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Abstract

In this thesis, a numerical study is conducted to investigate the use of microwave to-

mography in monitoring bone health in human lower limbs. By monitoring bone vol-

ume fraction (BVF) and bone density, the effectiveness of Vitamin D treatment can be

evaluated for osteoporosis patients. In microwave tomography, the leg is radiated with

non-ionizing low-power electromagnetic signals with scattered electric fields measured

at several locations surrounding the leg. Within the framework of inverse scattering

problems, the measured fields are used as inputs for an optimization algorithm to es-

timate the location and electrical properties inside the human leg. In this work, three

two-dimensional cross-sectional models of human leg at different fat thicknesses are

created and simulated using a finite-element method, where the transverse magnetic ap-

proximation is applied. The synthetic results are then inverted using a finite-element

contrast source inversion method. Furthermore, an enhancement procedure is followed

to investigate the effect of incorporating prior information about the object-of-interest

(OI), changing the boundaries of the imaging domain, relocating antennas, and using

ultrasound gel as a matching medium. In addition, an image processing approach is

provided to build estimated models to be used in the enhancement procedure. The final

results show that variations in BVF affect the results of the inversion algorithm. The

real part relative permittivity line plots showed a downward trend as the BVF increases,

which can be related to an increase in the bone density. The outcomes of this thesis sup-

port the hypothesis that a MWT wearable system is useful for bone density monitoring

application, and more specifically for Vitamin D treatment evaluation.

Search Terms: Bone density, bone volume fraction, electromagnetic imaging, mi-

crowave tomography, finite-element method, contrast source inversion, k-means clus-

tering, inhomogeneous background
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Chapter 1: Introduction

1.1. Scope of Research

This thesis presents research work in the area of microwave tomography (MWT)

for evaluating bones’ health via monitoring variations in the bones’ dielectric properties.

Microwave tomography, in general, is an imaging modality that has been been used in

various biomedical applications, such as breast cancer detection and brain tumor diag-

nosis, as well as in industrial non-destructive testing, such as grain spoilage monitoring

and structural crack detection. In the application being considered in this thesis, the

objective is to illustrate quantitatively changes in the bones’ health by reconstructing

two-dimensional (2D) tomographic slices of a human leg. These 2D slices will show

the main electrical properties (permittivity and conductivity) of bones and tissues sur-

rounding them. Furthermore, changes in the bones’ health will manifest themselves as

changes in these dielectric properties, which are correlated to the bones’ density. Vari-

ations in bones’ density may arise as a result of low body absorption of calcium, which

might be to an underlying deficiency in Vitamin D. Moreover, a decrease in bones’

density increases the amount of water/blood content within bone pores, which in turn

causes an increase in the electrical properties of bone [1]. Therefore, by using MWT to

reconstruct 2D images of a human’s leg electrical properties, the health of bone tissues

can be monitored.

1.2. Motivation

In the field of medical diagnosis, bone health monitoring is one of the crucial

topics with the increase in bone diseases such as osteoporosis. According to the Na-

tional Osteoporosis Foundation (NOF), more than 10 million people in the United States

of America (USA) are affected by osteoporosis, with an additional 33.6 million people

suffering from low bone density of the hip [2]. One of the main causes of osteoporosis

is Vitamin D deficiency; Vitamin D enables the body to absorb calcium, which is nec-

essary for bones to maintain their health and strength. As reported by the International

Osteoporosis Foundation (IOF) [3], the United Arab Emirates (UAE) is one of the top

countries with both degeneration cases: Osteoporosis and Vitamin D deficiency. It is

estimated that 78% of UAE’s population suffers from Vitamin D deficiency, which is
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due to several factors such as genetics, lifestyle, low activity, obesity, and cultural dress

code and practices.

Currently, the golden standards considered for the assessment of bone mineral

density (BMD) are the dual-energy X-ray absorptiometry (DXA) and the quantitative

computed tomography (QCT). In these systems, examinations are done for the anatom-

ical structures of the body such as the hip, the spine, and the wrist, where the denser

cortical bones are more dominant than the spongy trabecular bones [4]. A major draw-

back of these systems is their excessive use of ionizing X-ray radiation emitted to human

bodies, which may lead to health challenges for long term monitoring. In addition, the

overall cost of these machines is considered extremely high [4, 5].

An alternative to the aforementioned techniques is using microwave tomography

(MWT) for the diagnosis of human bones health. In comparison to DXA and QCT,

MWT emits low-power, non-ionizing electromagnetic radiation onto the objects being

imaged. Therefore, monitoring on regular basis using MWT is safe compared to the

other techniques, which is important in evaluating the efficiency of long-term treatments

of bone osteoporosis. Furthermore, a MWT system is relatively lower in cost and more

operator friendly than X-ray based imaging. The advantages that MWT has to offer is

the driving force behind the research work conducted in this thesis.

1.3. Background

1.3.1. Medical imaging. In 1895, the first medical imaging of human tissues

was introduced by Wilhelm Conard with the discovery of X-ray beams emitted from a

Crooke’s tube [6]. Ever since, the quality of health care services provided to patients

has been improving significantly. Medical imaging refers to the process of analyz-

ing the functionality of biological tissues and organs non-invasively by creating visuals

that represent their structures [7]. In addition to acquiring images, the latest medi-

cal imaging modalities also provide various image processing, recording, and storing

techniques. Such techniques allow a physician, who is usually a radiologist, to observe

various valuable outcomes related to the health conditions of patients, and thus diagnose

them properly. To support the decision of the radiologist, modern diagnostic imaging
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modalities have been developed to assist in the process of decision making using com-

puterized analysis [8], which is performed using image processing techniques.

Several imaging modalities are commonly used now-a-days by clinicians in the

diagnosis and treatment of patients such as X-ray computed tomography (CT) scans,

magnetic resonance imaging (MRI), and ultrasound. The computed tomography modal-

ity obtains several slices for a certain organ allowing for the possibility of merging

all the other slices together to form a three-dimensional (3D) image. X-ray CT scans

demonstrate high resolution accompanied with high quality of the imaging of soft tis-

sues within the body, like muscles and organs. However, the high dose of X-ray beams

emitted into the body per scan can increase the possibility of causing cancer in the fu-

ture [9, 10]. In contrast, MRI does not employ a high dose of ionizing radiations to

obtain images of biological structures. Instead, three-dimensional images are created

from the utilization of magnetic fields at radio frequencies (RF) waves directed to the

body. Nevertheless, MRI imaging requires around an hour to complete each scan, and

its equipment is considered very expensive compared to other imaging systems. An-

other common imaging modality is ultrasound imaging, which is a non-ionizing tech-

nique that depends on the use of acoustic waves generated from piezoelectric materials.

Based on the reflections of these sound waves, images are reconstructed in a real-time

imagery manner [7,11]. Ultrasound imaging is considered very efficient when it comes

to hard tissues like bones, but it is actually weak in terms of resolution when dealing

with soft tissues [9]. Further, in addition to 2D and 3D imaging systems, imaging in a

one-dimensional (1D) form is often possible to determine the location of certain body

organs and tissues functionality over time such as the brain, muscles, and heart. This is

commonly done using data recording techniques. Examples of 1D imaging techniques

are Electroencephalography (EEG) of the brain, Electromyography (EMG) of muscles,

and Electrocardiography (ECG) of the heart [11].

1.3.2. Microwave imaging. In addition to the modalities discussed in the pre-

vious section, many modern medical imaging modalities are still being developed. An

example of such modalities is microwave imaging (MWI), which can be either radar-

based or tomographic based imaging. Microwave Imaging (MWI) uses electromagnetic
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(EM) waves in the microwave spectrum, whose frequency range is in between 300 MHz

and 300 GHz; this corresponds to a wavelength range from 1 m to 1 mm in free-space.

It was proposed in 1979 with the first imaging experiments on kidneys by Larsen and

Jacobi [9, 12], where they were able to distinguished various tissues within the kid-

ney such as the cortex corticis, the deeper cortical layers, the medullary outer zone

containing loops of henle, and the calyces region. Further research in MWI emerged

again after the huge development of computers and algorithms. Researchers consider

it as a promising imaging technique in the field of medicine, as it does not transmit

harmful waves into the body [1, 9, 13]; MWI uses low-power non-ionizing electromag-

netic radiation. This modern modality is a cost-effective one when compared to other

commonly-used imaging modalities, as it does not require expensive equipment to be

built and used.

Microwave imaging systems are either radar-based or tomographic-based. In

radar-based systems, the transceiver transmits an ultra-wide band (UWB) signal into a

human organ, and then receives it back as a reflection. The locations of certain tissues or

cancer cells are represented by reconstructed images with higher reflection values rela-

tive to other normal tissues [14]. Such image details are considered qualitative, as radar

systems identify a tumor based on the strength of the reflected electromagnetic waves

at certain locations. On the other hand, a microwave tomography-based system con-

ducts the imaging of organs in a slice-by-slice manner, much closer to the methodology

of X-ray CT scans. It represents more quantitative details about tissues, reconstruct-

ing images based on the scattered electromagnetic waves measured at the receivers.

The measured signals are processed using optimization algorithms that creates a di-

electric properties map corresponding to various regions within the imaging chamber.

Tomographic-based systems show a high efficiency when detecting very small tissues,

which is usually lacked in radar-based systems [14, 15].

The complete microwave tomography system, which is the selected system for

this thesis research, consists of an antenna array surrounding an object-of-interest (OI)

being imaged. As shown in Fig. 1.1, the object of interest (OI) is located at the mid-

dle of the imaging chamber, surrounded by the antenna array. The elements of the

antenna array acts as transmitters and receivers interchangeably. Each antenna in the
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Figure 1.1: Microwave tomography system configuration.

array transmits an electromagnetic signal at a time, while the rest of the antennas act

as receivers. This setup is located within an imaging chamber with the OI immersed

inside a matching medium in order to reduce any signal losses caused by difference in

electrical properties between the OI and the medium surrounding it [13]. As shown in

Fig. 1.1, domain D represents the imaging domain, which is the imaging region of the

system, surface S depicts the boundary where the antennas are located surrounding the

OI, and τ is the boundary of the imaging chamber.

It worth mentioning that D, S, and τ are not necessarily circular. They can be

modified to follow any shape decided by the user. For example, the antennas locations

may follow the boundaries of the OI being imaged. Furthermore, the imaging domain

can be fixed to cover only the OI region, which can reduce the overall image reconstruc-

tion time. However, commonly circular boundaries are followed by most researchers

for its simplicity. Moreover, the overall design of the MWT system allows it to be

portable, which means that it can be used both inside and outside the clinic.

Compared to other imaging modalities, MWT systems lack the high spatial res-

olution provided by X-ray CT or MRI images, as they only image the bulk features

of biological organs providing a map for their electrical properties. Each human tis-
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sue is characterized by its own relative permittivity (εr) and conductivity (σ ), which

is a function of the frequency of the electromagnetic wave transmitted to it [13]. The

electrical properties of human tissues has been measured and presented by C. Gabriel

et al. for various in-vivo and in-vitro experiments [16]. The performed measurements

demonstrated differences between healthy and cancerous tissues, which will result in a

contrast in the images reconstructed using MWI. According to various studies, a tumor

tissue causes more electromagnetic waves to be scattered than the healthy tissues; this

indicates higher permittivity values for tumorous regions, which is used to identify the

location of a tumor in MWI [13, 15].

The overall simulations and reconstruction procedures for microwave imaging

systems consist of a forward problem and an inverse problem. In the forward prob-

lem, the main goal is to find the total electric field that results from the scattering of

the incident field in the presence of an object-of-interest; information about the electri-

cal properties of the OI is known. There are various ways to solve the forward prob-

lem using electromagnetic computational techniques such as the finite-element method

(FEM), the method-of-moments (MoM), and finite-differences (FD). In the inverse

problem, the object’s electrical properties, the relative permittivity and conductivity,

are estimated based on the measurements of the scattered electric field at receiver loca-

tions [17]. There are various algorithms that are commonly used to solve MWI inverse

problems, which include the contrast Source inversion (CSI), Guass-Newton inversion

technique (GNI), and modified conjugate gradients (CG) methods. In this thesis, the

forward problem will be solved using the finite-element method to create synthetic data

(numerically-generated experimental data), whereas the inverse problem is solved using

the contrast source inversion technique.

