
1

Predicting Split Decisions of Coding Units in HEVC Video
Compression Using Machine Learning Techniques

Mahitab Hassan Tamer Shanableh1
Department of Computer Science and Engineering

American University of Sharjah, UAE
mahitab.hassan@alumni.aus.edu

Department of Computer Science and Engineering
American University of Sharjah, UAE

tshanableh@aus.edu
Tel: +97165152506, Fax: +97165152979

 Abstract In this work, we propose to reduce the
complexity of HEVC video encoding by predicting the
split decisions of coding units. We use a sequence-
dependent approach in which a number of frames
belonging to the video being encoded are used for
generating a classification model. At each coding depth of
the coding units, features representing the coding unit at
that particular depth are extracted from both the present
and previously encoded coding units. The feature vectors
are then used for generating a dimensionality reduction
model and a classification model. The generated models
at each coding depth are then used to predict the split
decisions of subsequent coding units. Stepwise
regression, random forest reduction and principal
component analysis are used for dimensionality
reduction; whereas, polynomial networks and random
forests are utilized for classification. The proposed
solution is assessed in terms of classification accuracy,
BD-rate, BD-PSNR and computational time complexity.
Using seventeen video sequences with four different
classes of resolution, an average classification accuracy
of 86.5% is reported for the proposed classification
system. In comparison to regular HEVC coding, the
proposed solution resulted in a BD-rate loss of 0.55 and a
BD-PSNR of -0.02 dB. The average reported
computational complexity reduction is found to be 39.2%.

Keywords HEVC; Pattern recognition; Video
compression.

1 Introduction

The High Efficiency Video Coding (HEVC) standard is one of
the successors of the well-known MPEG-4 AVC (H.264 or
MPEG-4 Part 10). It is designed to target various applications,
especially those dealing with Ultra High Definition (HD)
content. The HEVC project was formally initiated when a joint
Call for Proposals was issued by the ITU-T Video Coding
Experts Group (VCEG) and the ISO/IEC Moving Picture
Experts Group (MPEG) in January 2010 [1]. The prime focus
was directed towards significantly improving the compression

1 Corresponding author

performance relative to existing standards.
After its completion in January 2013, the HEVC standard

provides twice the compression capabilities as that offered by
its predecessor. Given that the appropriate encoder settings are
used, around 50% bit-rate reduction is possible, while
maintaining minimal video quality level loss [2].

However, this coding efficiency is introduced at the cost of
increasing the encoding computational complexity, which can
reach up to 40% more than that of H.264/AVC [3].

Among other factors, both the enhanced compression
efficiency and the increased encoding computational
complexity can be attributed to HEVC’s usage of flexible
partitioning structures. HEVC uses quad-tree Coding Tree
Units (CTUs), Prediction Units (PUs), and Residual Quad-
Trees (RQTs) rather than macroblocks (MBs). In order to
achieve the best configuration in terms of selecting the optimal
partitioning structure, an exhaustive rate-distortion
optimization (RDO) process takes place, which is the main
reason behind the intensification of the computational
complexity. Most of the encoding time involves recursively
repeating the RDO process at each Coding Unit (CU) depth
level for each structure, where every combination of encoding
structure is tested and the one that minimizes the rate-distortion
(RD) cost is chosen [4].

Several early termination algorithms for optimizing the
encoding process in HEVC can be found in the literature, where
their aim is to reduce the computational complexity while any
minimizing performance degradation. Among many, some
approaches utilize the textural or structural characteristics of a
given CU [5]-[15], while others use machine learning
techniques [16]-[25]. The optimizations are not limited to
HEVC inter-coding as some also considered enhancing intra-
coding [11], [12], [14], and [16]. In this field of research,
utilizing machine learning techniques as a tool to minimize RD
efficiency losses is limited, and most algorithms proposed do
not achieve superior results in terms of computation complexity
reduction without introducing significant video quality level
losses.

In this work, we use a sequence-dependent approach to
model the relationship between CU feature variables and split
decisions. The feature variables are extracted from both the
present CU and its surrounding spatial and temporal CUs.
Additionally, we use dimensionality reduction techniques for

Hassan, M. & Shanableh, T., Multimedia Tools and Applications, 2018, DOI:
10.1007_s11042-018-6882-8 http://link.springer.com/article/10.1007/s11042-018-6882-8
The final publication is available at link.springer.com

mailto:mahitab.hassan@alumni.aus.edu
mailto:tshanableh@aus.edu

 2

the three CU depths of 64x64, 32x32 and 16x16. This is needed
to reduce the number of extracted features. The feature
extraction and modeling is also performed at three CU coding
depths. We use stepwise regression, random forest reduction
and principal component analysis (PCA) for dimensionality
reduction. Moreover, we utilize polynomial networks and
random forests for classification.
This paper is organized as follows. Section 2 presents a review
of algorithms proposed in the literature that are reduced the
encoding computational complexity. The overall CU split
prediction system proposed is overviewed in Section 3. The
feature extraction process and dimensionality reduction are
discussed in detail in Section 4 in addition to the classification
tools and arrangements used in this work. The experimental
setup and experimental results are presented in Section 5.
Lastly, Section 6 concludes the paper.

2 Related Work

As mentioned earlier, HEVC introduced significant coding
efficiency improvements at the cost of increasing the
computational complexity. Therefore, existing research work is
conducted to limit this computational complexity whilst
minimizing the adverse effect on compression efficiency. The
work reported in [5]-[15] investigated the textural or structural
characteristics of CUs at a given CU depth to optimize the
HEVC encoding procedure. [5] proposed an inter-prediction
optimization scheme, where the CTU structure is analyzed in a
reverse order. Alternatively, a subjective-driven complexity
control approach is presented in [6], which examines the
relationship between visual distortion and maximum depth of
all largest CUs. Another complexity control algorithm is
proposed in [7], where an early termination condition is defined
at each CU depth based on the content of the video sequence
being encoding, the configuration files and the target
complexity.

In [8], the authors present a hierarchical structure-based fast
mode decision scheme. A fast CU decision algorithm is
presented in [9], where the coded block flag and RD costs are
checked to determine if intra- and inter- PUs can be skipped. In
[10], a two-layered motion estimation based fast CU decision
process is proposed, which uses the sum of absolute differences
(SAD) estimation to extract the SAD costs for a CU and its sub-
CUs. [11] speeds up the HEVC intra-coding process mainly by
using encoded CU depths and RD costs of co-located CTU to
predict both the current CU’s depth search range and the RD
cost for CU splitting termination. Local texture descriptors or
image characteristics were used in [12]- [14] to allow faster CU
size selection. A spatiotemporal based CU encoding technique
is explored in [15], where sample-adaptive-offset (SAO)
parameters were utilized to predict the textural complexity of
the CU being encoded.

