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Abstract 

This work presents a theoretical investigation of the dynamic response of electrically-

coupled microcantilever beams under the combined effect of squeeze-film damping 

and mechanical shock for MEMS applications. Several research studies have reported 

and analyzed the failure of MEMS devices deploying electrically-actuated vibrating 

beams, such as inertial, bio-mass, and gas sensors, when undergoing mechanical shocks 

due to the inherent pull-in instability. The sensitivity of the vibrating beams to 

mechanical shock can also be exploited to design microswitches that are intended to 

trigger a signal once receiving a mechanical shock to activate safety functionalities, 

such as airbag systems. We consider two different microsystem designs, namely: single 

and dual beams, operating at varying conditions. The single-beam system is actuated 

via a fixed electrode (uncoupled actuation) while the electric actuation of the dual-beam 

system, comprising two movable microbeams, is achieved by applying a DC and AC 

voltages among them (coupled actuation). We develop a mathematical model to 

simulate the dynamic response of the single and dual microbeams while accounting for 

the Fringing field effect, the squeeze-film damping, and the mechanical shock. The 

simulation results are in good qualitative and quantitative agreement with those 

reported in the literature. A parametric study is conducted to investigate the effect of 

the electric actuation, the initial gap distance, the fluid viscosity, and the beam 

geometry on the shock response of the microsystem. We observe a significant reduction 

of 29-36% in the pull-in voltage when considering the dual-beam system in comparison 

with the single-beam case. The frequency response curves show expanded dynamic 

pull-in bandwidth when operating the symmetric dual-beam system near the primary 

resonance. We notice that the dual-beam systems are more robust in terms of resistance 

to mechanical shock. This shows the suitability of such design for the operation and 

reliability of MEMS devices in harsh environments characterized by high mechanical 

shock levels. Breaking the symmetry of the dual beam system in terms of the beams’ 

geometry is found to significantly reduce the resistance to shocks. Given their high 

sensitivity to mechanical shock, single-beam systems are observed to be more attractive 

for deployment as microswitches. 

 

Search Terms: Nonlinear analysis, electrostatic coupling, mechanical shock, 

static/dynamic pull-in, fringing-fields, squeeze-film damping 
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Chapter 1. Introduction 

 

In this chapter, we provide a brief overview about MEMS applications 

deploying vibrating microbeams, their associated physical aspects, and the main design 

requirements. Then, we describe the microsystem investigated in this study as well as 

the thesis contribution. Finally, the general organization of the thesis is presented.  

1.1. Overview 

Micro-electro-mechanical systems (MEMS) devices have gained a great focus 

in the last few decades due to their low cost with the capability to be integrated with 

electronic circuits and operate with high resolution and low power consumption. 

MEMS have been widely used for sensing, filtering, and switching applications. 

Microbeams such as cantilever beams and clamped-clamped beams constitute the basic 

structure of numerous MEMS devices subjected to different actuation mechanisms 

including electrostatic, thermal and piezoelectric actuation. Electrostatic actuation is 

the most common actuation mechanism used given its ease of application and 

implementation in small spaces and its useful nonlinear features [1]. The design of 

MEMS devices requires a deep understanding of the nonlinear dynamics associated 

with vibrating beams. For example, the resulting coupling between the mechanical and 

electrical components leads to the nonlinear phenomenon named as “pull-in 

instability”. This phenomenon occurs by increasing the voltage to a threshold value 

where the mechanical restoring force of the beam can no longer balance the 

electrostatic force resulting in the collapse of the beam into the fixed electrode. The 

occurrence of pull-in instability is undesired in many applications because it limits the 

stable operating range. A wide stable range constitute a design requirement in sensing 

and tuning applications. Moreover, squeeze-film damping (SQFD) is a common 

dissipation mechanism in MEMS devices, when operating under ambient air pressure, 

due to the intrinsic design of wide plates separated by small gap distance which allows 

for better sensing accuracy. Under such conditions, air viscosity and the different 

pressure distributions form a barrier to the air movement in and out the separation gap 

that dissipates energy and resists the structure motion. SQFD force is commonly 

modeled by coupling the Reynold’s equation that is derived from Naiver-stokes 

equation with the vibrating structure governing equations [2]. 
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1.2. Reliability of MEMS in Shock Environments 

There is an emerging use of MEMS devices deploying electrically-actuated 

vibrating beams for several applications including inertial sensors [3-6], bio-mass 

sensors [7-9], gas sensors [10-12], and RF filters [13-15], thanks to the significant 

progress in micromachining technology. One important matter that needs to be 

considered and assessed in the design of these microsystems is their reliability when 

exposed to mechanical shock and impact during fabrication, shipping, or operation in 

harsh environments. Numerous research studies have reported failures in the operation 

of electrically-actuated microbeams when subject to mechanical shock [16-19]. These 

failures take place through stiction and electric short circuits resulting from the collapse 

of the vibrating beams and hitting the fixed or movable electrodes. This is associated 

with the pull-in instability due to the combined effect of the electrostatic forcing and 

the mechanical shock. The occurrence of pull-in is undesired in many applications 

because it limits the safe operation range. The presence of mechanical shock can cause 

an early dynamic pull-in instability due to unexpected dynamic loading and impact 

imposed on the microbeam structure. As such, the analysis of electrically-actuated 

beams subject to mechanical shock has gained significant interest in the last few years 

[20-25] to provide guidance in the design of robust MEMS devices in terms of 

resistance to mechanical shock or to investigate the possible exploitation of nonlinear 

phenomena for switching applications. 

1.3. Mechanical Shock Detection and Sensing 

Many researchers studied the behavior of microbeam systems subject to 

combination of electrostatic force and mechanical shocks. They showed that these 

microbeam systems can be used to trigger a signal once receiving a mechanical shock 

to perform a preventive action [26-29]. These microswitches (or triggers) have gained 

a major focus since they replaced some complicated sensors while offering smaller 

size, lower cost, and improved performance. The use of these switches include airbag 

deployment in automobiles that functions when a sudden change in acceleration occurs. 

The same concept is exploited to protect electronic devices at free falling by triggering 

a signal that does an immediate action [23]. The sensors used for the aforementioned 

applications belong to the category of ”low-g sensors” (g stands for the gravitational 

constant). Ramini et al. [28] conducted a theoretical investigation of an 
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electrostatically-actuated resonant switch using a nonlinear single-degree-of-freedom 

model for earthquake detection. The microsystem was adjusted to operate near the 

dynamic pull-in bandwidth and being sensitive to low shock levels. Their study was 

complemented by an experimental investigation to demonstrate the capability of the 

proposed resonant switch to capture small levels of acceleration in the order of 0.02 g. 

Jrad et al. [20] proposed a new device comprising an electrostatically actuated 

cantilever microbeam attached to a tip mass and mounted on top of a compliant board 

or a printed circuit board. They developed a mathematical model of the proposed design 

and showed that it provides a great tunability when varying the DC and AC voltages 

and capability to detect a wide range of acceleration (from 0.33 g to 200 g).  

The other shock threshold sensors category is the ”high-g sensors”, which are 

expected to be sensitive only to high shock levels (the operation range is in the order 

of thousands of g) and are commonly used in military applications [30-32]. On the other 

hand, the functionality of many electrically-actuated microsensors can be negatively 

affected by the mechanical shock [16, 17, 19, 25]. To ensure the reliability of such 

sensors, mechanical shock effect needs to be avoided by implementing different 

designs that show more robustness in order to prevent the dynamic pull-in. Wagner et 

al. [19] performed finite element analysis to optimize the reliability of MEMS 

accelerometer made of polysilicon cantilever beams with regards to shock loads arising 

during drop tests. Their optimal design was verified experimentally. Askari and Tahani 

[24] developed a reduced-order model to analyze the impact of the mechanical shock 

on the dynamic pull-in instability of electrically-actuated clamped-clamped beams. The 

shock load is represented by a half-sine waveform with durations varying between 0.1 

ms and 1 ms to simulate hard floor drop tests. They observed that setting the shock 

duration close to the natural period of the microbeam system speeds up the occurrence 

of the dynamic pull-in. 

Ouakad invistigated the reliability of such curved beams when subjected to 

mechanical shock [33]. Figure 1.1 depicts the snap-through and dynamic pull-in states 

in two different curves. It was shown that the presence of mechanical shock can cause 

an early snap-through following a dynamic pull-in if subjected to small shock 

amplitudes. In addition, Ouakad invistigated the effect of increasing the shallow arch 

initial curvature which leads to a bi-stable manner.  
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Figure 1.1: LDA curves for initially curved single clamped-clamped microbeam [33]. 

 

1.4. Threshold Sensors  

Ilyas et al. [34] have recently implemented and tested a new design of a 

resonator made of a dual electrically-coupled cantilever microbeams. The coupled 

microsystem showed dynamic features that can be promising in several MEMS 

applications.  

M. Younis et al. [8] studied a method of determining the existence of certain 

molecules by exploiting the dynamic instabilities of a threshold microswitch. The 

microswitch can trigger a signal at the existence of a certain mass due to a frequency 

shift. Clamped-clamped and cantilever beams were tuned to operate near the pull-in 

band of a predetermined frequency. Figure 1.2 shows the shift in the frequency due to 

the added mass with the corresponding time histories. It was concluded that tuning the 

system at twice its primary resonance (subharmonic frequency) produces promising 

results. At subharmonic frequency the microbeam undergo a sharp transition from the 

stable (no-mass) to the unstable state (mass detected) [8].   
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Figure 1.2: Frequency response of the cantilever microbeams near primary resonance illustrating the 

concept of STMT (Switch Triggered by Mass Detection). [8] 

Unlike cantilever beams, clamped-clamped beams have another sort of 

nonlinearity called “midplane stretching” which is a cubic nonlinearity. Bouchaala et 

al. [10] also studied the exploitation of dynamic characteristics of the clamped-clamped 

beam at low and high electrostatic actuation for gas detection. At low electrostatic 

excitation voltages, midplane stretching nonlinearity becomes dominant and the beam 

exhibit a hardening behaviour. However, at high actuation voltages, the system shows 

a softening behaviour. Both nonlinearities were exploited for different purposes in gas 

detection [10]. 

Ouakad et al. [13] considered an initially curved microbeams for filtering 

applications. The arched beam showed promising features, such as interesting jumps 

and snap-through, when used as band-pass filter. The results showed a sharp roll-off 

slope and almost a flat bandwidth when exciting near the primary natural frequency, as 

shown in Figure 1.3 [13].  
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Figure 1.3: A shallow arch undergoing a snap-through motion [13]. 

Napoli et al. [35] considered the problem of several cantilever microbeams 

fixed at a common base as shown in Figure 1.4. The closeness of these microbeams 

affects each other and results in interesting dynamics which was verified 

experimentally. It was shown that the system can have more than one fundamental 

natural frequency. An extension to a group of cantilever arrays is also being investigate 

based on the application of interest [35]. 