1.3.3. Anatomy of human leg bones. Similar to the other organs of the human

body, the lower extremity comprises of various biological tissues such as the bones,

muscles, fat, skin, ligaments, tendons, joints, nerves, and blood vessels. However, be-

cause the core of this thesis focuses on bone imaging, the presented work will concen-

trate on the lower extremitys bones anatomy. In general, the main functionality of hu-

man bones is to provide support and protection for the whole human body. Specifically-
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speaking, the shape of each skeleton bone usually reflects its nature of functionality; for

instance, the brain is enclosed within skull bones for the purpose of protection, while

the leg consists of long bones for locomotion support [18]. In addition, bones have

a precious property which is managing the process of mineral homeostasis and blood

cells formation in the human body. Furthermore, the bone marrow is responsible of

storing fat inside the internal bone cavities to be used whenever the body needs it. Re-

garding minerals, such as calcium and phosphorus, they are stored in the bone tissues

themselves where hormones manage their movement back and forth between bones and

the blood according to the bodys need. Calcium is deposited as salt within bone tissues

with a small amount stored as Ca2+ cations in the blood. These stored minerals are vital

for the bodys signal transmission performed by its nervous system, for the contraction

of muscles, and for blood clotting. Thus, the bone is considered by itself a living organ

formed as a connective tissue in the body [18, 19].

Some of the very important bones in the human body are the lower limb bones

located within the human appendicular skeleton. These bones are mainly the femur,

patella, tibia, fibula, and the foot bones. Actually, being at the bottom part of the body,

the location of these bones gives them the essential functionality of carrying the whole

body and enduring its pressure. Considering the leg bones in particular, the fibula and

Figure 1.2: Leg bones structure and anatomy. retrieved from [19].
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tibia bones are shown in Fig. 1.2. The fibula is the smaller bone located at the lateral

part of the leg, while the tibia is the bigger bone located at the medial part of the leg.

The proximal and distal parts of both bones, located near the joints, consist mostly of

trabacular or spongy bones. Most of the area of these bones is covered by the compact

bones, with a cavity inside each bone including the bone marrow. These compact bones

have high density and less pores compared to the spongy bones that have the appearance

of a sponge with lots of pores. Both types of bones are of a high importance to the body,

as the compact bones provide the strength needed for protection and support while

the spongy bones include pores that store blood and marrow allowing the exchange of

minerals and liquids in and out of the bone [19]. Each type of bones, the compact and

the spongy, should maintain a stable level in a healthy strong human body in order to

perform their utmost functionality [19].

In Fig. 1.3, an illustration of the cross-sectional view of the human leg that con-

tains the tibia and fibula bones along with the other surrounding tissues is shown. The

Tibialis Anterior muscle covers and supports the lateral surface of the tibia, leaving the

other medial surface totally exposed to fat and skin layers, which causes much harm

when the skin is bumped. On the other hand, the fibula is completely enclosed by mus-

cles named the Fibularis Brevis and Longus muscles [18–20]. It is worth mentioning

Figure 1.3: Cross-sectional view of the leg structure. retrieved from [20].
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here that the fat layer is thicker on the posterior part of the leg, and it varies from one

human to another. As stated earlier in this section, the other tissues included in the

body’s lower extremity are not of our interest. This is due to the fact that microwave

imaging does not have the capability of detecting very small components within the leg;

it only captures the bulk parts such as bones, muscles, fat, and the skin [13].

1.3.4. Vitamin D and bone volume fraction (BVF). Vitamin D was first iden-

tified back in 1921 for its major role in calcium homeostasis. This vitamin consists of

two forms; Vitamin D2 (ergocalciferol) and D3 (cholecalciferol). The major sources

of Vitamin D2 are vegetables and oral supplements. On the other hand, Vitamin D3

can be obtained from the exposure to ultraviolet B (UVB) radiations from the sun, oily

fish, fortified food such as milk, yogurts, cereals, and other oral supplements [21]. Both

types of Vitamin D are absorbed by the intestine and metabolized in the liver as 25-

hydroxyvitamin D [25(OH)D], known as calcidiol. The active form of the vitamin,

1,25-dihydroxyvitamin D [1,25(OH)2D] (calcitriol), is then created by the kidney by

the enzyme 1α -hydroxylase [21, 22]. To measure Vitamin D level, a blood serum is

taken any time of a day from the patient. The blood serum provides an indication about

the concentration of 25-hydroxyvitamin D3, as it has been proven the Vitamin D3 is

used more than Vitamin D2 by the body [22].

Vitamin D is mainly responsible for managing the absorption of calcium within

the intestine. Therefore deficiency in Vitamin D may cause a decrease in the amount

of calcium supplied to bones, which can lead to lowering the bones’ density. Lower

density results in decrements in the amount of bone minerals and bone mass [23], which

is critical to the human’s health. In addition, having deficiencies in calcium levels within

the blood could are accompanied usually with a lower BMD and low-impact skeletal

fractures. Further, patients with Vitamin D deficiency show other symptoms such as

hypocalcemia and/or hypophosphatemia, low 24-hour urine calcium excretion rate, and

low levels of total 25(OH)D [22].

To elaborate more on the BMD, the metric bone volume fraction (BVF) is com-

monly used to represent the mass and quality of bone in patients. BVF represents the
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volume of the mineralised bone per unit volume of the sample [24] and can be mathe-

matically calculated as,

BVF =
Bone Volume (BV)

Total Sample Volume (TV)
. (1)

It is usually represented as a percentage value. In a case of Vitamin D deficiency,

bones are expected to be osteoporotic, which means they have more pores due to lack of

minerals. Thus, the overall percentage of BVF would be less compared to healthy and

stable patients. This factor is used to evaluate the treatment process of bone fragility by

comparing the supplement efficiency after the course intake.

BVF can be determined either non-invasively or invasively. The two main meth-

ods to determine the quality of the bone non-invasively are the DXA and µQCT. DXA

provides a non-volumetric measurement of bone quantity per scan area, as it measures

only the areal bone mineral density in gcm2. On the other hand, in µQCT, a volumetric

density assessment in gcm3 is provided with a voxel size of 500 µm [24, 25]. To deter-

mine BVF invasively, a bone specimen with void spaces is immersed in distilled water

for a few hours, and then the mass of absorbed water, Wf , in grams is found as

Wf =WW −WD. (2)

Here WW is the overall weight of the sample after immersion and WD is the weight of

actual bone specimen. Next, the void volume, VP, is calculated as VP = Wf /0.9971.

Then, the porosity of the bone is calculated as P =VP/VT , where VT is the bone’s total

volume. Finally, BVF is given as 1−P. The details of this procedure are outlined

here [26].

1.4. Current State-of-Art in MWT

Microwave tomography has been investigated in various biomedical applica-

tions such as brain stroke detection, breast cancer monitoring, bone and lung imaging.

Here, some examples from the literature are outlined.

S. Semenov et al. [27] investigated the possibility of using microwave tomogra-

phy for the detection of brain stroke in a 2D model, given that the brain is shielded by

tissues of high dielectric properties contrasts which are the skull and the Cerebrospinal
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fluid. A 2D model was created for the brain surrounded by 32 dipole antennas that

act as transmitters and receivers, working at a frequency of 0.5–2 GHz. The utilized

image reconstruction algorithms were a non-linear Newton approach for single- and

dual-frequency values, along with a multiplicative regularized contrast source inversion

(MR-CSI) algorithm. It was found that the MWI system detected the stroke location

as white circles within the created model. Moreover, the dual-frequency approach im-

proved the image reconstruction outcomes. I. Sarwar et al. [28] proposed an algorithm

for microwave imaging systems to monitor brain stroke using a programmable system-

on-chip. The calculations are done using a Field-Programmable Gate Array (FPGA),

which provided them with a 5×speed increase in calculations compared to running the

inversion algorithms on a computer workstation. Their inversion algorithm is based

on Born approximations, with the data collected from their MWT system consisting of

24 transmitters and receivers connected to an RF switch and Vector Network Analyzer

(VNA).

In the area of breast cancer detection, A. Golnabi et al. [29] developed an al-

gorithm to reconstruct accurate 3D images of a breast shaped phantom simulating a

cancerous region. In the proposed system, 16 monopole antennas located on two mov-

able plates were used for the imaging procedure at a frequency range from 0.3–3 GHz.

The movable plates were used in order to image the phantom when all antennas were at

the same level (2D in-plane) or at different heights (3D planes). The matching medium

used was mixture of 80:20 ratio of glycerin and water. This technique utilized the finite

difference time domain (FDTD) method for the calculations of the forward problem,

and Gauss-Newton iterative approach for the inverse problem. A 3D view of the breast

with the simulated cancer was obtained, in addition to 2D slices at various heights of

the breast phantom. This algorithm imaged the breast phantom successfully estimating

the dielectric properties of the various tissues within the simulated breast. Golnabis

research demonstrated the possibility of using 3D MWI in breast cancer diagnoses.

Bone imaging has received attention in microwave imaging through the work

of P. M. Meaney et al. [1]. They investigated the relation between microwave dielec-

tric properties and bulk bone density measurements. They found that there is a strong

correlation between permittivity and conductivity values and Bone Volume Fraction
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(BVF). Their in-vitro research discovered that whenever the BVF drops, that is a drop

in bone density, the dielectric properties increase. Thus, they were able to detect such

differences in the re-constructed images to represent them as variation in bone density

measurements. In addition, C. Gilmore et al. [9] explored the possibility of imaging

human bones within limbs in in-vivo experiments, where 24 dipole antennas working

in the frequency range of 0.8–1.2 GHz were located inside a water and salt matching

fluid. The forward problem was solved using FEM to measure the incident, total, and

scattered electric fields. The inverse problem was solved using the contrast source in-

version (CSI) algorithm. To conduct the experiment, 24×23 data points were collected

per volunteer at various frequencies and the reconstruction procedure was performed

both with and without prior information about the background medium. It was found

that the less adipose the layer thickness within the limb, the better the dielectric proper-

ties profile of the reconstructed image, showing accurate detection of two bones within

the limbs. In addition, prior information used before the reconstruction process that is

related to the thickness and dielectric properties of the adipose layer improved the im-

ages obtained. The system succeeded in detecting the two bones within the limb, ulna

and radius, providing values of permittivity and conductivity close to those reported in

the literature. This research opened the gate toward MWI for bone health analysis and

treatment monitoring applications.

Most recently, image enhancement algorithms has been integrated within the

inversion algorithm to improve the contrast in MWT images. A. Zamani et al. [30]

developed an algorithm that can significantly improve the performance of microwave

imaging systems. Their research focuses at the boundary identification of the object of

interest. By measuring variations in the resonant frequency of the antennas surrounding

the OI, the boundaries of the OI can be detected and incorporated into the inversion

algorithm. To test their algorithm, simulations of human trials for torso imaging were

conducted; their focus was to use radar-based MWI system to detect the location of

lung cancer. Their MWI system operated in the frequency range of 0.75–1.75 GHz,

with 12-element antenna array surrounding the OI. Their results have showed signif-

icant improvements to the image reconstruction process. In another application, M.

Omer et al. [31] extracted prior information about the OI structure by integrating the
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results of an ultrasound imaging system. Ultrasound transducers provide fine structural

details of various regions within the OI, which was in this research the breast. To extract

regions, k-means clustering algorithm was utilized to segment the image into various

segment representing tissues. These segments are incorporated into a time-delay com-

putation that discretize the clustered image into reconstruction positions. They have

successfully showed improved detection of tumor when prior information are incorpo-

rated in MWI simulations. Further, L. Guo et al. [32] used k-means clustering along

with support vector machine (SVM) method to localized stroke in phantoms. Their re-

search was to localize and classify stroke types based on the reconstructed tomographic

images. The Born iterative method was used to obtain the dielectric properties with 36

dipole antennas operating at 0.85 GHz. K-means clustering segmented the resulting im-

ages into three clusters, one of which may include the stroke. Using SVM, stroke was

classified after training the classifier. There algorithm have provided a 91% sensitivity

and 87% specificity when localizing brain tumors.

