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 Abstract    In this work, we propose to reduce the 
complexity of HEVC video encoding by predicting the 
split decisions of coding units. We use a sequence-
dependent approach in which a number of frames 
belonging to the video being encoded are used for 
generating a classification model. At each coding depth of 
the coding units, features representing the coding unit at 
that particular depth are extracted from both the present 
and previously encoded coding units. The feature vectors 
are then used for generating a dimensionality reduction 
model and a classification model.  The generated models 
at each coding depth are then used to predict the split 
decisions of subsequent coding units.  Stepwise 
regression, random forest reduction and principal 
component analysis are used for dimensionality 
reduction; whereas, polynomial networks and random 
forests are utilized for classification. The proposed 
solution is assessed in terms of classification accuracy, 
BD-rate, BD-PSNR and computational time complexity. 
Using seventeen video sequences with four different 
classes of resolution, an average classification accuracy 
of 86.5% is reported for the proposed classification 
system. In comparison to regular HEVC coding, the 
proposed solution resulted in a BD-rate loss of 0.55 and a 
BD-PSNR of -0.02 dB. The average reported 
computational complexity reduction is found to be 39.2%. 

Keywords  HEVC; Pattern recognition; Video 
compression. 

1 Introduction 

The High Efficiency Video Coding (HEVC) standard is one of 
the successors of the well-known MPEG-4 AVC (H.264 or 
MPEG-4 Part 10). It is designed to target various applications, 
especially those dealing with Ultra High Definition (HD) 
content. The HEVC project was formally initiated when a joint 
Call for Proposals was issued by the ITU-T Video Coding 
Experts Group (VCEG) and the ISO/IEC Moving Picture 
Experts Group (MPEG) in January 2010 [1]. The prime focus 
was directed towards significantly improving the compression 
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performance relative to existing standards. 
After its completion in January 2013, the HEVC standard 

provides twice the compression capabilities as that offered by 
its predecessor. Given that the appropriate encoder settings are 
used, around 50% bit-rate reduction is possible, while 
maintaining minimal video quality level loss [2].  

However, this coding efficiency is introduced at the cost of 
increasing the encoding computational complexity, which can 
reach up to 40% more than that of H.264/AVC [3].  

Among other factors, both the enhanced compression 
efficiency and the increased encoding computational 
complexity can be attributed to HEVC’s usage of flexible 
partitioning structures. HEVC uses quad-tree Coding Tree 
Units (CTUs), Prediction Units (PUs), and Residual Quad-
Trees (RQTs) rather than macroblocks (MBs). In order to 
achieve the best configuration in terms of selecting the optimal 
partitioning structure, an exhaustive rate-distortion 
optimization (RDO) process takes place, which is the main 
reason behind the intensification of the computational 
complexity. Most of the encoding time involves recursively 
repeating the RDO process at each Coding Unit (CU) depth 
level for each structure, where every combination of encoding 
structure is tested and the one that minimizes the rate-distortion 
(RD) cost is chosen [4]. 

Several early termination algorithms for optimizing the 
encoding process in HEVC can be found in the literature, where 
their aim is to reduce the computational complexity while any 
minimizing performance degradation. Among many, some 
approaches utilize the textural or structural characteristics of a 
given CU [5]-[15], while others use machine learning 
techniques [16]-[25]. The optimizations are not limited to 
HEVC inter-coding as some also considered enhancing intra-
coding [11], [12], [14], and [16]. In this field of research, 
utilizing machine learning techniques as a tool to minimize RD 
efficiency losses is limited, and most algorithms proposed do 
not achieve superior results in terms of computation complexity 
reduction without introducing significant video quality level 
losses. 

In this work, we use a sequence-dependent approach to 
model the relationship between CU feature variables and split 
decisions. The feature variables are extracted from both the 
present CU and its surrounding spatial and temporal CUs. 
Additionally, we use dimensionality reduction techniques for 
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the three CU depths of 64x64, 32x32 and 16x16. This is needed 
to reduce the number of extracted features. The feature 
extraction and modeling is also performed at three CU coding 
depths.  We use stepwise regression, random forest reduction 
and principal component analysis (PCA) for dimensionality 
reduction. Moreover, we utilize polynomial networks and 
random forests for classification. 
This paper is organized as follows. Section 2 presents a review 
of algorithms proposed in the literature that are reduced the 
encoding computational complexity. The overall CU split 
prediction system proposed is overviewed in Section 3. The 
feature extraction process and dimensionality reduction are 
discussed in detail in Section 4 in addition to the classification 
tools and arrangements used in this work. The experimental 
setup and experimental results are presented in Section 5. 
Lastly, Section 6 concludes the paper. 
 
 

 
2 Related Work 
 

As mentioned earlier, HEVC introduced significant coding 
efficiency improvements at the cost of increasing the 
computational complexity. Therefore, existing research work is 
conducted to limit this computational complexity whilst 
minimizing the adverse effect on compression efficiency. The 
work reported in [5]-[15] investigated the textural or structural 
characteristics of CUs at a given CU depth to optimize the 
HEVC encoding procedure. [5] proposed an inter-prediction 
optimization scheme, where the CTU structure is analyzed in a 
reverse order. Alternatively, a subjective-driven complexity 
control approach is presented in [6], which examines the 
relationship between visual distortion and maximum depth of 
all largest CUs. Another complexity control algorithm is 
proposed in [7], where an early termination condition is defined 
at each CU depth based on the content of the video sequence 
being encoding, the configuration files and the target 
complexity.  