 

Figure 1.4: 3D view of electrically coupled cantilever microbeams [35] 
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1.5. Squeeze-Film Damping  

 In typical MEMS devices, parallel plates with small gap distance is commonly 

used to achieve higher sensitivity. For such devices, squeeze-film damping (SQFD) 

force is considered when simulating the dynamic response when operating in ambient 

air. Extensive research has been conducted to study the pressure distribution between 

the parallel plates under electrostatic forcing. There are several SQFD models in 

literature, which can be categorized into two main classes; molecular energy using 

statistical thermodynamics, and Reynold’s equation-based models describing the 

pressure distribution between the parallel plates. The latter modelling approach has 

showed better predictability of the experimental results [2]. The Reynold’s equation is 

derived from the Naiver-Stokes and the continuity equations under several assumptions 

listed below [1]: 

- Newtonian Fluid 

- The fluid obeys the ideal gas law. 

- The variation of pressure along the fluid film is negligible. 

- Laminar flow 

- Small gap distance between the plates compared to the plate width 

- The system is isothermal. 

- No-slip condition is assumed (continuum fluid)  

 

Figure 1.5: 3D schematic of parallel-plates sucking and pumping the fluid film [1] 
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Starr et al. [36] modelled the squeeze-film damping force of an accelerometer 

by assuming incompressible fluid film and a small motion of the plates compared to 

the separation distance. These assumptions reduced the Reynold’s equation and made 

it linear and simple to be solved analytically. Blech et al. [37] solved analytically the 

compressible linearized Reynold’s equation of rigid rectangular and circular parallel 

plates. He also derived an analytical approximation of the spring damper system 

between the plates to represent the SQFD force. Nayfeh et al. [2] developed an 

analytical approximation of the pressure distribution under rectangular and circular 

plates using perturbation techniques. The analytical equation of the linearized 

compressible Reynold’s equation is then substituted in the main governing equation of 

the parallel plates and finite element method was used to simulate the dynamic 

response. They considered varying values of the quality factor for different air pressure 

values and found a good agreement with the experiments. Following similar approach, 

Li et al. [38] considered the compressible Reynold’s equation to describe the pressure 

distribution under a cantilever beam. However, they linearized this equation around the 

ambient pressure and beam static deflection due to DC voltage. He assumed a small 

oscillation around the static position and hence a small pressure change. Li et al. were 

successful to simulate the quality factor for different DC voltages and compared their 

results with their finite element model counterparts based on the software tool ANSYS. 

They showed significant discrepancy in the quality factor results with previous studies 

that ignored the static deflection. Hosseini et al. [39] studied the behaviour of initially 

curved beam operating in different pressure values by solving the full compressible 

nonlinear Reynold’s equation simultaneously with the beam governing equation using 

finite element method. They showed the effect of SQFD on the dynamic response and 

concluded that the dependency of the system on ambient air pressure decreases by 

increasing the length-to-width ratio. 

Jordy and Younis [40] investigated the effect of the SQFD and the gap distance 

on the response of the g-sensor subjected to mechanical shock. They claimed that 

obtaining a higher threshold pull-in voltage can be achieved by decreasing the 

perforation hole size or the gap distance. This can be beneficial to avoid early dynamic 

pull-in and stiction to occur by minimizing the hole size. Alsaleem et al. [41] studied 

the effect of low g-shock effect on the MEMS structure under ambient pressure. They 

modelled the squeeze-film damping force assuming a linear damping model by using 
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a constant damping coefficient derived from Blech model. However, the SQFD linear 

model constitutes a good approximation only for small beam deflection and low 

pressure values. As such, approaching the substrate under mechanical shock and 

ambient pressure shows deviations from the actual behaviour of the system. 

Yagubizade et al. [42] investigated the nonlinear effect of the squeeze-film damping 

on the clamped-clamped beam system under mechanical shock. They considered the 

full nonlinear compressible Reynold’s equation and solved it simultaneously with the 

beam’s governing equation. It was shown that operating at ambient air pressure 

decreases significantly the effect of the shock and delays dynamic pull-in occurrence. 

He concluded that squeeze-film damping force has more effect on the dynamic shock 

regime than the quasi-static shock regime. Abderezaei et al. [43] considered the 

incompressible linearized Reynold’s equation to model the air pressure under a 

clamped-clamped beam subjected to mechanical shock while accounting for the 

Fringing-field effect. They showed a good agreement of the simulation results for 

moderately small deflection with those obtained by Yagubizade [42] who considered 

the full nonlinear SQFD model.  

1.6. Fringing Fields Effect  

 The electrostatic force between actuated parallel plates does not result only 

from the electric fields between the two opposing surfaces. Electric fields are extended 

some distance away to cover the direction along the width of the plates; this is known 

as Fringing field effect. This effect should be accounted for as a nonlinear force when 

the gap distance between the plates (movable or fixed electrodes) is not small relative 

to the beam width. Several models have been reported in literature, but the most 

common ones are Palmer model and Meijs-Fokkema model [44]. 

Figure 1.6 shows the extended electric fields of different fringing-fields models 

[44]. Batra et al. [44] studied the effect of the Fringing field on cantilever and clamped-

clamped microbeams with different thickness-to-width and thickness-to-separation 

distance ratios. They compared the capacitance per unit length of a suggested empirical 

formula obtained using the method of moments with different Fringing field models 

and the Parallel plates model. They claimed that the Fringing field effect is significant 

when deploying narrow microbeams; that is, small width-to-separation distance ratio,is 

considered. It was also concluded that several Fringing fields models available in 



20 

 

literature fail to accurately predict the pull-in voltage for microbeams with width 

smaller than five times the thickness. Ouakad et al. [46] studied the effect of the 

Fringing field on the static and dynamic response of initially curved clamped-clamped 

microbeams system. The numerical results were compared with those obtained from 

the finite element model based on ANSYS and previous experimental studies 

concluding that Fringing field effect accurately predict the snap-through and pull-in 

voltages as well as the overall static deflection.   

 

Figure 1.6: Illustrative 2D schematic of the electric fields considered in different electrostatic force 

models [45] 

1.7.  Thesis Objectives 

Driven by the developing interest in MEMS technology, we perform a non-

linear dynamic analysis of micro-cantilever beams under the combination of electric 

actuation and mechanical shock. To elaborate, we focus on studying the statics and 

dynamics of a different microbeam structure in comparison with the common single 

beam case extensively studied in the literature taking into account the Fringing field 

effect and the nonlinear squeeze-film damping force. The objective of the present study 

is twofold: (1) to assess the robustness of the microstructure to withstand different 

levels of shock loads and (2) to investigate the possible use of novel designs for 

switching applications. A great motivation is that MEMS technology has proven its 

domination in the market. The rapid increase in the scientific research about MEMS 

indicates their promising features that can be widely exploited in various fields. 

1.8. Research Contribution 

The contributions of this research work can be summarized as follows:   
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 Propose a different microsystem design that consists of a dual movable 

electrically actuated micro-cantilever beams. Such design results in a robust 

microsystem in terms of resistance to mechanical shock and therefore greatly 

delays the occurrence of dynamic pull-in as required in several MEMS 

applications. 

 Study the impact of this design on the system dynamics and the possibility to 

exploit it in improving some system functionalities. 

 Investigate the effect of the Fringing field and SQFD on the proposed 

microstructure and come up with recommendations to suit different MEMS 

applications.   

1.9.  Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides the 

microsystem description and the governing mathematical model. The reduced order 

model and the numerical techniques are also presented. Chapter 3 deals with the static 

analysis of different case studies of the microsystem while accounting for the Fringing-

field effect.  In Chapter 4, we formulate the eigenvalue problem and compute the 

natural frequencies of the microsystem under electrostatic actuation. We also analyze 

the frequency response of the microsystem when excited with an AC voltage. Finally, 

Chapter 5 investigates the dynamic behavior of the microsystem in shock environment 

under squeeze-film damping effect. 
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Chapter 2. Microsystem Description and Mathematical Model 

 

In this chapter, we present the problem formulation of the dual beam 

microsystem that can be used in several MEMS applications as well as stating the 

governing equations. We also show the development of the reduced order model based 

on the Galerkin approach. 

2.1. Microsystem Description 

We consider a MEMS device consisting of two microbeams of different 

geometry and material properties placed at a gap distance d as shown in Figure 2.1. 

Two fixed electrodes are arranged to be fully exposed to each microbeam (complete 

overlapping). The separation distance between the upper/lower microbeam and the 

top/bottom electrode is also d. This configuration enables to separately actuate each 

microbeam by deploying its respective fixed electrode (uncoupled actuation: single 

beam system) or applying a voltage among the two microbeams while deactivating the 

fixed electrodes (coupled actuation: dual beam system). We note that the microbeams 

are selected with different geometry properties to suit various applications. The 

microsystem is subject to mechanical shock transmitted via the fixed support of the 

microbeams.  

 

(a) 3D view of the microsystem 
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Figure 2.1: Schematic of the electrically-actuated microbeams under mechanical shock. 

2.2. Governing Equations of the Microsystem 

Based on Euler-Bernoulli beam assumptions, the equations of motion 

governing the transverse deflections w𝑖  of the electrically-coupled microbeams subject 

to mechanical shock are given in [34]. We consider the fringing-fields effect, 

represented in palmer model, and the squeeze film damping effect.  

ρbh1ẅ1(x1, t) + EI1w1
′′′′(x1, t)

=
εb( VDC + vAC(t))

2

2(d − w1(x1, t) + w2(x2, t))
2 (1

+
δ 0.65

b
(d − w1(x1, t) + w2(x2, t))) + Fshock − FSQFD (1) 

  

 

𝜌𝑏ℎ2𝑤̈2(𝑥2, 𝑡) + 𝐸𝐼2𝑤2
′′′′(𝑥2, 𝑡)

= −
𝜀𝑏(𝑉𝐷𝐶 + 𝑣𝐴𝐶(𝑡))

2

2(𝑑 − 𝑤1(𝑥1, 𝑡) + 𝑤2(𝑥2, 𝑡))
2 (1

+
𝛿 0.65

𝑏
(𝑑 − 𝑤1(𝑥1, 𝑡) + 𝑤2(𝑥2, 𝑡)))𝑈(𝑥2 − 𝜉) + 𝐹𝑠ℎ𝑜𝑐𝑘

+ 𝐹𝑆𝑄𝐹𝐷 (2) 

where ρ is the density, b denotes the width of the microbeam, h represents the thickness 

of the microbeam, E denotes the Young’s modulus, I is the beam’s cross sectional 

second moment of area, t is time, and x is the position along the microbeam length. 

Here, "′" denotes the first derivative with respect to x and " "̇ denotes the time 

(c) Dual beam: coupled actuation (b) Single beam: uncoupled actuation 
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derivative. The paramete 𝛿 is introduced to incorporate the Fringing field effect. 

Setting 𝛿 = 0, electric actuation is represented by the Parallel plates model (neglecting 

the effect of Fringing field), and for 𝛿 = 1, the Palmer model is considered. The 

parameter 𝜀 = 8.85X10−12𝐶2𝑁−1𝑚−2  is the permittivity of the dielectric vacuum 

between the movable microbeam and the fixed electrode. 𝑉𝐷𝐶  and  𝑣AC are the DC and 

AC voltages applied among the microbeams, respectively. The time-varying AC 

voltage is given by 𝑣𝐴𝐶(𝑡) = 𝑉𝐴𝐶 𝑐𝑜𝑠(Ω𝑒𝑡) where 𝑉𝐴𝐶 is the voltage magnitude and Ω𝑒 

is the excitation frequency. 𝜉 is the gap distance between the two fixed ends of the 

microbeams, The unit step function U is introduced to account for the discontinuity of 

the electric field due to the difference in the microbeam lengths. 

