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ABSTRACT 

 
Artificial Neural Networks (ANN) have recently been used in modeling the mechanical behavior of fiber-

reinforced composite materials. ANN have also been successfully used in predicting the fatigue behavior 

of a certain material under loading conditions other than those used for training. The use of ANN in 

predicting fatigue failure in composites would be of great value if one could predict the failure of 

materials other than those used for training the network. This would allow developers of new materials to 

estimate in advance the fatigue properties of their material. In this work, experimental fatigue data 

obtained for certain fiber-reinforced composite materials is used to predict the cyclic behavior of a 

composite made of another material. The effect of the various mechanical properties on the training of the 

network is evaluated to obtain the most suitable combination of properties resulting in the best fatigue life 

prediction. The resilient back-propagation with 10 to 20 neurons depending on the input parameters 

resulted in accurate prediction when compared to experimental ones. An introduction to the use of 

Polynomial classifiers (PC) to predict the fatigue behavior is also presented. Using a first order PC with 

additional higher order terms gave good results when compared to experimental ones.  
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NOMENCLATURE 

E0 Modulus of elasticity of the lamina in the fibers direction 

E90 Modulus of elasticity of the lamina in the direction perpendicular to the fibers 

S0
T
 Tensile strength of the lamina in the fibers direction 

S90
T
 Tensile strength of the lamina in the direction perpendicular to the fibers 

S0
C
 Compressive strength of the lamina in the fibers direction 

S90
C
 Compressive strength of the lamina in the direction perpendicular to the fibers 

Vf Fiber volume fraction 

θ Fiber orientation angle 

σmax Maximum applied stress 

σmin Minimum applied stress 

Nf Number of cycles to failure 

 

 

 

 



x 

 

ACKNOWLEDGEMENTS 

 

This work would not be possible without the genuine input of many individuals. I would like to thank: 

- Dr. Hany El Kadi and Dr.Ibrahim Deiab for their patience and guidance and for giving me the 

opportunity to work with them to complete this work. 

- My loving wife Amal for assisting in editing, entering and verification of the tests and her 

understanding and support throughout this project. 

- My family, for being supportive all the way through. 

I would like to acknowledge Al Habtoor Engineering Enterprises (HEE) for their support 

throughout my master degree. I would like to especially thank my managers Mr. Ra’ed Hammad (Project 

Director) and Mr. Hassan Bazzi (HR & Administration Director) for their support, understanding and 

cooperation in every possible way to help me receive my master degree.   

 



 

CHAPTER 1 INTRODUCTION

1.1 FATIGUE OF COMPOSITE M

One of the main concerns of industry is to find out new and better materials that are easier to 

manufacture and to enhance product quality and life cycle. One of the areas 

investigating is composite materials. 

automotive, marine and civil infrastructure applications. In many of these applications, the material is 

subjected to cyclic loading triggering questions about the fatigue behavior of these materials. Since most 

of these composites are made from laminates consisting of

predicting the fatigue behavior of these laminae could be the initial st

of the laminate under cyclic loading.

 A fundamental problem in 

given load conditions. But in the absence of a well

predict fatigue failure, extensive tests must be carried out for different fiber orientation angles and stress 

ratios where the stress ratio is the algebraic ratio of the minimum stress to the maximum stress

max). As shown in figure 1, fatigue test can be classified as
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Proposed methodologies have either been based of damage modeling or based on some kind of 

mathematical relationship. One of the first fatigue failure criteria for unidirectional laminates developed 

was that by Hashin and Rotem [1]. Their criterion was expressed in terms of three S-N curves obtained 

from fatigue testing of off-axis unidirectional glass/epoxy specimens under uniaxial loading. Their tests 

were conducted at a stress ratio R=���� ����⁄ = 0.1 and different orientation angles (0, 5, 15, 20, 30 and 

60). They concluded that the fatigue failure of laminae can accurately be predicted by their fatigue 

criterion. Toth [2] studied the fatigue behavior of unidirectional (off-axis) composites using a stress ratio 

of 0.1. He discussed the fatigue mechanism in terms of buildups of stress concentration in the matrix to 

stress levels capable of fracturing proximate filaments. 

Awerbuch and Hahn [3] also preformed some off-axis fatigue tests on AS/35001-5A 

graphite/epoxy composite laminate in an effort to characterize the matrix/interface-controlled fatigue. 

They used a homologous stress ratio of 0.1 and different fiber orientation angles (10, 20, 30, 45, 60 and 

90). They attempted to fit their data using a power law equation. They concluded that the relationship 

between the normalized fatigue strength and life is only weakly dependent in the off-axis angle and that 

failure of unidirectional composites is like sudden death – it occurs without early warning or prior visible 

damage.  

Ellyin and El Kadi [4] used the data obtained from the previously mentioned references [1-3] and 

showed that the strain energy can be used as a fatigue failure criterion for fibre-reinforced laminae. A 

fatigue failure criterion was proposed based on the input strain energy. They later [5] extended their 

criterion to take into account both the fibre orientation angle and the value of the stress ratio. Fatigue 

behavior of unidirectional glass fibre/epoxy composite laminae under tension-tension and tension-

compression loading was investigated. A non-dimensional form of this criterion collapsed all data points, 

obtained from different combinations of fibre orientation angles and stress ratios, onto a single curve. 
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Philippidis and Vassilopoulos [6] studied the effect of off-axis loading on the static and fatigue 

behavior of unidirectional and multidirectional laminates. Cyclic tests were carried out and 17 S-N curves 

were developed experimentally at various off-axis loading directions under four different stress ratios. 

The statistical analysis used for the evaluation of fatigue data provided results closely validated by the 

experimental data. From the constant life diagrams developed, they concluded that the use of Goodman 

straight line is not a good choice as it may lead, depending on the stress ratio, to either conservative or 

optimistic results.  

Kawai [7] and Kawai and Suda [8] studied the influence of non - negative mean stress on the off-

axis fatigue behavior of unidirectional carbon/epoxy. Constant amplitude fatigue tests under different 

stress ratios (R=-1.0, 0.1 and 0.5) were performed on plain coupon specimens with various fiber 

orientations (θ = 0, 10, 15, 30, 45 and 90). Their results showed that, for all fiber orientations, the relative 

fatigue strength becomes lower with decreasing stress ratio. They also indicated that off-axis fatigue data 

normalized with respect to the static tensile strength substantially fell on a single S–N relationship for 

each stress ratio. They also confirmed that the S–N relationships on logarithmic scales are almost linear 

over the range of fatigue life up to 10
6
 cycles, regardless of the fiber orientations and stress ratios. A 

phenomenological fatigue damage mechanics model previously proposed by the authors [8] was further 

developed to consider the effect of mean stress on the off-axis fatigue behavior. It was demonstrated that 

the modified fatigue model can adequately describe the stress ratio dependence as well as the fiber 

orientation dependence of the off-axis fatigue behavior under non-negative mean stresses.  

Epaarachchi and Clausen [9] developed an empirical fatigue model that includes the non-linear 

effect of the stress ratio and the load frequency on the fatigue life. Fatigue data from the literature were 

used to test the model. Predictions were found to be in good agreement with the experimental data.  