Other approaches utilized the Bayesian decision rule and
other machine learning techniques to improve the time
complexity of an HEVC encoder. For instance, the work in [16]
and [17] uses the Bayes' rule to optimize PU and CU skip
algorithms, respectively. In [18], the authors present a joint
online and offline learning-based fast CU partitioning method
that uses the Bayesian decision rule to optimize the CU
partitioning process. The Bayesian decision theory is also
utilized in [19] along with the correlation between the variances
of the residual coefficients and the transform size to enhance
the PU size decision process. Alternatively, a fast CU splitting
and pruning algorithm is proposed in [20], which is applied at
each CU depth according to a Bayes decision rule method based
on low-complexity RD costs and full RD costs. A fast CU size
and PU mode prediction algorithm that uses the k-means
clustering method is introduced by [21].

On the other hand, [22] presents an early mode decision
algorithm based on the Neyman-Pearson approach. In [23], a
fast pyramid motion divergence (PMD)-based CU selection
algorithm is proposed, where a k nearest neighbors (k-NN) like
method is used to determine the optimal CU size. The work in

Fig. 1. Flowchart of data collection during the training phase.

Hassan, M. & Shanableh, T., Multimedia Tools and Applications, 2018, DOI:
10.1007_s11042-018-6882-8 http://link.springer.com/article/10.1007/s11042-018-6882-8
The final publication is available at link.springer.com

 3

[24] used a machine learning-based fast coding unit (CU) depth
decision method, where the quad-tree CU depth levels are
modeled as a three-level of hierarchical binary decision
problem. The work proposed in [25] implemented early
termination techniques on CUs, PUs, and TUs using a set of
decision trees grown with the aid of Waikato Environment for
Knowledge Analysis (WEKA) [27], an open source data mining
tool.

3 System Overview

In the proposed prediction system, the first 10% of frames of
a video sequence are used for training. Hence, modeling and
prediction will be specific to one video as opposed to training
the classification system using many video sequences. The
former training approach is known as “video-dependent”
modeling, while the latter is known as “video-independent”
modeling. The problem with the video-independent modeling
is that it follows a one-size-fits-all approach in which there is
an implicit assumption that the videos used for training are
suitable for predicting the CU split decisions of all other videos.
Video-dependent modeling, on the other hand, makes sure that
the prediction model is most suitable for predicting the CU split
decisions of the remaining video content.

The concept of video-dependent modeling was previously
introduced by the author in [28]-[30]. The first 10% of video
frames were used for training and the prediction model is then
used throughout the sequence in a video transcoding context. If
needed, the training can be repeated periodically or in the case
of detecting scene cuts.

Fig. 1 and 2 present the flowcharts of the proposed training
system. Fig. 1 illustrates the data collection process of the
training system. The video encoder will run with normal
compression operations for the first 10% of the video frames
during which, for each CU, features are extracted and recorded
at the highest level, which is typically 64x64. The
corresponding split decision is also recorded. If the encoder
decides to split the CU, then the split decisions at the 32x32 and
16x16 levels will be recursively calculated during which, the
training system will record the features and corresponding split
decisions at 32x32 and 16x16 CU levels. The details of the
selected feature variables are discussed in the next section.

The output of this data collection process is three sets of data.
Each data set contains feature vectors and the corresponding

Fig. 3. Flowchart of applying the train models to predict the CU split flags.

Fig. 2. Flowchart of CU split modeling in the training phase.

Hassan, M. & Shanableh, T., Multimedia Tools and Applications, 2018, DOI:
10.1007_s11042-018-6882-8 http://link.springer.com/article/10.1007/s11042-018-6882-8
The final publication is available at link.springer.com

 4

split flags for 64x64, 32x32 and 16x16 CU levels. The second
step in the training system is to map the feature vectors to the
split decisions. This is illustrated in Fig. 2. The result of this
step is 3 training models that can be used for the prediction of
CU split decisions at 64x64, 32x32 and 16x16 CU levels. Prior
to model generation, there is an optional dimensionality
reduction step. Again, this is applied at the three CU levels and
the dimensionally reduced models are stored and used for
reducing the dimensionality of the feature vectors during the
testing phase, as shall be explained next. The system modeling
and dimensionality reduction techniques used in this work are
explained in the next section.

Once the system is trained, the generated models are used to
predict the split decisions of the remaining CUs of the
underlying video sequence. This process is illustrated in Fig. 3.
Basically, feature variables are extracted at the highest CU
level, which in this work it is 64x64. The corresponding train
model is then used to predict the split flag. If predicted as ‘no
split,’ then early termination is applied. Otherwise, the second
train model is applied for each of the 32x32 CU levels and 4
split flags are predicted. If any of the flags are predicted as
‘split’, then the process is repeated at the 16x16 CU levels using
the third train model. At each level, feature vectors are
calculated and reduced in dimensionality if required. Again,
dimensionality reduction models are calculated during the
training phase.

4 System Training

This section introduces the proposed feature extraction and
dimensionality reduction process. It also reviews the machine
learning techniques used.
A. Feature Extraction and Dimensionality Reduction
In this work, feature extraction is applied at each of the three

coding levels (i.e. 64x64, 32x32 and 16x16). Common to all
levels are features extracted from surrounding CTUs. The
surrounding CTUs are previously encoded and include the
CTUs at the following locations relative to the current CU: left,
top-left, top, top-right and co-located from the previous frame.
The total number of surrounding CTUs is therefore 5. The
complete list of extracted features and their description are
listed in Table I. The first 15 features in Table I belong to the
current CU, whereas the remaining 55 features belong to
surrounding CTUs. The total number of features is therefore 70.

As illustrated in Fig. 2 above, the dimensionality of these
features can be reduced prior to generating the training model.
In this work, we generate experimental results with and without
dimensionality reduction. We propose the use of the following
dimensionality reduction techniques: stepwise regression,
principle component analysis (PCA) and reduction based on
random forests. In the following, we briefly summarize the use
of each relative to the proposed solution. It is important to
mention that all dimensionality reduction techniques are
applied to the train data set as illustrated in Fig. 2. The generated
model is then applied to the test data set.