The shock force per unit length applied on each microbeam is represented by 

an impact acceleration pulse of a half-sine waveform which is expressed as [16] 

Fshock = ρbhia0g(t) (3) 

where a0 is the amplitude of the shock (given in terms of units of the gravitational 

constant g). The subscript i = {1, 2} refers to microbeam 1 and 2, respectively. The 

time-varying shock profile 𝑔(𝑡) is given by 

𝑔(𝑡) = 𝑠𝑖𝑛 (
𝜋𝑡

𝑇
)𝑈(𝑡) + 𝑠𝑖𝑛 (

𝜋

𝑇
(𝑡 − 𝑇))𝑈(𝑡 − 𝑇) (4) 

  

where T denotes the shock duration and 𝑈(𝑡) is the unit step function. It should be 

mentioned that half-sine shock profile is found to approximate well the shape of the 

actual shock pulse accelerations [16]. 

𝐹𝑆𝑄𝐹𝐷 is the squeeze film damping force applied on both microbeams. We 

consider Reynold’s equation to derive the squeeze film damping force arising from the 

pressure applied on the microbeam due to the surrounding fluid. Neglecting the body 

forces and thickness of the fluid film Reynold’s equation is given by [1] 

𝜕

𝜕𝑥
(𝐻3𝑃

𝜕𝑃

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐻3𝑃

𝜕𝑃

𝜕𝑦
) = 12 𝜇𝑒𝑓𝑓 (𝐻

𝜕𝑃

𝜕𝑡
+ 𝑃

𝜕𝐻

𝜕𝑡
) (5) 
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where 𝐻 = (𝑑 − 𝑤1(𝑥1, 𝑡) + 𝑤2(𝑥2, 𝑡)), 𝑃 is the total pressure of the fluid film, 

𝜇𝑒𝑓𝑓 is the effective viscosity of the surrounding fluid. The boundary conditions at 

beam edges are  

𝑃 (±
𝑏

2
) = 𝑝𝑎 (6) 

  

where 𝑝𝑎 is the original static pressure in the gap. The effective viscosity taken equal 

to the dynamic viscosity of the fluid. We assume incompressible and neglect the time 

variations of the pressure to simplify the equation and be able to solve it analytically 

for rectangular beam shapes. In addition, the beam length is considered much larger 

than the width leading to a significantly higher pressure gradient along the width. 

Hence, the pressure gradient along the length can be neglected and the equation can be 

rewritten as 

𝜕

𝜕𝑦
(𝐻3𝑃

𝜕𝑃

𝜕𝑦
) = 12 𝜇 𝑃 (

𝜕𝐻

𝜕𝑡
) (7) 

  

where 𝑃 = 𝑝𝑎 + ∆𝑝. Assuming small beam deflection and small pressure gradient by 

linearizing around the undeflected beam position and static ambient pressure yields 

[1] 

𝜕2𝑃

𝜕𝑦2
= −

12 𝜇

𝐻3
(
𝜕𝑤1

𝜕𝑡
−

𝜕𝑤2

𝜕𝑡
) (8) 

  

Integrating Equation (8) with the boundary conditions in Equation (6) yields 

𝑝 =
6 𝜇

𝐻3
(
𝜕𝑤1

𝜕𝑡
−

𝜕𝑤2

𝜕𝑡
) (

𝑏2

4
− 𝑦2) (9) 

  

The force per unit length 𝐹𝑆𝑄𝐹𝐷 resulting from the squeeze film damping is obtained 

by integrating the pressure gradient as  
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𝐹𝑆𝑄𝐹𝐷 = ∫ ∆𝑝 𝑑𝑦
𝑏/2

−𝑏/2

= ∫ (
6 𝜇

𝐻3
(
𝜕𝑤1

𝜕𝑡
−

𝜕𝑤2

𝜕𝑡
) (

𝑏2

4
− 𝑦2))  𝑑𝑦

𝑏/2

−𝑏/2

= 
 𝜇 𝑏3

𝐻3
(
𝜕𝑤1

𝜕𝑡
−

𝜕𝑤2

𝜕𝑡
) (10) 

  

Substituting Equation (10) in Equations (1) and (2) yields 

 

𝜌𝑏ℎ1𝑤̈1(𝑥1, 𝑡) + 𝐸𝐼1𝑤1
′′′′(𝑥1, 𝑡)

=
𝜀𝑏(𝑉𝐷𝐶 + 𝑣𝐴𝐶(𝑡))

2

2(𝑑 − 𝑤1(𝑥1, 𝑡) + 𝑤2(𝑥2, 𝑡))
2 (1

+
𝛿 0.65

𝑏
(𝑑 − 𝑤1(𝑥1, 𝑡) + 𝑤2(𝑥2, 𝑡))) + 𝜌𝑏ℎ1a0𝑔(𝑡)

− 𝜇 𝑏3
(𝑤̇1(𝑥1, 𝑡). − 𝑤̇2(𝑥2, 𝑡))

(𝑑 − 𝑤1(𝑥1, 𝑡) + 𝑤2(𝑥2, 𝑡))
3 (11) 

  

 

𝜌𝑏ℎ2𝑤̈2(𝑥2, 𝑡) + 𝐸𝐼2𝑤2
′′′′(𝑥2, 𝑡)

=
− 𝜀𝑏(𝑉𝐷𝐶 + 𝑣𝐴𝐶(𝑡))

2

2(𝑑 − 𝑤1(𝑥1, 𝑡) + 𝑤2(𝑥2, 𝑡))
2 (1

+ 
𝛿 0.65

𝑏
(𝑑 − 𝑤1(𝑥1, 𝑡) + 𝑤2(𝑥2, 𝑡)))𝑈(𝑥2 − 𝜉)

+ 𝜌𝑏ℎ2a0𝑔(𝑡) + 𝜇 𝑏3
(𝑤̇1(𝑥1, 𝑡). − 𝑤̇2(𝑥2, 𝑡))    

(𝑑 − 𝑤1(𝑥1, 𝑡) + 𝑤2(𝑥2, 𝑡))
3 (12) 

  

The boundary conditions of the two cantilever beams are 

𝑤1,2(0, 𝑡) = 0 

𝜕𝑤1,2

𝜕𝑥1,2

(0, 𝑡) = 0 

𝜕2𝑤1,2

𝜕2𝑥1,2
(𝑙1,2, 𝑡) = 0 

𝜕3𝑤1,2

𝜕3𝑥1,2
(𝑙1,2, 𝑡) = 0 (13) 
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For convenience, the following non-dimensional variables are introduced  

𝑤̂1 =
𝑤1

𝑑
 , 𝑥̂1 =

𝑥1

𝑙1
 , 𝑤̂2 =

𝑤2

𝑑
 , 𝑥̂2 =

𝑥2

𝑙2
 , 𝑡̂ =  

𝑡

𝝉
 , 𝑇̂ =  

𝑇

𝝉
 (14) 

  

 

𝜌𝑏ℎ1𝑙1
4

𝐸𝐼1𝝉2
= 1 , 𝝉 = √

 𝜌𝑏ℎ1𝑙1
4

𝐸 𝐼1
  , 𝛼 =

𝜀𝑏𝑙1
4

2𝑑3𝐸𝐼1
 , 𝛽 = (

𝑙2
𝑙1

)
4

 (
ℎ1

ℎ2
)
2

 , 𝜂 = (
ℎ1

ℎ2
) 𝛽  ,

𝜆 = a0

𝝉2

𝑑
  , 𝜅 =

 𝜇 𝑏3𝑙1
4 

𝐸 𝐼1𝝉 𝑑3
 (15) 

  

Considering the defined dimensionless form, and dropping the hats, the 

governing equations can be rewritten 

ẅ1(x1, t) + w1
′′′′(x1, t)

= α
(VDC + vAC(t))

2

(1 − w1(x1, t) + w2(x2, t))
2 ((1.+

δ 0.65 d

b
(1

− w1(x1, t) + w2(x2, t))) + λg(t)

− κ
(ẇ1(x1, t). − ẇ2(x2, t))  

(1 − w1(x1, t) + w2(x2, t))
3 (16) 

  

 

𝛽𝑤̈2(𝑥2, 𝑡) + 𝑤2
′′′′(𝑥2, 𝑡)

= −𝜂𝛼
(𝑉𝐷𝐶 + 𝑣𝐴𝐶(𝑡))

2

(1 − 𝑤1(𝑥1, 𝑡) + 𝑤2(𝑥2, 𝑡))
2 (1.+ 

𝛿 0.65 𝑑

𝑏
(1

− 𝑤1(𝑥1, 𝑡) + 𝑤2(𝑥2, 𝑡)))𝑈(𝑥2 − 𝜉)

+ 𝛽𝜆𝑔(𝑡)(+𝜂𝜅
(𝑤̇1(𝑥1, 𝑡). − 𝑤̇2(𝑥2, 𝑡)) 

(1 − 𝑤1(𝑥1, 𝑡) + 𝑤2(𝑥2, 𝑡))
3 (17) 

  

As for the dimensionless shock profile, it is obtained as 

 𝑔(𝑡) = 𝑠𝑖𝑛 (
𝜋𝑡

𝑇
)𝑈(𝑡) + 𝑠𝑖𝑛 (

𝜋

𝑇
(𝑡 − 𝑇))𝑈(𝑡 − 𝑇)  (18) 
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The parameter λ presents the magnitude of the shock amplification. Inspecting this 

parameter, the effect of the mechanical shock of the microsystem dynamics can be 

amplified by increasing the microbeam length or decreasing its thickness. The 

parameter 𝛽 indicates that the difference in the microbeams’ thickness introduces 

asymmetry in the electric actuation and their exposure to the mechanical shock. The 

thinner microbeam is expected to resist less to the electrostatic force and the mechanical 

shock. 

The normalized boundary conditions are  

𝑤1,2(0, 𝑡) = 0 

𝜕𝑤1,2

𝜕𝑥1,2

(0, 𝑡) = 0 

𝜕2𝑤1,2

𝜕2𝑥1,2

(1, 𝑡) = 0 

𝜕3𝑤1,2

𝜕3𝑥1,2

(1, 𝑡) = 0 (19) 

  

  To analyze the impact of different forms of damping, we first neglect the 

squeeze-film damping force to simulate the system dynamics near vacuum condition. 

Towards this, we consider a linear damping term 𝑐 𝑤̇1,2(𝑥1,2, 𝑡) added to the governing 

Equations (1) and (2) where the damping coefficient is given by =
𝜔

𝑄
 , 𝜔 is the natural 

frequency and 𝑄 is the quality factor. Setting high value to 𝑄 will be representative of 

the near vacuum conditions. 

2.3. Procedure and Reduced-order Model 

To examine the dynamics of the electrically-coupled microbeams under 

mechanical shock, we derive the reduced-order model (ROM) using the Galerkin 

method. This method transforms the governing equations and boundary conditions 

given by Equations (16)-(18) into a set of ordinary differential equations, which 

simulate the beam deflection. The deflections of the microbeams are expanded as [1] 

𝑤̂1(𝑥1, 𝑡) = ∑𝑢𝑖(𝑡)∅𝑖(𝑥1)

𝑛

𝑖=1

 (20) 
  

𝑤̂2(𝑥2, 𝑡)  = ∑𝑣𝑖(𝑡)∅𝑖(𝑥2) 

𝑛

𝑖=1

 (21) 
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where 𝑢𝑖(𝑡) and 𝑣𝑖(𝑡) are generalized coordinates to be solved for. ∅𝑖(𝑥) is the 

𝑖𝑡ℎ modeshape of the cantilever beam. 