Jayantha and Philip [10] proposed a fatigue model that needs less experimental data to predict the 

whole fatigue life (S-N) curves for glass fibre-reinforced plastic composite materials. They accurately 
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considered the effects of non-linear stress ratio (R) and loading frequency (f) and took them as 

independent variables. The model gave excellent agreement between predicted and experimental data 

accounting for the influence of (f) and (R) on the fatigue life of GFRP. 

Plumtree and Cheng [11] proposed a fatigue damage parameter to predict fatigue life of off-axis 

unidirectional fiber reinforced glass/epoxy. This parameter, based on the Smith-Watson-Topper parameter 

used in metal fatigue, takes into account the effect of fiber orientation and mean stress. Applying this 

parameter to off-axis unidirectional composite fatigue data, the predicted results were found to be in good 

agreement with experiments for different fiber/load angles (θ = 5, 10, 15, 20, 30 and 60) and stress ratios 

(R=-1.0, 0 and 0.5). Petermann and Plumtree [12] later proposed a micromechanics-based failure criterion 

to predict fatigue lives of unidirectional fiber reinforced polymer composites subjected to cyclic off-axis 

tension–tension loading. The criteria accounts for the fiber orientation angle as well as the stress ratio. 

The fatigue failure criterion was verified by applying it to different sets of experimental data. The 

predicted fatigue lives were found to be in good agreement with the experimental results for different 

angles and stress ratios.  

Varvani-Farahani et al. [13] developed an energy-based fatigue damage parameter to assess the 

fatigue damage of unidirectional fiber reinforced composites. The proposed parameter is based on the 

mechanism of fatigue cracking within the three damage regions of matrix (I), fiber–matrix interface (II), 

and fiber (III) in these materials as the number of cycles progresses. The parameter involved the shear and 

normal energies calculated from stress and strain components acting on these regions. The proposed 

fatigue damage model successfully correlated fatigue lives of unidirectional composites at various off-

axis angles and stress ratios. 
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1.2 USE OF ARTIFICIAL NEURAL NETWORKS IN PREDICTING FATIGUE LIFE OF 

COMPOSITES  

Artificial Neural Networks (ANN) is one of the artificial intelligence concepts that have proved to 

be useful for various engineering applications. Due to their massively parallel structure, ANN can deal 

with many multivariable non-linear modeling for which an accurate analytical solution is very difficult to 

obtain. ANN has already been used in medical applications, image and speech recognition, classification 

and control of dynamic systems, among others; but only recently have they been used in modeling the 

mechanical behavior of fiber-reinforced composite materials [14, 15]. The ability to learn by example is 

one of the key aspects of ANN. The system can be considered as a black box where the user does not 

need to know the details of the internal behavior. These networks may therefore offer an accurate and cost 

effective approach for modeling fatigue life. If trained adequately, the ANN can simply be used to obtain 

the life prediction of a given set of fiber orientation / loading condition which is usually sought by 

designers. El Kadi [14], in a recent review, showed that ANN can give accurate prediction if not better 

than those obtained by conventional methods. He also showed that, the accuracy of the network depends 

on the appropriate ANN architecture, the number of hidden layers and the number of neurons in each 

hidden layer. 

The use of ANN to predict fatigue strength of APC-2 graphite-PEEK composites for 0.1 stress 

ratio was addressed in the work by Aymerich and Serra [16]. The input parameters to the ANN were the 

number of cycles to failure and the stacking sequence of the laminate while obtaining the fatigue strength 

as an output. The number of neurons used in the hidden layer varied from 4 to 12 which assured a good 

compromise between speed and precision. They concluded that ANN potentially show that they are able 

to predict fatigue life of fiber reinforced laminates provided that a sufficiently large set of experimental 

data, representative of the characteristic damage models of the category of examined sequence, is 

available. They also concluded that increasing the number of laminate parameters without a significant 

increase in the number of learning data points leads to poor predictions. 
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Lee et al [17] evaluated the performance of ANN in predicting fatigue failure of carbon fiber and glass 

fiber-reinforced laminates under various stress ratios (0.1 to 10). They investigated the various input 

parameters to find the combination resulting in the optimum fatigue life prediction. They chose to use the 

maximum and minimum values of the stress as well as the failure probability level as input parameters to 

the ANN while obtaining the number of cycles to failure as an output. The authors also investigated the 

effect of the number of hidden layers and the number of stress ratios used in training on the fatigue life 

prediction accuracy. The results showed that ANN can be trained to model constant-stress fatigue 

behavior at least as well as other current life-prediction methods. It can provide accurate representations 

of the stress ratio/median-life surfaces for carbon-fibre composites from a relatively small set of 

experimental data. 

  The use of ANN to predict the fatigue failure of unidirectional glass/epoxy composite for a range 

of fiber orientation angles (θ = 0, 19, 45, 71 and 90) under various loading conditions (R = 0.5, 0 and -1) 

was also considered by Al-Assaf and El Kadi [18]. Feedforward neural networks provided accurate 

relationship between the input parameters (maximum stress, stress ratio, fiber orientation angle) and the 

number of cycles to failure. The results obtained were found to be comparable to other current fatigue 

life-prediction methods. To improve the fatigue-life prediction accuracy, other types of ANN structures 

were used [19]. Radial Basis Function (RBF), Modular (MNN), Self-Organizing (SOFM) and Principal 

Component Analysis (PCA) neural networks were considered and compared to achieve the above-

mentioned objective. The modular networks resulted in the most accurate prediction of the fatigue life of 

the material under consideration.  

Zhang and Friedrich [20] studied the various applications of ANN in predicting the mechanical 

behavior of polymeric composites and other materials. When it came to fatigue prediction, they suggested 

using a network that is large enough to provide an adequate fit. Also, they suggested using a validation set 

of data beside the training and testing ones. If the validation error increases for a specific number of 

interactions due to over-fitting, the training would be stopped early and the weights biases are returned to 

the minimum of the validation error.  
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Junhui and Julio [21] developed an artificial neural network method for the analysis of load ratio 

effects on fatigue of interfaces for phenolic fiber reinforced polymer bonded to red maple wood. They 

used maximum load, minimum load, maximum strain energy release rate, minimum strain energy release 

rate and range of strain energy release rate as input and the crack-front propagation rate as output. They 

used one hidden layer Multilayer perceptron (MLPs) with 25 neurons. The proposed network results were 

compared with results obtained using theoretical prediction from a modified Paris Law equation and gave 

good agreement. 

Anastasios et al [22] demonstrated that ANN is good tool for modeling the fatigue life of 

multidirectional GFRP composite laminates. Tension-tension, compression-compression and tension-

compression loading patterns were investigated and modeling accuracy of the proposed ANN model was 

validated.  The fiber orientation, the stress ratio, maximum stress applied and the amplitude of stress are 

the input parameter and the number of cycles to fatigue is the output of the neural network. Eight hidden 

neurons were used in the network. Comparing the results with experimental ones gave good agreement 

between them.  

Raimundo et al [23] used modular network instead of feedforward neural networks to predict 

fatigue of fiberglass composite. Two architectural models of MNN were used. One with gating network 

and the other one with a gating network that takes into account the type of load applied to the material. In 

both types of architectures, multilayered perceptrons with one hidden layer were used. The number of 

neurons in the hidden layer varied from 4 to 30. The input parameters to the network were the alternating 

stress and the number of cycles to fatigue and the output is the mean stress. Both modular networks gave 

better results than the obtained using feedforeward neural networks especially the modular network that 

takes into account the load applied on the material. 