Stepwise regression is a feature selection algorithm; however,
it can be used as a dimensionality reduction technique as
reported in [31]. In this work, we treat the feature vectors of
CUs as predictors and the split decisions as response variables.
As such, the problem can be formalized in a regression context.
The idea of stepwise regression is to start with one feature
variable and compute its correlation with the split decision.
Then, another feature variable is added and the correlation is
computed again. The significance of adding another feature
variable is assessed by means of examining the P-value at a 0.05

TABLE I
FEATURE VARIABLES REPRESENTING CUS

Feature (length) Description

CU depth (1) Coding depth: 0=64x64, 1=32x32,
2=16x16

Prediction mode (1) 0=inter, 1=intra

PU type costs (11)

PU RD cost of (Skip, 2Nx2N, 2NxN,
Nx2N, NxN, 2NxuN, 2NxdN, lNx2N, and
rNx2N), and intra-PU modes (2Nx2N and
NxN)

Merge flag (1) Merge flag of current CU

Skip flag (1) Skip flag of current CU

Total distortions of
surrounding CTU (5)

Total distortion cost of each of the
surrounding CTUs

Average coding depths of
Surrounding CTUs (5)

Average coding depth of each CTUs of the
surrounding CTUs

Variance of coding depths
of surrounding CTUs (5)

Variance of coding depth of each CTUs of
the surrounding CTUs

Average and variance of
MVx and MVy of
surrounding CTUs (40)

Average and variance of MVx and MVy of
surrounding CTUs for lists List0 and List1.
Normalized by frame distance.

TABLE II
RETAINED VARIABLES USING STEPWISE REGRESSION

Video sequence
Avg. # retained features

64x64 32x32 16x16

RaceHorses (384x192) 10 11 15
BlowingBubbles (384x192) 4 13 12
BQSquare (384x192) 7 17 17
BasketballPass (384x192) 9 15 13
RaceHorses (832x448) 7 14 19
PartyScene (832x448) 14 27 28
BQMall (832x448) 14 21 22
BasketballDrill (832x448) 13 13 16
ParkScene (1920x1024) 20 30 26
Kimono1 (1920x1024) 17 16 14
Cactus (1920x1024) 20 22 28
BQTerrace (1920x1024) 19 24 27
BasketballDrive (1920x1024) 16 18 23
Traffic (2560x1600) 22 25 26
PeopleOnStreet (2560x1600) 17 28 31
NebutaFestival (2560x1600) 16 20 24
SteamLocomotiveTrain
(2560x1600) 18 20 24

Average 14 19 21

Hassan, M. & Shanableh, T., Multimedia Tools and Applications, 2018, DOI:
10.1007_s11042-018-6882-8 http://link.springer.com/article/10.1007/s11042-018-6882-8
The final publication is available at link.springer.com

 5

level of significance. If the added feature variable is found
significant, then it is retained; otherwise, it is removed from the
list of variables. Likewise, once a variable is retained, the
stepwise regression algorithm proceeds by revisiting the
previous feature variables and reassessing their significant,
taking into account that a new variable has been retained. The
algorithm terminates when there are no further feature variables
to add or to eliminate. A full description of the algorithm can
be found in [32].

Once applied to the train data set at 64x64, 32x32 and 16x16
CU levels, the result of the stepwise regression is simply 3 sets

of indices of the retained feature variables, one set for each CU
coding depth. These indices can be used to reduce the
dimensionality of the feature vectors during the testing phase.
Since we are using a video-dependent approach to learning in
this work, the number of retained feature variables varies from
one video sequence to the other. Full information about the
experimental setup are given in the experimental results
section; nonetheless, for completeness, we briefly discuss the
results of applying the stepwise regression algorithm here. The
number of retained variables for each video sequence is given
in Table II. The table lists the average number of retained CU
variables with QP values of {22, 27, 32 and 37}. Since 3 models
are generated, the table lists the retained variables at 64x64,
32x32 and 16x16 CU coding levels. A full example showing
specific names of retained variables for the RaceHorses
sequence is shown in Table III.

In this work, we also experiment with dimensionality
reduction using random forests. In this approach, we generate a
large set of trees against the CU split decision. Each tree is
trained on a small number of feature variables. The usage
statistics of each feature variable can be used to find an
informative subset of features. More specifically, if a feature
variable is repeatedly selected as best split, it is consequently a
good candidate to retain. More information about this algorithm
can be found in [33].

Here, a random forest of 100 trees is grown, where the
maximum number of decision splits or branch nodes is set to be
the initial set of 70 features. The training dataset is sampled for
each decision tree with replacement and the feature variables
selected at random for each decision split are chosen without

TABLE III
STEPWISE REGRESSION, EXAMPLE RETAINED VARIABLES FOR 32X32 DEPTH

LEVEL WITH QP=32

Feature (length) Retained variables

CU depth (1) -

Prediction mode (1) Prediction mode

PU type costs (11) Skip RD cost, 2Nx2N-inter RD cost,
2Nx2N-intra RD cost

Merge flag (1) -

Skip flag (1) Skip flag status

Total distortions of
surrounding CTU (5)

Total distortion in Left CTU, Total
distortion in Collocated CTU

Average coding depths of
Surrounding CTUs (5)

Average coding depth in Left CTU,
Average coding depth in Upper CTU,
Average coding depth in Collocated CTU

Variance of coding depths
of surrounding CTUs (5)

Variance of coding depth in Left CTU,
Variance of coding depth in Upper CTU

Average and variance of
MVx and MVy of
surrounding CTUs (40)

Variance of MVx (List1) in Left CTU,
Average of MVy (List0) in Upper Right
CTU

 TABLE V

RANDOM FOREST FEATURE IMPORTANCE, EXAMPLE RETAINED VARIABLES
FOR 32X32 DEPTH LEVEL WITH QP=32

Feature (length) Retained variables

CU depth (1) -

Prediction mode (1) -

PU type costs (11)

Skip RD cost, 2Nx2N-inter RD cost, 2NxN
RD cost, rNx2N RD cost, Nx2N RD cost,
lNx2N RD cost, 2NxdN RD cost, 2NxuN
RD cost, 2Nx2N-intra RD cost

Merge flag (1) -

Skip flag (1) Skip flag status

Total distortions of
surrounding CTU (5)

Total distortion in Upper CTU, Total
distortion in Upper Left CTU

Average coding depths of
Surrounding CTUs (5) Average coding depth in Upper CTU

Variance of coding depths
of surrounding CTUs (5)

Variance of coding depth in Upper Right
CTU, Variance of coding depth in Upper
Left CTU

Average and variance of
MVx and MVy of
surrounding CTUs (40)