Next, we substitute Equations (20) and (21) into Equations (16) and (17), 

multiply the outcome by the mode shape ∅𝑖(𝑥), and integrate the resulting equations 

over the domain from 0 to 1 to obtain the ROM given by 

∫ ∅𝑗(𝑥1) (∑𝑢𝑖(𝑡)∅𝑖
′′′′(𝑥1)

𝑛

𝑖=1

+ ∑𝑢̈𝑖(𝑡)∅𝑖(𝑥1)

𝑛

𝑖=1

)
1

0

𝑑𝑥1

= 𝛼(𝑉𝐷𝐶 + 𝑣𝐴𝐶(𝑡))
2
∫ (

∅𝑗(𝑥1)

(1 − ∑ 𝑢𝑖(𝑡)∅𝑖(𝑥1)
𝑛
𝑖=1 + ∑ 𝑣𝑖(𝑡)∅𝑖(𝑥2)

𝑛
𝑖=1   )2

)
1

0

(1

+
𝛿 0.65 𝑑

𝑏
(1 − ∑𝑢𝑖(𝑡)∅𝑖(𝑥1)

𝑛

𝑖=1

+ ∑𝑣𝑖(𝑡)∅𝑖(𝑥2)

𝑛

𝑖=1

 ))𝑑𝑥1

+ 𝜆𝑔(𝑡)∫ ∅𝑗(𝑥1)
1

0

 𝑑𝑥1

− 𝜅 ∫ ∅𝑗(𝑥1)
1

0

 
(∑ 𝑢̇𝑖(𝑡)∅𝑖(𝑥1)

𝑛
𝑖=1 − ∑ 𝑣̇𝑖(𝑡)∅𝑖(𝑥2)

𝑛
𝑖=1 )

(1 − ∑ 𝑢𝑖(𝑡)∅𝑖(𝑥1)
𝑛
𝑖=1 + ∑ 𝑣𝑖(𝑡)∅𝑖(𝑥2)

𝑛
𝑖=1   )3

𝑑𝑥1 (22) 

  

 

∫ ∅j(x2) (∑vi(t)∅i
′′′′(x2)

n

i=1

(+β∑v̈i(t)∅i(x2)

n

i=1

)
1

0

dx2

= −ηα(VDC. +vAC(t))
2
∫ (

∅j(x2)

(1 − ∑ ui(t)∅i(x1)
n
i=1 + ∑ vi(t)∅i(x2)

n
i=1   )2

)
1

0

−(1 +
δ 0.65 d

b
(1 − ∑ui(t)∅i(x1)

n

i=1

+ ∑vi(t)∅i(x2)

n

i=1

 ))U(x2 − ξ)dx2

+ βλg(t)∫ ∅j(x2)
1

0

 dx2

+ ηκ∫ ∅j(x2)
1

0

(∑ u̇i(t)∅i(x1)
n
i=1 − ∑ v̇i(t)∅i(x2)

n
i=1 )

(1 − ∑ ui(t)∅i(x1)
n
i=1 + ∑ vi(t)∅i(x2)

n
i=1   )3

dx2 (23) 

  

In order to simplify the Equations (22) and (23) and solve them numerically, 

we multiply both sides of the equations by their denominators to obtain the following 

system of equations 
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∫ ∅j(x1) (∑ui(t)∅i
′′′′(x1)

n

i=1

+ ∑üi(t)∅i(x1)

n

i=1

)
1

0

(1 − ∑ ui(t)∅i(x1)

n

i=1

+ ∑vi(t)∅i(x2)

n

i=1

 )

3

dx1

= α(VDC + vAC(t))
2
∫ ∅j(x1) (1

1

0

+
δ 0.65 d

b
(1 − ∑ui(t)∅i(x1)

n

i=1

+ ∑vi(t)∅i(x2)

n

i=1

))(1

− ∑ui(t)∅i(x1)

n

i=1

+ ∑vi(t)∅i(x2)

n

i=1

)dx1

+ λg(t)∫ ∅j(x1)
1

0

(1 − ∑ui(t)∅i(x1)

n

i=1

+ ∑vi(t)∅i(x2)

n

i=1

 )

3

dx1

− κ∫ ∅j(x1)
1

0

(∑u̇i(t)∅i(x1)

n

i=1

− ∑v̇i(t)∅i(x2)

n

i=1

)dx1 (24) 
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∫ ∅𝑗(𝑥2) (∑𝑣𝑖(𝑡)∅𝑖
′′′′(𝑥2)

𝑛

𝑖=1

+ 𝛽 ∑𝑣̈𝑖(𝑡)∅𝑖(𝑥2)

𝑛

𝑖=1

)
1

0

(1 − ∑𝑢𝑖(𝑡)∅𝑖(𝑥1)

𝑛

𝑖=1

+ ∑𝑣𝑖(𝑡)∅𝑖(𝑥2)

𝑛

𝑖=1

  )

3

d𝑥2

= −𝜂𝛼(VDC + 𝑣AC(𝑡))
2
∫ ∅𝑗(𝑥2) (1

1

0

+
δ 0.65 𝑑

𝑏
(1 − ∑ 𝑢𝑖(𝑡)∅𝑖(𝑥1)

𝑛

𝑖=1

+ ∑𝑣𝑖(𝑡)∅𝑖(𝑥2)

𝑛

𝑖=1

))(1

− ∑𝑢𝑖(𝑡)∅𝑖(𝑥1)

𝑛

𝑖=1

+ ∑𝑣𝑖(𝑡)∅𝑖(𝑥2)

𝑛

𝑖=1

)𝑈(x2 − 𝜉) d𝑥2

+ 𝛽λ𝑔(𝑡)∫ ∅𝑗(𝑥2) (1 − ∑𝑢𝑖(𝑡)∅𝑖(𝑥1)

𝑛

𝑖=1

1

0

+ ∑𝑣𝑖(𝑡)∅𝑖(𝑥2)

𝑛

𝑖=1

  )

3

d𝑥2

+ 𝜂𝜅 ∫ ∅𝑗(𝑥2)
1

0

(∑𝑢̇𝑖(𝑡)∅𝑖(𝑥1)

𝑛

𝑖=1

− ∑𝑣̇𝑖(𝑡)∅𝑖(𝑥2)

𝑛

𝑖=1

)  d𝑥2  (25) 

  

The obtained system of ordinary differential equations are numerically 

integrated using the Runge-Kutta method to simulate the dynamic response of the 

microsystem. 

In the present study, we consider microbeams of different geometric and 

material properties to investigate the static and dynamic behavior under varying 

operating conditions (electric actuation and mechanical shock). The objective is to 

analyze numerically various microsystem designs so that the switches resulting from 

the pull-in instability can be activated at different shock levels based on the application 

of interest. The geometric and material properties of the microbeams under 

consideration are presented in Table 2.1. The case studies of electrically actuated 

microbeams are summarized in Table 2.2. Some of these cases are selected to verify 

the predictive capability of the developed ROM. 
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Table 2.1: Geometric and material properties of the microbeams under investigation [23, 34] 

Reference 𝑙 (μm) 𝑏 (μm) ℎ (μm) 𝑑 (μm) E (GPa)  𝜌 (𝑘𝑔/𝑚3) 

Microbeam1 100 25 3 2 184 2300 

Microbeam2 105 25 3 2 184 2300 

Microbeam3 100 10 0.1 2 169 2300 

Microbeam4 100 10 0.2 2 169 2300 

 

Table 2.2: Case studies under investigation 

Case study Electric actuation Microbeam(s) 

Case study 1 Uncoupled Microbeam1 

Case study 2 Uncoupled Microbeam2 

Case study 3 Coupled Microbeam1- Microbeam1 

Case study 4 Coupled Microbeam1- Microbeam2 

Case study 5 Uncoupled Microbeam3 

Case study 6 Uncoupled Microbeam4 

Case study 7 Coupled Microbeam3- Microbeam3 

Case study 8 Coupled Microbeam3- Microbeam4 
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Chapter 3.  Static Analysis of Electrically actuated Microbeams 

 

In this chapter, we present the simulation results obtained for the static response 

of the electrically actuated cantilever microbeams. We evaluate the static performance 

of the mentioned case studies while using two electrostatic forcing models, namely 

Parallel-plates model and Palmer model.  

3.1. Static Problem: Solution Approach 

The microsystem is actuated by applying the electrostatic forcing and then we 

first analyze the static response and identify the critical DC voltage that leads to the 

pull-in instability onset; that is, the upper limit of the electrical potential at which the 

balance between the structural restoring force and electrostatic force is destroyed and 

the microbeam system collapses. We note that for the static analysis to analyze the pull-

in instability, the time-dependent terms arising from the inertia, the damping, the 

electric actuation (AC voltage), and the shock pulse acceleration in the ROM given by 

Equations (24) and (25) are cancelled while substituting the time-varying modal 

coordinates 𝑢𝑖(𝑡) and 𝑣𝑖(𝑡) by unknown constants 𝐶𝑖 and 𝐷𝑖. We obtain instead the 

following system of nonlinear algebraic equations: 

∫ ∅𝑗(𝑥1) (∑𝐶𝑖 ∅𝑖
′′′′(𝑥1)

𝑛

𝑖=1

)
1

0

(1 − ∑𝐶𝑖∅𝑖(𝑥1)

𝑛

𝑖=1

+ ∑𝐷𝑖∅𝑖(𝑥2)

𝑛

𝑖=1

  )

2

𝑑𝑥1

= 𝛼(𝑉𝐷𝐶)2 ∫ ∅𝑗(𝑥1) (1.+
𝛿 0.65 𝑑

𝑏
(1 − ∑𝐶𝑖(𝑡)∅𝑖(𝑥1)

𝑛

𝑖=1

1

0

+ ∑𝐷𝑖(𝑡)∅𝑖(𝑥2)

𝑛

𝑖=1

))𝑑𝑥1 (26) 
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∫ ∅𝑗(𝑥2) (∑𝐷𝑖∅𝑖
′′′′(𝑥2)

𝑛

𝑖=1

)(1 − ∑𝐶𝑖∅𝑖(𝑥1)

𝑛

𝑖=1

+ ∑𝐷𝑖∅𝑖(𝑥2)

𝑛

𝑖=1

  )

2
1

0

𝑑𝑥2

= −𝜂𝛼(𝑉𝐷𝐶)2 ∫ ∅𝑗(𝑥2) (1.+
𝛿 0.65 𝑑

𝑏
(1

1

0

− ∑𝐶𝑖(𝑡)∅𝑖(𝑥1)

𝑛

𝑖=1

+ ∑𝐷𝑖(𝑡)∅𝑖(𝑥2)

𝑛

𝑖=1

))𝑈(𝑥2 − 𝜉) 𝑑𝑥2 (27) 

  

  

3.2. Convergence Analysis and Validation 

In this section, we neglect the Fringing-field effect and consider the parallel 

palate electrostatic force model by setting the parameter δ = 0. We solve numerically 

the governing equations of the static problem given by Equations (26)-(27) while 

varying the value of the DC voltage. We first analyze the convergence behavior of the 

static response as the number of mode shapes is increased from 1 to 4. The results are 

shown in Figure 3.1. Similar to the typical static response of electrostatic actuators, the 

curves show an increasing trend in the beam deflection as the DC voltage increases 

until reaching the pull-in instability. We note that only the stable branch of solutions is 

shown in Figure 3.1. The use of 3 modes is observed to lead to an acceptable 

convergence of the static response of the coupled system. For the subsequent analysis, 

the same number of modes is considered. 