These research works introduced new technique to enhance the reconstruction

of MWT images. Thus, further investigations are carried on from this point in this thesis

work.

1.5. Thesis Problem Statement

In literature, it was shown that the de-mineralization processes affect the overall

bone quality and strength, which in turn affect the interaction between the biological

tissues and the electromagnetic waves. This is depicted through variations in the rel-

evant dielectric properties and can be monitored from the images reconstructed by a

MWI system [1, 26]. In addition, several tests were done on bone volume fraction

(BVF) [1] have showed that the BVF is inversely proportional to the dielectric prop-

erties such that the lower the fraction, the higher the values of the tissues dielectric

properties. All these discussions drag the attention toward Vitamin D treatment mon-

itoring applications which, to the best of our knowledge, have not yet been explored,

especially that there is indeed a strong correlation between amount of minerals in bones

and the bones’ electrical properties [1, 33]. Having said that, the aim of this thesis is

to explore the feasibility of using microwave tomography (MWT) in diagnosing human

bone health under certain conditions. In addition, through simulations, the optimum
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parameters and settings, which best represent an actual microwave tomography sys-

tem, are identified. Based on previous research [30–32], it was shown that changing

the location of different imaging boundaries affects the efficiency of reconstruction.

Therefore, the effect of varying different parameters related to microwave tomography

is explored and evaluated based on the inversion algorithm reconstructions quality. In

addition, an image processing approach is followed to extract useful information from

the reconstructed images in order to be used for the image enhancement process. All

these objectives are directed toward building a smart wearable microwave system for

bone health monitoring applications in the future.

1.6. Thesis Outline

In Chapter 2, the mathematical formulation of the forward problem as well as

the inverse problem are presented. The forward problem is solved for two-dimensional

transverse magnetic electromagnetic problems using the finite-element method. The

inverse problem is solved using the finite-element contrast source inversion method.

In Chapter 3, the complete procedure followed to simulate an actual microwave

tomography system is presented. Three finite element meshes representing three human

cross-sectional leg models were created; these leg models having varying fat thickness.

Next, the forward problem is simulated for a chosen set of parameters; the forward

problem is simulated several times for bones with varying values of electrical proper-

ties. Moreover, the synthetic data calculated using the forward problem simulations

are imported to the inversion algorithm to estimate a relative complex permittivity map

for the object-of-interest (OI) located within an imaging domain. The results for the

inversion problem are shown for healthy as well as unhealthy bones.

In Chapter 4, an enhancement process is followed to improve the reconstruction

of the relative permittivity complex map of the OI. Several parameters are investigated

including incorporating prior information about the OI structure and dielectric proper-

ties, varying the size of imaging domain, relocating the antennas surrounding the OI,

and using a different matching media.

In Chapter 5, an image processing approach is provided to extract structural

information from the blind inverted images. The structural information are used to

estimate the OI boundaries, to be further utilized for for in the enhancement process.
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In Chapter 6, the effect of varying bone health according to its BVF is explored.

Bone health conditions are taken under five BVF scenarios. For each BVF scenario,

the blind inversion along with the enhancement procedure are followed and discussed

briefly. The changing pattern of bone density in terms of real part relative permittivity

values is represented as line plots and analyzed.

The thesis is concluded in Chapter 7, followed by prospects for future work.
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Chapter 2: Mathematical Formulation and Numerical Modeling

In this chapter the mathematical formulation of the forward problem as well as

the inverse problem are presented. The forward problem is solved for two-dimensional

transverse magnetic electromagnetic problems using the finite-element method. The

inverse problem is solved using the finite-element contrast source inversion method. For

both the forward and inverse problems, the electromagnetic problem is solved within

the framework of contrast sources, which is explained in this chapter.

2.1. The Forward Problem

In the forward problem, the main objective is to determine the electric field in-

tensity strength at different locations~r = (x,y,z) within a microwave imaging chamber.

In Cartesian coordinates, the electric field inside the chamber will have three vector

components such that,

~E(~r) = Ex(~r)âx +Ey(~r)ây +Ez(~r)âz, (3)

where (âx, ây, âz) are the unit vectors in the (x,y,z) coordinates respectively.

Furthermore, in this work the electric field is considered to have time-harmonic

dependency of exp( jωt) where j =
√
−1 given an angular frequency ω = 2π f for a

frequency f .

Next, the electric field inside the chamber can be of three types. Given a trans-

mitter t, the first kind is the incident field ~Einc,t, which is the electric field generated by

source in the absence of an object-of-interest (OI). The second type is the total elec-

tric field ~Etot,t, which is the electric field intensity in the presence of the OI within the

chamber. The third field is the scattered electric field ~Escat,t, which is the electric field

scattering effect caused by the OI itself [13]. By measuring the incident and total fields

at the receivers within the chamber, the scattered electric field can be simply calculated

as,

~Escat,t = ~Einc,t−~Etot,t (4)

Mathematically, the time-harmonic electric fields inside the imaging chamber

can be modeled using Helmholtz vector wave equations. Helmholtz wave equations are

32



second-order differential equations, which can be used to solve for the electric fields

given the appropriate boundary conditions. For a source t, the incident electric field

inside an imaging chamber is a solution for the following Helmholtz equation,

∇×∇×~Einc,t(~r)− k2
b(~r)~Einc,t(~r) =− jωµ0~Jt(~r). (5)

Here~r is a position vector, kb is the wavenumber of the matching medium (back-

ground) within the chamber, µ0 = 4π × 10−7 [H/m] is the magnetic permeability of

free-space, ~Jt is the electric current density that is used to model transmitter t. The

wavenumber kb has units of [rad/m], and is calculated as

kb = 2π f
√

µ0ε0εb(~r), (6)

where ε0 = 8.854× 10−12 [F/m] is the electric permittivity of free-space and εb is the

relative complex permittivity of the background medium.

In regard to the total field, it is the solution for the following Helmholtz second-

order differential equation,

∇×∇×~Etot,t(~r)− k2(~r)~Etot,t(~r) =− jωµ0~Jt(~r). (7)

Here k = 2π f
√

µ0ε0εr(~r), where εr is the relative complex permittivity at any location

inside the chamber in the presence of the OI. For both the background and OI, the

relative complex permittivity is defined,

εr(~r) = ε
′
r(~r)− jε

′′
r (~r)

= ε
′
r(~r)−

jσeff(~r)
2π f ε0

.
(8)

Here ε
′
r is the dielectric constant of a material and σeff is a material’s effective conduc-

tivity. The dielectric constant is a measure of the material’s ability to store electrical

energy relative to free-space, whereas conductivity is a measure of the material’s capa-

bility to conduct electricity.
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Using the definition in equation (4) along with the equations (5) and (7), it can

be shown that the scattered field is the solution of the following equation,

∇×∇×~Escat,t(~r)− k2(~r)~Escat,t(~r) = (k2(~r)− k2
b(~r))~Einc,t(~r). (9)

Next, let the contrast within the chamber be defined as,

χ(~r) =
εr(~r)− εb(~r)

εb(~r)
. (10)

The contrast function is used to determine the contrast level or relative difference in

electrical properties between a point located in the OI with a certain permittivity value

εr(~r) and a matching medium of a permittivity of εb(~r). Outside the domain of the OI,

χ(~r) = 0. Using the definition of the contrast, the scattered field equation (9) can be

rewritten as

∇×∇×~Escat,t(~r)− k2
b(~r)(χ(~r)+1)~Escat,t(~r) = k2

b(~r)χ(~r)~Einc,t(~r). (11)

Further, the contrast source can be defined as

~wt(~r) = χ(~r)~Einc,t(~r). (12)

Using the contrast source definition, the scattered field equation can be written as,

∇×∇×~Escat,t(~r)− k2
b(~r)~Escat,t(~r) = k2

b(~r)~wt(~r). (13)

The contrast source ~wt(r) resembles a current source located in the scatterer object at

position~r. It produces the scattered field in the microwave imaging environment with

the background medium of εb, and it is used in the inverse problem analysis.

In this thesis, the FEM 2D-TM solver is used to generate synthetic data (numer-

ical experimental values) for different models and MWT configurations.
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2.2. Two-Dimensional Transverse Magnetic Approximation

In the work presented in the thesis, the transverse magnetic (TM) approximation

is used. In TM approximation, the electric field has only one longitudinal component

in the z-direction, with magnetic field having two transverse components in the (x− y)

plane, such as to satisfy Maxwell equations.

This approximation is considered because it is assumed that the electrical prop-

erties as well as the electric fields are not changing with respect to the z-direction.

Moreover the electric fields are assumed to be z-polarized with no transverse compo-

nents in the (x−y) plane. Therefore, this means that for a position vector~r = (x,y), the

fields ~Einc,t, ~Etot,t, and ~Escat,t are written as,

~Einc,t(~r) = Einc,t,z(~r)ẑ,

~Etot,t(~r) = Etot,t,z(~r)ẑ,

~Escat,t(~r) = Escat,t,z(~r)ẑ.

(14)

Using the TM approximation, it can be shown that equations (11) and (13) can be given

as

∇
2Escat,t,z(~r)+ k2

b(~r)(χ(~r)+1)Escat,t,z(~r) =−k2
b(~r)χ(~r)Einc,t,z(~r), (15)

and

∇
2Escat,t,z(~r)+ k2

b(~r)Escat,t,z(~r) =−k2
b(~r)wt,z(~r). (16)

These two equations are known as the scalar Helmholtz equations.

To solve these second-order differential equations, the appropriate boundary

conditions (BCs) need to be defined at the boundaries of the imaging chamber prob-

lem domain.

If the imaging chamber boundary is a conductive enclosure, the perfect electrical

conductor (PEC) boundary conditions are used, resulting in homogeneous Dirichlet

BCs,

Escat,t,z(~r ∈ Γ) = 0. (17)

Here Γ represents points at the boundary of the chamber.
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On the other hand, in some microwave tomography systems, the chamber bound-

aries can be assumed to extend to infinity under two conditions. These conditions are:

(i) the reflections from the chamber boundaries can be ignored, and/or (ii) there is a lot

of loss in the matching medium itself such that little electric fields are reflected back

from the chamber walls. Under these conditions, the fields in the model will satisfy the

Sommerfeld radiation condition given as,

lim
r→∞

√
r
(

∂

∂ r
Escat,t,z(~r)+ jkbEscat,t,z(~r)

)
= 0. (18)

Here r is the magnitude of the position vector~r for points located at the boundary of the

chamber.

2.3. The Finite Element Method (FEM)

In the work presented herein, the TM scattered field equations defined in (15)

and (16) are solved numerically using the finite-element method (FEM).

The finite element method (FEM) is a frequency-domain numerical technique

that divides any space domain into several discrete elements. At each of these elements,

the second-order differential equations are solved in a numerical manner to calculate

specific quantities [34]. A. Winslow was the first to use FEM to solve for magnetic

fields on an irregular mesh for practical experiments [35].

Further, FEM is used in the discretization of partial differential equations (PDEs)

for solving electromagnetic problems. These PDEs are the Helmholtz equations, which

are used to determine the scattered electric field intensity within a domain [36]. For

microwave imaging (MWI) systems, given a domain that encloses an object of interest

(OI), to solve for the electric fields using FEM, this domain is segmented into a mesh

of triangles. Each triangle will have electric properties associated with them depending

on their location in the mesh. Further, the mesh is characterized by N number of nodes,

and T triangles that are connected with no gaps in between them. After creating the

mesh, FEM is used to solve for the scattered electric field at each node of the triangles

within this mesh. In MWI, FEM is used to solve the fields for both the forward and

inverse problems.
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In the proposed work, a 2D TM FEM solver developed by A. Zakaria [36] in

MATLAB will be utilized. Within the framework of FEM, the Helmholtz equations

(15) and (16) are given as

Escat,t,z = L χ

[
E inc,t,z

]
, (19)

and

Escat,t,z = L
[
wt,z
]
. (20)

The variables and operators in equations (19) and (20) are, respectively, complex (C)

vectors and matrices, and are defined as follows,

• Escat,t,z ∈ CN is a vector of size N for the values of the scattered electric fields

z−component calculated at the nodes of a triangular mesh.