Bezazi et al [24] implemented both maximum likelihood and Bayesian training methods to 

construct a series of ANN structures to model fatigue data for GFRP laminated PVC foam core sandwich 
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samples. The chosen network structure for the regression modeling was a multi-layer perceptron (MLP). 

The number of cycles to failure and the loading value were the input to the network and the reduced force 

was the output. When plotting the S-N lifetime curves, the Bayesian training method produced excellent 

agreement with the experimental data. 

Freire at el [25], assessed the applicability of two ANN architectures (multi-layer feed-forward 

and modular) in the predictions of fatigue life in composites compared to the equation developed by 

Adam for modeling the constant-life diagram. Glass fiber reinforced plastics (GFRP) in the form of 

laminar structures with distinct stacking sequences were used in the study. These materials were tested for 

six different stress ratios: R = 1.43, 10, −1.57, −1, 0.1, and 0.7. Two training sets were used in training 

both ANN structures considered; one with three values of the stress ratio and the other with four values of 

the stress ratio. The results showed that modeling of constant-life diagram can be done using Adam’s 

equation, but a large number of tests of S–N curves are required to ensure good representation of fatigue 

failure. This does not occur for the neural network modeling of constant-life diagram when excellent 

results were obtained for a much smaller set of experimental data. Analysis of the model created with a 

modular network architecture showed that this network produced much better results than those obtained 

by both the feed-forward network and by Adam’s equation for all the laminates analyzed, including a 

laminate obtained from the literature, in which greater generalization capacity and robustness was 

achieved. 

In all the previously-mentioned studies using ANN to predict the fatigue life of fiber reinforced 

composites, the authors only used one specific material in their study. It should be mentioned however, 

that one of the anticipated benefits of the successful application of ANNs, would be that it could be 

possible to predict the lives of materials for which no fatigue data were available by using known 

characteristics of other laminates. Lee et al. [17] trained an ANN on data from four different material 

systems to predict the fatigue properties of a fifth material. Monotonic mechanical property data of this 

additional material were also used in training. The results obtained appear unsatisfactory as the average 
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root mean square error (RMSE) was of the order of 100% at its best. They concluded that, although this 

level of error is considered high and may be unacceptable for design purposes, it represents a spread on 

the normal log–life plot of a fraction of a decade, well within the normal experimental spread of data for 

composite materials. This inaccuracy in the prediction increased to a RMSE of 170% if the fiber used in 

the trained system is not of the same type used for the tested case (carbon fiber systems in training vs. 

glass fiber system in testing). They consequently concluded that there seems little prospect of transferring 

the predictive capability of a network with any acceptable degree of accuracy from one family of 

composites to another. El Kadi [14] has however suggested that better predictions might be achieved if a 

larger number of representative materials was used in the testing and appropriate material properties were 

used in the both the training and the testing stage.  

El Kadi and Al-Assaf [26], in a preliminary study, started training a modular neural network and 

polynomial classifier to predict the number of cycles to failure for different composite materials. They 

used four materials to train the ANN and one material for testing. The input parameters were comprised 

of monotonic and cyclic properties (strength, modulus, fiber orientation, applied stress). The root mean 

square error (RMSE) was found to be 36.2% and the mean absolute error (MAE) obtained for Log(Nf) 

was calculated to be 0.904.  

In the current work, ANN is used to predict the fatigue life of unidirectional laminates based on the 

existing fatigue properties of laminates made from different materials. 

 

1.3 USE OF POLYNOMIAL CLASSIFIER IN PREDICTING FATIGUE LIFE OF COMPOSITES  

The appropriate ANN architecture to use in a certain application, the number of hidden layers and 

the number of neurons in each hidden layer are issues that can greatly affect the accuracy of the 

prediction. Unfortunately, there is no direct method to specify these factors as they need to be determined 

on experimental and trial basis. To address the above-mentioned reasons, ANN, need to be tuned 
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appropriately to give accurate predictions. Al-Assaf and El Kadi [27] have therefore introduced an 

alternate fatigue life prediction method based on the polynomial classifiers (PC). This method allows for a 

satisfactory prediction of the composites behavior without the a priori need to determine several 

parameters or the possibility of obtaining various solutions should the process be run several times. They 

determined that the predictions obtained using the PC were comparable to those obtained using the 

commonly used feedforward and recurrent neural networks. The advantage, of course, was the 

repeatability of the results and the lack of any a priori decision needed about the type of network better 

suited for a particular application, the type of algorithm used in training, the number of hidden layers used 

or the number of neurons necessary in each of the layers. 

  



 

CHAPTER 

2.1 ARTIFICIAL NEURAL NETWORKS

The theory of artificial neural networks was first proposed in 1940’s to simulat

human brain [28].  ANN can generally be defined as a structure composed of a number of interconnected 

units [29]. Each unit has an input/output (I/O) characterist

function. The output of each unit is determined by its I/O characteristic, its interconnection to other units 

and (possibly) external inputs, and its internal function. The network usually develops an overall 

functionality through one or more forms of training. The fundamental unit or building block of the ANN 

is called artificial neuron (called neuron from here on) 

before reaching the main body of the processing 

that has to be reached or exceeded for the neuron to produce a signal, a non

on the produced signal (Ri), and an output (

are illustrated in Figure 2.1 and 2.2. 

                       

                                   Figure 2.1: Basic model of artificial neuron

 Artificial neural networks consist of 

shown in the Figure 2.3.  
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Figure 2.3:  ANN Configuration 

 

The greatest advantage of artificial neural networks is their ability to model complex non-linear, multi-

dimensional functional relationships without any prior assumptions about the nature of the relationships 

and the network is built directly from experimental data by its self-organizing capabilities [31].  

Several neural network architectures can be used to address the problem at hand. In this work we will be 

using the following ANN structures: 

1- Feedforward Neural Networks (FNN) 

2- Cascade Feedforward Neural Networks (CFFN) 

3- Elman Networks (ELM) 

4- Layer Recurrent Network (LRN) 

 

2.1.1 FEED FORWARD BACK PROPAGATION NEURAL NETWORK 

Feedforward ANN in general consist of a layer of input neurons, a layer of output neurons and one or 

more layers of hidden neurons [32]. Neurons in each layer are interconnected fully to previous and next 

layer neurons with each interconnection have an associated connection strength or weight. The activation 

function used in the hidden and output layers’ neurons is non-linear, where as for the input layer no 
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activation function is used since no computation is involved in that layer. Information flows from one 

layer to the other layer in a feedforward manner. Various functions are used to model the neuron activity 

such as sigmoid, tanh or radial (Gaussian) functions. Figure 2.4 illustrates a feed forward neural network. 

 

 

Figure 2.4: Proposed ANN Structure 

 

The input to a node i in the k
th
 layer is given by [26]: 

ki

j

kjkjiki outwnet ,1,,,, θ+







= ∑ −        (1) 

where, 

kjiw ,, represents the weight connection strengths for node j in the (k-1)
th

 layer to node i in the k
th

 layer, 

out i,k  is the output of node i in the k
th

 layer and ki,θ  is the threshold associated with node i in the 

k
th

 layer. 
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Collectively the hidden layers perform the application desired objective whether it is classification, 

modeling, pattern recognition …etc.  

