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� What are they?
A composite is a structural material that consists of two
or more constituents that are combined at a
macroscopic level.

Composed of:� Composed of:
- reinforcement (fibers, particles, flakes, and /or fillers) 
- matrix (polymers, metals, or ceramics) 

� Properties:
- Higher specific strength & stiffness
- Less weight
- Corrosion resistance



� Applied loads can be classified as:

o Static : do not vary with time

o Cyclic: vary with time (theoretically in a sinusoidal pattern) 
– Also called “Fatigue loading”

� Fatigue test can be classified as: (R= stress ratio)� Fatigue test can be classified as: (R= stress ratio)

Tension – Tension Tension – Compression Compression – Compression



� Predicting fatigue failure in composites has been based

on damage modeling or on some mathematical

relationship.

� Lately, Artificial Neural Networks (ANN) are one of the

artificial intelligence concepts successfully used in theartificial intelligence concepts successfully used in the

fatigue life prediction of a single composite.

� The use of ANN in predicting fatigue failure in

composites would be of greater value if one could predict

the failure of materials other than those used for training

the network. This would allow developers of new

materials to estimate in advance the fatigue properties of

their material.



Material: Unidirectional Glass/Epoxy

Input Parameters: a) Stress Ratio
b) Fiber orientation angle

Al-Assaf and El Kadi

Trained several neural networks to predict fatigue failure.

b) Fiber orientation angle
c) Maximum Stress

Output parameters: Number of cycles to failure

Structure: Different ANN architectures 

Conclusion:

a) Good results compared to experimental data, best results obtained with 

modular neural network(MNN)

b) Normalized mean-square-error was reduced from 14.27% in the case of
FNN to 5.7% for MNN.



In the current work, experimental fatigue data

for certain fiber-reinforced composite materials

will be used to train the artificial neuralwill be used to train the artificial neural

networks or polynomial classifiers to predict the

cyclic behavior of a composite made of a

different material (other than those used in the

training of the ANN).



Lee, Almond and Harris

• Trained an ANN on fatigue data from four different material

systems to predict the cyclic behavior of an additional

material not used in the training. The results obtained appear

unsatisfactory as the average root mean square error was of

the order 100% at its best.the order 100% at its best.

El Kadi and Al-Assaf
• Trained a Modular neural network to predict number of cycles

to failure(N) for different materials.
• The input parameters were comprised of monotonic and

cyclic properties (strength, modulus, fiber orientation, applied
stress). The output was the number of cycles to failure.

• The root mean square error (RMSE) was found to be 36.2%



Test Matrix

For Fatigue Predicting

Collect, Set en Arrange Training and Testing Data

Constant R-ratio=0.1 Varying R-ratio

Neural Networks (ANN)

Selecting the Best Training Function Selecting the Best Number 

of Hidden Neurons

Selecting the Best Network Architectures

of Hidden Neurons

RP GDA GDM GDX FFN LRNCFFN ELM6 TO 20

Best Output of (ANN )

LM BFG SCG CGB

CGF

CGP OSS



E-Glass/Epoxy

AS/3501-5A Graphite/Epoxy 

Scotchply 1003 Glass/Epoxy 

E-Glass/Polyester 

T800H/2500 Carbon/Epoxy 

Glass/Polyester 

XAS/914 Carbon/Epoxy 

KEVLAR/914 Kevlar/Epoxy 

E0 Modulus of elasticity 

CONSTANTCONSTANTCONSTANTCONSTANTSTRESSSTRESSSTRESSSTRESSRATIORATIORATIORATIO

E0 Modulus of elasticity 

E90 Modulus of elasticity 

S0T Tensile strength of the

laminate 

S90T Tensile strength of the

laminate 

θ Fiber orientation angle. 