• E inc,t,z ∈ CN is a vector of size N for the incident field values due to a transmitter

t, computed analytically at the nodes of the triangular mesh.

• L χ ∈ CN×N is an FEM matrix operator. This operator contains information

about the contrast χ within the imaging domain along with information about

the boundaries of the problem domain.

• wt,z ∈ CN is a vector of size N for the values of the contrast sources with respect

to transmitter t within the imaging domain.

• L ∈ CN×N is an another FEM matrix operator. This operator contains informa-

tion about the problem’s boundary and matching medium.

The matrix operators L χ and L depend on the basis functions used to discretize the

problem domain as well as on the geometrical information of the nodes and triangles in

the mesh. The derivation of these operators are beyond the scope of this thesis and it

has been outlined in details in [36].

2.4. Solving the Inverse Problem

In the inverse problem, the main goal is to use the information obtained about

the scattered electric field ~Escat,t at the receivers surrounding an object to reconstruct a

quantitative image. This image estimates the relative complex permittivity distribution

within the object along with the object’s location inside the imaging domain D located

inside the MWI chamber.
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The inverse problem is a mathematically challenging problem as it is ill-posed

due to several reasons. First, the solution for the inverse problem is non-unique; that

is there might be more than one solution for the same problem. Secondly, the prob-

lem is not stable; small changes in the measured electric field results in large changes

in the reconstructed image. Finally, a solution might not exist as the optimization al-

gorithm solving the problem might not converge. In order to tackle these mathemati-

cal challenges, specialized optimization algorithms on conjunction with regularization

techniques can be utilized [13,36]. In this thesis, the contrast source inversion technique

with multiplicative regularization will be used [36].

2.4.1. The contrast source inversion. The contrast source inversion is a

nonlinear optimization algorithm that was developed P. M. van den Berg in 1997 [37].

In contrast source inversion (CSI), two variables, the contrast χ and the contrast source

~wt, are updated successively to minimize a cost function CCSI(χ,~wt). This cost function

is given as

CCSI(~wt,χ) =
∑

T
t=1 ‖~ut(~r′)−G S(~wt(~r))‖2

S

∑
T
t=1 ‖~ut(~r′)‖2

S
+

∑
T
t=1 ‖χ~Einc,t(~r)−~wt(~r)+χG D(~wt(~r))‖2

D

∑
T
t=1 ‖χ(~r)~Einc,t(~r)‖2

D
.

(21)

In this cost function, the variables are defined as,

• S is the measurement domain that contains the receivers at location~r′.

• D is the imaging domain that contains the object-of-interest. A location inside

the imaging domain is defined using the position vector~r.

• ~ut(~r′) is the electric fields measured at the receivers.

• ~wt(~r) and χ(~r) are the contrast sources and contrasts, respectively, within the

imaging domain.

• ~Einc,t(~r) is the incident field defined inside the imaging domain.

• G S is a mathematical operator that uses the values of the contrast source ~wt(~r) to

calculate the scattered field at the receiver locations.

• G D is a mathematical operator that uses the values of the contrast source ~wt(~r) to

calculate the scattered electric field inside the imaging domain.

In the cost function, ‖ · ‖2 is L2-norm or Euclidean norm.
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2.4.2. FEM-CSI. The contrast source inversion (CSI) method has been

developed within the framework of the finite-element method (FEM) by Zakaria et

al. [36]. The use of FEM to develop CSI offers several advantages in comparison to

other conventional techniques [36]. One advantage is the ability to incorporate inhomo-

geneous medium as a background reference; this improves the quality of the algorithm

reconstruction. Another advantage is that the inversion can be performed on irregular

grid of triangles; this means that if the object-of-interest has any curvature it can be

captured better. A third advantage is the ability to reduce the algorithm computational

complexity by using a triangular mesh of varying elements densities without compro-

mising the image reconstruction quality.

Using FEM, the discretized form of the CSI cost function is given as

FCSI(wt,z,χ) = FS(wt,z)+FD(wt,z,χ), (22)

where

FS(wt,z) =
∑

T
t=1 ‖ut−M SL

[
wt,z
]
‖2

S

∑
T
t=1 ‖ut‖2

S
, (23)

and

FD(wt,z,χ) =
∑

T
t=1 ‖χ�EI

inc,t,z−wt,z +χ�M DL (wt,z)‖2
D

∑
T
t=1 ‖χ�E inc,t,z‖2

D
. (24)

In equations (23) and (24), the discretized variables and operators are,

• ut ∈ CR is a vector of size R of the scattered electric field values measured at the

receivers for a transmitter t.

• wt,z ∈ CN is a vector of size N for the contrast source values inside the imaging

domain for a transmitter t.

• EI
inc,t,z ∈ CI is a vector of size I for the incident field values inside the imaging

domain D for transmitter t.

• χ ∈ CI is a vector of size I for the contrast values inside the imaging domain I.

• L ∈ CN×N is the FEM matrix operator defined earlier.

• M S ∈ CR×N is a matrix operator that calculates the scattered field values at the

receiver locations on S.

39



• M D ∈ CI×N is a matrix operator that calculates the scattered field values inside

the imaging domain D.

In the cost function equations, the operator � is element-wise vector multiplication.

At each iteration of the FEM-CSI algorithm, the two variables χ and wt,z are

updated successively. The contrast source variable wt,z is updated using a conjugate-

gradient method with Polak-Ribière search directions. Next, the contrast variables χ are

updated analytically. These two variables are updated until the algorithm converges. To

enhance the quality of the FEM-CSI reconstruction results, multiplicative regulariza-

tion (MR) can be used to achieve imbalance correction between the real and imaginary

components of the relative complex permittivity as well as preserve the edges of the re-

constructed images. The details of the FEM-CSI algorithm as well as the regularization

are outlined in [36].
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Figure 2.1: The overall mathematical procedure of reconstructing MWT images.

Fig. 2.1 shows the overall mathematical procedure of reconstructing MWT im-

ages. The procedure starts by entering the measured scattered electric field to the non-
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linear optimizer that calculates the initial contrast and contrast source values along with

the corresponding cost function FCSI(wt,z,χ). Then, the multiplicative regularization

is applied prior to obtaining the dielectric properties map. To reconstruct the real and

imaginary relative permittivity, both permittivity parts are obtained by mathematically

calculating the value of εr at every point based on equation (10). Next, to obtain the

computed scattered field, the forward scattering problem is calculated using equation

(20), based on the value of the contrast source, and subtracted from the measured scat-

tered field. This is done with the goal of minimizing the value of the cost function in

the presence of the values of the incident electric field at every iteration. The process it-

eratively updates the contrast and contrast source until convergence or until the number

of iterations reaches the maximum.

In this thesis, the MR-FEM-CSI code implemented by [36] will be utilized to

conduct the required studies.
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Chapter 3: Numerical Modeling and Blind Inversion

In this chapter, a complete procedure is followed to simulate an actual mi-

crowave tomography configuration. Three cross-sectional MRI images of human leg,

with various fat thicknesses, are obtained from online sources and used to generate

the corresponding finite-element models. The selection of the different MWT system

parameters is discussed including the number of antennas, optimum frequency of oper-

ation, type of matching medium, and variations in the dielectric properties of different

tissues. In addition, the procedures of solving the forward problem using FEM and the

inverse problem utilizing FEM-CSI are briefly discussed. At the end, statistical analysis

on the obtained results are shown to investigate the feasibility of using MWT for bone

health monitoring applications.

3.1. Human Leg Modeling

To model a biological structure that would best simulate bone structures within

the human body, the human leg is selected to be the OI. Three cross-sectional MRI

images representing the human leg under different fat thickness scenarios are retrieved

from [38], [39], and [40] as shown in Figures 3.1 (a), (b), and (c), respectively. The

purpose of having various fat thicknesses is to illustrate the effect of the fat layer on

the efficiency of bone density monitoring throughout the re-construction process using

MWT.

The process of creating the 2D model corresponding to each MRI image is done

using GMSH software. GMSH is a software used commonly by engineers and scien-

(a) Thin Fat [38] (b) Medium Fat [39] (c) Thick Fat [40]

Figure 3.1: Three cross-sectional MRI images representing three fat layer thicknesses.
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tists to build geometries and meshes. This software was built in 1998 and improved

throughout the years to include four modules, which are the geometry designer, mesh

generator, PDE solver, and post-processor [41,42]. In this thesis, the designer and mesh

generator are used only. In 2D modeling, the mesh elements can be squares or triangles,

however, triangles are commonly used because they can fit in curved and circular edges

without any overlapping between different regions [43].

In order to create each model, GMSH requires a structural file as an input, which

includes the boundary points for each tissue layer within the model. Furthermore, MAT-

LAB is used to manually extract boundaries corresponding to five major tissues from

the MRI images; these five major tissues are shown in Fig. 3.2. The points correspond-

ing to the extracted boundaries are imported into GMSH and connected with lines to

form the overall model for each MRI image.

Next, the formed structure from each MRI model is imported to GMSH to gen-

erate a triangular mesh. Each mesh includes N number of nodes connecting T number

of triangles. Each node in the mesh has its own local index with respect to a triangular

element and a global location number with respect to the whole mesh.

The lines connecting the nodes within a triangle are within a pre-determined

characteristic length (CL) that represents the size length of a triangle’s side.

To predict the electromagnetic behavior accurately, the CL is determined using

the following equation,

CL =
λ

10
, (25)

Figure 3.2: MRI Axial image for human leg showing structures including skin, fat,
muscles, tibia and fibula.
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(a) MRI model 1 (b) MRI model 2 (c) MRI model 3

Figure 3.3: Triangular meshes generated by GMSH of the three MRI images.

where the wavelength λ is given by

λ =
c

f
√

εr,max
. (26)

Here c = 3× 108 [m/s] is the speed of light in free-space, f is the simulation

frequency, and εr,max is the largest possible value of the dielectric constant within the

OI. In general, having smaller characteristic length provides better and more accurate

simulation results, as the electromagnetic wave is being discretized into a higher num-

ber of segments within its wavelength interval [9,36]. Fig. 3.3 shows the corresponding

triangular meshes generated for the three MRI images models using the GMSH soft-

ware.

3.2. Optimum Frequency Selection

Before proceeding with the forward and inverse problems analysis, the optimum

frequency to be used should be determined. The selection of the optimum frequency is

important as it will effect the performance of the MWT system as well as the quality of

the inverse problem reconstructions.

As an electromagnetic wave propagates in various media, it suffers from power

loss due to material attenuation. A method to decide on an optimum frequency of

operation is to investigate this attenuation through a parameter known as the skin depth

of an electromagnetic (EM) wave. The skin depth is a value that represents the depth at

which the EM wave reaches 36.8% of its maximum value at the interface between two
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Table 3.1: Attenuation Coefficient [dB/m] and Skin Depth [cm] for Skin, Fat, and Mus-
cle tissues

Frequency Skin (α,δ ) Fat (α,δ ) Muscle (α,δ )
0.5 GHz 171.19, 5.10 40.48, 21.5 108.31, 8.0
0.8 GHz 206.46, 4.20 48.99, 17.7 197.17, 4.4
1.0 GHz 224.97, 3.80 56.20, 15.5 341.01, 2.6

media [44]. In the application herein, this interface is between the matching medium

and skin. The skin depth is given as,

δ =
1
α
. (27)

Here α is the attenuation, in Nepers-per-meter ([Np/m]), that the electromag-

netic wave (EM) experiences as it propagates. The attenuation is calculated as,

α = ω

√√√√√µ0εrε0

2

√1+
[

σ

ωε0εr

]2

−1

. (28)

To convert from [Np/m] to [dB/m], 1N p = 8.868dB. The parameters, relative

permittivity (εr) and conductivity (σ ), vary for different types of tissues and are a func-

tion of frequency. Thus the attenuation will also change as frequency changes.

For different types of tissues in a human leg, the attenuation along with the skin

depth are calculated for three different frequencies as shown in Table 3.1. The three

selected frequencies are 0.5 GHz, 0.8 GHz, and 1 GHz; these frequencies are commonly

used in literature for biomedical MWT applications [1,9,45]. The table shows that when

the frequency increases, the attenuation increases and thus the skin depth decreases;

this indicates that the distances traveled by the EM wave beyond the skin get reduced

at higher frequencies. Thus, the effect of internal organs on the scattered fields may not

be sensed and thus the reconstruction of the inversion algorithm will be poor.