 

2.1.2: CASCADE FORWARD BACK PROPAGATION NEURAL NETWORK 

In Matlab, the function newcf creates cascade-forward networks (CFFN). These are similar to feed-

forward networks, but include a weight connection from the input to each layer, and from each layer to 

the successive layers. For example, a three-layer network has connections from layer 1 to layers 2, layer 2 

to layer 3, and layer 1 to layer 3. The three-layer network also has connections from the input to all three 

layers. The additional connections might improve the speed at which the network learns the desired 

relationship. 

 

2.1.3: ELMAN RECURRENT NEURAL NETWORK 

The Elman network (ELM) is commonly a two-layer network with feedback from the first-layer output to 

the first-layer input. This recurrent connection allows the Elman network to both detect and generate 

time-varying patterns. A two-layer Elman network is shown in Figure 2.5. 

 

Figure 2.5: Elman Recurrent Network [36] 

The Elman network has tansig neurons in its hidden (recurrent) layer, and purelin neurons in its output 

layer. This combination is special in that two-layer networks with these transfer functions can 

approximate any function (with a finite number of discontinuities) with arbitrary accuracy. The only 

requirement is that the hidden layer must have enough neurons. More hidden neurons are needed as the 
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function being fitted increases in complexity. Note that the Elman network differs from conventional two-

layer networks in that the first layer has a recurrent connection. The delay in this connection stores values 

from the previous time step, which can be used in the current time step. Thus, even if two Elman 

networks, with the same weights and biases, are given identical inputs at a given time step, their outputs 

can be different because of different feedback states. Because the network can store information for future 

reference, it is able to learn temporal patterns as well as spatial patterns. The Elman network can be 

trained to respond to, and to generate, both kinds of patterns [36]. 

 

2.1.4: LAYER RECURRENT NEURAL NETWORK 

The next dynamic network to be introduced is the Layer-Recurrent Network (LRN). An earlier simplified 

version of this network was introduced by Elman. In the LRN, there is a feedback loop, with a single 

delay, around each layer of the network except for the last layer. The original Elman network had only 

two layers, and used a tansig transfer function for the hidden layer and a purelin transfer function for the 

output layer. The original Elman network was trained using an approximation to the backpropagation 

algorithm. The newlrn command generalizes the Elman network to have an arbitrary number of layers and 

to have arbitrary transfer functions in each layer. The toolbox trains the LRN using exact versions of the 

gradient-based algorithms discussed in Backpropagation. Figure 2.6 illustrates a two-layer LRN [36]. 

 

Figure 2.6: Layer Recurrent Neural Network [36] 
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2.2 ANN TRAINING ALGORITHMS 

The back-propagation training algorithm is commonly used to iteratively minimize the following cost 

function with respect to the interconnection weights and neurons thresholds:  

∑∑
=

−=
P N

i

ii OdE
1 1

2)(
2

1
  (2) 

where P is the number of experimental data pairs used in training the network and N is the number of 

output parameters expected from the ANN. di and Oi could be the experimental number of cycles to 

failure and the current life prediction of the ANN for each loading condition i respectively. Iteratively, the 

interconnection weights between the j
th
 node and the i

th
 node are updated as: 

( ) ( ) ( ) lj
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lll
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1
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where α is a momentum constant, η the learning rate, xi the input pattern at the iterative sample t, 
0

Nnet  

the input to node N at the output layer and 
k

jnet  is the input to a node j in the k
th
 layer and the function f’ 

is the derivative of the neuron activation function. The learning rate determines what amount of the 

calculated error sensitivity to weight change will be used for the weight correction. It affects the 

convergence speed and the stability of weights during learning. The “best” value of the learning rate 

 depends on the characteristics of the error surface. For rapidly changing surfaces, a smaller rate is 

desirable while for smooth surfaces, a larger value of the learning rate will speed up convergence. The 

momentum constant (usually between 0.1 and 1) smoothes weight updating and prevents oscillations in 

the system and helps the system escape local minima in the training process by making the system less 

sensitive to local changes. Much as the learning rate, the momentum constant “best” value is also peculiar 

to specific error surface contours. The training process is terminated either when the Mean-Square-Error 

(MSE), Root-Mean-Square-Error (RMSE), or Normalized-Mean-Square-Error (NMSE), between the 
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actual experimental results and the ANN predictions obtained for all elements in the training set has 

reached a pre-specified threshold or after the completion of a pre-specified number of learning epochs.  

In addition to the typical back-propagation algorithm, the following training functions are also 

considered in this study:  

2.2.1 Resilient Back-propagation (RP) - Multilayer networks typically use sigmoid transfer functions in 

the hidden layers. These functions are often called "squashing" functions, because they compress an 

infinite input range into a finite output range. Sigmoid functions are characterized by the fact that their 

slopes must approach zero as the input gets large. This causes a problem when steepest descent is used to 

train a multilayer network with sigmoid functions because the gradient can have a very small magnitude 

and, therefore, cause small changes in the weights and biases, even though the weights and biases are far 

from their optimal values. The purpose of the resilient back-propagation training algorithm is to eliminate 

these harmful effects of the magnitudes of the partial derivatives. 

2.2.2 Gradient Descent (GD) - In the steepest descent training function, the weights and biases are 

updated in the direction of the negative gradient of the performance function. The learning rate is 

multiplied by the negative of the gradient to determine the changes to the weights and biases. The larger 

the learning rate, the bigger the step. If the learning rate is made too large, the algorithm becomes 

unstable. If the learning rate is set too small, the algorithm takes a long time to converge. The training 

stops if the number of iterations exceeds the predetermined number of epochs, the performance function 

drops below a specific goal, the magnitude of the gradient is less than a stipulated value, or the training 

time surpasses a preset time. 

2.2.3 Gradient Descent with Momentum (GDM) - Gradient descent with momentum allows a network 

to respond not only to the local gradient, but also to recent trends in the error surface. Acting like a low 

pass filter, momentum allows the network to ignore small features in the error surface. Without 

momentum a network can get stuck in a shallow local minimum. With momentum a network can slide 

through such a minimum. 
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2.2.4 Variable Learning Rate (GDA) - With standard steepest descent, the learning rate is held constant 

throughout training. The performance of the algorithm is very sensitive to the proper setting of the 

learning rate. If the learning rate is set too high, the algorithm can oscillate and become unstable. If the 

learning rate is too small, the algorithm takes too long to converge. It is not practical to determine the 

optimal setting for the learning rate before training, and, in fact, the optimal learning rate changes during 

the training process, as the algorithm moves across the performance surface. The performance of the 

steepest descent algorithm can be improved by allowing the learning rate to change during the training 

process. An adaptive learning rate attempts to keep the learning step size as large as possible while 

keeping learning stable. The learning rate is made responsive to the complexity of the local error surface.  

2.2.5 Variable Learning Rate with Momentum (GDX) - This function combines adaptive learning rate 

with momentum training. It is invoked in the same way as GDA except that it has the momentum 

coefficient as an additional training parameter. 

 

2.3 POLYNOMIAL CLASSIFIERS 

The polynomial classifiers are learning algorithms proposed and adopted in recent years for classification, 

regression, and recognition with remarkable properties and generalization ability [33-35]. Due to their 

need for less training examples and far less computational requirements, PC are used in this work for 

composite life predictions. In the training phase, the elements of each training feature vector, x = [x1, x2 

..., xN], are combined with multipliers to form a set of basis functions, p(x). The elements of p(x) are the 

monomials of the form: 

jk
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 where kj is a positive integer and Kk

N

j
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0     (4) 

For example if the vector x consists of two coefficients, x=[x1 x2] and a second degree polynomial (i.e. 