 

Figure 3.1: Static Pull-in convergence 
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To verify the numerical prediction of the developed reduced-order model given 

by Equations (26)-(27), we simulate the static response of the microbeam system under 

DC excitation using the finite element software ANSYS. A convergence analysis is 

carried out to obtain invariant simulation results under mesh refinement. As shown in 

Figure 3.2, the results obtained from the present model compare very well with the 

numerical simulations based on the finite element model.  

 

 

 

Figure 3.2: Static response to DC excitation for case study 1: comparison against numerical results 

obtained from finite element (FE) model in ANSYS 

(b) FE model (ANSYS) 

(a) Static response 



36 

 

3.3. Static Response based on Parallel-plate Model  

We use the reduced-order model to obtain the static response of the 

microsystem under DC actuation for all case studies reported in Table 3.2. The 

simulation results are displayed in Figure 3.3. We note that the response corresponding 

to the coupled dual beam system is taken as the maximum relative distance between 

the two vibrating beams until the occurrence of pull-in (i.e., they touch each other). We 

observe that the dual beam resonator is more sensitive to DC actuation and the pull-in 

voltage is lower when compared to the single beam case (with fixed electrode). The 

relative distance between the two movable beams for the dual beam resonator is found 

the same as the displacement of the single beam system just before the occurrence of 

the pull-in. This distance is about 0.88 μm. The present results are in good agreement 

with those obtained numerically by Ilyas et al. [34]. The vertical dashed lines in Figure 

3.3(a) denote the experimental values of the pull-in voltage obtained by Ilyas et al. [34] 

by varying the voltage against current using Keithley parameter analyzer. The 

numerical predictions of the static pull-in voltages are close to their experimental 

counterparts.  

 

 (a) Case studies 1-4. 



37 

 

 

Figure 3.3: Static response to DC excitation for the different case studies (dual and single beam 

systems): comparison against previous works. The vertical dashed lines denote the experimental values 

of the pull-in voltage obtained by Ilyas et al. [34]. 

The maximum distance between the single beam and the fixed electrode is 

denoted by 𝑤𝑚𝑎𝑥 . For the dual beam case, the maximum relative distance between 

the two microbeams for is denoted by (𝑤1 − 𝑤2)𝑚𝑎𝑥 . 

The static pull-in voltage of the single beam (uncoupled actuation) can be 

approximated by the following analytical expression [1] 

𝑉𝑝𝑢𝑙𝑙−𝑖𝑛 = √
1.72

𝛼1
 (28) 

  

As for the dual beam case (coupled actuation) when considering identical 

beams (i.e., 𝛽= 1), the static pull-in voltage can be approximated as [34] 

𝑉𝑝𝑢𝑙𝑙−𝑖𝑛 = √
0.868

𝛼1
 (29) 

  

(b) Case studies 5-8. 
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Table 3.1 presents the values of the pull-in voltage obtained for all cases under 

investigation. The pull-in voltages obtained from the present study are compared to 

those reported in previous theoretical and experimental studies when considering 

similar beam configurations. A good agreement between the two sets of data is 

obtained. This demonstrates the capability of the current numerical model to predict 

accurately the static pull-in voltage. We note that the analytical formulas given by 

Equations (28) and (29) provide good approximation of the pull-in voltages for both 

single and dual beam cases. However, this is only valid when considering identical 

beams for the dual beam resonator and here comes the need for the numerical model to 

simulate any generic case. As expected, longer and/or thinner beam, being less stiff and 

having the tendency to bend more, leads to lower pull-in voltages. A reduction of 29-

36% in the pull-in voltage is obtained when switching from the single beam case 

(uncoupled actuation) to dual beam case (coupled actuation). As such, dual beam 

microsystems seem to be more attractive for switching applications due to low power 

requirements to trigger the pull-in. Moreover, the relative travel distance between the 

two movable beams for the dual beam resonator is found to be the same as the distance 

traveled by the single beam system just before the occurrence of the pull-in.  

 

Table 3.1: Static Pull-in voltages obtained for the cases under consideration (coupled and uncoupled 

actuation): comparison against previous theoretical and experimental studies. 

Case 

study 

Theoretical 

Present (V) 

Analytical 

approximation 

equations (28)-(29) 

(V) 

Theoretical 

Previous studies 

[34], [23] (V) 

Experimental 

Previous 

studies [34] 

(V) 

1 123.5 125 123.4 124 

2 112 113.5 109.5 103 

3 79 80.5 78.9 - 

4 75.1 - 74.9 71 

5 0.6529 0.6616 0.652 - 

6 1.847 1.871 - - 

7 0.4617 0.47 - - 

8 0.61557 - - - 

 

We examine the effect of the DC voltage on the pull-in time (i.e., the switching 

time taken by the microbeam to touch the other fixed/movable electrode at the 

occurrence of the pull-in). We consider case studies 5 and 7 that correspond to single 
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and dual beam configurations, respectively, to investigate the influence of the 

microsystem’s design on the switching time. The obtained results are shown in Figure 

3.4. Increasing the DC voltage beyond the pull-in voltage speeds up the snap-through 

of the beams. Clearly, the dual beam design enables a significant improvement in the 

switching time when compared to the single beam case. The dual beam system reduces 

the switching time by 35% to 45% for a DC voltage up to 1 V. These observations are 

consistent with the results reported by Ilyas et al. [34] and show the potential use of 

dual beam resonators as MEMS switches which are expected to trigger quickly a signal 

in response to a mechanical shock to activate safety functionalities such as airbag 

systems. This will be investigated in the next section when analyzing the dynamic 

response of the microsystem under mechanical shock. 

 

Figure 3.4: Variations of the switching time with the DC voltage for the single and dual beam cases. 

3.4. Static Response: Fringing Field Effect 

Setting the parameter δ equal to 1 Equations (24) and (25) allows for 

considering the Fringing-fields effect via the Palmer model. By simulating the 

equations, we observe a significant difference in pull-in voltages between the two 

electrostatic models; Parallel-plates and Palmer models. A % 4.24 reduction in the pull-

in voltage is observed for both single and dual beams when accounting for the fringing-
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fields. Moreover, the overall deflection of the microbeam is also affected as shown in 

Figure 3.5. 

 

Figure 3.5: Static response to DC excitation for single and dual beams under Parallel plate and Palmer 

electrostatic models 

To gain a better understanding of the microsystem behavior, we conduct a 

parametric study to test the response of different microbeam dimensions to Fringing 

field effect. First, we vary the width denoted by b of the single and dual beams and 

record the static pull-in voltage as shown in Table 3.2. We notice that, for all values of 

different microbeam widths, the Parallel-plate model gives the exact same pull-in 

voltage. On the other hand, Palmer model shows a significant change in pull-in voltage 

when varying the microbeam width. In particular, this change becomes steep for thinner 

microbeams, that is smaller width microbeams (b<<1) as shown in Figure 3.6. 

 

 

 

 

 

 



41 

 

 

Table 3.2: Pull-in voltage difference between Parallel-plate and Palmer models of electrostatic force 

while varying the microbeam width (b) 

 

b (μm) 

Single beam pull-in voltage (V) Dual beam pull-in voltage (V) 

Parallel-plate Palmer %Diff Parallel-plate Palmer %Diff 

10 0.6529 0.6258 %4.24 0.46167 0.4425 %4.24 

9 0.6529 0.6231 %4.67 0.46167 0.4406 %4.67 

8 0.6529 0.6196 %5.23 0.46167 0.4381 %5.23 

7 0.6529 0.6153 %5.92 0.46167 0.4351 %5.92 

6 0.6529 0.6097 %6.84 0.46167 0.4311 %6.84 

5 0.6529 0.6022 %8.08 0.46167 0.4258 %8.08 

4 0.6529 0.5914 %9.89 0.46167 0.4182 %9.89 

3 0.6529 0.5747 %12.7 0.46167 0.4064 %12.7 

2 0.6529 0.5454 %17.9 0.46167 0.3857 %17.9 

1 0.6529 0.4797 %30.6 0.46167 0.3392 %30.6 

 

 

Figure 3.6:  Pull-in voltage for different beam widths (Case study 5) 

Next, we examine the impact of the gap distance (the initial distance between 

the microbeam and the fixed electrode) on the static response for the single beam and 
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(initial distance between the two microbeams) for the dual beam case. The gap distance 

denoted by d is varied and the pull-in voltage for each case is computed and reported 

in Table 3.3. It can be noted that, for the single beam and dual beam cases, the two 

electrostatic models namely parallel plates and Palmer, deviate when increasing the gap 

distance as shown in Figure 3.7. Furthermore, no significant difference of the Fringing-

fields effect on the dual beam in comparison with the single beam is observed at high 

and moderate gap distances. However, at smaller gap distances, the Fringing-fields 

effect has more pronounced impact on the dual beam case in comparison with single 

beam case.  

Table 3.3: Pull-in voltage difference between Parallel-plate and Palmer models of electrostatic force 

when varying the gap distance (d) 

 

d (μm) 

Single beam pull-in voltage (V) Dual beam pull-in voltage (V) 

Parallel-

plate 

Palmer %Diff Parallel-

plate 

Palmer %Diff 

12 9.595 7.789 %20.8 6.7852 5.5082 %20.8 

9 6.232 5.286 %16.4 4.4071 3.7377 %16.4 

7 4.275 3.742 %13.3 3.023 2.6464 %13.3 

5 2.58 2.337 %9.88 1.8249 1.653 %9.89 

3 1.199 1.127 %6.19 0.8481 0.7971 %6.2 

2.5 0.9124 0.866 %5.22 0.6452 0.6123 %5.23 

2 0.6529 0.6258 %4.24 0.4616 0.4425 %4.23 

1.5 0.424 0.4106 %3.21 0.2998 0.2904 %3.19 

1 0.23 0.2258 %1.84 0.1632 0.1597 %2.17 

We conclude that, for MEMS system designs having a ratio of  (
𝑏

𝑑
) ≪ 1, the 

Fringing field represented by Palmer model has a dominant effect and its corresponding 

static response greatly deviates from that obtained from the Parallel plate model. For 

example, for the case (
𝑏

𝑑
) = 0.0833, a 58.8% is the percentage difference between pull-

in voltages obtained from the two models for the single beam case. 𝑉𝑝𝑢𝑙𝑙−𝑖𝑛 = 9.595 V 

is obtained from parallel plates model, and 𝑉𝑝𝑢𝑙𝑙−𝑖𝑛 = 3.953V is found when 

accounting for the Fringing field via Palmer model.  
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Figure 3.7: Pull-in voltage for different gap distances (Case study 5) 
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Chapter 4. Dynamic Analysis of Electrically-actuated Microbeams 

 

In this chapter, we formulate and solve the eigenvalue problem to compute the 

natural frequencies of the electrically-actuated microbeams under DC voltage when 

accounting for the Fringing-field effect. We also generate the frequency-response 

curves when activating the AC voltage.  