σmax   Maximum applied stress 

Nf The number of cycles to
failure 



Training Function

Neural Network Architecture

FFN CFFN ELM

16 neurons 20 neurons 16 neurons 20 neurons 16 neurons 20 neurons

Resilient Backpropagation (RP)
15.60% 9.70% 16.80% 21.10% 13.60% 15.60%

Gauss Data Archives (GDA)

33.10% 19.10% 22.20% 23.10% 34.60% 17.02%

Variable Learning Rate Backpropagation (GDX)

17.60% 24.30% 23.90% 30.60% 30.40% 18.70%

Gradient descent with Momentum (GDM)

15.70% 17.80% 35.40% 26.80% 19.50% 25.20%

Gradient Descent (GD)
53.50% 23.10% 34.50% 40% 17.62% 35.10%
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A comparison between the
predictions obtained using the
different ANN architecture was
conducted. The fatigue life prediction
of AS/3501-5A Graphite/Epoxy using
20 neurons with different ANN
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20 neurons with different ANN
architectures shows:

1- Feed forward (12.3%)

2- Cascade forward (8.8%)

3- Elman neural networks (9.2%)



E-Glass/Epoxy

AS/3501-5A Graphite/Epoxy 

Scotchply 1003 Glass/Epoxy 

E-Glass/Polyester 

T800H/2500 Carbon/Epoxy 

Glass/Polyester 

XAS/914 Carbon/Epoxy 

KEVLAR/914 Kevlar/Epoxy 

E0 Modulus of elasticity APC-2  AS4 CARBON/PEEK

VARYINGVARYINGVARYINGVARYINGSTRESSSTRESSSTRESSSTRESSRATIORATIORATIORATIO

E90 Modulus of elasticity 

S0T Tensile strength of the

laminate 

S90T Tensile strength of the

laminate 

θ Fiber orientation angle. 

σmax   Maximum applied stress 

Nf The number of cycles to
failure 

S0C Compressive strength of the

laminate 

S90C Compressive strength of 

the laminate 

σmin   Minimum applied stress 
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� The polynomial classifiers are learning algorithms
proposed and adopted in recent years for
classification, regression, and recognition with
remarkable properties and generalization ability. Due to
their need for less training examples and far lesstheir need for less training examples and far less
computational requirements, PC are used in this work
for composite life predictions.



Test Matrix

For Fatigue Predicting

Collect, Set en Arrange Training and Testing Data

Constant R-ratio=0.1 Varying R-ratio

Using First Order PC Using Second Order PC Using Mixed Order PC

Polynomial classifiers

Best Output of (PC)

Selecting Different 

Higher order Terms

Selecting Different 

order for the Terms



� For a first order PC, the input parameters to the 
classifier are:
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� Since the first order PC gave unacceptable
predictions, a second order PC was attempted.
In this case, the input parameters include the
first order terms shown in addition to the squarefirst order terms shown in addition to the square
of each of these terms and the cross
multiplication of each two of these terms as
shown below:



0.7

0.8

0.9

T800H/2500 Carbon/Epoxy

(Second Order PC)(RMSE=16%) 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

L
o

g
 N

f

Experimental

PC



� The equation below shows the added higher
order terms. The terms are found from trying
some combinations:
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� The addition of several higher order terms to the first
order polynomial classifier was attempted. The equation
below shows the added higher order terms.
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� ANN can be used to predict the fatigue behavior for a material
not used in the training of the ANN.

� Resilient Back propagation was found to be the best training
function to be used to predict fatigue failure of unidirectional
composite materials.composite materials.

� The best fatigue life predictions were obtained by using a
number of hidden neurons between 16 and 20 for constant R-
ratio and 6 to 12 for varying R-ratio irrespective of the network
architecture.

� FFN and CFFN architectures resulted in the most accurate
fatigue life predictions. The other networks might give
comparable results but would need significantly higher training
time.



� The first and second order PCs were not accurate in predicting the
fatigue life of composites.

� The mixed order PC gave good results and is the best one to be
used. But better methods should be used to determine which
higher order terms have the most beneficial effect when added tohigher order terms have the most beneficial effect when added to
the first order classifier.

� A comparison of the predictions obtained using both methods
shows that ANN is more accurate in predicting the fatigue failure
of a composite material not used in the training of the network.

� Even with the many advantages of neural networks and their
ability to obtain better results compared to PC, , the repeatability
of their predictions is always a concern for both designers and
users.



1- ANN can be used to predict the fatigue failure of 
multidirectional laminate after training with 
unidirectional laminate.

2- Different higher order combinations can be used 2- Different higher order combinations can be used 
for PC that gives better results. 