In addition to attenuation and skin depth, electromagnetic waves suffer from

reflections at the interface between two media due to the impedance mismatch. Here the

two media can be between the matching medium and the skin, or any two tissues within
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an organ. These reflections can be quantified using a parameter called the reflection

coefficient, which can be calculated between two media as follows,

Γ =

1√
εr2
− 1√

εr1
1√
εr2

+ 1√
εr1

. (29)

Here εr1 and εr2 represent the relative permittivity value of the first and second

layers, respectively, and they are frequency-dependent.

Since both skin depth and reflection coefficient are frequency-dependent, there

must be an optimum frequency that would decrease the attenuation and meanwhile

compensating for the reflection wave loss. Furthermore, for a MWT configuration, one

would prefer to use lower frequencies in order to have more depth of penetration, which

would result in better reconstruction images. However, this comes with the cost of

having bigger antennas. Antenna sizes are related to the wavelength of the propagating

EM signal; furthermore, the smaller the frequency, the larger the wavelength and thus

the antennas. Having big antennas is not useful for wearable applications, which is the

aim of the system being designed. On the other hand, having higher frequencies require

more power within the system since the attenuation is higher. Higher power might not

be feasible as it might exceed accepted levels of EM radiation exposure for humans.

Also, high-power EM transmitters are expensive.

Thus, to get the advantages of both higher and lower frequency values, the se-

lected frequency of operation is 0.8 GHz. Going further in the upcoming sections, the

reconstruction results of all three frequencies is provided to support this decision.

3.3. Forward Simulations

As mentioned earlier, the forward problem is solved using 2D FEM solver de-

veloped by A. Zakaria et al. [46, 47], where the MWT configuration along with OI are

represented by triangular meshes introduced in Section 3.1. The main objective of the

forward simulations are to collect synthetic data to test the inversion algorithm and the

feasibility of using MWT to detect changes in bones’ electrical properties.

The inputs for the finite element solver were as follows,

• Mesh: generated from MRI cross-sections.

• Simulation frequency: 0.8 GHz.
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Table 3.2: Bulk Electrical Properties of Regions in the FEM Model

Region Relative Complex Permittivity (εr)
Matching Medium 26− j18.0
Skin 42− j18.8
Fat 11− j2.3
Muscles 55− j20.5

• Model Boundary: absorbing boundary condition (ABC).

• Relative complex permittivity of various regions in model (given in Table 3.2 and

based on [5, 16]).

• Transmitters’ (TX) configuration: 24 point-sources equally distributed on a circle

of radius 15 cm.

• Receivers’ (RX) configurations: 24 receivers located on a circle of radius 15 cm.

The receivers and transmitters are located on the boundary labeled as S in Fig-

ure 1.1.

• Matching medium surrounding the OI: 80:20 Glycerin/Water Solution with rela-

tive complex permittivity of εr = 26− j18 [48, 49].

The number of TX and RX antennas was determined after several tests. The

inversion results did not have significant improvements when increasing the number of

antennas to more than 24. In addition, having less number of antennas degraded the

overall quality of the reconstructed images. As for the selected matching medium, it is

considered as an optimum medium for biomedical MWT applications; however other

matching media will be investigated later in the thesis.

Table 3.2 shows the dielectric properties of different tissues within the model

based on [5, 16] observations at 0.8 GHz frequency.

To simulate vitamin D deficiency, bone density and BVF should be varied within

the simulated model. The variation in bone density and BVF was discussed by P.M.

Meaney et al. [1] for certain scenarios. Based on their study, as the volume of bones

decreases, the overall BVF decreases and furthermore, the relative electrical properties

increase. In addition, as previously discussed in 1.3.4, due to Vitamin D deficiency,

the absorption of calcium to the bones is reduced which may lead to lowering the BVF
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values. To illustrate reduction in BVF, the following varying bone electrical properties

are considered initially,

• Healthy Bone: εr = 13− j3.0,

• Bone with 0.25 BVF: εr = 18− j3.2,

• Bone with 0.1 BVF: εr = 23− j3.4.

For a healthy person, the BVF value is considered to be the highest, which is

given as 0.5 in [1]. A BVF of 0.25 equals half of highest value of a healthy patient,

while a 0.1 BVF is considered to be a severe case with low bone density. Going further

in the thesis, more BVF values are used to evaluate the quality of bone reconstruction

algorithms.

3.4. Blind Inversion

After collecting the synthetic data for different models with varying bone elec-

trical properties, the data are used as inputs for the inversion algorithm. As mentioned

in the previous chapter, the inversion algorithm considered in this work is the multi-

plicative regularized contrast source inversion method (MR-CSI) implemented within

the framework of the finite-element method (FEM) [36]. The forward problem and in-

version algorithm share similar parameters, which are the frequency of operation, the

matching medium, and the number of transmitters and receivers as well as their loca-

tions.

The difference between the forward problem and the inverse problem is the

mesh used to solve both problems. To prevent inverse crime, the forward mesh and

inversion mesh are chosen to be different. In addition, 3% uniform noise was added to

the synthetic data.

For the inversion algorithm, the imaging domain, D, where the electrical prop-

erties of the human leg are to be estimated, was chosen to be a circular domain with a

radius of size 14 cm. The inversion algorithm was executed three times for each syn-

thetic dataset representing different values of BVFs. Each time, the inversion algorithm

was allowed to run for 1000 iterations to ensure convergence. The results of the in-

version algorithm are shown in Figures 3.4, 3.5, and 3.6 for MRI models 1, 2 and 3,

respectively. For each result, the red-dotted lines indicate the location of the bones. The

analysis of the result will be discussed in Section 3.6.
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(a) Healthy Bone (b) Bone with BVF = 0.25 (c) Bone with BVF = 0.1

(d) Healthy Bone (e) Bone with BVF = 0.25 (f) Bone with BVF = 0.1

Figure 3.4: MRI model 1: The real and imaginary components of the relative complex
permittivity reconstruction.

(a) Healthy Bone (b) Bone with BVF = 0.25 (c) Bone with BVF = 0.1

(d) Healthy Bone (e) Bone with BVF = 0.25 (f) Bone with BVF = 0.1

Figure 3.5: MRI model 2: The real and imaginary components of the relative complex
permittivity reconstruction.
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(a) Healthy Bone (b) Bone with BVF = 0.25 (c) Bone with BVF = 0.1

(d) Healthy Bone (e) Bone with BVF = 0.25 (f) Bone with BVF = 0.1

Figure 3.6: MRI model 3: The real and imaginary components of the relative complex
permittivity reconstruction.

3.5. Inversion at Non-optimum Frequencies

As previously discussed in section 3.2, the optimum frequency of operation is

selected to be 0.8 GHz. Aside from showing the mathematical evaluation of this se-

lection, testing the three frequencies within the framework of the forward and inverse

solver is done following the same procedure mentioned in the previous sections. Fig-

ures 3.7, 3.8, and 3.9 show the results of the three frequency values, 0.5 GHz, 0.8 GHz,

and 1.0 GHz, for MRI models 1, 2, and 3 healthy bone case.

From the figures, it can be noted that using lower frequencies results in better

reconstruction process. However, as previously discussed, this comes with the cost of

having bigger antennas that can not be suitable for portable and wearable applications.

On the other hand, having high frequencies reduces the quality of the reconstruction.

In conclusion, the above figures prove that our selection of 0.8 GHz is the optimum

between the three frequency values.
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(a) 0.5 GHz (b) 0.8 GHz (c) 1.0 GHz

(d) 0.5 GHz (e) 0.8 GHz (f) 1.0 GHz

Figure 3.7: Testing frequency values on MRI model 1 healthy bone.

(a) 0.5 GHz (b) 0.8 GHz (c) 1.0 GHz

(d) 0.5 GHz (e) 0.8 GHz (f) 1.0 GHz

Figure 3.8: Testing frequency values on MRI model 2 healthy bone.
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(a) 0.5 GHz (b) 0.8 GHz (c) 1.0 GHz

(d) 0.5 GHz (e) 0.8 GHz (f) 1.0 GHz

Figure 3.9: Testing frequency values on MRI model 3 healthy bone.

3.6. Analysis and Observations

For all the inversion results, the algorithm was successful in locating the leg

and estimating its size. Further, the algorithm was able to distinguish two main regions

within the leg, an outer region depicting the skin and fat layer, and an inner region

representing the muscle. The skin and fat layer were almost merged together because

the skin layer is thin in comparison to the wavelength at 0.8 GHz and its electrical

properties are close to that of the matching medium.

Within the muscle region, the location of the tibia bone is clear from the recon-

structions of the imaginary component for the various BVF cases; these reconstructions

are similar to each other, which is expected since changes to the imaginary component

of εr are small between a health bone and bone with lower BVF. Nevertheless, for the

real component reconstructions, the tibia bone is not well-reconstructed. However, it

can be noted that the tibia bone reconstruction is merging with the muscle as the bone

density decreases, especially for MRI model 1. These results of the real-component re-

construction indicate that there is potential in using MWT for monitoring the progress

of bone density treatment. In regard to the fibula bone, it was not well reconstructed;
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since the bone is small and well inside the leg, the scattered field from it is small and

cannot be captured by the receivers surrounding the leg. Further investigations are re-

quired to find a solution to enhance the reconstruction.

To elaborate more on that, statistical investigations on the change in bones’ di-

electric properties are carried out. For the statistical analysis, two methodologies are

followed.

In the first method, the forward model is used to provide structural information

and to obtain the boundaries of both tibia and fibula bones. Next, each obtained bound-

ary is used as a mask on both real and imaginary relative permittivity reconstruction

results, which is shown as red dashed line in Figures 3.4, 3.5, and 3.6. The values

within these masks are extracted from the reconstruction results to obtain the dielectric

values of both bones. Statistical analysis in the form of box plots are performed on the

extracted results for each bone. The corresponding box plots are shown in Figures 3.10,

3.11, and 3.12 for MRI models 1, 2, and 3, respectively.

To solve the region overestimation problem, a second method of analysis that

relies on using the imaginary part of reconstructed images is considered. The imaginary

part of relative permittivity reconstructions are used to provide the structure of the tibia

bone as estimated by the inversion algorithm. From the reconstructed images, it can be

noted that the imaginary part gave a good representation of the structure of the detected

bone; thus the boundaries of the reconstructed tibia bone are extracted. Next, these

boundaries are used as a mask to extract dielectric information from the real part of

relative permittivity images. The extracted dielectric data for all bone scenarios are

illustrated using the box plot representation shown in Figures 3.13, 3.14, and 3.15 for

MRI models 1, 2, and 3, respectively. In all three box plots, it can be observed that

the mean of the real part of the relative permittivity is increasing with a decrease in

bone density. This supports the hypothesis of this thesis; however, improvements on the

inversion process is going to be performed in the next chapters for better reconstructions

and better analysis of variations in the bone properties.It is important to note here that

the second technique in analyzing the bone properties uses the reconstruction results

exclusively, therefore it is more realistic. In an actual practical medical system, the

forward model is not available to extract the actual bones’ locations and structure.
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(a) Real part (b) Imaginary part

Figure 3.10: Box plot representation of relative permittivity values using the forward
model as bone mask in MRI model 1.

(a) Real part (b) Imaginary part

Figure 3.11: Box plot representation of relative permittivity values using the forward
model as bone mask in MRI model 2.

(a) Real part (b) Imaginary part

Figure 3.12: Box plot representation of relative permittivity values using the forward
model as bone mask in MRI model 3.
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Figure 3.13: The box plot representation of the tibia bone real part relative permittivity
in MRI model 1.

Figure 3.14: The box plot representation of the tibia bone real part relative permittivity
in MRI model 2.

Figure 3.15: The box plot representation of the tibia bone real part relative permittivity
in MRI model 3.
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Chapter 4: Inversion Enhancements

In this chapter, enhancement procedures of the inversion process are explored.

Several parameters related to the inversion algorithm are changed and investigated,

which are: the incorporation of prior information related to the structure and dielec-

tric properties, the imaging domain boundary, the antennas’ location, and the matching

medium. In addition, the analysis and observations based on the outcomes are briefly

discussed.