In [8], the authors present a hierarchical structure-based fast 
mode decision scheme. A fast CU decision algorithm is 
presented in [9], where the coded block flag and RD costs are 
checked to determine if intra- and inter- PUs can be skipped. In 
[10], a two-layered motion estimation based fast CU decision 
process is proposed, which uses the sum of absolute differences 
(SAD) estimation to extract the SAD costs for a CU and its sub-
CUs. [11] speeds up the HEVC intra-coding process mainly by 
using encoded CU depths and RD costs of co-located CTU to 
predict both the current CU’s depth search range and the RD 
cost for CU splitting termination. Local texture descriptors or 
image characteristics were used in [12]- [14] to allow faster CU 
size selection. A spatiotemporal based CU encoding technique 
is explored in [15], where sample-adaptive-offset (SAO) 
parameters were utilized to predict the textural complexity of 
the CU being encoded. 

Other approaches utilized the Bayesian decision rule and 
other machine learning techniques to improve the time 
complexity of an HEVC encoder. For instance, the work in [16] 
and [17] uses the Bayes' rule to optimize PU and CU skip 
algorithms, respectively. In [18], the authors present a joint 
online and offline learning-based fast CU partitioning method 
that uses the Bayesian decision rule to optimize the CU 
partitioning process. The Bayesian decision theory is also 
utilized in [19] along with the correlation between the variances 
of the residual coefficients and the transform size to enhance 
the PU size decision process. Alternatively, a fast CU splitting 
and pruning algorithm is proposed in [20], which is applied at 
each CU depth according to a Bayes decision rule method based 
on low-complexity RD costs and full RD costs. A fast CU size 
and PU mode prediction algorithm that uses the k-means 
clustering method is introduced by [21]. 

On the other hand, [22] presents an early mode decision 
algorithm based on the Neyman-Pearson approach. In [23], a 
fast pyramid motion divergence (PMD)-based CU selection 
algorithm is proposed, where a k nearest neighbors (k-NN) like 
method is used to determine the optimal CU size. The work in 

 

 
Fig. 1.  Flowchart of data collection during the training phase.  
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[24] used a machine learning-based fast coding unit (CU) depth 
decision method, where the quad-tree CU depth levels are 
modeled as a three-level of hierarchical binary decision 
problem. The work proposed in [25] implemented early 
termination techniques on CUs, PUs, and TUs using a set of 
decision trees grown with the aid of Waikato Environment for 
Knowledge Analysis (WEKA) [27], an open source data mining 
tool. 

 
3 System Overview 
 

In the proposed prediction system, the first 10% of frames of 
a video sequence are used for training. Hence, modeling and 
prediction will be specific to one video as opposed to training 
the classification system using many video sequences. The 
former training approach is known as “video-dependent” 
modeling, while the latter is known as “video-independent” 
modeling.  The problem with the video-independent modeling 
is that it follows a one-size-fits-all approach in which there is 
an implicit assumption that the videos used for training are 
suitable for predicting the CU split decisions of all other videos. 
Video-dependent modeling, on the other hand, makes sure that 
the prediction model is most suitable for predicting the CU split 
decisions of the remaining video content. 

The concept of video-dependent modeling was previously 
introduced by the author in [28]-[30]. The first 10% of video 
frames were used for training and the prediction model is then 
used throughout the sequence in a video transcoding context. If 
needed, the training can be repeated periodically or in the case 
of detecting scene cuts. 

Fig. 1 and 2 present the flowcharts of the proposed training 
system. Fig. 1 illustrates the data collection process of the 
training system. The video encoder will run with normal 
compression operations for the first 10% of the video frames 
during which, for each CU, features are extracted and recorded 
at the highest level, which is typically 64x64. The 
corresponding split decision is also recorded. If the encoder 
decides to split the CU, then the split decisions at the 32x32 and 
16x16 levels will be recursively calculated during which, the 
training system will record the features and corresponding split 
decisions at 32x32 and 16x16 CU levels. The details of the 
selected feature variables are discussed in the next section. 

The output of this data collection process is three sets of data. 
Each data set contains feature vectors and the corresponding 

 
Fig. 3.  Flowchart of applying the train models to predict the CU split flags. 
  

 
Fig. 2.  Flowchart of CU split modeling in the training phase. 
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split flags for 64x64, 32x32 and 16x16 CU levels. The second 
step in the training system is to map the feature vectors to the 
split decisions. This is illustrated in Fig. 2. The result of this 
step is 3 training models that can be used for the prediction of 
CU split decisions at 64x64, 32x32 and 16x16 CU levels. Prior 
to model generation, there is an optional dimensionality 
reduction step. Again, this is applied at the three CU levels and 
the dimensionally reduced models are stored and used for 
reducing the dimensionality of the feature vectors during the 
testing phase, as shall be explained next. The system modeling 
and dimensionality reduction techniques used in this work are 
explained in the next section. 