K=2) is chosen, then: 
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Once the training feature vectors are expanded into their polynomial basis terms, the polynomial network 

is trained to approximate an ideal output using mean-squared error as the objective criterion. The 

polynomial expansion for all of the training set features vectors (L vectors) is defined as: 

T

Lx ])()()([ 21 xpxppM L=       (6) 

The training problem reduces to finding an optimum set of weights, w, that minimizes the distance 

between the ideal outputs and a linear combination of the polynomial expansion of the training data such 

that [33]: 

2
minarg Oopt −= Mww
w

        (7) 

Where O represents the ideal output comprised of the column vector whose entries are the number of 

cycles to failure of the composite material under consideration. The weights of the identification models, 

wopt , can be obtained explicitly by applying the normal equations method [33] such as 

Oopt +=Mw          (8) 

Where M+ is the Moore-Penrose pseudo-inverse of matrix M [33] 

In the prediction stage when an unknown feature vector, x, is presented to the network, the vector is 

expanded into its polynomial terms p(x) and its associated logarithmic number of cycles to failure 

prediction is determined such that 

)()log( xpw
opt

fN =          (9) 
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CHAPTER 3: FATIGUE LIFE PREDICTION OF COMPOSITE 

MATERIALS UNDER CONSTANT STRESS RATIO 

3.1. INTRODUCTION 

This chapter investigates the behavior of unidirectional fiber reinforced composites subjected to tension-

tension fatigue loads. Constant stress ratio fatigue data collected from a variety of published 

investigations [1,3,5,6,8,9] will be used to test the suitability of the artificial neural networks in predicting 

the fatigue behavior of composites not used in the training of the network. Once the procedure has been 

shown to generate acceptable predictions, the same method can be extended to predict the fatigue 

behavior under different values of the stress ratio. Figure 3.1 shows the general overview of the material 

covered in this chapter. The experimental data used here is obtained for a constant stress ratio, R = 0.1. 

Table 3.1 shows the materials, fiber orientation angles & stress ratio of the data used. 

 

TABLE 3.1: EXPERIMENTAL FATIGUE DATA USED IN THE CURRENT INVESTIGATION 

Material Fiber Orientation angles Stress Ratio Reference 

Gevetex/Bakelite  

E-Glass/Epoxy 
0, 5, 10, 15, 20, 30, 60 0.1 Hashin & Rotem [1] 

AS/3501-5A Graphite/Epoxy 0, 10, 20,30,45,60,90 0.1 Awerbuch Hahn [3] 

Scotchply 1003  Glass/Epoxy 0, 19, 45,71,90 0.1 El Kadi & Ellyin [5] 

E-Glass/Polyester 0, 15, 45,75,90 0.1 Philippidis & Vassilopous [6] 

T800H/2500 Carbon/Epoxy 0, 10, 15,30,45,90 0.1 Kawai & Suda [8] 

DOE-MSU Glass/Polyester 0, 90 0.1 Epaarachchi& Clausen [9] 

XAS/914 Carbon/Epoxy 0 0.1 
Fernando & Dickson & Adam & 

Reiter & Harris [37] 

Kevlar/Epoxy 914 0 0.1 
Fernando & Dickson & Adam & 

Reiter & Harris [37] 
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Figure 3.1: Test matrix of predicting fatigue failure of constant stress ratio (R=0.1) 

 

3.2. PREDICTING FATIGUE FAILURE USING NEURAL NETWORKS 

Static and fatigue data from seven out of the eight materials shown in Table 3.1 were used for training 

purposes and the fatigue behavior of the eighth material was attempted. In each case, the following 

parameters were initially used in training the ANN:  
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Since the stress ratio is constant for all experimental data, there was no need to include it in the 

formulation. The fiber volume fraction was later disregarded since its variation (for the considered 

materials) was minimal and its effect on the prediction was found to be negligible.  

 Since the range of number of cycles to failure varied between 10 and 8,000,000 cycles, training 

the networks to learn such a wide range will produce unacceptable and unbalanced modeling 

performance. This will occur since the ANN will strive to minimize the overall error for all input patterns. 

Hence, minimizing the difference between the network output and observed data for high values of stress 

cycles would lead to incorrect results for the patterns associated with lower values of number of cycles to 

failure. A more suitable method would be the normalization of the logarithmic values of the number of 

cycles to reach a range between 0 and 1. The maximum applied stress varied between 12 to 1900 MPa. 

These values were also normalized after taking the logarithmic values of the stress reducing the scale to 

values between 0 and 1. All other mechanical properties as well as fiber orientation angles were 

normalized linearly between 0 and 1 in the usual fashion. The Matlab Software [36] was used to 

construct, train and test the networks. To overcome the variation in the predictions obtained due to the 

iterative procedure of ANN & the initial guess used in each run, the results shown within this work are 

obtained from the average of four runs. Averaging a larger number of runs was shown to give similar 

results. 

3.2.1. EFFECT OF TRAINING FUNCTIONS 

To study the effect of the type of training function on the fatigue life capability of the ANN, different 

neural networks with one hidden layer were considered. Different training functions where used in 

predicting the fatigue life of composites as shown in Table 3.2.  
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TABLE 3.2: Training Functions Used in This Study 

Acronym Algorithm Function Name 

RP trainrp  Resilient Backpropagation 

GDA  traingda   Gauss Data Archives  

GDX traingdx  Variable Learning Rate Backpropagation 

GDM  traingdm   Gradient Descent with Momentum  

GD traingd  Gradient Descent 

 

Root mean square error (RMSE) obtained for the average of four runs as a function of the type of 

architecture used and the training function used for Scotchply 1003 Glass/Epoxy are shown in Table 3.3. 

TABLE 3.3: RMSE Obtained as a Function of the Type of Architecture Used and the Training Function 

Training Function 

Neural Network Architecture 

FFN CFFN ELM 

16 

neurons 

20 

neurons 

16 

neurons 

20 

neurons 

16 

neurons 

20 

neurons 
Resilient Backpropagation (RP) 15.60% 9.70% 16.80% 21.10% 13.60% 15.60% 

Gauss Data Archives (GDA) 33.10% 19.10% 22.20% 23.10% 34.60% 17.02% 

Variable Learning Rate 

Backpropagation (GDX) 
17.60% 24.30% 23.90% 30.60% 30.40% 18.70% 

Gradient descent with Momentum 

(GDM) 
15.70% 17.80% 35.40% 26.80% 19.50% 25.20% 

 Gradient Descent (GD) 53.50% 23.10% 34.50% 40% 17.62% 35.10% 

 

As shown in Table 3.3, resilient backpropagation (RP) resulted in the lowest RMSE in all cases 

considered. Therefore, throughout the rest of this section, only results obtained using this training 

function will be reported.  