-

TABLE IV
RETAINED VARIABLES USING FEATURE IMPORTANCE WITH RANDOM FORESTS

Video sequence
Avg. # retained features

64x64 32x32 16x16

RaceHorses (384x192) 8 13 10
BlowingBubbles (384x192) 12 14 14
BQSquare (384x192) 12 13 14
BasketballPass (384x192) 9 14 14
RaceHorses (832x448) 15 15 15
PartyScene (832x448) 13 14 14
BQMall (832x448) 14 15 13
BasketballDrill (832x448) 15 14 14
ParkScene (1920x1024) 15 14 14
Kimono1 (1920x1024) 15 15 12
Cactus (1920x1024) 15 15 14
BQTerrace (1920x1024) 15 15 14
BasketballDrive (1920x1024) 15 15 15
Traffic (2560x1600) 14 14 14
PeopleOnStreet (2560x1600) 13 13 14
NebutaFestival (2560x1600) 15 15 14
SteamLocomotiveTrain
(2560x1600) 13 14 13

Average 13.4 14.2 13.6

Hassan, M. & Shanableh, T., Multimedia Tools and Applications, 2018, DOI:
10.1007_s11042-018-6882-8 http://link.springer.com/article/10.1007/s11042-018-6882-8
The final publication is available at link.springer.com

 6

replacement within the same decision tree. The importance of
each of these features in predicting the correct classification of
a test instance from the out-of-bag data is computed and used
to select the features whose raw importance score make up 80%
of the total importance score. The out-of-bag data is the set of
instances that were left out during the training process of a
given tree in the random forest.

The number of retained variables, using random forests, for
each video sequence is given in Table IV. Similar to Table II
above, the table lists the average number of retained CU
variables with QP values of {22, 27, 32 and 37}. Since 3 models
are generated, the table lists the retained variables at 64x64,
32x32 and 16x16 CU coding levels. A full example showing
specific names of retained variables for the RaceHorses
sequence is shown in Table V.

Lastly, we also experiment with dimensionality reduction
using PCA. In this approach, an orthogonal transformation is
used to transfer the data from the feature domain to the principle
component domain. The first principle component of the
transformed data account for the highest variability in the
feature data. One drawback of PCA is that it results in a reduced
data set that cannot be directly interpreted. This is not the case
for the other two dimensionality reduction techniques used in
this paper. The number of principle components retained
depends on the chosen Proportion of Variance (PoV) explained,
which is 90% in this work. Again, the PCA is applied to the
training dataset at 64x64, 32x32 and 16x16 CU levels. The
resulting principle components are then stored and used for
reducing the test data set.

The number of retained variables, using PCA, for each video
sequence is given in Table VI. Similar to Tables II and IV

above, the table lists the average number of retained CU
variables with QP values of {22, 27, 32 and 37}. Since 3 models
are generated, the table lists the retained variables at 64x64,
32x32 and 16x16 CU coding levels. Unlike stepwise regression
and random forest variable selection, PCA results in a reduced
data set that cannot be directly interpreted; hence, there are no
specific retained variable names to list.
A. Classification Methods

In this work, we model the relationship between the CU
features and split decisions using two classification tools;
namely polynomial networks [34], random forest [35] .

In the polynomial networks, we experiment with a second
order polynomial classifier. In the case of random forests, 100
trees are grown, where the maximal number of branch nodes is
the square root of the number of retained feature variables. This
is determined based on the out-of-bag estimates of the features’
importance in the tree ensemble. Based on the retained features,
the training dataset is sampled for each decision tree with
replacement. The variables selected at random for each decision
split are chosen without replacement within the same decision
tree. As the purpose of growing trees is classification, only one

TABLE VI
RETAINED VARIABLES USING PCA

Video sequence
Avg. # retained features

64x64 32x32 16x16

RaceHorses (384x192) 8 24 25
BlowingBubbles (384x192) 20 26 26
BQSquare (384x192) 20 22 22
BasketballPass (384x192) 19 20 21
RaceHorses (832x448) 19 30 30
PartyScene (832x448) 29 30 30
BQMall (832x448) 27 29 29
BasketballDrill (832x448) 24 24 25
ParkScene (1920x1024) 29 31 31
Kimono1 (1920x1024) 29 29 27
Cactus (1920x1024) 27 28 29
BQTerrace (1920x1024) 31 31 32
BasketballDrive (1920x1024) 29 29 29
Traffic (2560x1600) 22 23 24
PeopleOnStreet (2560x1600) 30 34 34
NebutaFestival (2560x1600) 29 30 31
SteamLocomotiveTrain
(2560x1600) 28 29 30

Average 24.7 27.6 27.9

TABLE VII
ARRANGEMENT OF CLASSIFICATION SOLUTIONS

Solution Classifier Dimensionality
reduction

Stepwise &
Polynomial

Polynomial networks with
second order expansion Stepwise regression

PCA &
Polynomial

Polynomial networks with
second order expansion PCA with PoV of 90

R.F. Select &
R.F. Random Forest Feature importance

with random forests

R.F. Random Forest Not used

TABLE VIII
LIST OF VIDEO SEQUENCES USED

Class ID Video sequence Resolution Frame
rate

Bit
depth

D

D1 RaceHorses 384x192 30 8
D2 BlowingBubbles 384x192 50 8
D3 BQSquare 384x192 60 8
D4 BasketballPass 384x192 50 8

C

C1 RaceHorses 832x448 30 8
C2 PartyScene 832x448 50 8
C3 BQMall 832x448 60 8
C4 BasketballDrill 832x448 50 8

B

B1 ParkScene 1920x1024 24 8

B2 Kimono1 1920x1024 24 8

B3 Cactus 1920x1024 50 8

B4 BQTerrace 1920x1024 60 8

B5 BasketballDrive 1920x1024 50 8

A

A1 Traffic 2560x1600 30 8

A2 PeopleOnStreet 2560x1600 30 8

A3 NebutaFestival 2560x1600 60 10

A4 SteamLocomotiveTrain 2560x1600 60 10

Hassan, M. & Shanableh, T., Multimedia Tools and Applications, 2018, DOI:
10.1007_s11042-018-6882-8 http://link.springer.com/article/10.1007/s11042-018-6882-8
The final publication is available at link.springer.com

 7

observation or class label can be seen per tree leaf. The
arrangement in which we combine the classification tools with
the dimensionality reduction techniques are presented in Table
VII.
5 Experimental Results