Once the system is trained, the generated models are used to 
predict the split decisions of the remaining CUs of the 
underlying video sequence. This process is illustrated in Fig. 3. 
Basically, feature variables are extracted at the highest CU 
level, which in this work it is 64x64. The corresponding train 
model is then used to predict the split flag. If predicted as ‘no 
split,’ then early termination is applied. Otherwise, the second 
train model is applied for each of the 32x32 CU levels and 4 
split flags are predicted. If any of the flags are predicted as 
‘split’, then the process is repeated at the 16x16 CU levels using 
the third train model. At each level, feature vectors are 
calculated and reduced in dimensionality if required. Again, 
dimensionality reduction models are calculated during the 
training phase. 

 
4 System Training 
 

This section introduces the proposed feature extraction and 
dimensionality reduction process. It also reviews the machine 
learning techniques used. 
A. Feature Extraction and Dimensionality Reduction 
In this work, feature extraction is applied at each of the three 

coding levels (i.e. 64x64, 32x32 and 16x16). Common to all 
levels are features extracted from surrounding CTUs. The 
surrounding CTUs are previously encoded and include the 
CTUs at the following locations relative to the current CU: left, 
top-left, top, top-right and co-located from the previous frame. 
The total number of surrounding CTUs is therefore 5. The 
complete list of extracted features and their description are 
listed in Table I. The first 15 features in Table I belong to the 
current CU, whereas the remaining 55 features belong to 
surrounding CTUs. The total number of features is therefore 70. 

As illustrated in Fig. 2 above, the dimensionality of these 
features can be reduced prior to generating the training model. 
In this work, we generate experimental results with and without 
dimensionality reduction. We propose the use of the following 
dimensionality reduction techniques: stepwise regression, 
principle component analysis (PCA) and reduction based on 
random forests. In the following, we briefly summarize the use 
of each relative to the proposed solution. It is important to 
mention that all dimensionality reduction techniques are 
applied to the train data set as illustrated in Fig. 2. The generated 
model is then applied to the test data set. 

Stepwise regression is a feature selection algorithm; however, 
it can be used as a dimensionality reduction technique as 
reported in [31]. In this work, we treat the feature vectors of 
CUs as predictors and the split decisions as response variables. 
As such, the problem can be formalized in a regression context. 
The idea of stepwise regression is to start with one feature 
variable and compute its correlation with the split decision. 
Then, another feature variable is added and the correlation is 
computed again. The significance of adding another feature 
variable is assessed by means of examining the P-value at a 0.05 

TABLE I 
FEATURE VARIABLES REPRESENTING CUS 

Feature (length) Description 

CU depth (1) Coding depth: 0=64x64, 1=32x32, 
2=16x16 

Prediction mode (1) 0=inter, 1=intra 

PU type costs (11) 

PU RD cost of (Skip, 2Nx2N, 2NxN, 
Nx2N, NxN, 2NxuN, 2NxdN, lNx2N, and 
rNx2N), and intra-PU modes (2Nx2N and 
NxN) 

Merge flag (1) Merge flag of current CU 

Skip flag (1) Skip flag of current CU 

Total distortions of 
surrounding CTU (5) 

Total distortion cost of each of the 
surrounding CTUs 

Average coding depths of 
Surrounding CTUs (5) 

Average coding depth of each CTUs of the 
surrounding CTUs 

Variance of coding depths 
of surrounding CTUs (5) 

Variance of coding depth of each CTUs of 
the surrounding CTUs 

Average and variance of 
MVx and MVy of 
surrounding CTUs (40) 

Average and variance of MVx and MVy of 
surrounding CTUs for lists List0 and List1. 
Normalized by frame distance. 

 
 

TABLE II 
RETAINED VARIABLES USING STEPWISE REGRESSION 

Video sequence 
Avg. # retained features 

64x64 32x32 16x16 

RaceHorses (384x192) 10 11 15 
BlowingBubbles (384x192) 4 13 12 
BQSquare (384x192) 7 17 17 
BasketballPass (384x192) 9 15 13 
RaceHorses (832x448) 7 14 19 
PartyScene (832x448) 14 27 28 
BQMall (832x448) 14 21 22 
BasketballDrill (832x448) 13 13 16 
ParkScene (1920x1024) 20 30 26 
Kimono1 (1920x1024) 17 16 14 
Cactus (1920x1024) 20 22 28 
BQTerrace (1920x1024) 19 24 27 
BasketballDrive (1920x1024) 16 18 23 
Traffic (2560x1600) 22 25 26 
PeopleOnStreet (2560x1600) 17 28 31 
NebutaFestival (2560x1600) 16 20 24 
SteamLocomotiveTrain 
(2560x1600) 18 20 24 

Average 14 19 21 
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level of significance. If the added feature variable is found 
significant, then it is retained; otherwise, it is removed from the 
list of variables. Likewise, once a variable is retained, the 
stepwise regression algorithm proceeds by revisiting the 
previous feature variables and reassessing their significant, 
taking into account that a new variable has been retained. The 
algorithm terminates when there are no further feature variables 
to add or to eliminate. A full description of the algorithm can 
be found in [32]. 