3.2.2. Effect of Number of Hidden Neurons 

Using feedforward neural networks with resilient backpropagation training, the effect of varying the 

number of hidden neurons on the fatigue life prediction was investigated. The number of neurons in the 

hidden layer was varied between 10 and 20. Figure 3.2 and Figure 3.3 show the variation of RMSE with 

the number of hidden neurons obtained while predicting fatigue life of glass/epoxy and AS/3501-5A 

graphite/epoxy. 
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Figure 3.2: Variation of RMSE with Number of Hidden Neurons for Glass/Epoxy 

 

Figure 3.3: Variation of RMSE with Number of Hidden Neurons for AS/3501-5A Graphite/Epoxy 

From these figures, it can be concluded that the best results are obtained when the number of neurons 

varies between 16 and 20. 
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3.2.3. Effect of Network Architecture 

From the previous results, was shown that resilient backpropagation neural networks with 16 to 20 hidden 

neurons resulted in the best fatigue life prediction. The effect of using different network architectures is 

now considered: 

A comparison between the predictions obtained using the different ANN architecture was conducted. 

Figures 3.4, 3.5 and 3.6 show the fatigue life prediction of AS/3501-5A Graphite/Epoxy using 20 neurons 

with different ANN architectures: Feed forward (FFNN), Cascade forward (CFNN) and Elman (ENN) 

neural networks. The RMSE for the different architectures were found to be 12.3%, 8.8% and 9.2% 

respectively. 
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Figure 3.4: Fatigue Life Prediction of AS/3501-5A Graphite/Epoxy Using FFN with 20 Neurons 
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Figure 3.5: Fatigue Life Prediction of AS/3501-5A Graphite/Epoxy Using CFFN with 20 neurons 
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Figure 3.6: Fatigue Life Prediction of AS/3501-5A Graphite/Epoxy Using ELN with 20 neurons 
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Figure 3.7: Fatigue Life Prediction of Scotchply 1003 Glass/Epoxy Using ELN with 17 neurons 
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Figure 3.8: Fatigue Life Prediction of Scotchply 1003 Glass /Epoxy Using ELN with 20 neurons 
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Figure 3.9: Fatigue Life Prediction of Scotchply 1003 Glass /Epoxy Using LRN with 16 neurons 
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Figure 3.10: Fatigue Life Prediction of AS/3501-5A Graphite/Epoxy Using LRN with 16 neurons 
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3.3. PREDICTING FATIGUE FAILURE USING POLYNOMIAL CLASSIFIERS 

Despite the many advantages of neural networks and their ability to obtain adequate results, the 

repeatability of their predictions is always a concern for both designers and users. Different fatigue life 

predictions can be obtained with neural networks depending on the type of network used and the number 

of hidden layers used. Furthermore, changing the training algorithm used also affects the results obtained. 

In addition, one should remember that the initial weights chosen by any neural network are random in 

nature and therefore one should expect slightly different predictions if the same neural network is applied 

numerous times ( although this can be remedied by taking the average results obtained from several runs). 

Finally it should be noted that the methods used by the neural networks are iterative ones rather that direct 

solutions. To address the above-mentioned shortcomings of neural networks, the polynomial classifiers 

(PC) method is considered next.  

The same static and fatigue parameters used with ANN will be used in the investigation involving 

polynomial classifiers. As before, data from seven out of the eight materials were used for training 

purposes and the fatigue behavior of the eighth material was predicted. The MATLAB Software [36] was 

once again used to construct, train and test the classifiers.  

To predict the fatigue life of composites, the use of first, second and higher order classifiers will be 

investigated. For each case, the predictions obtained will be compared to experimental data and the 

RMSE will be used to gauge the effectiveness of the polynomials used.  

3. 3.1. First Order PC 

For a first order PC, the input parameters to the classifier are: 
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 � �
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   �, ���

    �, �, �����  (3.1) 

Once again the output is the logarithm of the number of cycles to failure (log ��). The predictions 

obtained using the first order PC were compared to the experimental data and were found to be 

inaccurate. A RMSE of the order of 50% was obtained. For this case, the PC predicted a nearly constant 
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value for the fatigue life irrespective of the maximum applied stress and the fiber orientation angle. Figure 

3.11 show the output of the first order PC for predicting the fatigue life of Scotchply 1003 Glass/Epoxy.  

 

Figure 3.11: Experimental vs. Predicted for Scotchply 1003 Glass/Epoxy using first order PC 

 

3.3.2: SECOND ORDER PC: 

Since the first order PC gave unacceptable predictions, a second order PC was attempted. In this case, the 

input parameters include the first order terms shown in addition to the square of each of these terms and 

the cross multiplication of each two of these terms as shown below: 
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The performance of the network significantly varied with the type of material. A best RMSE of 15%was 

reached when predicting T800H/2500 Carbon/Epoxy as shown in figure 3.12 & 3.13. On the other hand, 

The RMSE obtained in this case reached a value of 87% when predicting E-Glass/Polyester. This higher 

error can be attributed to the fact that, although many of the polynomials terms are not critical to 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Lo
g

 N
f

Test Points

experimental PC



35 

 

predicting the fatigue life, including their associated coefficients negatively affects the overall 

performance of the classifier. 

 

Figure 3.12: Experimental vs. Predicted for T800H/2500 Carbon/Epoxy using second order PC 

 

Figure 3.13: Fatigue Life Prediction of T800H/2500 Carbon/Epoxy using second order PC 
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3.3.3: INCLUSION OF HIGHER ORDER TERMS: 

Published results dealing with the fatigue life prediction of a single material [19] have shown that adding 

a few higher order terms to a first order PC can lead to an improved fatigue life prediction. The addition 

of several higher order terms to the first order polynomial classifier was attempted. The equation below 

shows the added higher order terms. The terms are found from trying some combinations but a better 

method is needed to find the combination giving the best predictions; the technique used in [39] may be 

implemented for this study. 
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The corresponding RMSE obtained varied between 12% and 29%. Figure 3.14 shows various outputs for 

predicting different materials. 

 

Figure 3.14: Experimental vs. Predicted for Scotchply 1003 Glass/Epoxy using higher order PC 
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Figure 3.15: Fatigue Life Prediction of Scotchply 1003 Glass/Epoxy using higher order PC 

 

Figure 3.16: Experimental vs. Predicted for E-Glass/Polyester using higher order PC 
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Figure 3.17: Fatigue Life Prediction of E-Glass/Polyester using higher order PC 

 

FIGURE 3.18: Experimental vs. Predicted for T800H/2500 Carbon/Epoxy using higher order PC 
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FIGURE 3.19: Fatigue Life Prediction for T800H/2500 Carbon/Epoxy using higher order PC 

 

3.4 CHAPTER SUMMARY 

In conclusion, the following points summarize this chapter’s results: 

1- ANN can be used to predict the constant stress ratio fatigue behavior for a material not used in the 
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4- FFN and CFFN architectures resulted in the most accurate fatigue life predictions. The other 

networks might give comparable results but would need significantly higher training time. 

5- PC were shown to give fatigue life predictions comparable to those obtained using ANN 

6- The first and second order PCs were not accurate in predicting the fatigue life of composites; the 

addition of higher order terms gave better results. Better methods to determine which higher-

order terms would result in better predictions when added to a first order classifier should be 

investigated.  
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CHAPTER 4: FATIGUE LIFE PREDICTION OF COMPOSITES 

FOR VARYING STRESS RATIOS 

4.1. INTRODUCTION 

In chapter 3, ANN & PC have been shown to generate acceptable predictions of fatigue life for constant 

stress ratio (R=0.1). The same method is now extended to predict the fatigue behavior under different 

values of R. Data was collected for a variety of published fatigue data with a varying stress ratio. Table 

4.1 shows the experimental fatigue data used in the present investigation. Figure 4.1 shows the general 

overview of the material covered in this chapter. 