We assess the performance and efficiency of the proposed
solutions by implementing them in the HM reference software
version 13.0 [36]. All video sequences are encoded with QPs of
{22, 27, 32, and 37}. The main profile and the standard random-
access temporal configuration are used. The same motion
estimation parameters are used in both the original and
proposed video coders. For a fair comparison with [18], we use
the HEVC video test sequences. The sequence resolutions are
Class A (2560x1600), Class B (1080 pixels), Class C (800 ×
480), and Class D (400×240). A total of 17 video sequences are
used as reported in Table VIII. We ran the experimental results
on a PC with Intel Core i7-37400QM, 2.7-GHz CPU with a 16-
GB DDR3 RAM. Compression efficiency is quantified in terms
of BD-rate and BD-PSNR. The compression times using the
proposed solutions are also computed and compared with the
corresponding times obtained from running the unmodified
HEVC encoder. Furthermore, the classification accuracy of the
proposed classification systems is presented. We start by
reporting the classification accuracy of the CU split prediction.
Table IX presents the overall classification accuracies of the 4
proposed solutions. These results are the average for all video
sequences coded with QPs of {22, 27, 32 and 37}. The table
reports the classification results for the 3 models generated
according to the CU coding depth. The results indicate that the
average classification accuracy enhances slightly as the depth
of the CU coding increases. The results also show that the
classification solutions using random forest are the most
accurate. In Table X, the average classification results for
individual video sequences using the “R.F. Select & R.F.”
solution are shown. The resolution of the video does not seem
to affect the classification accuracy. Moreover, the accuracies
do not seem to vary much according to the underlying video
sequence as well.

In the following experiments, we report the coding efficiency
of the proposed solutions using a number of approaches;
namely BD-rate, BD-PSNR [37] and Computational
Complexity Reduction (CCR). CCR is computed as
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑡𝑡𝑡𝑡𝑝𝑝𝑟𝑟) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟⁄ , where
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the time needed for regular encoding and
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝 is the time needed to encode a sequence using
the proposed fast encoder. In Table XI, the coding results of the
4 proposed solutions are listed. As mentioned earlier, all results
are obtained with QPs of {22, 27, 32 and 37}. The best coding

results in terms of BD-rate and BD-PSNR are achieved by the
“R.F. Select & RF” and “R.F.” solutions. The reported results
also indicate that, in general, the coding efficiency enhances as
the resolution of the video increases. We report the time
complexity in terms of CCR% in Table XII. We present the
CCR% for two cases; the first case is the time savings without
taking the training or the model generation time into account,
while the second case is the CCR% with the training time being
taken into account. In Table XII, it seems that without giving
consideration to the training time, all solutions provide similar
complexity reductions. However, because some of the training
solutions are more computationally demanding, when the
training time is taken into account, the range of CCR%
increases from (39.1% - 37.5%) to (38.9% - 31.8%). Clearly,
the most demanding training solution is the one that uses
random forest. This is followed by random forest with
dimensionality reduction. In this work, no attempt was taken to
reduce the training time. However, one solution would be to
reduce the number of train feature vectors by means of
sampling, therefore reducing the model generation time. The
reported results also indicate that, in general, the CCR%
enhances as the resolution of the video increases. For
comparison with existing work, we refer to the work reported
in [9] and [18]. These results contain the BD-rate and time
savings only. However, the time savings are computed as
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑡𝑡𝑡𝑡𝑝𝑝𝑟𝑟) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑡𝑡𝑡𝑡𝑝𝑝𝑟𝑟⁄ .
This is different than the CCR reported in Table XI above,
where time savings are calculated by dividing by 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
instead of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑡𝑡𝑡𝑡𝑝𝑝𝑟𝑟. For a fair comparison, in Table
XIII, we calculated the time savings of the proposed solution
accordingly. In Table XIII, we compare the results of our best

TABLE IX
OVERALL CLASSIFICATION AVERAGE OF CU SPLIT PREDICTION

Solution 64x64 32x32 16x16 Average

Stepwise & Polynomial 83.2 85.7 86.4 85.1
PCA & Polynomial 78.5 81.9 83.2 81.2

RF Select & RF 85.3 86.3 86.7 86.1
RF 86.2 86.5 86.8 86.5

Average 83.3 85.1 85.8 84.7

TABLE X
CLASSIFICATION ACCURACY OF CU SPLITS FOR THE “R.F. SELECT & R.F.”

SOLUTION

Sequence ID
R.F. Select & R.F.

64x64 32x32 16x16 Average

D1 79.0 83.8 83.0 81.9

D2 85.1 84.7 83.7 84.5

D3 82.6 87.7 87.2 85.8

D4 87.1 88.1 83.6 86.3

C1 85.3 84.7 86.0 84.9

C2 89.7 88.3 87.8 86.8

C3 91.6 87.7 85.2 86.9

C4 89.1 88.9 87.7 87.2

B1 88.4 90.6 89.7 87.8

B2 80.3 77.0 82.3 84.0

B3 89.1 86.4 88.2 87.1

B4 88.1 90.1 89.6 87.7

B5 86.6 83.8 86.6 86.2

A1 89.6 91.1 91.2 88.1

A2 91.3 87.4 83.4 87.3

A3 64.0 80.5 88.3 83.2

A4 82.7 87.0 90.7 86.5

Average 85.3 86.3 86.7 86.1

Hassan, M. & Shanableh, T., Multimedia Tools and Applications, 2018, DOI:
10.1007_s11042-018-6882-8 http://link.springer.com/article/10.1007/s11042-018-6882-8
The final publication is available at link.springer.com

 8

TABLE XI
CODING EFFICIENCY OF PROPOSED SOLUTIONS

Sequence ID
Stepwise & Polynomial PCA & Polynomial R.F. Select & R.F. R.F.

BD-rate BD-PSNR BD-rate BD-PSNR BD-rate BD-PSNR BD-rate BD-PSNR

D1 2.58 -0.12 1.42 -0.07 1.58 -0.08 1.48 -0.07
D2 1.84 -0.07 0.87 -0.04 0.57 -0.02 0.53 -0.02
D3 1.23 -0.06 0.75 -0.04 0.46 -0.02 0.42 -0.02
D4 4.34 -0.21 2.45 -0.11 0.33 -0.02 0.50 -0.03

Average 2.50 -0.12 1.38 -0.06 0.74 -0.03 0.73 -0.03
C1 1.74 -0.07 2.09 -0.08 0.84 -0.03 0.78 -0.03
C2 1.04 -0.05 1.45 -0.07 0.69 -0.03 0.51 -0.02
C3 1.94 -0.08 1.84 -0.08 0.48 -0.02 0.38 -0.02
C4 1.59 -0.07 1.74 -0.07 0.52 -0.02 0.58 -0.02