Once applied to the train data set at 64x64, 32x32 and 16x16 
CU levels, the result of the stepwise regression is simply 3 sets 

of indices of the retained feature variables, one set for each CU 
coding depth. These indices can be used to reduce the 
dimensionality of the feature vectors during the testing phase. 
Since we are using a video-dependent approach to learning in 
this work, the number of retained feature variables varies from 
one video sequence to the other. Full information about the 
experimental setup are given in the experimental results 
section; nonetheless, for completeness, we briefly discuss the 
results of applying the stepwise regression algorithm here. The 
number of retained variables for each video sequence is given 
in Table II. The table lists the average number of retained CU 
variables with QP values of {22, 27, 32 and 37}. Since 3 models 
are generated, the table lists the retained variables at 64x64, 
32x32 and 16x16 CU coding levels. A full example showing 
specific names of retained variables for the RaceHorses 
sequence is shown in Table III. 

In this work, we also experiment with dimensionality 
reduction using random forests. In this approach, we generate a 
large set of trees against the CU split decision. Each tree is 
trained on a small number of feature variables. The usage 
statistics of each feature variable can be used to find an 
informative subset of features. More specifically, if a feature 
variable is repeatedly selected as best split, it is consequently a 
good candidate to retain. More information about this algorithm 
can be found in [33].  

Here, a random forest of 100 trees is grown, where the 
maximum number of decision splits or branch nodes is set to be 
the initial set of 70 features. The training dataset is sampled for 
each decision tree with replacement and the feature variables 
selected at random for each decision split are chosen without 

TABLE III 
STEPWISE REGRESSION, EXAMPLE RETAINED VARIABLES FOR 32X32 DEPTH 

LEVEL WITH QP=32 

Feature (length) Retained variables 

CU depth (1) - 

Prediction mode (1) Prediction mode 

PU type costs (11) Skip RD cost, 2Nx2N-inter RD cost, 
2Nx2N-intra RD cost 

Merge flag (1) - 

Skip flag (1) Skip flag status 

Total distortions of 
surrounding CTU (5) 

Total distortion in Left CTU, Total 
distortion in Collocated CTU 

Average coding depths of 
Surrounding CTUs (5) 

Average coding depth in Left CTU, 
Average coding depth in Upper CTU, 
Average coding depth in Collocated CTU 

Variance of coding depths 
of surrounding CTUs (5) 

Variance of coding depth in Left CTU, 
Variance of coding depth in Upper CTU 

Average and variance of 
MVx and MVy of 
surrounding CTUs (40) 

Variance of MVx (List1) in Left CTU, 
Average of MVy (List0) in Upper Right 
CTU 

 
 TABLE V 

RANDOM FOREST FEATURE IMPORTANCE, EXAMPLE RETAINED VARIABLES 
FOR 32X32 DEPTH LEVEL WITH QP=32 

Feature (length) Retained variables 

CU depth (1) - 

Prediction mode (1) - 

PU type costs (11) 

Skip RD cost, 2Nx2N-inter RD cost, 2NxN 
RD cost, rNx2N RD cost, Nx2N RD cost, 
lNx2N RD cost, 2NxdN RD cost, 2NxuN 
RD cost, 2Nx2N-intra RD cost 

Merge flag (1) - 

Skip flag (1) Skip flag status 

Total distortions of 
surrounding CTU (5) 

Total distortion in Upper CTU, Total 
distortion in Upper Left CTU 

Average coding depths of 
Surrounding CTUs (5) Average coding depth in Upper CTU 

Variance of coding depths 
of surrounding CTUs (5) 

Variance of coding depth in Upper Right 
CTU, Variance of coding depth in Upper 
Left CTU 

Average and variance of 
MVx and MVy of 
surrounding CTUs (40) 

- 

 
 

TABLE IV 
RETAINED VARIABLES USING FEATURE IMPORTANCE WITH RANDOM FORESTS 

Video sequence 
Avg. # retained features 

64x64 32x32 16x16 

RaceHorses (384x192) 8 13 10 
BlowingBubbles (384x192) 12 14 14 
BQSquare (384x192) 12 13 14 
BasketballPass (384x192) 9 14 14 
RaceHorses (832x448) 15 15 15 
PartyScene (832x448) 13 14 14 
BQMall (832x448) 14 15 13 
BasketballDrill (832x448) 15 14 14 
ParkScene (1920x1024) 15 14 14 
Kimono1 (1920x1024) 15 15 12 
Cactus (1920x1024) 15 15 14 
BQTerrace (1920x1024) 15 15 14 
BasketballDrive (1920x1024) 15 15 15 
Traffic (2560x1600) 14 14 14 
PeopleOnStreet (2560x1600) 13 13 14 
NebutaFestival (2560x1600) 15 15 14 
SteamLocomotiveTrain 
(2560x1600) 13 14 13 

Average 13.4 14.2 13.6 
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replacement within the same decision tree. The importance of 
each of these features in predicting the correct classification of 
a test instance from the out-of-bag data is computed and used 
to select the features whose raw importance score make up 80% 
of the total importance score. The out-of-bag data is the set of 
instances that were left out during the training process of a 
given tree in the random forest. 

The number of retained variables, using random forests, for 
each video sequence is given in Table IV. Similar to Table II 
above, the table lists the average number of retained CU 
variables with QP values of {22, 27, 32 and 37}. Since 3 models 
are generated, the table lists the retained variables at 64x64, 
32x32 and 16x16 CU coding levels. A full example showing 
specific names of retained variables for the RaceHorses 
sequence is shown in Table V. 