4.1. Natural Frequencies under Electrostatic Forcing 

Operating near resonance is recommended for several applications such as 

resonant sensors and filters to amplify the microbeam motion and achieve higher output 

signal or to trigger the pull-in instability (e.g., microswitches). As such, we follow 

Younis [1] to formulate the eigenvalue problem and evaluate the natural frequencies of 

the coupled system under electrostatic forcing. To do so, the deflections of the 

microbeams are split into a static component, resulting from the DC actuation, 

𝑤1,2
𝑠 (𝑥1,2) and a dynamic component 𝑤1,2

𝑑 (𝑥1.2, 𝑡) : 

𝑤1,2(𝑥1,2, 𝑡) = 𝑤1,2
𝑠 (𝑥1,2) + 𝑤1,2

𝑑 (𝑥1,2, 𝑡) (30) 

Substituting Equation (30) into Equations (16) and (17), dropping the damping, 

mechanical shock, and SQFD terms, linearizing the nonlinear electrostatic forcing 

around the static position, and the first-order terms in 𝑤1,2
𝑑  results in the following 

linearized equation: 

𝑤̈1
𝑑(𝑥1, 𝑡) + (𝑤1

𝑑(𝑥1, 𝑡))
′′′′

=
2𝛼(𝑉𝐷𝐶  )2

(1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
3 (1.+

𝛿 0.65 𝑑

𝑏
(1 − 𝑤1

𝑠(𝑥1)

+ 𝑤2
𝑠(𝑥2))) (𝑤1

𝑑(𝑥1, 𝑡) − 𝑤2
𝑑(𝑥2, 𝑡)) (31) 
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𝛽𝑤̈2
𝑑(𝑥2, 𝑡) + (𝑤2

𝑑(𝑥2, 𝑡))
′′′′

=
−2𝛼𝜂(𝑉𝐷𝐶  )2

(1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
3 (1.+

𝛿 0.65 𝑑

𝑏
(1 − 𝑤1

𝑠(𝑥1)

+ 𝑤2
𝑠(𝑥2))) (𝑤1

𝑑(𝑥1, 𝑡) − 𝑤2
𝑑(𝑥2, 𝑡)) (32) 

  

To solve the eigenvalue problem associated with the above linearized equations 

and obtain the natural frequencies of the coupled system, we use again the Galerkin 

method and expand the dynamic components as 

𝑤1
𝑑(𝑥1, 𝑡) = ∑𝑢𝑖(𝑡)∅𝑖(𝑥1)

𝑛

𝑖=1

 (33) 

  

𝑤2
𝑑(𝑥2, 𝑡) = ∑𝑣𝑖(𝑡)∅𝑖(𝑥2)

𝑛

𝑖=1

 (34) 

  

Substituting Equations (33) and (34) into Equations (31) and (32), multiplying 

the outcome by ∅𝑗and integrating the resulting equations from 0 to 1, we obtain 

∑𝑢̈𝑖(𝑡)

𝑛

𝑖=1

∫ ∅𝑗(𝑥1)∅𝑖(𝑥1)
1

0

𝑑𝑥1 + ∑ 𝑢𝑖(𝑡)∫ ∅𝑗(𝑥1)∅𝑖′′′′(𝑥1)𝑑𝑥1

1

0

𝑛

𝑖=1

= ∑[∫ ∅𝑗(𝑥1)
1

0

∅𝑖(𝑥1)
2𝛼(𝑉𝐷𝐶)2

(1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
3 (1.+

𝛿 0.65 𝑑

𝑏
(1

𝑛

𝑖=1

− 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2)))𝑑𝑥1] (𝑢𝑖(𝑡) − 𝑣𝑖(𝑡)) (35) 

  

 

𝛽 ∑𝑣̈𝑖(𝑡)

𝑛

𝑖=1

∫ ∅𝑗(𝑥2)∅𝑖(𝑥2)
1

0

𝑑𝑥2 + ∑𝑣𝑖(𝑡)∫ ∅𝑗(𝑥2)∅𝑖′′′′(𝑥2)𝑑𝑥2

1

0

𝑛

𝑖=1

= ∑[∫ ∅𝑗(𝑥1)∅𝑖(𝑥1)
1

0

2𝛼(𝑉𝐷𝐶)2

(1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
3 (1. +

𝛿 0.65 𝑑

𝑏
(1

𝑛

𝑖=1

− 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2)))𝑑𝑥2] (𝑢𝑖(𝑡) − 𝑣𝑖(𝑡)) (36) 
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Replacing the term ∅𝑖
′′′′ by 𝜔𝑖

2∅𝑖 and making use of the mode shapes 

orthogonality, we simplify the Equations (35) and (36)  

üj(t) + ωi
2uj(t)

= α(VDC)
2 ∑[∫ ∅j(x1) ∅i(x1)

1

0

(
2

(1 − w1
s(x1) + w2

s(x2))
3

n

i=1

+
δ 0.65 d

b (1 − w1
s(x1) + w2

s(x2))
2)dx1] (uj(t) − vj(t)) (37) 

  

 

𝛽𝑣̈𝑗(𝑡) + 𝜔𝑖
2𝑣𝑗(𝑡)

= −𝜂𝛼(𝑉𝐷𝐶)2 ∑[∫ ∅𝑗(𝑥2) ∅𝑖(𝑥2)
1

0

(
2

(1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
3

𝑛

𝑖=1

+
𝛿 0.65 𝑑

𝑏 (1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
2)𝑑𝑥2] (𝑢𝑗(𝑡) − 𝑣𝑗(𝑡)) (38) 

  

 

Equations (37) and (38) can be expressed in matrix form as 

[
 
 
 
 
 
 
 
𝑢̈1

𝑢̈2

:
𝑢̈n

𝑣̈1

𝑣̈2

:
𝑣̈𝑛]

 
 
 
 
 
 
 

= 𝑀

[
 
 
 
 
 
 
 
𝑢1

𝑢2

:
𝑢𝑛

𝑣1

𝑣2

:
𝑣𝑛]

 
 
 
 
 
 
 

 

(39) 

  

where 𝑀 is 2n x 2n matrix and its constant coefficients are: 

 

For i =1 … 𝑛 and j =1 … 𝑛 

𝑀𝑖,𝑗 = 𝛿𝑖,𝑗𝜔𝑖
2 − 𝛼(𝑉𝐷𝐶)2 ∫ ∅𝑗(𝑥1) (

2

(1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
3

1

0

+
𝛿 0.65 𝑑

𝑏 (1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
2)𝑑𝑥1 (40) 

  

For i =1…. 𝑛 and j = 𝑛+1 … 2𝑛 
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𝑀𝑖,𝑗 = 𝛼(𝑉𝐷𝐶)2 ∫ ∅𝑗(𝑥1) (
2

(1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
3

1

0

+
𝛿 0.65 𝑑

𝑏 (1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
2)𝑑𝑥1 (41) 

  

For i = 𝑛 +1…..2𝑛 and j =1 … 𝑛 

𝑀𝑖,𝑗 = 𝛼(𝑉𝐷𝐶)2 ∫ ∅𝑗(𝑥2) (
2

(1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
3

1

0

+
𝛿 0.65 𝑑

𝑏 (1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
2)𝑑𝑥2  (42) 

  

For i = 𝑛+1…. 2𝑛 and j =1…. 𝑛 

𝑀𝑖,𝑗 = 𝛿𝑖,𝑗

1

𝛽
𝜔𝑖

2

− 𝛼(𝑉𝐷𝐶)2 ∫ ∅𝑗(𝑥2) (
2

(1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
3

1

0

+
𝛿 0.65 𝑑

𝑏 (1 − 𝑤1
𝑠(𝑥1) + 𝑤2

𝑠(𝑥2))
2)𝑑𝑥2  (43) 

  

where 𝛿𝑖,𝑗 = 1 if i = j otherwise 0. To compute the natural frequencies of the coupled 

system under DC excitation, we first determine the static deflections of the microbeams 

𝑤1
𝑠(𝑥1, 𝑡) and 𝑤2

𝑠(𝑥2, 𝑡) by solving Equations (26) and (27), compute the coefficients 

𝑀𝑖,𝑗 as given by Equations (40)-(43), and then calculate the eigenvalues of the matrix 

M. The natural frequencies are obtained by taking the square roots of these eigenvalues. 

Figure 4.1 displays the variations of the natural frequencies with the DC voltage 

for the different cases under investigation. Some results as shown in Figure 4.1 (a) are 

compared to those obtained numerically by Ilyas et al. [34]. Again, a good agreement 

between the two sets of data is observed. Shorter and/or thicker beams result in higher 

natural frequencies as can be seen in Figure 4.1 (a) and Figure 4.1 (b) while lower 

values are obtained when considering electrically-coupled beams in comparison to the 

single beam actuated by a fixed electrode. This indicates the possible use of dual beam 

resonators when lower operating frequency range is required. 
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(a) Case studies 1-3 

(b) Case study 4 
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Figure 4.1: Variations of the natural frequency with the DC voltage for the different case studies (dual 

and single beam systems): comparison against previous works. Note that the results obtained by Ilyas 

et al. [34] are originally reported in the nondimensional form 

 

(d) Case study 8 

(c) Case studies 5-7 
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Next, we study the effect of the fringing-fields on the system’s natural 

frequency by considering the Palmer model. As shown in Figure 4.2, incorporating the 

Fringing field results in lower frequencies given the voltage. The graph shows also a 

lower pull-in voltage when accounting for the Fringing field effect as demonstrated by 

the sharp drop in the natural frequency. Again, the difference in the natural frequency 

obtained when using the two electrostatic forcing terms (with and without Fringing 

field impact) is larger when considering a smaller width-to-gap ratio. 

 

Figure 4.2: Effect of fringing fields on the natural frequency of single and dual beams 

4.2. Frequency Response: Effect of Electric Actuation and Microsystem 

Design 

We activate the AC excitation and examine the dynamic response of the 

microsystems for the cases under study. Figure 4.3 displays the frequency responses of 

the microsystems for different AC and DC voltages near the primary resonance as 

identified in the previous section. Figure 4.3 (a) and (b) show that the increase in the 

DC voltage shifts the frequency response curves to the left due to the softening effect 

of the electrostatic forcing. Clearly, varying the AC voltage affects significantly the 

frequency-response curves. As expected, increasing the AC voltage results in the 

amplification of the microbeam motion. For low AC and DC voltages, the system 

behavior is nearly-linear. For higher AC excitation, we observe the occurrence of 

dynamic pull-in bandwidth in the frequency response curves; that is, only unstable 
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solutions of the microbeam dynamics. For instance, the analysis of case study 1 (single 

beam) shows that the fold bifurcation (turning point) takes place at 2.38 MHz when 

setting the DC and AC voltages equal to 95 V and 7 V, respectively (see Figure 4.3(a)). 

Operating with an excitation frequency between 2.38 MHz and 2.5 MHz results in the 

dynamic pull-in. The frequency response curves exhibit expanded pull-in bandwidth 

when operating the dual-beam systems near the primary resonance. Figure 4.3 (b) 

shows that the pull-in bandwidth reaches 250 kHz when actuating the microbeams at a 

DC voltage of 60 V and an AC voltage of 5 V. As shown in Figure 4.3 (c) and (d), the 

pull-in bandwidth increases from 5 kHz to 17 kHz when shifting from the single beam 

to the dual beam system (case studies 5 and 7) while applying a DC voltage of 0.2 V 

and an AC voltage of 0.15 V for both cases. This presents an undesirable effect for the 

reliability of some MEMS devices such as resonant sensors. 