Average 1.58 -0.07 1.78 -0.07 0.63 -0.03 0.56 -0.02
B1 0.83 -0.03 1.29 -0.04 0.63 -0.02 0.62 -0.02
B2 0.43 -0.02 0.76 -0.03 0.47 -0.02 0.38 -0.01
B3 0.81 -0.02 1.10 -0.02 0.56 -0.01 0.52 -0.01
B4 0.75 -0.02 0.91 -0.02 0.48 -0.01 0.69 -0.01
B5 1.60 -0.04 1.17 -0.03 0.46 -0.01 0.50 -0.01

Average 0.88 -0.02 1.05 -0.03 0.52 -0.01 0.54 -0.01
A1 0.66 -0.02 1.52 -0.05 0.54 -0.02 0.45 -0.02
A2 1.35 -0.06 3.72 -0.16 1.07 -0.05 0.98 -0.04
A3 0.11 0.00 0.04 0.00 0.05 0.00 0.11 0.00
A4 -0.04 0.00 -0.1 0.00 -0.2 0.00 -0.27 0.00

Average 0.52 -0.02 1.30 -0.05 0.36 -0.02 0.32 -0.02

Overall Average 1.34 -0.06 1.35 -0.05 0.56 -0.02 0.54 -0.02

 TABLE XII

COMPLEXITY REDUCTION OF PROPOSED SOLUTIONS USING CCR (%)

Sequence ID

Stepwise & Polynomial PCA & Polynomial R.F. Select & R.F. R.F.

Without
training

time

With
training

time

Without
training

time

With
training

time

Without
training

time

With
training

time

Without
training

time

With
training

time

D1 25.2 25.2 17.8 17.8 24.8 15.4 25.3 10.4
D2 33.7 33.7 31.2 31.1 32 19.7 31.8 11.4
D3 36.8 36.7 37 36.9 35.2 20.5 35.7 13.4
D4 34.8 34.7 31.6 31.5 30.6 17.8 32 11.1

Average 32.7 32.6 29.4 29.3 30.6 18.4 31.2 11.6
C1 30.4 30.3 27.8 27.8 31.7 28.3 31 26.0
C2 32.4 32.3 31.8 31.7 33.1 28.9 33.4 27.4
C3 33.6 33.5 32.1 32.1 33 29.2 32.1 26.6
C4 39.5 39.4 38 37.9 39.2 35.6 38.4 33.1

Average 34 33.9 32.4 32.4 34.2 30.5 33.7 28.3
B1 43.2 42.7 44.5 44.4 43.9 42.0 43.6 40.9
B2 41.5 41.5 42.7 42.6 44.1 43.0 42.7 41.2
B3 46.6 46.5 41.8 41.7 41.3 39.5 38.8 36.0
B4 47.3 47.1 47.5 47.5 48.4 46.5 49.7 46.6
B5 39.7 39.7 38.1 38.0 42.6 41.4 41.3 39.7

Average 43.7 43.5 42.9 42.9 44.1 42.5 43.2 40.9
A1 47.3 46.8 47.3 44.8 48.7 46.3 48.7 46.1
A2 28.7 28.3 26.8 22.4 30.6 26.7 27.9 24.1
A3 50.2 50.2 47.3 44.1 51.7 50.9 52.9 52.1
A4 53.4 53.4 53.8 51.0 55.1 53.7 55.9 54.7

Average 44.9 44.7 43.8 40.6 46.5 44.4 46.3 44.2

Overall Average 39.1 38.9 37.5 36.7 39.2 34.4 38.9 31.8

Hassan, M. & Shanableh, T., Multimedia Tools and Applications, 2018, DOI:
10.1007_s11042-018-6882-8 http://link.springer.com/article/10.1007/s11042-018-6882-8
The final publication is available at link.springer.com

 9

solution against existing work.
It was not to clear to the authors if the reviewed work

considered the training time when reporting the ∆Time%;
hence, in Table XIII, we report our results with and without
taking into account the training time. In the table, ∆1Time%
refers to the time savings without training time and ∆2Time%
refers to the time savings taking into consideration the training
time.

As previously mentioned, it seems that the results of the
proposed solution enhance with the increasing sequence
resolution. This is in contrast to the results reported in [18],
where the BD-rate seems to improve with decreasing sequence
resolution. Moreover, the time reduction in [18] does not seem
to be affected by the resolution of the video sequences.

All in all, the results in Table XIII indicate that the proposed
solution has a clear advantage in terms of BD-rate and time
savings. With reference to the average reported BD-rate of
existing work (i.e. 0.765 dB), the proposed solution provides an
enhancement of 27.1%. Additionally, this quality enhancement
comes with further reduction in computational time. More
specifically, with reference to the average reported time savings
(i.e. -45.5%), the proposed solution provides an enhancement
of 57% and 34% for ∆1Time% and ∆2Time%, respectively.

Lastly, the results in Table XIV present a comparison with
the recent work reported in [23], which uses CCR% for
measuring the time complexity reduction. Table XIV lists the
results for 15 video sequences that are used in both [23] and the
proposed solution.

The results in the table show that the BD-rate of the proposed

solution is on average 0.7, whereas that of the proposed solution
is 2.18. This noticeable enhancement in the BD-rate reduction
comes at a slight advantage of increased computational
complexity, where the CCR of the reviewed work is 37.5% and
that of the proposed work is 39.2%.

6 Conclusion

We proposed a solution for reducing the complexity of
determining the CU split decisions in HEVC video coding. The
solution uses a video sequence-dependent approach to collect
features that represent CUs at various coding depths. The
features are extracted from both the underlaying CU and the
previously encoded CUs. A classification model is then built
based on these feature vectors and corresponding split decisions
at various CU coding depths. Additionally, dimensionality
reduction is optionality used as a preprocess to model
generation. Therefore, the output of the training phase is a set
of classification models for predicting split decisions and a set
of dimensionality reduction models. We have used a number
of dimensionality reduction and classification techniques,
including stepwise regression, random forest variable selection,
PCA, polynomial classifiers and random forest classifiers.
Experimental results were carried out on many test video
sequences with different resolutions. Comparison with existing
work revealed that the proposed solution has an advantage in
terms of coding efficiency and time savings. It was shown that,
on average, the classification accuracy of the CU split models
is 86.5%. In comparison to regular HEVC coding, the proposed
solutions resulted in a BD-rate of 0.55 and a BD-PSNR of -0.02
dB. The average reported computational complexity reduction
was 39.2%.