4.1. Incorporating Prior Information

As previously mentioned in Section 3, all reconstructed images gave good re-

sults in terms in locating the human leg, which is the OI. However, the localization of

bone tissues was not clear in all images. Moreover, images were not reliable for bone

density and dielectric properties monitoring and evaluation. Thus, the use of inversion

enhancement procedures are required in order to achieve better reconstructions. One

method to achieve this, is by using prior information related to the OI’s various fea-

tures as input to the inversion algorithm. Within the framework of FEM-CSI, the prior

information is incorporated as an inhomogeneous background.

The first incorporated feature is related to the structural information of the OI.

As shown by C. Gilmore et al. [9], the use of prior information about the boundaries

of various tissues within the organ enhanced the overall quality of reconstruction. The

second feature that can be incorporated as prior information is the dielectric properties

of every tissue. Estimate values for the complex permittivity of healthy tissues can be

found in literature, and can be used as an initial guess for bulk regions within OI. These

bulk regions are the skin, fat, and muscle tissues.

In [9], the estimations of the OI structure were done manually by a trained eye

experienced in microwave imaging. This procedure, however, required manual interfer-

ence with the reconstruction results, which can not be done by non-expert users, such

as medical doctors. Another technique to estimate the boundaries of the various tis-

sues automatically before performing MWT was by incorporating a secondary imaging

modality such as ultrasound [31] or MRI [50]; however this technique might be costly

and less user-friendly.
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Figure 4.1: Structural information used within the inversion mesh as prior information
for MRI model 1.

In this thesis, to prove the concept of using prior information, the structural in-

formation is obtained initially from the forward problem MRI models. However, since

the MRI images are not available usually for a patient, in Chapter 5 the structural in-

formation is estimated from the blind MWT reconstructions using an image processing

algorithm discussed later. Further, structural information of the tissue layers extracted

from the MRI models are shown in Figures 4.1, 4.2, and 4.3 for MRI models 1, 2,

and 3, respectively. The structural information represents the boundaries between the

matching medium and the skin, the skin and fat layer, and the fat layer and muscle tis-

sues. This structural information is input to the inversion algorithm. In comparison, for

the blind inversions presented in Chapter 3, the input mesh included only the chamber

boundary with unknown information about the OI structure. Further, Fig. 4.4 shows

the inversion meshes of MRI models 1, 2, and 3 after exporting the points to GMSH. It

should be noted that the meshes do not include bone structural information as it is the

main tissue within the leg to be imaged and monitored.

For each MRI model, three inhomogeneous background cases are considered.

The difference between each case are the values of the relative permittivity assigned for

the different regions. These case are,
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Figure 4.3: Structural information used within the inversion mesh as prior information
for MRI model 3.

Figure 4.2: Structural information used within the inversion mesh as prior information
for MRI model 2.

1. Inhomogeneous background with a mid value layer: the relative permittiv-

ity value for the skin, fat, and muscle tissues is set to a common middle value

calculated as,

ε
mid
r =

ε
high
r + ε low

r
2

, (30)

where ε
high
r and ε low

r are, respectively, the highest and lowest values of expected

bulk permittivity within the OI. In this thesis, the highest value corresponds to the
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(a) MRI model 1 (b) MRI model 2 (c) MRI model 3

Figure 4.4: Inversion meshes with prior information about location and dielectric prop-
erties of tissues for MRI models 1, 2, and 3.

muscle relative permittivity while the lowest value is the fat relative permittivity.

The values are obtained from literature [16].

2. Inhomogeneous background with a skin-fat layer: the skin layer is assigned

the skin’s relative permittivity from literature, whereas the fat and muscle tissues

are assigned the fat’s relative permittivity value.

3. Inhomogeneous background with a skin-fat-muscle layer: each layer - skin,

fat, and muscle - is assigned its respective relative permittivity obtained from

literature.

The relative permittivity values used for skin, fat, and muscle tissues have been

reported earlier in Table 3.1 in Chapter 3.

The inversion reconstruction results using the three aforementioned inhomoge-

neous background cases for a healthy bone case are shown in Figures 4.5, 4.6, 4.7 for

MRI models 1, 2, and 3, respectively. Similar to the blind inversion results done before,

the imaging domain was circular and the antennas were located on a circular surface

surrounding the OI. The analysis and discussion of results are done in Section 4.5.

4.2. Varying the Imaging Domain Boundary

This section discusses the effect of changing the imaging domain from circular

to other shapes that follow the OI outer contour. As shown by [30], reducing the imag-

ing domain area enhances the reconstruction process. Moreover, the reconstruction
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(a) Blind Inversion

(b) Inhomogeneous background with mid value layer

(c) Inhomogeneous background with skin-fat layer

(d) Inhomogeneous background with skin-fat-muscle layer

Figure 4.5: Incorporating prior info to enhance MRI model 1 reconstruction.
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(a) Blind Inversion

(b) Inhomogeneous background with mid value layer

(c) Inhomogeneous background with skin-fat layer

(d) Inhomogeneous background with skin-fat-muscle layer

Figure 4.6: Incorporating prior info to enhance MRI model 2 reconstruction.
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(a) Blind Inversion

(b) Inhomogeneous background with mid value layer

(c) Inhomogeneous background with skin-fat layer

(d) Inhomogeneous background with skin-fat-muscle layer

Figure 4.7: Incorporating prior info to enhance MRI model 3 reconstruction.
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Figure 4.8: Old and new imaging domain boundaries for MRI model 1.

calculations complexity and time are reduced also when reducing the imaging domain

area, as the number of unknowns to be estimated decreases.

In [30], the researchers used the resonant frequency measurements to estimate

the boundaries of the OI and thus, reducing the imaging domain. However, this required

additional usage of the operating antennas which resulted in having more calculations.

In this thesis, to prove the concept of using an OI-based imaging domain shape,

the imaging domain boundary is determined using the MRI models outermost tissue,

which is the skin. Figures 4.8, 4.12, and 4.13 show the new imaging domain for MRI

model 1, 2, and 3, respectively. For the earlier blind inversions, the imaging domain was

circular of radius 14 cm surrounding the OI. It should be noted that since the MRI image

is usually not available in real practical MWT systems, in the next chapter a method to

estimate the imaging domain boundary from blind inversions will be outlined.

For each MRI model, the inversion algorithm was allowed to run using the new

OI-contour based imaging domain boundary with four scenarios of background, which

were using an homogeneous background case and the three cases of using an inhomo-

geneous background discussed in Section 4.1. Figures 4.11, 4.12, and 4.13 show the

inversion results for MRI models 1, 2, and 3, respectively. The antennas for all simula-

tions were still located on a circle of radius 15 cm surrounding the OI. The analysis and

discussion of results are done in Section 4.5.
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Figure 4.9: Old and new imaging domain boundaries for MRI model 2.

Figure 4.10: Old and new imaging domain boundaries for MRI model 3.

4.3. Relocating Antennas

In this section, the location of antennas is changed to be surrounding the OI out-

ermost contour in order to simulate an actual wearable system scenario. By having the

antennas close to the OI, the loss of the transmitted or received signals to the matching

medium is reduced as more EM energy is directed towards the OI itself or captured by

the receiving antennas. Theoretically, this should improve the reconstruction results in

MWT.

Varying the antennas’ locations was previously discussed by [31] for localiz-

ing tumors using a MWT system designed for breast cancer detection. The location of
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(a) Homogenous background

(b) Inhomogeneous background with mid layer

(c) Inhomogeneous background with skin-fat layer

(d) Inhomogeneous background with skin-fat-muscle layer

Figure 4.11: Varying imaging domain to enhance MRI model 1 reconstruction.
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(a) Homogenous background

(b) Inhomogeneous background with mid layer

(c) Inhomogeneous background with skin-fat layer

(d) Inhomogeneous background with skin-fat-muscle layer

Figure 4.12: Varying imaging domain to enhance MRI model 2 reconstruction.
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(a) Homogenous background

(b) Inhomogeneous background with mid layer

(c) Inhomogeneous background with skin-fat layer

(d) Inhomogeneous background with skin-fat-muscle layer

Figure 4.13: Varying imaging domain to enhance MRI model 3 reconstruction.
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Figure 4.14: Old and new antennas’ locations for MRI model 1.

Figure 4.15: Old and new antennas’ locations for MRI model 2.

the antennas were adjusted to surround the contour of a breast using a secondary ultra-

sound system. In [31], the results showed that by having the antennas located in a close

distance from the OI improved tumor localization results, in comparison to having the

antennas’ on a circular surface.

In this thesis, the outermost layer within each MRI model is selected to provide

the surface for the antennas’ locations. To prevent the inclusion of antennas within the

imaging domain, the antennas’ surface was extruded slightly beyond the MRI model

outermost contour. Figures 4.14, 4.15, and 4.16 show the old and new surfaces on

which the antennas were located for MRI models 1, 2, and 3, respectively. It should be

noted that for each case the antennas follow the the skin layer of the leg, which would

be the case for a wearable MWT system.
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Figure 4.16: Old and new antennas’ locations for MRI model 3.

Since the antennas’ locations were changed, new synthetic data were obtained

for each model by running the forward simulations again. Next, for each MRI model,

the inversion algorithm was ran again for four background scenarios: homogeneous

background and the three cases of inhomogeneous background. The FEM-CSI recon-

structions are shown in Figures 4.17, 4.18, and 4.19 for MRI models 1, 2, and 3, respec-

tively. The analysis and discussion of results are given in Section 4.5.

4.4. Changing the Matching Medium

In this section, the effect of changing the type of matching medium is investi-

gated. So far, for all the simulations done, the selected matching medium was a mixture

of glycerin and water. This matching medium was used as it have been shown to be very

effective in biomedical MWT applications as it reduces the reflections at the matching

medium/skin interface. The disadvantage of this mixture is that it is liquid and will not

be suitable for a wearable MWT applications.

A commonly used matching medium for medical imaging purposes is the ul-

trasound gel. The ultrasound gel is aqueous, bacterio-static, non-sensitizing, and non-

irritating. Further, since it is of a gel-form it can be easily applied and cleaned in

a wearable MWT system. The world standard for ultrasound gels is the AquaSonic

100 [51]. There has been no previous research on the use of AquaSonic 100 ultrasound

gels in microwave tomographic applications; thus it will be investigated as a matching

medium in this thesis.
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(a) Homogenous background

(b) Inhomogeneous background with mid layer

(c) Inhomogeneous background with skin-fat layer

(d) Inhomogeneous background with skin-fat-muscle layer

Figure 4.17: Changing location of antennas to enhance MRI model 1 reconstruction.
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(a) Homogenous background

(b) Inhomogeneous background with mid layer

(c) Inhomogeneous background with skin-fat layer

(d) Inhomogeneous background with skin-fat-muscle layer

Figure 4.18: Changing location of antennas to enhance MRI model 2 reconstruction.
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(a) Homogenous background

(b) Inhomogeneous background with mid layer

(c) Inhomogeneous background with skin-fat layer

(d) Inhomogeneous background with skin-fat-muscle layer

Figure 4.19: Changing location of antennas to enhance MRI model 3 reconstruction.
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(a) Real part (b) Imaginary part

Figure 4.20: Relative permittivity values of AquaSonic 100 ultrasound gel.

To be able to use AquaSonic 100 as a matching medium, its electrical properties

need to be known. This was not found in literature so it was measured in the microwave

engineering lab at the American University of Sharjah using Keysight’s N1501A Coax-

ial Dielectric Probe [52]. The procedure for performing the measurement is summarized

in Appendix 7. The measured real and imaginary part of the relative permittivity for a

frequency range of 0.5−1.5 GHz is shown in Fig. 4.20.

From Fig. 4.20, the value of the complex relative permittivity at 0.8 GHz is

εr = 71.4− j10.3 for the AquaSonic 100 ultrasound gel. Using this value of match-

ing medium, the inversion algorithm was allowed to run again under the four back-

ground scenarios: homogeneous background and the three cases of inhomogeneous

background. In these inversions, the modified imaging domain and antennas’ locations

were used based on the results of Section 4.2 and Section 4.3. Figures 4.21, 4.22, and

4.23 show the results for MRI models 1, 2, and 3, respectively. The analysis and dis-

cussion of results are given in Section 4.5.