TABLE 4.1: Experimental Fat igue Data Used in the Current  Invest igat ion  

 

 

Material Fiber Orientation angles Stress Ratio Reference 

Glass/Epoxy 0,5,10,15,20,30,60 0.1 Hashin & Rotem [1] 

AS/3501-5A   Graphite/Epoxy 0,10,20,30,45,60,90 0.1 Awerbuch & Hahn [3] 

Scotchply 1003 Glass/Epoxy 0,19,71,90 0.1,0.5,-1 El Kadi & Ellyin [5] 

E-Glass/Polyester 0,15,30,45,60,90 0.1,0.5,-1,10 Philippidis & Vassilopoulos [6] 

T800H/2500 Carbon/Epoxy  0,10,15,30,45,90 0.5,0.1,-0.3,-1 Kawai & Suda [8] 

APC-2  AS4 Carbon/Peek 0,15,30,60,75,75 0,0.2,5,INF Jen & Lee [37] 

Glass/Polyester 0,90 0.1,0.5,-1,2,10 Epaarachchi & Clausen [9] 

XAS/914 Carbon/Epoxy 0 0.1,-0.6 Fernando & Dickson & Adam & Reiter & Harris[37] 

KEVLAR /914  Carbon/Epoxy 0 0.01,0.1,-0.3,-0.6 Fernando & Dickson & Adam & Reiter & Harris[37] 
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Figure 4.1: Test matrix for predicting fatigue life of varying stress ratio 
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4.2. PREDICTING FATIGUE FAILURE USING NEURAL NETWORKS 

Static and fatigue data from eight out of the nine materials shown in table 4.1 was used for testing 

purposes and the fatigue behavior of the ninth material was predicted. In each case, the following 

parameters were used in training the ANN:  

E0 E90 S0
T
 S90

T
 S0

C
 S90

C
 Vf θ σmax σmin Nf 

All parameters were normalized to improve the computational efficiency of the neural networks. The 

same normalization used in Chapter 3 will be used here. 

4.2.1 EFFECT OF TRAINING FUNCTIONS ON FATIGUE LIFE PREDICTION 

Different training functions were used in predicting the fatigue life of composites using a feedforward 

neural network. Table 4.2 introduces the various functions used in this section.  

TABLE 4.2: Training functions used in this study 

Acronym Algorithm Function Name 

LM trainlm Levenberg-Marquardt 

BFG trainbfg BFGS Quasi-Newton 

RP trainrp Resilient Backpropagation 

SCG trainscg Scaled Conjugate Gradient 

CGB traincgb Conjugate Gradient with Powell/Beale Restarts 

CGF traincgf Fletcher-Powell Conjugate Gradient 

CGP traincgp Polak-Ribiére Conjugate Gradient 

OSS trainoss One Step Secant 

GDX traingdx  Variable Learning Rate Backpropagation 

GDA traingda Gauss Data Archives 

GD traingd Gradient Descent 

GDM traingdm Gradient Descent with Momentum  

 

The effect of type of training function was tested using a feed forward architecture with 10 neurons to 

predict the fatigue life of AS-3501-5A Graphite-Epoxy. The RMSE obtained for the different training 

functions are shown in Table 4.3.  
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Table 4.3: RMSE for Different Training Functions for AS-3501-5A Graphite/Epoxy 

Number Acronym Algorithm Function Name RMSE(%) 

1 LM trainlm  Levenberg-Marquardt 7.3 

2 BFG  trainbfg  BFGS Quasi-Newton 8.3 

3 RP  trainrp  Resilient Backpropagation 8.3 

4 SCG  trainscg  Scaled Conjugate Gradient 7.8 

5 CGB traincgb  Conjugate Gradient with Powell/Beale Restarts 7.9 

6 CGF traincgf  Fletcher-Powell Conjugate Gradient 8.5 

7 CGP traincgp  Polak-Ribiére Conjugate Gradient 7.7 

8 OSS trainoss  One Step Secant 9.2 

9 GDX  traingdx  Variable Learning Rate Backpropagation 9.5 

10 GDA traingda Gauss Data Archives 9.2 

11 GD traingd GD 13.5 

12 GDM traingdm Gradient descent with momentum  24.6 

 

Most of the training functions gave similar results except for a few that gave a much higher RMSE. In this 

test Levenberg-Marquardt gave the best results (RMSE = 7.3%). From chapter 3 Resilient Back 

propagation (RP) was shown to give good results; so a further study was conducted to predict the fatigue 

failure of a different material using only training functions that gave results better than using (RP) training 

function for comparison purposes. Predictions conducted on KEVLAR/914 resulted on RMSE shown in 

Table 4.4. 

Table 4.4: RMSE for Different Training Functions for KEVLAR/914 

Number Acronym Algorithm Function Name RMSE(%) 

1 LM  trainlm (1) Levenberg-Marquardt 14.9 

2 BFG  trainbfg (2) BFGS Quasi-Newton 117.7 

3 RP  trainrp (3) Resilient Back propagation 9.9 

4 SCG  trainscg  (4) Scaled Conjugate Gradient 39.1 

5 CGB  traincgb (5) Conjugate Gradient with Powell/Beale Restarts 28.7 

6 CGP  traincgp (6) Polak-Ribiére Conjugate Gradient 26.1 

 

As expected, the accuracy of the prediction of the networks varies when we predict a different material 

except for Levenberg-Marquardt (TrainLM) and Resilient Back propagation (TrainRP). Both gave 

acceptable results in predicting the two materials. Both LM & RP were used to predict the fatigue life of 

E-glass/polyester 



45 

 

Table 4.5: RMSE for Different Training Functions for E-GLASS/POLYESTER 

Number Acronym Algorithm Function Name RMSE(%) 

1 LM  trainlm (1) Levenberg-Marquardt 174.1 

2 RP  trainrp (2) Resilient Backpropagation 18.6 

 

As noticed, the output of (TrainLM) is not acceptable. The RMSE is very high when predicting E-

Glass/Epoxy. The RMSE at its best using 10 neurons is found to be 170%. In conclusion, TrainRP leads 

to the best fatigue life prediction for all materials considered. 

4.2.2 EFFECT OF USING DIFFERENT NETWORKS ARCHITECTURES AND NUMBER OF HIDDEN 

NEURONS ON FATIGUE LIFE 

The effect of ANN architecture & number of hidden neurons on the fatigue life prediction is considered 

next. The different networks used are shown in Table 4.6: 

TABLE 4.6: Different Network Architectures 

Number Acronym Algorithm Function Name 

1 FFN newff Feedforward Neural Network 

2 CFFN newcf Cascade Forward Neural Network 

3 ERN newern Elman Recurrent Neural Network 

4 LRN newlrn Layer Recurrent Neural Network 

 

4.2.2.1 FEED FORWARD BACK PROPAGATION NEURAL NETWORK (FFN) 

FFN was structured to predict fatigue failure of different materials using one hidden layer and (tainRP). 