Lastly, we also experiment with dimensionality reduction 
using PCA. In this approach, an orthogonal transformation is 
used to transfer the data from the feature domain to the principle 
component domain. The first principle component of the 
transformed data account for the highest variability in the 
feature data. One drawback of PCA is that it results in a reduced 
data set that cannot be directly interpreted. This is not the case 
for the other two dimensionality reduction techniques used in 
this paper. The number of principle components retained 
depends on the chosen Proportion of Variance (PoV) explained, 
which is 90% in this work. Again, the PCA is applied to the 
training dataset at 64x64, 32x32 and 16x16 CU levels. The 
resulting principle components are then stored and used for 
reducing the test data set. 

The number of retained variables, using PCA, for each video 
sequence is given in Table VI. Similar to Tables II and IV 

above, the table lists the average number of retained CU 
variables with QP values of {22, 27, 32 and 37}. Since 3 models 
are generated, the table lists the retained variables at 64x64, 
32x32 and 16x16 CU coding levels. Unlike stepwise regression 
and random forest variable selection, PCA results in a reduced 
data set that cannot be directly interpreted; hence, there are no 
specific retained variable names to list. 
A. Classification Methods 

In this work, we model the relationship between the CU 
features and split decisions using two classification tools; 
namely polynomial networks [34], random forest [35] . 

In the polynomial networks, we experiment with a second 
order polynomial classifier. In the case of random forests, 100 
trees are grown, where the maximal number of branch nodes is 
the square root of the number of retained feature variables. This 
is determined based on the out-of-bag estimates of the features’ 
importance in the tree ensemble. Based on the retained features, 
the training dataset is sampled for each decision tree with 
replacement. The variables selected at random for each decision 
split are chosen without replacement within the same decision 
tree. As the purpose of growing trees is classification, only one 

TABLE VI 
RETAINED VARIABLES USING PCA 

Video sequence 
Avg. # retained features 

64x64 32x32 16x16 

RaceHorses (384x192) 8 24 25 
BlowingBubbles (384x192) 20 26 26 
BQSquare (384x192) 20 22 22 
BasketballPass (384x192) 19 20 21 
RaceHorses (832x448) 19 30 30 
PartyScene (832x448) 29 30 30 
BQMall (832x448) 27 29 29 
BasketballDrill (832x448) 24 24 25 
ParkScene (1920x1024) 29 31 31 
Kimono1 (1920x1024) 29 29 27 
Cactus (1920x1024) 27 28 29 
BQTerrace (1920x1024) 31 31 32 
BasketballDrive (1920x1024) 29 29 29 
Traffic (2560x1600) 22 23 24 
PeopleOnStreet (2560x1600) 30 34 34 
NebutaFestival (2560x1600) 29 30 31 
SteamLocomotiveTrain 
(2560x1600) 28 29 30 

Average 24.7 27.6 27.9 

 
 

TABLE VII 
ARRANGEMENT OF CLASSIFICATION SOLUTIONS 

Solution Classifier Dimensionality 
reduction 

Stepwise & 
Polynomial 

Polynomial networks with 
second order expansion Stepwise regression 

PCA & 
Polynomial 

Polynomial networks with 
second order expansion PCA with PoV of 90 

R.F. Select & 
R.F. Random Forest Feature importance 

with random forests 

R.F. Random Forest Not used 

 
 

TABLE VIII 
LIST OF VIDEO SEQUENCES USED 

Class ID Video sequence Resolution Frame 
rate 

Bit 
depth 

D 

D1 RaceHorses 384x192 30 8 
D2 BlowingBubbles 384x192 50 8 
D3 BQSquare 384x192 60 8 
D4 BasketballPass 384x192 50 8 

C 

C1 RaceHorses 832x448 30 8 
C2 PartyScene 832x448 50 8 
C3 BQMall 832x448 60 8 
C4 BasketballDrill 832x448 50 8 

B 

B1 ParkScene 1920x1024 24 8 

B2 Kimono1 1920x1024 24 8 

B3 Cactus 1920x1024 50 8 

B4 BQTerrace 1920x1024 60 8 

B5 BasketballDrive 1920x1024 50 8 

A 

A1 Traffic 2560x1600 30 8 

A2 PeopleOnStreet 2560x1600 30 8 

A3 NebutaFestival 2560x1600 60 10 

A4 SteamLocomotiveTrain 2560x1600 60 10 
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observation or class label can be seen per tree leaf. The 
arrangement in which we combine the classification tools with 
the dimensionality reduction techniques are presented in Table 
VII. 
5 Experimental Results 