TABLE XIII
COMPARISON WITH EXISTING WORK [9] AND [18]

Seq.
ID

Stepwise & Polynomial
Kim and Park

[18]
Yoo and Suh

[9]

BD-
rate

∆1
Time
(%)

∆2
Time
(%)

BD-
rate

∆Time
(%)

BD-
rate

∆Time
(%)

D1 1.583 -33.9 -18.6 0.9 -49.1 0.65 -26.6
D2 0.572 -49.3 -25.3 0.33 -54.7 0.52 -36.2
D3 0.460 -59.3 -27.6 0.47 -56 0.64 -43.2
D4 0.334 -45.3 -22.1 0.65 -51.2 1.02 -28.4
C1 0.835 -47.5 -40.3 0.97 -57.3 1.22 -25.7
C2 0.687 -51.4 -42.1 0.25 -56 0.41 -34.3
C3 0.484 -50.8 -42.6 0.77 -50.7 0.77 -40.7
C4 0.520 -66 -56.6 0.52 -53.3 1.06 -35.2
B1 0.630 -83.7 -77.9 0.49 -50.3 0.40 -41.6
B2 0.468 -81.5 -77.7 0.64 -61.8 0.46 -35.7
B3 0.561 -74.7 -69.6 0.57 -48 0.48 -42.7
B4 0.478 -111 -103.3 0.87 -59.9 1.13 -44
B5 0.458 -75.7 -72.2 1.33 -57.4 1.21 -46.4
A1 0.540 -101 -92.0 0.71 -55.2 0.57 -43.6
A2 1.066 -44.9 -37.4 0.79 -42.5 0.94 -42.3
A3 0.047 -109.6 -105.7 0.78 -58.8 1.01 -47.6
A4 -0.234 -128.1 -121.3 0.98 -48.7 1.43 -22.1

Avg. 0.558 -71.4 -60.7 0.71 -53.6 0.82 -37.4

TABLE XIV
COMPARISON WITH EXISTING WORK [23]

Seq. ID
R.F. Select & R.F. Xiong et al. [23]

BD-rate CCR (%) BD-rate CCR (%)

D1 1.583 24.8 1.99 30.9
D2 0.572 32 1.67 25.6
D3 0.46 35.2 2.34 33.04
D4 0.334 30.6 1.17 44.54
C1 0.835 31.7 1.54 31.05
C2 0.687 33.1 2.53 39.83
C3 0.484 33 1.98 42.35
C4 0.52 39.2 1.72 44.19
B1 0.63 43.9 1.54 30.34
B2 0.468 44.1 2.36 36.66
B3 0.561 41.3 2.48 43.76
B4 0.478 48.4 1.62 31.91
B5 0.458 42.6 4.6 46
A1 0.54 48.7 3.25 49.7
A2 1.066 30.6 1.95 38.67
A3 0.65 51.7 2.18 37.9
A4 1.583 55.1 1.99 30.9

Avg. 0.7 39.2 2.2 37.5

Hassan, M. & Shanableh, T., Multimedia Tools and Applications, 2018, DOI:
10.1007_s11042-018-6882-8 http://link.springer.com/article/10.1007/s11042-018-6882-8
The final publication is available at link.springer.com

 10

REFERENCES
[1] G. Sullivan, J. Ohm, W. Han and T. Wiegand, “Overview of the High

Efficiency Video Coding (HEVC) Standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-
1668, 2012.

[2] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan and T. Wiegand,
“Comparison of the Coding Efficiency of Video Coding Standards—
Including High Efficiency Video Coding (HEVC),” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1669-
1684, Dec. 2012.

[3] J. Vanne, M. Viitanen, T. D. Hamalainen, and A. Hallapuro,
“Comparative rate-distortion-complexity analysis of HEVC and AVC
video codecs,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,
pp. 1885–1898, Dec. 2012.

[4] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video
compression,” IEEE Signal Process. Mag., vol. 15, no. 6, pp. 74–90, Nov.
1998.

[5] Zupancic, S. G. Blasi, E. Peixoto and E. Izquierdo, “Inter-Prediction
Optimizations for Video Coding Using Adaptive Coding Unit Visiting
Order,” IEEE Transactions on Multimedia, vol. 18, no. 9, pp. 1677-1690,
Sept. 2016.

[6] X. Deng, M. Xu, L. Jiang, X. Sun and Z. Wang, “Subjective-Driven
Complexity Control Approach for HEVC,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 26, no. 1, pp. 91-106,
Jan. 2016.

[7] A. Jiménez-Moreno, E. Martínez-Enríquez and F. Díaz-de-María,
“Complexity Control Based on a Fast Coding Unit Decision Method in
the HEVC Video Coding Standard,” in IEEE Transactions on
Multimedia, vol. 18, no. 4, pp. 563-575, April 2016.

[8] W. Zhao, T. Onoye and T. Song, “Hierarchical Structure-Based Fast
Mode Decision for H.265/HEVC,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 25, no. 10, pp. 1651-1664, Oct. 2015.

[9] H. Yoo and J. Suh, “Fast coding unit decision based on skipping of inter
and intra prediction units”, Electronics Letters, vol. 50, no. 10, pp. 750-
752, 2014.

[10] J. Xiong, H. Li, F. Meng, Q. Wu and K. N. Ngan, “Fast HEVC Inter CU
Decision Based on Latent SAD Estimation,” IEEE Transactions on
Multimedia, vol. 17, no. 12, pp. 2147-2159, Dec. 2015.

[11] S. Park, “CU encoding depth prediction, early CU splitting termination
and fast mode decision for fast HEVC intra-coding,” Signal Processing:
Image Communication, vol. 42, pp. 79-89, March 2016.

[12] M. Radosavljević, G. Georgakarakos, S. Lafond and D. Vukobratović,
“Fast coding unit selection based on local texture characteristics for
HEVC intra frame,” 2015 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), Orlando, FL, 2015, pp. 1377-1381.

[13] K. Goswami, J. Lee and B. Kim, “Fast algorithm for the High Efficiency
Video Coding (HEVC) encoder using texture analysis,” Information
Sciences, vol. 364-365, pp. 72-90, 2016.

[14] L. Shen, Z. Zhang and Z. Liu, “Effective CU Size Decision for HEVC
Intracoding,” IEEE Transactions on Image Processing, vol. 23, no. 10,
pp. 4232-4241, Oct. 2014.

[15] S. Ahn, B. Lee and M. Kim, “A Novel Fast CU Encoding Scheme Based
on Spatiotemporal Encoding Parameters for HEVC Inter Coding,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 25, no.
3, pp. 422-435, March 2015.