 

 (a) Case study 1 (Single beam). 
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(b) Case study 3 (dual beam - identical). 

(c) Case study 5 (Single beam). 
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Figure 4.3: Frequency response curves of the microsystem for varying DC and AC voltages for the 

different case studies (dual and single beam systems). Results are shown near the primary resonance 

However, this phenomenon can be deployed to design MEMS switches that are 

triggered by the presence of gas [10, 12, 28], biological mass [7, 8, 9], or actuated at or 

beyond a specific level of mechanical shock or acceleration [21, 22, 23]. The frequency 

response curves of the dual beam system made of microbeams with different thickness 

shown in Figure 4.4 exhibit two peaks near the natural frequencies related to each 

microbeam at low AC and DC voltages. Inspecting these frequency response curves, 

we observe that higher amplitudes are obtained near the resonance frequency of the 

thinner microbeam being more flexible and then it is influenced more by the 

electrostatic coupling in comparison to the thicker microbeam. Higher electric 

actuation results in the appearance of two dynamic pull-in bandwidths in the frequency 

response curves. This indicates that dual beam systems composed of nonidentical 

beams seem to enable more tunability for switching applications but less control on the 

safe operation frequency range for other microsystems, which are expected to operate 

away from the pull-in instability.  

(d) Case study 7 (dual beam - identical). 
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Figure 4.4: Frequency response curves of the microsystem for varying DC and AC voltages for case 

study 8 (dual beam system). Results are shown near the primary resonance. 

The subharmonic frequency of approximately 0.16 MHz causes interesting 

dynamics in the beams due to the square nonlinearity. It can be noted that the effect of 

this frequency is enabled at a certain AC voltage for a fixed DC voltage. In the present 

(b) VDC = 0.4 𝑉 

(a) VDC = 0.2 𝑉 
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case, an AC voltage of approximately 0.1 V enables the beams in case of 0.4 V to have 

an increase in their relative deflection. The subharmonic frequency effect on the 

microstructure appear interesting in some applications. For example, Younis [8] has 

proved that, for gas detection applications, operating near the subharmonic frequency 

of a single beam improves the sensitivity. Unlike the natural frequency, subharmonic 

frequency shows a sharp transition from low to high beam deflection due to a very 

small change in frequency.  
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Chapter 5. Shock Response of Electrically-actuated Microbeams 

 

In this chapter, we consider the full mathematical model of the electrically-

actuated microbeams under mechanical shock while accounting for the squeeze film 

damping and Fringing field effect. The effect of shock amplitude and duration under 

different DC and AC excitations is investigated for different case studies. 

5.1. Effect of Microsystem Design on the Shock Response 

Several research studies have reported failures in the operation of electrically 

actuated MEMS resonators when undergoing mechanical shocks. As such, we simulate 

the response of different designs of resonators (as outlined in Tables 3.1 and 3.2) under 

the combination of electrostatic forcing and mechanical shock. The objective of this 

study is twofold: to assess the robustness of the microstructure to withstand different 

levels of shock loads and to investigate the possible use of novel designs for switching 

applications. Figure 5.1 shows the shock function used in the dimensionless form.  

 

Figure 5.1: The considered shock function in the dimensionless form 

Figure 5.2 show a linear decreasing trend in the dynamic pull-in voltage 𝑉𝐷𝑃𝐼 

for the single beam system (case study 1) when increasing the shock amplitude. The 

values of 𝑉𝐷𝑃𝐼 are estimated by gradually increasing the applied DC voltage until the 

onset of the pull-in. The results are obtained for 𝑉𝐴𝐶 = 0 V and 𝑉𝐴𝐶 = 6 V and the shock 

duration T is set equal to 1 ms. High shock loading levels in the order of hundreds of 

thousands of g’s. are required to reduce the pull-in voltage. The slopes are found equal 
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to −1.137 X10−4 and  −0.8625  X10−4 for 𝑉𝐴𝐶 = 0 V and 𝑉𝐴𝐶 = 6 V, respectively. 

We show also the time histories obtained for different shock amplitudes while keeping 

the DC and AC voltages equal to 50 V and 6 V, respectively. Before reaching the 

critical value of the shock amplitude (a0
𝑐= 419,000 g), we observe an amplification of 

the time response once the microsystem undergoes the mechanical shock and then 

followed by the recovery to the original oscillations. For shock amplitudes higher than 

a0
𝑐, the microbeam collapses and hits the fixed electrode. 

 

 

Figure 5.2: Variations of the dynamic pull-in voltage with the amplitude of the mechanical shock (case 

study 1) 

To enhance the sensitivity of the microsystem to the mechanical shock, we 

consider thinner microbeams and analyze the dynamic response for case studies 5-8. 

We note case study 5 is similar to the one reported in [23]. The results are obtained 

when applying only DC voltage and mechanical shock with different pulse times (T = 

1 ms and T = 0.1 ms). The present numerical predictions of the dynamic pull-in voltages 

compare well with those obtained by Younis et al. [23] using the finite element software 

ANSYS (see Figure 5.3). Of interest, we observe that the dual beam is much less 

sensitive to the mechanical shock when compared to the single-beam case. Similar 

observations can be made even when considering microbeams of different thickness 

(case study 8). The simulation results indicate that dual-beam systems are more robust 
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in terms of resistance to mechanical shock and provide a reliable design for the 

operation of MEMS devices in harsh environments characterized by high shock levels.  

 

 

 

Figure 5.3: Variations of the dynamic pull-in voltage with the amplitude of the mechanical shock: (a) 

quasi-static (T = 1 ms) and (b) dynamic loading case (T = 0.1 ms). Results are compared to those 

reported by Younis et al. [23] 

Figure 5.2 and Figure 5.3 show the possible tunability of switches (deploying 

single beams) with operation ranges varying from few hundreds to hundreds of 

(b) 

(a) 
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thousands of g’s depending on the application of interest. For instance, microbeam 

systems sensitive to low g accelerations can be used for the detection of earthquake 

signals and the activation of other functionalities such as alarm or a network of sensors 

for seismic activity recording [22]. Switches operating at high shock levels are 

commonly used for military purposes [25] [26]. 

To examine the impact of the geometry on the system’s response, we consider 

different dual beam thickness to simulate the asymmetric dual beam behavior under 

shock. We plot in Figure 5.4 the variations the dynamic pull-in voltage with the shock 

amplitude while varying the difference in the thickness of the two beams. Clearly, 

breaking the symmetry renders the dual beam system more sensitive to mechanical 

shock and results in the snap-through of the two beams at lower shock amplitudes. 

Setting ℎ1and ℎ2 equal to 0.1 𝜇m and 0.2 𝜇m, respectively, leads to similar trend as 

that of the single beam case. It can be noted that microbeam resistance to mechanical 

shock is gradually increasing as the two beam thicknesses approach to each other (as 

shown in Figure 5.4).  

 

Figure 5.4: Variations of the dynamic pull-in voltage with the amplitude of the mechanical shock for 

different thickness under mechanical shock of 1 ms duration.  

To examine the effect of the pulse time (shock duration) T on the dynamic 

response of the microbeam, we plot in Figure 5.5 the time histories of the tip deflection 

under combined impact of DC actuation and shock load for T =1 ms and T =0.1 ms 

(case study 5). The figure shows the stable and unstable responses. The dynamic pull-

in for this single microbeam without accounting for the effect of the mechanical shock 
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is found equal to 0.6 V which is equal to the value reported by Younis et al. [18]. The 

time histories depicted in Figure 5.5 show that the dynamic pull-in voltage reduces to 

0.37 V and 0.29 V when setting the pulse time T equal to 1 ms and 0.1 ms, respectively. 

As observed by Younis et al. [18] and Askari and Tahani [24], setting the pulse time 

close to the natural period of the microbeam (T =0.1 ms for the present microsystem) 

results in dynamic response while higher pulse time (T =1 ms) leads to quasi-steady 

response. These results are consistent with those reported in [18]. 

 

 

 

Figure 5.5: Stable and unstable time history of the microbeam tip: (a) quasi-static (T = 1 ms) and (b) 

dynamic loading case (T = 0.1 ms). 

(a) 

(b) 
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Next, we incorporate the AC actuation and depict in Figure 5.6 the variations 

of the dynamic pull-in voltage with the shock amplitude for varying AC voltages (case 

study 8). The excitation frequency is set equal to 49.5 kHz and the shock pulse time is 

considered equal to 0.1 ms. for all simulated cases. The dual beam system is found 

insensitive to mechanical shock up to a critical value. Beyond this value, the dynamic 

pull-in voltage decreases slightly when increasing the shock amplitude a0. For instance, 

a reduction of 25% in the dynamic pull-in voltage is observed when the microsystem 

is excited with an AC voltage of 0.05 V and undergoes a shock of magnitude 1000 g. 

As such, the dual beam composed of electrically-actuated microbeams with different 

geometrical properties can be used for switching applications. 

 

Figure 5.6: Variations of the dynamic pull-in voltage with the amplitude of the mechanical shock for 

different AC voltages (case study 8). 

5.2. Shock Behavior near Resonance 

We inspect the dynamic behavior of the microsystem under the mechanical 

shock when applying an AC voltage with different excitation frequencies. Following 

Jrad et al. [20], we define the lowest detectable acceleration (LDA) as the minimum 

shock amplitude required to trigger the pull-in of the microbeam. Figure 5.7 displays 

the variations of LDA with the DC voltage for different AC voltages while varying the 

excitation frequency. The obtained results correspond to case study 5 (single beam 

case). As shown in Figure 5.7 (a), setting the excitation frequency equal to 49.5 kHz 
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(away from the natural frequency) results in linear decreasing trend in the variations of 

LDA with the DC voltage VDC. On the other hand, Figure 5.7 (b) shows that operating 

near the primary resonance (the excitation frequency is set equal to 79.2 kHz) affects 

significantly the slopes of the LDA-𝑉𝐷𝐶 curves and leads to a sudden drop in the LDA 

values within a range of the DC voltage. This drop shows the weakness of the 

microstructure being excited within the dynamic pull-in bandwidth for this range of 

DC voltage. For instance, when applying an AC voltage of 0.05 V we observe the 

occurrence of a local minimum of the LDA for 𝑉𝐷𝐶 =  0: 35 V. Setting the AC voltage 

equal to 0.1 V results in zero LDA for 𝑉𝐷𝐶 ranging from 0.3 V to 0.5 V. We notice that 

the range of the shock amplitudes is not affected by the excitation frequency. For the 

two cases, it varies between 0 and 800 g. However, it should be noted from Figure 5.7 

that the deployment of the electrically-actuated microsystem for switching applications 

would require less power when activating the AC excitation and selecting the frequency 

near the primary resonance. 

 

 (a) 



63 

 

 

Figure 5.7: Variations of the lowest detectable acceleration (LDA) with the DC voltage for different 

AC voltages (case study 5): (a) away from the primary resonance, (b) near the primary resonance. 