We assess the performance and efficiency of the proposed 
solutions by implementing them in the HM reference software 
version 13.0 [36]. All video sequences are encoded with QPs of 
{22, 27, 32, and 37}. The main profile and the standard random-
access temporal configuration are used. The same motion 
estimation parameters are used in both the original and 
proposed video coders. For a fair comparison with [18], we use 
the HEVC video test sequences. The sequence resolutions are 
Class A (2560x1600), Class B (1080 pixels), Class C (800 × 
480), and Class D (400×240). A total of 17 video sequences are 
used as reported in Table VIII. We ran the experimental results 
on a PC with Intel Core i7-37400QM, 2.7-GHz CPU with a 16-
GB DDR3 RAM. Compression efficiency is quantified in terms 
of BD-rate and BD-PSNR. The compression times using the 
proposed solutions are also computed and compared with the 
corresponding times obtained from running the unmodified 
HEVC encoder. Furthermore, the classification accuracy of the 
proposed classification systems is presented. We start by 
reporting the classification accuracy of the CU split prediction. 
Table IX presents the overall classification accuracies of the 4 
proposed solutions. These results are the average for all video 
sequences coded with QPs of {22, 27, 32 and 37}. The table 
reports the classification results for the 3 models generated 
according to the CU coding depth. The results indicate that the 
average classification accuracy enhances slightly as the depth 
of the CU coding increases. The results also show that the 
classification solutions using random forest are the most 
accurate. In Table X, the average classification results for 
individual video sequences using the “R.F. Select & R.F.” 
solution are shown. The resolution of the video does not seem 
to affect the classification accuracy. Moreover, the accuracies 
do not seem to vary much according to the underlying video 
sequence as well.  

In the following experiments, we report the coding efficiency 
of the proposed solutions using a number of approaches; 
namely BD-rate, BD-PSNR [37] and Computational 
Complexity Reduction (CCR). CCR is computed as 
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑡𝑡𝑡𝑡𝑝𝑝𝑟𝑟) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟⁄ , where 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the time needed for regular encoding and 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑝𝑝 is the time needed to encode a sequence using 
the proposed fast encoder. In Table XI, the coding results of the 
4 proposed solutions are listed. As mentioned earlier, all results 
are obtained with QPs of {22, 27, 32 and 37}. The best coding 

results in terms of BD-rate and BD-PSNR are achieved by the 
“R.F. Select & RF” and “R.F.” solutions. The reported results 
also indicate that, in general, the coding efficiency enhances as 
the resolution of the video increases. We report the time 
complexity in terms of CCR% in Table XII. We present the 
CCR% for two cases; the first case is the time savings without 
taking the training or the model generation time into account, 
while the second case is the CCR% with the training time being 
taken into account. In Table XII, it seems that without giving 
consideration to the training time, all solutions provide similar 
complexity reductions.  However, because some of the training 
solutions are more computationally demanding, when the 
training time is taken into account, the range of CCR% 
increases from (39.1% - 37.5%) to (38.9% - 31.8%). Clearly, 
the most demanding training solution is the one that uses 
random forest. This is followed by random forest with 
dimensionality reduction. In this work, no attempt was taken to 
reduce the training time. However, one solution would be to 
reduce the number of train feature vectors by means of 
sampling, therefore reducing the model generation time. The 
reported results also indicate that, in general, the CCR% 
enhances as the resolution of the video increases. For 
comparison with existing work, we refer to the work reported 
in [9] and [18]. These results contain the BD-rate and time 
savings only. However, the time savings are computed as 
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑡𝑡𝑡𝑡𝑝𝑝𝑟𝑟) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑡𝑡𝑡𝑡𝑝𝑝𝑟𝑟⁄ . 
This is different than the CCR reported in Table XI above, 
where time savings are calculated by dividing by 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  
instead of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑡𝑡𝑡𝑡𝑝𝑝𝑟𝑟. For a fair comparison, in Table 
XIII, we calculated the time savings of the proposed solution 
accordingly. In Table XIII, we compare the results of our best  

TABLE IX 
OVERALL CLASSIFICATION AVERAGE OF CU SPLIT PREDICTION 

Solution 64x64 32x32 16x16 Average 

Stepwise & Polynomial 83.2 85.7 86.4 85.1 
PCA & Polynomial 78.5 81.9 83.2 81.2 

RF Select & RF 85.3 86.3 86.7 86.1 
RF 86.2 86.5 86.8 86.5 

Average 83.3 85.1 85.8 84.7 

 
 

TABLE X 
CLASSIFICATION ACCURACY OF CU SPLITS FOR THE “R.F. SELECT & R.F.” 

SOLUTION 

Sequence ID 
R.F. Select & R.F. 

64x64 32x32 16x16 Average 

D1 79.0 83.8 83.0 81.9 

D2 85.1 84.7 83.7 84.5 

D3 82.6 87.7 87.2 85.8 

D4 87.1 88.1 83.6 86.3 

C1 85.3 84.7 86.0 84.9 

C2 89.7 88.3 87.8 86.8 

C3 91.6 87.7 85.2 86.9 

C4 89.1 88.9 87.7 87.2 

B1 88.4 90.6 89.7 87.8 

B2 80.3 77.0 82.3 84.0 

B3 89.1 86.4 88.2 87.1 

B4 88.1 90.1 89.6 87.7 

B5 86.6 83.8 86.6 86.2 

A1 89.6 91.1 91.2 88.1 

A2 91.3 87.4 83.4 87.3 

A3 64.0 80.5 88.3 83.2 

A4 82.7 87.0 90.7 86.5 

Average 85.3 86.3 86.7 86.1 
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TABLE XI 
CODING EFFICIENCY OF PROPOSED SOLUTIONS 

Sequence ID 
Stepwise & Polynomial PCA & Polynomial R.F. Select & R.F. R.F. 

