 0 σ2
∆ωb


P0 15× 15 16× 16

Process Noise
Covariance


σ2

fb 0 0 0
0 σ2

ωb 0 0
0 0 σ2

∆fb 0
0 0 0 σ2

∆ωb




σ2
fb 0 0 0 0
0 σ2

ωb 0 0 0
0 0 σ2

Cb
0 0

0 0 0 σ2
∆fb 0

0 0 0 0 σ2
∆ωb


Q 15× 15 16× 16

Sensors Noise
Covariance

(
σ2

rgps
0

0 σ2
vgps

) 
σ2

ρ1
0 · · · 0

0 σ2
ρ1

· · · 0

0 0
. . .

...
0 0 · · · σ2

ρm


R 6× 6 m × m

Noise Transi-
tion

(
Gins 0
0 Gbiases

)  Gins 0 0
0 Gclock 0
0 0 Gbiases


G 15× 15 16× 16
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Gins =


0 0

Ce
b 0

0 −Ce
b

 (E.7)

Gbiases = I6×6 (E.8)

Gclock = I (E.9)

δz(t) = H(t)δx(t) + W(t)v(t) (E.10)

ρecef
i,pred =

√
(Xi −Xu)2 + (Yi − Yu)2 + (Zi − Zu)2 + Cb (E.11)

ρecef
i,meas = ρi,row − c∆tD + c∆tSV (E.12)

δzi = ρecef
i,meas − ρecef

i,pred (E.13)

i(k) = δz(k)−Hδx(k) (E.14)



Appendix F

Chi-square Distribution

DoF
F (z)

0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995

1 0.00 0.00 0.00 0.00 3.84 5.02 6.63 7.88

2 0.01 0.02 0.05 0.10 5.99 7.38 9.21 10.60

3 0.07 0.11 0.22 0.35 7.81 9.35 11.34 12.84

4 0.21 0.30 0.48 0.71 9.49 11.14 13.28 14.86

5 0.41 0.55 0.83 1.15 11.07 12.83 15.09 16.75

6 0.68 0.87 1.24 1.64 12.59 14.45 16.81 18.55

7 0.99 1.24 1.69 2.17 14.07 16.01 18.48 20.28

8 1.34 1.65 2.18 2.73 15.51 17.53 20.09 21.96

9 1.73 2.09 2.70 3.33 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 18.31 20.48 23.21 25.19

11 2.60 3.05 3.82 4.57 19.68 21.92 24.73 26.76

12 3.07 3.57 4.40 5.23 21.03 23.34 26.22 28.30

13 3.57 4.11 5.01 5.89 22.36 24.74 27.69 29.82

14 4.07 4.66 5.63 6.57 23.68 26.12 29.14 31.32

15 4.60 5.23 6.26 7.26 25.00 27.49 30.58 32.80

16 5.14 5.81 6.91 7.96 26.30 28.85 32.00 34.27

17 5.70 6.41 7.56 8.67 27.59 30.19 33.41 35.72

18 6.26 7.01 8.23 9.39 28.87 31.53 34.81 37.16

19 6.84 7.63 8.91 10.12 30.14 32.85 36.19 38.58

20 7.43 8.26 9.59 10.85 31.41 34.17 37.57 40.00
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DoF
F (z)

0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995

21 8.00 8.90 10.3 11.6 32.7 35.5 38.9 41.4

22 8.60 9.50 11.0 12.3 33.9 36.8 40.3 42.8

23 9.30 10.2 11.7 13.1 35.2 38.1 41.6 44.2

24 9.90 10.9 12.4 13.8 36.4 39.4 43.0 45.6

25 10.5 11.5 13.1 14.6 37.7 40.6 44.3 46.9

26 11.2 12.2 13.8 15.4 38.9 41.9 45.6 48.3

27 11.8 12.9 14.6 16.2 40.1 43.2 47.0 49.6

28 12.5 13.6 15.3 16.9 41.3 44.5 48.3 51.0

29 13.1 14.3 16.0 17.7 42.6 45.7 49.6 52.3

30 13.8 15.0 16.8 18.5 43.8 47.0 50.9 53.7

40 20.7 22.2 24.4 26.5 55.8 59.3 63.7 66.8

50 28.0 29.7 32.4 34.8 67.5 71.4 76.2 79.5

60 35.5 37.5 40.5 43.2 79.1 83.3 88.4 92.0

70 43.3 45.4 48.8 51.7 90.5 95.0 100.4 104.2

80 51.2 53.5 57.2 60.4 101.9 106.6 112.3 116.3

90 59.2 61.8 65.6 69.1 113.1 118.1 124.1 128.3

100 67.3 70.1 74.2 77.9 124.3 129.6 135.8 140.2

For DoF > 100

χ2(m, k) = 1
2
(
√

2m− 1 + k)2

where

γ 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995

k -2.58 -2.33 -1.96 -1.64 1.64 1.96 2.33 2.58
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