The effect of using different number of hidden neurons was studied on all nine materials used in this 

study. The number of neurons varies between 6 and 20 neurons. More or less numbers of neurons either 

don’t affect the RMSE of makes it worse. Figures 4.2 to 4.7 demonstrate the variation of the RMSE with 

the number of hidden neurons for the various materials considered.  
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Figure 4.2: Variation of RMSE with Number of Hidden Neurons for AS/3501-5A   Graphite/Epoxy 

 

Figure 4.3: Variation of RMSE with Number of Hidden Neurons for Scotchply 1003 Glass/Epoxy 

 

Figure 4.4: Variation of RMSE with Number of Hidden Neurons for E-Glass/Polyester 
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Figure 4.5: Variation of RMSE with Number of Hidden Neurons for T800H/2500 Carbon/Epoxy 

 

Figure 4.6: Variation of RMSE with Number of Hidden Neurons for APC-2 AS4 Carbon/Peek 

 

Figure 4.7: Variation of RMSE with Number of Hidden Neurons for Glass/Polyester 
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The predictions show that irrespective of the material the best results are obtained with 6-12 hidden 

neurons. Figure 4.8 & 4.9 show the fatigue life prediction.  

 

Figure 4.8: Fatigue Life Prediction of Scotchply 1003 Glass/Epoxy Using FFN with 10 neurons  
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Figure 4.9: Fatigue Life Prediction of Scotchply 1003 Glass/Epoxy Using FFN with 12 neurons 
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4.2.2.2 CASCADE FEED FORWARD BACK PROPAGATION NEURAL NETWORK (CFFN) 

The same exercise is now repeated for the CFFN. Figures 4-10 to 4.15 demonstrate the variation of 

RMSE obtained with the number of hidden neurons. 

 

Figure 4.10: Variation of RMSE with Number of Hidden Neurons for Glass/Epoxy 

 

 Figure 4.11: Variation of RMSE with Number of Hidden Neurons for Scotchply 1003 Glass/Epoxy 

 

Figure 4.12: Variation of RMSE with Number of Hidden Neurons for T800H/2500 Carbon/Epoxy 
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Figure 4.13: Variation of RMSE with Number of Hidden Neurons for APC-2 AS4 Carbon/Peek 

 

Figure 4.14: Variation of RMSE with Number of Hidden Neurons for XAS/914 Carbon/Epoxy 

 

Figure 4.15: Variation of RMSE with Number of Hidden Neurons for Kevlar/914 
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Once again, it can be concluded that CFFN also gave the best results between 6 & 12 neurons.  Figure 

4.16 & 4.17 show the fatigue life prediction of AS-3501-5A Graphite/Epoxy and Scotchply 1003 

Glass/Epoxy. 

 

Figure 4.16: Fatigue Life Prediction of AS-3501-5A Graphite/Epoxy Using CFFN with 11 neurons 
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Figure 4.17: Fatigue Life Prediction of Scotchply 1003 Glass/Epoxy Using CFFN with 10 neurons 
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Figure 4.18: Variation of RMSE with Number of Hidden Neurons for Glass/Epoxy 

 

Figure 4.19: Variation of RMSE with Number of Hidden Neurons for AS/3501-5A Graphite/Epoxy 
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Figure 4.20: Fatigue Life Prediction of AS-3501-5A Graphite/Epoxy Using LRN with 10 neurons 
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Figure 4.21: Variation of RMSE with Number of Hidden Neurons for Glass/Epoxy 
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4.3.1: FIRST ORDER PC: 

For a first order PC, the input parameters to the classifier are: 
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Once again the output is log��. The predictions obtained using the first order PC were compared to the 

experimental data and were found to be inaccurate. For this case, the PC predicted a nearly constant value 

for the fatigue life irrespective of the maximum applied stress and the fibre orientation angle. Figure 4.23 

show one of the predicted materials outputs.  

 

Figure 4.22: Experimental vs. Predicted for Glass/Epoxy using first order PC 
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4.3.2: SECOND ORDER PC: 

Since the results obtained using the first order PC were unacceptable, a second order PC was attempted. 

In this case, the input parameters include the first order terms shown in addition to the square of each of 

these terms and the cross multiplication of each two of these terms as shown below. 
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The RMSE obtained in this case reached a higher value without getting the pattern of the output. This 

higher error can be attributed to the fact that, although many of the polynomials terms are not critical to 

predicting the fatigue life, estimating their associated coefficients negatively affects the overall 

performance of the classifier. 

 

Figure 4.23: Experimental vs. Predicted for AS-3501-5A Graphite/Epoxy using second order PC 
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4.3.3: INCLUSION OF HIGHER ORDER TERMS 

The addition of several higher order terms to the first order polynomial classifier was attempted. The 

equation below shows the added higher order terms. 
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The corresponding RMSE obtained varied between 8% and 19%. Figures 4.25 to 4.32 show the various 

outputs obtained for predicting different materials. 

 

Figure 4.24: Experimental vs. Predicted For Glass/Epoxy Using Mixed Order PC 
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Figure 4.25: Fatigue Life Prediction of Glass/Epoxy using Mixed order PC 

 

Figure 4.26: Experimental vs. Predicted for AS-3501-5A Graphite-Epoxy using Mixed order PC 
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Figure 4.27: Fatigue Life Prediction of AS-3501-5A Graphite-Epoxy Mixed order PC 

 

 

Figure 4.28: Experimental vs. Predicted for Scotchply 1003 Glass-Epoxy using Mixed order PC 
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Figure 4.29: Fatigue Life Prediction of Scotchply 1003 Glass-Epoxy Mixed order PC 
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4.3 SECTION SUMMARY 

In conclusion, the following points summarize the results of this chapter: 

1- Based on the results obtained, Resilient Back propagation (TrainRP) yielded the best fatigue life 

predictions for variable R-ratio unidirectional composite materials. Other training functions such 

as: TrainGD and TrainGDX also gave acceptable predictions. 

2- The best number of hidden neurons to be used to predict for the same inputs varies between: 6 

and 12. 

3- The FFN and CFFN network architecture yielded the best results. Other architectures might give 

good results but will need a much longer training time. 

4- Adding higher order terms to the first order PC gave acceptable results. A better method should 

be used to determine which higher order terms have the most beneficial effect when adding to the 

first order classifier.  

5- The data scatter could be a possible reason for some of the inaccurate predictions obtained using 

ANN & PC. So, some pre-processing for the data might improve the predictions. 

6- The large number of data used for setting up the PC translates to large size matrices. Inaccuracies 

relating to matrix inversion could be a possible reason for inferior predictions obtained when 

using PC. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 CONCLUSION: 

This work presented the successful implementation and development of artificial neural networks and 

polynomial classifiers to predict the fatigue life of fiber reinforced composite materials. Different neural 

network architectures using a variety of training functions were used. Training was performed on certain 

composites while the prediction was done for different materials. The following summarizes the results: 

1- Artificial neural networks can be used as efficient tool in predicting the fatigue life of composite 

materials other than those used in the training of the network.  

2- The predictions obtained are affected by the input parameters, network architecture, number of hidden 

neurons and training function used. 

3- The PC method can lead to repeatable predictions for the fatigue life of composites. First order 

classifiers with additional higher order terms seem to give the best results. 

4- The scatter in fatigue life data can negatively influence the results obtained using ANN or PC.  

 

5.2 FUTURE WORK: 

1- Using ANN to predict the fatigue failure of multidirectional laminate using the fatigue data of 

unidirectional laminae.  

2- Using GMDH to better select the higher order terms leading to the best fatigue life prediction.  
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