BD-rate BD-PSNR BD-rate BD-PSNR BD-rate BD-PSNR BD-rate BD-PSNR 

D1 2.58 -0.12 1.42 -0.07 1.58 -0.08 1.48 -0.07 
D2 1.84 -0.07 0.87 -0.04 0.57 -0.02 0.53 -0.02 
D3 1.23 -0.06 0.75 -0.04 0.46 -0.02 0.42 -0.02 
D4 4.34 -0.21 2.45 -0.11 0.33 -0.02 0.50 -0.03 

Average 2.50 -0.12 1.38 -0.06 0.74 -0.03 0.73 -0.03 
C1 1.74 -0.07 2.09 -0.08 0.84 -0.03 0.78 -0.03 
C2 1.04 -0.05 1.45 -0.07 0.69 -0.03 0.51 -0.02 
C3 1.94 -0.08 1.84 -0.08 0.48 -0.02 0.38 -0.02 
C4 1.59 -0.07 1.74 -0.07 0.52 -0.02 0.58 -0.02 

Average 1.58 -0.07 1.78 -0.07 0.63 -0.03 0.56 -0.02 
B1 0.83 -0.03 1.29 -0.04 0.63 -0.02 0.62 -0.02 
B2 0.43 -0.02 0.76 -0.03 0.47 -0.02 0.38 -0.01 
B3 0.81 -0.02 1.10 -0.02 0.56 -0.01 0.52 -0.01 
B4 0.75 -0.02 0.91 -0.02 0.48 -0.01 0.69 -0.01 
B5 1.60 -0.04 1.17 -0.03 0.46 -0.01 0.50 -0.01 

Average 0.88 -0.02 1.05 -0.03 0.52 -0.01 0.54 -0.01 
A1 0.66 -0.02 1.52 -0.05 0.54 -0.02 0.45 -0.02 
A2 1.35 -0.06 3.72 -0.16 1.07 -0.05 0.98 -0.04 
A3 0.11 0.00 0.04 0.00 0.05 0.00 0.11 0.00 
A4 -0.04 0.00 -0.1 0.00 -0.2 0.00 -0.27 0.00 

Average 0.52 -0.02 1.30 -0.05 0.36 -0.02 0.32 -0.02 

Overall Average 1.34 -0.06 1.35 -0.05 0.56 -0.02 0.54 -0.02 

 
 TABLE XII 

COMPLEXITY REDUCTION OF PROPOSED SOLUTIONS USING CCR (%) 

Sequence ID 

Stepwise & Polynomial PCA & Polynomial R.F. Select & R.F. R.F. 

Without 
training 

time 

With 
training 

time 

Without 
training 

time 

With 
training 

time 

Without 
training 

time 

With 
training 

time 

Without 
training 

time 

With 
training 

time 

D1 25.2 25.2 17.8 17.8 24.8 15.4 25.3 10.4 
D2 33.7 33.7 31.2 31.1 32 19.7 31.8 11.4 
D3 36.8 36.7 37 36.9 35.2 20.5 35.7 13.4 
D4 34.8 34.7 31.6 31.5 30.6 17.8 32 11.1 

Average 32.7 32.6 29.4 29.3 30.6 18.4 31.2 11.6 
C1 30.4 30.3 27.8 27.8 31.7 28.3 31 26.0 
C2 32.4 32.3 31.8 31.7 33.1 28.9 33.4 27.4 
C3 33.6 33.5 32.1 32.1 33 29.2 32.1 26.6 
C4 39.5 39.4 38 37.9 39.2 35.6 38.4 33.1 

Average 34 33.9 32.4 32.4 34.2 30.5 33.7 28.3 
B1 43.2 42.7 44.5 44.4 43.9 42.0 43.6 40.9 
B2 41.5 41.5 42.7 42.6 44.1 43.0 42.7 41.2 
B3 46.6 46.5 41.8 41.7 41.3 39.5 38.8 36.0 
B4 47.3 47.1 47.5 47.5 48.4 46.5 49.7 46.6 
B5 39.7 39.7 38.1 38.0 42.6 41.4 41.3 39.7 

Average 43.7 43.5 42.9 42.9 44.1 42.5 43.2 40.9 
A1 47.3 46.8 47.3 44.8 48.7 46.3 48.7 46.1 
A2 28.7 28.3 26.8 22.4 30.6 26.7 27.9 24.1 
A3 50.2 50.2 47.3 44.1 51.7 50.9 52.9 52.1 
A4 53.4 53.4 53.8 51.0 55.1 53.7 55.9 54.7 

Average 44.9 44.7 43.8 40.6 46.5 44.4 46.3 44.2 

Overall Average 39.1 38.9 37.5 36.7 39.2 34.4 38.9 31.8 
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solution against existing work.  
It was not to clear to the authors if the reviewed work 

considered the training time when reporting the ∆Time%; 
hence, in Table XIII, we report our results with and without 
taking into account the training time. In the table, ∆1Time% 
refers to the time savings without training time and ∆2Time% 
refers to the time savings taking into consideration the training 
time.  

As previously mentioned, it seems that the results of the 
proposed solution enhance with the increasing sequence 
resolution. This is in contrast to the results reported in [18], 
where the BD-rate seems to improve with decreasing sequence 
resolution. Moreover, the time reduction in [18] does not seem 
to be affected by the resolution of the video sequences. 