 

5.3. Effect of Squeeze-film Damping on Shock Response 

It is important to consider the SQFD effect in the design of MEMS devices 

especially when operating in ambient air. This would depend on the packaging of the 

MEMS device; that is, the way the vibrating microstructure is capsulated. We show in 

Figure 5.8 (a), (b), and (c) the time histories of the tip deflection for the single and dual 

beam system (symmetric and asymmetric configurations), respectively. We recall that 

the results are shown in terms of the difference between the bending of the two movable 

microbeams for the dual beam system. For both cases, the microsystem is actuated with 

a DC voltage and subject to mechanical shock with an amplitude of 400 g and a duration 

of 𝑇 = 1 ms. Operating in air at ambient pressure level makes the single and dual 

beams more resistive to mechanical shock. The air between the microbeam and 

electrode (fixed or movable) suppresses the vibrations. Applying a DC voltage of 

0.35V near vacuum conditions results in the collapse of the single beam to the fixed 

electrode due to the pull-in instability. However, the same voltage value remains safe 

for the same microsystem when exposing the microbeam to air at ambient pressure 

conditions. Similar trend is obtained for the asymmetric dual-beam system (different 

thickness) which shows greater resistance to mechanical shock when operating in air 

(b) 
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at ambient conditions. Of interest, the symmetric dual-beam system (identical beams) 

shows strong resistance to mechanical shock even when actuated with high DC voltage, 

as the motions of the two beams remain synchronized and in-phase (i.e., the relative 

distance between them remains constant as illustrated in  Figure 5.8 (d) and (e) 

displaying the absolute tip deflection of each beam separately). 

 

(a) Case study 5 (single beam) 

 

(b) Case study 8 (dual-asymmetric) 

 

 

 

 

 

 

(c) Case study 7 (dual-symmetric) 

 

(d) Separate beam analysis in (c) (Near 

vacuum) 

 

 

(e) Separate beam analysis in (c) (Air at 

ambient pressure) 

Figure 5.8: Time histories of the single beam’s tip deflection under 400g shock amplitude. 
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Next, we investigate the effect of the pressure on the microstructure under 

mechanical shock through varying the effective viscosity. We note that the higher the 

applied pressure is, the larger the viscosity of the surrounding fluid is. We plot in Figure 

5.9 the variations of the maximum deflection with the effective viscosity for the single 

and asymmetric dual beam cases while accounting for the SQFD effect. The simulation 

results are obtained for varying shock period (pulse time). The applied DC voltage is 

set equal to 𝑉𝐷𝐶 = 0.4 V and the shock amplitude is maintained at a0 = 400g. The 

obtained curves show similar trend. At the aforementioned DC voltage and shock level, 

the microsystem collapses for low values of the viscosity. For instance, when setting 

the shock period equal to 1 ms, the viscosity of the surrounding fluid (pressurized air) 

should be higher than 0.002 mPa.s in order to avoid the onset of the pull-in instability. 

We note that the viscosity is 0.0184 mPa.s at ambient operating conditions. We observe 

that the maximum deflection decreases as the viscosity is increased and then saturates 

when reaching high values of the viscosity. Therefore, we may conclude that operating 

the microstructure under pressurized air (with higher viscosity) is beneficial in many 

applications to enable stronger protection to mechanical shocks. Of interest, lower 

values of the tip deflection are obtained when decreasing the shock period. 

Furthermore, the saturation of the tip deflection tends to occur at lower viscosity values 

for microbeams under low period shocks. The microbeam shock response is much less 

dependent on the air viscosity when reaching the value of 0.004 mPa.s for 𝑇 =

0.01 ms. Clearly, the SQFD effect is more significant on the dynamic response of the 

microbeam which is obtained when the shock period is close to the natural period of 

the microsystem  𝑇𝑝 = 0.04 ms. The quasi-static shock response obtained for 𝑇 =

1 ms is less affected by the SQFD. These observations are consistent with the findings 

reported in [42].         
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(a) Single beam 

 

(b) Dual beam (asymmetric) 

Figure 5.9: Variations of the maximum tip deflection with the effective viscosity when applying a DC 

voltage of 0.4V and under 400g shock amplitude. (a) Single beam  (b) Dual beam (asymmetric) 

The initial gap distance between the two beams (coupled actuation) or the beam 

and the fixed electrode (uncoupled actuation) is an important design parameter 

especially when the SQFD effect is considered. We simulate the single beam and dual 

beam configurations with different gap thicknesses under a shock of amplitude a0 =

400g and without electrostatic forcing. The objective is to verify qualitatively the shock 

behavior compared to that reported in the literature [42]. The maximum tip deflection 
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of the single beam and the maximum relative tip deflection between the two beams in 

the case of dual beam are computed for varying gap distance denoted by d. The 

simulation results are displayed in Figure 5.10. The solid curves denote the microbeam 

shock response obtained when operating in air under ambient conditions. These curves 

show the occurrence of a critical value of the gap distance leading to maximum tip 

deflection. Two different regimes of the system behavior are observed. For the range 

of small gap distances, increasing the value of d yields a decrease in the SQFD force 

and hence an increase in the tip deflection for a fixed shock load. This trend continues 

until reaching a critical point where the SQFD effect appears to be negligible and hence, 

resulting in a decrease in the tip deflection. As the difference in the thickness of the 

two microbeams is increased, the behavior of the asymmetric dual beam approaches 

that of the single beam. Referring to Figure 5.10, the dashed lines denote the simulated 

shock response of the microsystem when operating near vacuum conditions (without 

accounting for the SQFD force). As expected, these microsystems are observed to be 

more vulnerable to collapse under the exposure to shock. The maximum tip deflection 

shows a decreasing trend when increasing the initial gap distance. Again, the dual beam 

systems (even for the asymmetric configuration) have the capability to withstand more 

to mechanical shock. The SQDF effect significantly reduces for large gap distances and 

the shock behavior of the microsystem encapsulated in air (ambient operating 

conditions) approaches that the near vacuum behavior. For the symmetric dual beam 

systems, minor change is observed in the shock response when incorporating the SQFD 

force. 

Next, we simulate the dynamic response of the microsystem subjected to 400g 

shock amplitude under the combined effect of electrostatic force and squeeze-film 

damping. We consider case study 5 and vary the gap thickness. The results are plotted 

in Figure 5.11. Clearly, the activation of the electrostatic force causes an abrupt 

collapse due to dynamic pull-in instability when reaching a critical value of the gap 

distance given the shock amplitude is maintained fixed. Within the stable range of 

operation, the curve showing the shock behavior in air still shows the occurrence of an 

optimal value of the gap distance resulting in the maximum tip deflection. On the other 

hand, operating near vacuum conditions results in decreasing trend of the tip deflection 

when shifting the gap distance to higher values.  
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Figure 5.10: Variations of the maximum relative tip deflection of the beams (dual and single beam 

systems) with the gap distance d under 400g shock amplitude. 

 

Figure 5.11: Variations of the maximum relative tip deflection of the case study 5 (single beam) with 

the gap distance d under mechanical shock of amplitude 400g and electrostatic force. 
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Finally, we generate the least detectable acceleration (LDA) curves to illustrate 

the potential use of the proposed microsystem designs under different operating 

conditions for switching applications. We plot in Figure 5.12 the variations of the 

dynamic pull-in voltage when varying the shock amplitude near vacuum conditions and 

for air under different pressure levels (ambient and low). We recall that the dynamic 

pull-in voltage is the critical voltage at which the microbeam collapses under the effect 

of the shock. The viscosity is set equal to 0.0184 mPa.s and 0.01 mPa.s for the ambient 

and low pressure conditions, respectively. Results are obtained for the single beam and 

dual beam systems while varying the shock period. As expected, operating in air 

induces more resistance to mechanical shock due to the SQFD force for both case 

studies (see Figure 5.12). The LDA curve is nearly-linear under vacuum condition and 

a nonlinear trend gradually appears as the pressure increases (the effect of SQFD is 

more pronounced). The shock period (pulse time) plays an important role in the onset 

of the dynamic pull-in instability. For near vacuum conditions, setting the shock period 

equal to 0.1 ms for the single and asymmetric dual beams (close to the system’s natural 

period) leads to amplified dynamics causing an early pull-in. Under the same operating 

conditions, we observe that increasing the shock period shifts the dynamic pull-in 

voltage to higher values at fixed shock amplitude. On the other hand, the opposite effect 

of the shock period is observed when operating in air at different pressure levels. The 

SQFD effect is more pronounced for shorter shock periods (closer to the natural period 

of the microsystem).  

 

 
 

 
(a) Case study 5 (single beam) 
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Figure 5.12: LDA curves for the single and dual beam under different pressure values 

The results presented in this section show the possible tunability of the 

microsystem in terms of geometry (single vs. dual) and microsystem encapsulation 

(vacuum vs. pressurized air) for switching applications based on the range of shock 

levels to be detected. This numerical study is also expected to provide guidance to 

design a robust and reliable microsystem for operation in shock environment. 

 

 (b) Case study 8 (dual beam - asymmetric) 
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Chapter 6.  Conclusion and Future Work 

 

In this work, we simulated the static and dynamic response of single and dual 

electrically-actuated microbeams under mechanical shock while considering the effect 

of Fringing field and squeeze-film damping. The actuation of the single-beam system 

is made via a fixed electrode (uncoupled actuation) while the dual-beam system, 

composed of two movable microbeams, is actuated by applying a voltage among them 

(coupled actuation). The squeeze-film damping was incorporated using a nonlinear 

analytical expression rather than solving the fully coupled fluid-structure problem. 

Numerous studies have shown the validity of this analytical approach under the 

assumption of long beams and neglecting the fluid compressibility. The static analysis 

of the microsystems showed a significant reduction in the static pull-in voltage and 

switching time when considering the dual-beam system in comparison with the single-

beam case. The Fringing field effect is observed to have a significant impact on the 

static response when considering narrow microbeams; that is, low width-to-gap 

distance ratio systems. Furthermore, lower natural frequencies were obtained for 

electrically-coupled dual beams when compared to those obtained for single beams 

actuated by a fixed electrode. This indicates the possible use of dual beam resonators 

when lower operating frequency range is required. The simulation results compared 

well with those obtained from previously published theoretical and experimental 

studies. The analysis of the frequency response curves showed expanded dynamic pull-

in bandwidth when operating the symmetric dual-beam system near the primary 

resonance. The present study revealed that the dual-beam systems withstand more to 

mechanical shock and then they are more suitable for the operation and reliability of 

MEMS devices in harsh environments characterized by high mechanical shock levels. 

On the other hand, single-beam systems were found more attractive for use as 

microswitches which are intended to trigger a signal once receiving a mechanical shock 

or abrupt change in acceleration to activate safety functionalities such as airbag 

systems. However, single beams and asymmetric dual beams showed more robustness 

to operate in shock environment at ambient pressure conditions due to the significant 

impact of the squeeze-film damping force.  
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The present numerical study provides insights into the design of the vibrating 

microstructure in terms of electric actuation (DC and AC excitation), geometry 

selection (single vs. dual) and encapsulation (vacuum vs. pressurized air) for several 

MEMS applications. These include switching, sensing, and filtering applications. 

As a future work, we plan to proceed with the numerical integration of full 

nonlinear Reynold’s equation coupled with the microbeams governing equations. The 

results of the full model will be compared against those obtained from the current 

model. The objective will be to assess further the validity of the analytical approach to 

model the squeeze film damping and predict the dual beam system behavior near pull-

in when operating under ambient conditions.  
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