4.5. Analysis and Observations

The incorporation of prior information resulted in an improved image recon-

struction process. In all three scenarios, the reconstructed images became smoother

and easier to analyze in terms of OI and bone locations. In the mid value layer inho-

mogeneous background scenario, there was no significant change in the reconstructed

images compared to the skin-fat and skin-fat-muscle scenarios. In addition, the skin-fat-
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(a) Blind Inversion

(b) Inhomogeneous background with mid layer

(c) Inhomogeneous background with skin-fat layer

(d) Inhomogeneous background with skin-fat-muscle layer

Figure 4.21: The effect of using ultrasound gel as matching medium for MRI model 1
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(a) Blind Inversion

(b) Inhomogeneous background with mid layer

(c) Inhomogeneous background with skin-fat layer

(d) Inhomogeneous background with skin-fat-muscle layer

Figure 4.22: The effect of using ultrasound gel as matching medium for MRI model 2

75



(a) Blind Inversion

(b) Inhomogeneous background with mid layer

(c) Inhomogeneous background with skin-fat layer

(d) Inhomogeneous background with skin-fat-muscle layer

Figure 4.23: The effect of using ultrasound gel as matching medium for MRI model 3
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muscle scenario succeeded in locating the smaller bone which was missing in previous

scenarios. However, it still not clear and ready for further analysis.

The change in the imaging domain boundaries added to the improvements dis-

cussed before. The mid value scenario provided better images that could be improved

further in order to estimate the missing bone, the fibula. In addition, the location of both

bones became clearer using the skin-fat-muscle inhomogeneous scenario. The change

in imaging domain allowed for less regions to be reconstructed within the inversion

image.

After varying the location of antennas, the image reconstruction process in all

three models got improved. In addition, the location of the smaller bone, the fibula, got

detected and reconstructed successfully in multiple inhomogeneous background sce-

narios. The best scenarios were the mid value and the skin-fat-muscle in terms of es-

timating bone size. The change in antennas locations suggests the possibility of using

flexible antennas surrounding the OI preparing it for wearable applications.

The additional ultrasound gel provided good reconstruction process. The lo-

cation of both bones was close to the actual model in the mid layer inhomogeneous

scenario. The skin-fat and skin-fat-muscle provided a better reconstructed images, es-

pecially for the thick fat model; which is MRI model 3.

In all enhancement procedures, it can be easily noted that when having a thicker

fat layer within the OI, it is better to use lower values of inhomogeneous background

to obtain better bone localization. This can be seen in MRI model 3 throughout all

enhancement procedures mentioned in previous sections.

To elaborate more on that, Tables 4.1, 4.2, and 4.3 show the mean value of the

real part relative permittivity of the tibia and fibula bone for MRI models 1, 2, and

3, respectively. The process of extracting bones is discussed in details in Chapter 6.

Each cell includes three values: the mean value of the relative permittivity (εmean
r ) , the

standard deviation, and the relative percentage error (%error). The relative percentage

error is calculated using the following equation,

%error =
εmean

r − εactual
r

εactual
r

×100. (31)
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Table 4.1: Bones mean value real part relative permittivity in MRI model 1.

Homogeneous

Background

(Blind Inversion)

Inhomogeneous Background

Case I Case II Case III

mid value skin-fat skin-fat-muscle

Circular Imaging Domain

and Circular Antennas

16.57, 2.47 (27.43%) 25.72, 2.05 (97.87%) 5.71, 0.26 (-56.09%) 39.36, 3.92 (201.80%)

Not Detected Not Detected Not Detected 38.32, 1.16 (194.74%)

Imaging Domain based on OI

and Circular Antennas

15.58, 3.71 (19.84%) 18.45, 2.28 (41.89%) 12.21, 0.60 (-6.07%) 33.51, 6.14 (157.73%)

Not Detected Not Detected Not Detected 33.00, 2.27 (153.88%)

Imaging Domain based on OI

and Antennas based on OI

12.86, 3.07 (-1.11%) 12.21, 3.51 (-6.11%) 2.51, 2.08 (-80.70%) 31.75, 6.06 (144.26%)

1.00, 0.01 (-92.31%) 30.80, 0.02 (136.94%) Not Detected 27.11, 1.38 (108.53%)

Matching Medium (US)
41.39, 7.27 (218.39%) 13.07, 1.04 (0.53%) 14.82, 3.65 (13.98%) 14.62, 7.66 (12.49%)

Not Detected 13.20, 4.16 (1.55%) 12.34, 0.02 (-5.06%) 2.63, 3.20 (-79.78%)

Table 4.2: Bones mean value real part relative permittivity in MRI model 2.

Homogeneous

Background

(Blind Inversion)

Inhomogeneous Background

Case I Case II Case III

mid value skin-fat skin-fat-muscle

Circular Imaging Domain

and Circular Antennas

21.07, 1.06 (62.11%) 28.20, 1.07 (116.94%) 12.02, 1.05 (-7.56%) 24.60, 4.92 (89.24%)

Not Detected Not Detected Not Detected 34.34, 1.63 (164.13%)

Imaging Domain based on OI

and Circular Antennas

14.65, 1.91 (12.67%) 5.71, 4.67 (-56.08%) 17.30, 1.07 (33.10%) 15.04, 0.33 (15.69%)

Not Detected Not Detected Not Detected 30.08, 0.39 (131.40%)

Imaging Domain based on OI

and Antennas based on OI

6.73, 5.54 (-48.26%) 6.19, 4.09 (-52.42%) 14.99, 0.73 (-15.29%) 14.52, 0.34 (11.67%)

Not Detected 28.57, 0.02 (119.77%) 18.64, 0.02 (43.37%) 26.37, 0.15 (102.84%)

Matching Medium (US)
48.25, 2.74 (271.12%) 4.23, 3.77 (-67.48%) 8.58, 2.04 (-34.02%) 1.01, 0.02 (-92.25%)

Not Detected 18.85, 0.08 (45.02%) 15.26, 0.68 (17.40%) 27.82, 0.17 (114.03%)

Table 4.3: Bones mean value real part relative permittivity in MRI model 3.

Homogeneous

Background

(Blind Inversion)

Inhomogeneous Background

Case I Case II Case III

mid value skin-fat skin-fat-muscle

Circular Imaging Domain

and Circular Antennas

30.81, 1.00 (137.01%) 32.02, 0.27 (146.29%) 12.36, 0.51 (-4.92%) 21.95, 2.56 (68.87%)

Not Detected Not Detected Not Detected Not Detected

Imaging Domain based on OI

and Circular Antennas

28.01, 2.83 (115.47%) 34.71, 4.15 (167.02%) 12.64, 1.62 (-2.77%) 13.00, 2.35 (0.03%)

Not Detected Not Detected Not Detected Not Detected

Imaging Domain based on OI

and Antennas based on OI

29.40, 1.31 (126.14%) 30.75, 4.27 (136.55%) 11.44, 1.57 (-11.98%) 12.05, 1.31 (-7.34%)

Not Detected 44.50, 0.68 (242.28%) Not Detected 47.57, 1.11 (265.92%)

Matching Medium (US)
Not Detected 33.74, 2.69 (159.52%) 8.70, 1.40 (-33.08%) 3.57, 1.60 (-72.56%)

Not Detected Not Detected Not Detected Not Detected

Here εmean
r is the extracted mean value for the real part of the bones’ relative

permittivity and εactual
r is the actual value for the real part of the bones’ relative permit-

tivity obtained from literature [5,16]. When the reconstructed bones are over-estimated

than the actual literature value, the relative percentage error is positive. On the other

hand, when the reconstructed bones are under-estimated than the actual literature value,
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the relative percentage error is negative. In the tables, the standard deviation reflects

the amount of variations in data points within the extracted bones segments. Higher

standard deviation value indicates that the mask used to extract bones could be smaller

to cover bones only. This helps in the manual extraction process to be described in

Chapter 6. If a bone is not clearly visible in the reconstruction process, it is marked as

Not Detected.

It can be noted from the tables that the lowest relative percentage error occurred

when relocating the imaging domain as well as the antennas to be surrounding the

OI’s outermost contour. In addition, the fibula bone becomes detectable as the imaging

domain and the antennas are closer to the OI. The closest mean value of relative per-

mittivity occurs when using the mid-value inhomogeneous background scenarios for

MRI models 1 and 2. On the other hand, the skin-fat and skin-fat-muscle inhomoge-

neous background scenarios provided better reconstruction results for MRI model 3.

The effect of the enhancement procedure is clearly shown when using the ultrasound

gel matching medium, as the percentage error gets heavily reduced to below 100% in

almost the three MRI models.

The following points can be concluded by the end of this chapter,

• The incorporation of prior information related to the structure and dielectric prop-

erties improves the reconstruction process in terms of having smoother bound-

aries.

• The less the imaging domain area, the better the reconstruction and the less the

number of unknown mesh nodes.

• There is a possibility of changing the location of antennas to surround the OI

boundaries and having much more efficient image reconstruction process, which

helps when building a wearable system. The localization of bones and permittiv-

ity values extracted provided reliable results.

• The use of AquaSonic 100 ultrasound gel provided good reconstructed images,

which is considered promising as it is the world standard for medical ultrasound

imaging.
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• When having a thick fat layer within the OI, it is better to use the skin-fat scenario

as the Inhomogeneous background for better reconstruction in terms of both bone

localization and relative permittivity values.

Considering these points, it is a challenge to obtain structural information about

the OI and modify the imaging domain and antennas location in a real MWT configu-

ration. In this chapter, the boundaries were determined using the actual MRI models;

however, such models are not available when performing real MWT measurements

without the usage of multiple imaging modalities. Therefore, the next chapter provides

a complete procedure to extract structural information using only MWT reconstruction

processes to overcome the issues discussed earlier.
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Chapter 5: Image Processing for Enhanced Reconstruction

In this chapter, a complete procedure of estimating the OI’s structural informa-

tion using an image processing technique is proposed and discussed. The procedure is

based on the usage of k-means clustering technique applied to the blind inversion re-

constructions of the relative complex permittivity images. The main goal of this section

is to obtain structural information about the OI, thus, building the corresponding esti-

mated models. The analysis and observations are provided by the end of the chapter to

evaluate the results and compare it to the outcomes of the previous chapter in terms of

the reconstruction results.

5.1. K-means Clustering

K-means clustering is an image processing technique based on S. Lloyd algo-

rithm [53] that has been used commonly in the process of partitioning images and data

sets. In this technique, the selected image is iteratively segmented into a certain number

of clusters. Each cluster includes all the values within the image that are close to each

other [54]. To elaborate more on that, the objective of the k-means clustering algorithm

is to minimize the following function,

argminSk

K

∑
k=1

∑
x∈Sk

‖ x−µk ‖2 . (32)

Here k is index of a cluster, K is the total number of clusters, Sk is the set of

pixels within the kth cluster of an image, and ‖ x− µk ‖2 is the Euclidean distance

between a selected pixel x in Sk and a cluster centroid µk. This Euclidean distance is

given as,

‖ x−µk ‖2=
√

(x−µk)2. (33)

At the beginning, the algorithm assigns a cluster centroid uniformly at random

from the set of pixels S. Then, the distance between each pixel and the centroid is
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calculated and denoted as d(xm,µk), where xm is the initial selected pixel. The second

centroid is calculated at random with a probability of,

P(µk) =
d2(xm,µ1)

∑
n
i=1 d2(xi,µ1)

. (34)

Here n is the total number of pixels at S. Then, each pixel distance is calculated

from each cluster centroid and assigned to its nearest cluster. The selection of new

cluster centroids keeps on changing iteratively with a probability of,

P(µk) =
d2(xm,µp)

∑x∈Ck
d2(xh,µp)

. (35)

Here, Ck is the set of pixels within cluster k with centroid µk. The algorithm

stops when the iteration reaches the maximum number.

5.2. Structural Information Extraction Procedure

In the previous chapter, investigations were carried out on the effect of using the

MRI models to incorporate prior information about the structure of the OI. However, in

a real MWT configuration, the forward problem model boundaries, which are the actual

OI boundaries, are not known. In addition, the knowledge about the structure of the OI

is usually done by using multiple imaging modalities such as MRI or ultrasound [31]

along with the MWT system. This is reflected in making the imaging process costly

and time consuming.