All in all, the results in Table XIII indicate that the proposed 
solution has a clear advantage in terms of BD-rate and time 
savings.  With reference to the average reported BD-rate of 
existing work (i.e. 0.765 dB), the proposed solution provides an 
enhancement of 27.1%. Additionally, this quality enhancement 
comes with further reduction in computational time. More 
specifically, with reference to the average reported time savings 
(i.e. -45.5%), the proposed solution provides an enhancement 
of 57% and 34% for ∆1Time% and ∆2Time%, respectively. 

Lastly, the results in Table XIV present a comparison with 
the recent work reported in [23], which uses CCR% for 
measuring the time complexity reduction. Table XIV lists the 
results for 15 video sequences that are used in both [23] and the 
proposed solution.  

The results in the table show that the BD-rate of the proposed 

solution is on average 0.7, whereas that of the proposed solution 
is 2.18. This noticeable enhancement in the BD-rate reduction 
comes at a slight advantage of increased computational 
complexity, where the CCR of the reviewed work is 37.5% and 
that of the proposed work is 39.2%. 
 
6 Conclusion 
 

We proposed a solution for reducing the complexity of 
determining the CU split decisions in HEVC video coding. The 
solution uses a video sequence-dependent approach to collect 
features that represent CUs at various coding depths. The 
features are extracted from both the underlaying CU and the 
previously encoded CUs. A classification model is then built 
based on these feature vectors and corresponding split decisions 
at various CU coding depths. Additionally, dimensionality 
reduction is optionality used as a preprocess to model 
generation.  Therefore, the output of the training phase is a set 
of classification models for predicting split decisions and a set 
of dimensionality reduction models.  We have used a number 
of dimensionality reduction and classification techniques, 
including stepwise regression, random forest variable selection, 
PCA, polynomial classifiers and random forest classifiers.  
Experimental results were carried out on many test video 
sequences with different resolutions. Comparison with existing 
work revealed that the proposed solution has an advantage in 
terms of coding efficiency and time savings. It was shown that, 
on average, the classification accuracy of the CU split models 
is 86.5%. In comparison to regular HEVC coding, the proposed 
solutions resulted in a BD-rate of 0.55 and a BD-PSNR of -0.02 
dB. The average reported computational complexity reduction 
was 39.2%. 

TABLE XIII 
COMPARISON WITH EXISTING WORK [9] AND [18] 

Seq. 
ID 

Stepwise & Polynomial 
Kim and Park 

[18] 
Yoo and Suh  

[9] 

BD-
rate 

∆1 
Time 
(%) 

∆2 
Time 
(%) 

BD-
rate 

∆Time 
(%) 

BD-
rate 

∆Time 
(%) 

D1 1.583 -33.9 -18.6 0.9 -49.1 0.65 -26.6 
D2 0.572 -49.3 -25.3 0.33 -54.7 0.52 -36.2 
D3 0.460 -59.3 -27.6 0.47 -56 0.64 -43.2 
D4 0.334 -45.3 -22.1 0.65 -51.2 1.02 -28.4 
C1 0.835 -47.5 -40.3 0.97 -57.3 1.22 -25.7 
C2 0.687 -51.4 -42.1 0.25 -56 0.41 -34.3 
C3 0.484 -50.8 -42.6 0.77 -50.7 0.77 -40.7 
C4 0.520 -66 -56.6 0.52 -53.3 1.06 -35.2 
B1 0.630 -83.7 -77.9 0.49 -50.3 0.40 -41.6 
B2 0.468 -81.5 -77.7 0.64 -61.8 0.46 -35.7 
B3 0.561 -74.7 -69.6 0.57 -48 0.48 -42.7 
B4 0.478 -111 -103.3 0.87 -59.9 1.13 -44 
B5 0.458 -75.7 -72.2 1.33 -57.4 1.21 -46.4 
A1 0.540 -101 -92.0 0.71 -55.2 0.57 -43.6 
A2 1.066 -44.9 -37.4 0.79 -42.5 0.94 -42.3 
A3 0.047 -109.6 -105.7 0.78 -58.8 1.01 -47.6 
A4 -0.234 -128.1 -121.3 0.98 -48.7 1.43 -22.1 

Avg. 0.558 -71.4 -60.7 0.71 -53.6 0.82 -37.4 

 
 

TABLE XIV 
COMPARISON WITH EXISTING WORK [23] 

Seq. ID 
R.F. Select & R.F. Xiong et al. [23] 

BD-rate CCR (%) BD-rate CCR (%) 

D1 1.583 24.8 1.99 30.9 
D2 0.572 32 1.67 25.6 
D3 0.46 35.2 2.34 33.04 
D4 0.334 30.6 1.17 44.54 
C1 0.835 31.7 1.54 31.05 
C2 0.687 33.1 2.53 39.83 
C3 0.484 33 1.98 42.35 
C4 0.52 39.2 1.72 44.19 
B1 0.63 43.9 1.54 30.34 
B2 0.468 44.1 2.36 36.66 
B3 0.561 41.3 2.48 43.76 
B4 0.478 48.4 1.62 31.91 
B5 0.458 42.6 4.6 46 
A1 0.54 48.7 3.25 49.7 
A2 1.066 30.6 1.95 38.67 
A3 0.65 51.7 2.18 37.9 
A4 1.583 55.1 1.99 30.9 

Avg. 0.7 39.2 2.2 37.5 
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