[16] K. Lim, J. Lee, S. Kim and S. Lee, “Fast PU Skip and Split Termination
Algorithm for HEVC Intra Prediction,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 25, no. 8, pp. 1335-1346, Aug.
2015.

[17] J. Lee, S. Kim, K. Lim and S. Lee, “A Fast CU Size Decision Algorithm
for HEVC,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 25, no. 3, pp. 411-421, March 2015.

[18] H. Kim and R. Park, “Fast CU Partitioning Algorithm for HEVC Using
an Online-Learning-Based Bayesian Decision Rule,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 26, no. 1, pp. 130-
138, 2016.

[19] L. Shen, Z. Zhang, X. Zhang, P. An and Z. Liu, “Fast TU size decision
algorithm for HEVC encoders using Bayesian theorem detection,” Signal
Processing: Image Communication, vol. 32, pp. 121-128, 2015.

[20] S. Cho and M. Kim, “Fast CU Splitting and Pruning for Suboptimal CU
Partitioning in HEVC Intra Coding,” in IEEE Transactions on Circuits
and Systems for Video Technology, vol. 23, no. 9, pp. 1555-1564, Sept.
2013.

[21] Z. Liu, T. Lin and C. Chou, “Efficient prediction of CU depth and PU
mode for fast HEVC encoding using statistical analysis,” Journal of
Visual Communication and Image Representation, vol. 38, pp. 474-486,
2016.

[22] Q. Hu, X. Zhang, Z. Shi and Z. Gao, “Neyman-Pearson-Based Early
Mode Decision for HEVC Encoding,” in IEEE Transactions on
Multimedia, vol. 18, no. 3, pp. 379-391, March 2016.

[23] J. Xiong, H. Li, Q. Wu and F. Meng, “A Fast HEVC Inter CU Selection
Method Based on Pyramid Motion Divergence,” in IEEE Transactions on
Multimedia, vol. 16, no. 2, pp. 559-564, Feb. 2014.

[24] Y. Zhang, S. Kwong, X. Wang, H. Yuan, Z. Pan and L. Xu, “Machine
Learning-Based Coding Unit Depth Decisions for Flexible Complexity
Allocation in High Efficiency Video Coding,” in IEEE Transactions on
Image Processing, vol. 24, no. 7, pp. 2225-2238, July 2015.

[25] G. Correa, P. A. Assuncao, L. V. Agostini and L. A. da Silva Cruz, “Fast
HEVC Encoding Decisions Using Data Mining,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 25, no. 4, pp. 660-673,
April 2015.

[26] V. Sze, M. Budagavi and G. Sullivan, High efficiency video coding
(HEVC): Algorithms and Architectures, 1st ed. Heidelberg: Springer,
2014.

[27] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: An update,” ACM SIGKDD
Explorations Newslett., vol. 11, no. 1, pp. 10–18, 2009.

[28] T. Shanableh, “Prediction of Structural Similarity Index of Compressed
Video at a Macroblock Level,” IEEE Signal Processing Letters, vol. 18,
no. 5, May 2011.

[29] T. Shanableh, E. Peixoto and E. Izquierdo, “MPEG-2 to HEVC video
transcoding with content-based modeling,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 23, no. 7, July 2013.

[30] E. Peixoto, T. Shanableh and E. Izquierdo, “H.264/AVC to HEVC Video
Transcoder based on Dynamic Thresholding and Content Modeling, ”
IEEE Transactions on Circuits and Systems for Video Technology, vol.
24, no. 1, January 2014.

[31] T. Shanableh and K. Assaleh, “Feature modeling using polynomial
classifiers and stepwise regression,” Neurocomputing, Elsevier, 73(10-
12), June 2010.

[32] W. Mendenhall and T. Sincich, Statistics for Engineering and Sciences,
5th ed. Pearson, 2007.

[33] F. Livingston, “Implementation of Breiman’s random forest machine
learning algorithm,” ECE591Q Machine Learning Journal Paper, 2005.

[34] K. Toh, Q. Tran and D. Srinivasan, “Benchmarking a reduced multivariate
polynomial pattern classifier,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 26, no. 6, pp. 740-755, 2004.

[35] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–
32, 2001.

[36] I.-K. Kim, K. D. McCann, K. Sugimoto, B. Bross, W.-J. Han and G. J.
Sullivan, “High Efficiency Video Coding (HEVC) Test Model 13
(HM13) Encoder Description,” Document: JCTVC-O1002, Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, 15th Meeting: Geneva, CH, 23 Oct.–1 Nov.,
2013.

[37] G. Bjøntegaard, “Improvements of the BD-PSNR model,” document
VCEG-AI11, ITU-T SG16/Q6, Jul. 2008.

Mahitab Hassan was born in Alexandria,
Egypt in 1994. She received the B.Sc. and
M.Sc. degrees in computer engineering
from the American University of Sharjah,
Sharjah, UAE, in 2015 and 2017,
respectively.
From 2015 to 2017, she was a Graduate
Teaching Assistant with the Computer

Science and Engineering Department at the American
University of Sharjah. Her research interests include machine
learning, digital video processing, and ubiquitous learning
systems.

Hassan, M. & Shanableh, T., Multimedia Tools and Applications, 2018, DOI:
10.1007_s11042-018-6882-8 http://link.springer.com/article/10.1007/s11042-018-6882-8
The final publication is available at link.springer.com

 11

Tamer Shanableh was born in Scotland,
UK in 1972. He received his Ph.D. in
Electronic Systems Engineering in 2002
from the University of Essex, UK.
From 1998 to 2001, he was a senior
research officer at the University of Essex,
during which, he collaborated with
BTexact on inventing video transcoders.

He joined Motorola UK Research Labs in 2001. During his
affiliation with Motorola, he contributed to establishing a new
profile within the ISO/IEC MPEG-4 known as the Error

Resilient Simple Scalable Profile. He joined the American
University of Sharjah in 2002 and is currently a professor of
computer science. Dr. Shanableh spent the summers of 2003,
2004, 2006, 2007 and 2008 as a visiting professor at Motorola
multimedia Labs. He spent the spring semester of 2012 as a
visiting academic at the Multimedia and Computer Vision and
Lab at the School of Electronic Engineering and Computer
Science, Queen Mary, University of London, London, U.K. His
research interests include digital video processing and pattern
recognition.

Hassan, M. & Shanableh, T., Multimedia Tools and Applications, 2018, DOI: 10.1007_s11042-018-6882-8
http://link.springer.com/article/10.1007/s11042-018-6882-8

	References