Therefore, to obtain structural information about the OI being imaged, the blind

inverted images are used to build an estimated model of the OI using k-means clustering.

By taking a closer look into the results of the blind inversion algorithm, it can be noted

that there are differences between layers within the OI in terms of permittivity values.

Thus, k-means clustering could be useful in separating such layers and obtaining unique

data points corresponding to their boundaries.

Several image segmentation techniques were tested beforehand including thresh-

olding, region based, and clustering. However, the most reliable outcomes came from

the k-means clustering algorithm. Within the k-means technique, images are automat-

ically classified into regions/clusters based on their differences in data points values.

This got an advantage for MWT images, as usually over- and under- estimations occur
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for values with different layers within images. Therefore, thresholding or region based

techniques would fail. In addition, different layers might overlap when reconstructing

their dielectric profile images, which makes it even harder to predict a behavior of the

imaging algorithm.

The complete procedure of image enhancement using k-means clustering is

shown in Fig. 5.1.

Figure 5.1: Reconstruction enhancement using k-means clustering algorithm complete
procedure.
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5.3. Pre-Processing

Before going further with the k-means algorithm, the reconstructed blind im-

ages should be modified such that it is suitable for the k-means functionality. First, all

reconstructed images are converted from triangular mesh images to square grid images;

k-means technique is designed square grid meshes. Secondly, all values correspond-

ing to the surrounding matching medium are extracted based on the matching medium

relative permittivity values.

5.3.1. Conversion to a square grid. In the inverse problem solving sec-

tion, the contrast and contrast source calculations are done on the nodes of the triangles

within each MRI model mesh. Therefore, values corresponding to the real and imagi-

nary part of the relative complex permittivity within the reconstructed images can not

be used directly in the clustering algorithm as they are required to be on a square grid.

Therefore, the dielectric properties values on nodes are transformed to a square grid.

To do this, a function that is embedded within the FEM solver [46] is used,

which creates a connectivity matrix that maps the values on the nodes of triangles to

the locations at the square grid. This process is done using elemental basis functions of

FEM to evaluate a variable ε
p
r , which is the relative permittivity value at the p square

grid pixel.

First the centroid of a square p in the grid is located within a triangle e in the

2D triangular mesh. This centroid has 2D coordinate (xp,yp). Next, in terms of FEM,

ε
p
r (xp,yp) is calculated as,

ε
p
r (x

p,yp) =
3

∑
l=1

ε
e
r,lλ

e
l (x

p,yp). (36)

Here l is the local number of the nodes within the selected triangle e, εe
r,l is the

dielectric value on the node, and λ e
l is the linear basis function and is given by,

λ
e
l (x

p,yp) =
1

2Ae (a
e
l +be

l xp + ce
l yp) (37)
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where Ae is the area of the triangle, and ae
l , be

l , and ce
l are triangle coefficients

given as,

ae
l = xe

2ye
3− ye

2xe
3 (38)

be
l = ye

2− ye
3 (39)

ce
l = xe

3− xe
2 (40)

The coefficients of l = 1, 2, and 3 are calculated interchangeably. The area of

the triangle shown in equation (37) is given by,

Ae =
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

1 xe
1 ye

1

1 xe
2 ye

2

1 xe
3 ye

3

∣∣∣∣∣∣∣∣∣∣∣∣
. (41)

Here xe
1,2,3 and ye

1,2,3 are the x− and y− coordinates of nodes in the selected

triangle e.

These equations are used to find the value of the relative permittivity for each

pixel in the square grid using the values of the relative permittivity on the nodes of the

triangular mesh.

5.3.2. Extraction of the matching medium. After obtaining the square grid

of pixels for the relative complex permittivity blind images, the matching medium val-

ues are extracted before applying any further calculations. The purpose of doing such

step is to ensure that the k-means algorithm only includes the OI reconstructed relative

permittivity values within its calculations of clusters. As the reconstructed images are

always non-uniform and may over- or under- estimate the actual value of the relative

permittivity, the extracted matching medium values are set to lie within a boundary limit

of {+4,−3} from the actual value of the real part, and {+4,−1} from the actual value
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of the imaginary part. The selection of an optimum boundary limit was determined after

several trial and error tests; these selected ranges worked on every model efficiently.

The matching mediums used were 80:20 Glycerin/Water solution and Aqua-

Sonic 100 ultrasound gel. The ranges of extracted values for Glycerin/Water mixture

were of 23≤ ε
′
r ≤ 30 and 17≤ ε

′′
r ≤ 22 . The ranges of extracted values for ultrasound

gel were 68.4≤ ε
′
r ≤ 75.4 and 10.3≤ ε

′′
r ≤ 15.3.

Figures 5.2 and 5.3 shows the extraction process for the three MRI models

within the real and imaginary part using the Glycerin/Water solution. In addition,

Figures 5.4 and 5.5 show the extraction process for the three MRI models using the

ultrasound gel real and imaginary parts. The figures on the left column are the re-

constructions, while the figures on the right are after conversion to a square grid and

matching medium removal.

The extraction process successfully removed the pixels that are related to the

matching medium. However, in some images, few pixels had relative permittivity values

that are outside the boundary limit. In the next subsections, a detailed procedure on the

removal of such parts from images is provided. In addition, some of the values that

are related to the OI values were extracted. However, it is considered fine as the main

objective of the whole procedure is to obtain boundaries of the layers regardless of the

missing values inside them.

5.4. Clustering Algorithm

After removing almost all relative permittivity pixels that correspond to the sur-

rounding matching medium, boundaries of different layers become extractable. From

the results provided in Section 5.3, it can be seen from the resulting figures that the

removal of the matching medium resulted in having almost two regions. These regions

are referred to as Low-Permittivity and High-Permittivity regions relative to their permit-

tivity values of both real and imaginary parts. The Low-Permittivity region has values

close to the fat and bone relative permittivity values. The High-Permittivity region has

values close to the muscle and skin relative permittivity values. Therefore, the number

of clusters, K, is set to be 2.

The Low-Permittivity and High-Permittivity regions extracted from the real part

of the relative complex permittivity reconstructions are shown Fig. 5.6 using Glyc-
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(a) MRI model 1

(b) MRI model 2

(c) MRI model 3

Figure 5.2: The extraction process of the Glycerin/Water matching medium real part
values in MRI models 1, 2, and 3.
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(a) MRI model 1

(b) MRI model 2

(c) MRI model 3

Figure 5.3: The extraction process of the Glycerin/Water matching medium imaginary
part values in MRI models 1, 2, and 3.
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(a) MRI model 1

(b) MRI model 2

(c) MRI model 3

Figure 5.4: The extraction process of the ultrasound gel matching medium real part
values in MRI models 1, 2, and 3.
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(a) MRI model 1

(b) MRI model 2

(c) MRI model 3

Figure 5.5: The extraction process of the ultrasound gel matching medium imaginary
part values in MRI models 1, 2, and 3.
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erin/Water solution and Fig. 5.7 using ultrasound gel. The figures are for the three MRI

models 1, 2, and 3.

From the acquired clusters, it can be seen that the Low-Permittivity cluster re-

sulted in obtaining the fat layer segment correctly. However, the High-Permittivity clus-

ter was not clearly segmenting the muscle layer in all MRI models. In addition, it

included some values that are considered as underestimated matching medium values.

Based on this, the algorithm is allowed to use the Low-Permittivity cluster only, which

contains fat reconstructed boundaries, to build the estimated model. The outermost

boundary of the OI, which is related to the skin, is determined by extruding the bound-

ary location of the extracted fat layer outwards by a small value. This will represent the

skin surrounding the fat layer, which is usually millimeters in thickness.

Further, the cluster technique described earlier is also applied on the imaginary

part of the reconstructed images following the same procedure of obtaining the High-

Permittivity and Low-Permittivity regions. The results are shown in Figures 5.8 and 5.9

for Glycerin/Water solution and ultrasound gel matching media, respectively.

The clustering of the imaginary part resulted in better segments for both fat and

muscle. Unlike the real-part clustering, the imaginary-part clustering can be used to

reconstruct both the structure of the fat and muscle regions. Thus, both Low-Permittivity

and High-Permittivity regions are selected to build the estimated model.

5.5. Building the Estimated Model

In this section, selected k-means clusters are used to generate an estimated

model of the original OI structure. Thus, acquiring structural information about lay-

ers within the OI being imaged.

To achieve this, outermost boundaries of each cluster should be detected. This

is done by creating a binary image using the clusters obtained from k-means algorithm.

The binary image is generated as follows: in the output image containing k-means

clusters, if a pixel in the square grid is in a k-mean cluster a values of ‘1’ is assigned to

it, otherwise it is assigned a value of ‘0’. The resulted binary images will include smaller

clusters that are located near the main target segments, which are fat and muscle tissues;

these smaller clusters are removed to ensure the extraction process includes only the fat

and muscles segments. Next, edge detection is applied on the remaining segments to

91



(a) MRI model 1

(b) MRI model 2

(c) MRI model 3

Figure 5.6: K-means clusters from the real part relative permittivity images in MRI
models 1, 2, and 3 using Glycerin/Water solution (Left = Low-Permittivity, Right =
High-Permittivity).
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(a) MRI model 1

(b) MRI model 2

(c) MRI model 3

Figure 5.7: K-means clusters from the real part relative permittivity images in MRI
models 1, 2, and 3 using ultrasound gel (Left = Low-Permittivity, Right = High-
Permittivity).
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(a) MRI model 1

(b) MRI model 2

(c) MRI model 3

Figure 5.8: K-means clusters from the imaginary part relative permittivity images in
MRI models 1, 2, and 3 using Glycerin/Water solution (Left = Low-Permittivity, Right
= High-Permittivity).
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(a) MRI model 1

(b) MRI model 2

(c) MRI model 3

Figure 5.9: K-means clusters from the imaginary part relative permittivity images in
MRI models 1, 2, and 3 using ultrasound gel (Left = Low-Permittivity, Right = High-
Permittivity).
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(a) K-means Cluster (b) Binary image

(c) Prepared segment (d) Edge Detection

Figure 5.10: Extracting boundaries of the real part of relative permittivity Low-
Permittivity cluster with Glycerin/Water solution for MRI model 1.

obtain the boundaries of both fat and muscle clusters. An edge detection algorithm

implemented within the MATLAB’s image processing toolbox was used [55]; in this

algorithm the Canny edge detection algorithm was selected [56]. The discussion of the

edge detection algorithm is beyond the scope of the thesis as more details can be found

here [55, 56].

Figures 5.10, 5.11, and 5.12 show the procedure of obtaining real part relative

permittivity Low-Permittivity cluster boundaries from MRI model 1, 2, and 3, respec-

tively, for the Glycerin/Water solution, whereas Figures 5.13, 5.14, and 5.15 show the

procedure for the ultrasound gel. In last image in each figure a dashed red line is shown

to represent the outer estimated boundary.

The outer boundary, shown as dashed red line, is obtained as x and y points

representing fat layer boundaries. These boundaries are to be used further to reconstruct

the OI model.

For the imaginary part of the relative permittivity clusters, both the Low-Permittivity

and High-Permittivity clusters boundaries, representing fat and muscle segments, were

detected using the same procedure. Figures 5.16 and 5.17 show the final segment and

outer boundary obtained after edge detection for MRI models 1, 2, and 3 using Glyc-

erin/Water solution and ultrasound gel, respectively.
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(a) K-means Cluster (b) Binary image

(c) Prepared segment (d) Edge Detection

Figure 5.11: Extracting boundaries of the real part relative permittivity Low-Permittivity
cluster with Glycerin/Water solution for MRI model 2.

(a) K-means Cluster (b) Binary image

(c) Prepared segment (d) Edge Detection

Figure 5.12: Extracting boundaries of the real part relative permittivity Low-Permittivity
cluster with Glycerin/Water solution for MRI model 3.

Fig. 5.18 shows the boundaries of the the forward problem MRI models and the

estimated models using both Glycerin/Water solution and ultrasound gel using the real-

part clustering. In addition, the location of the imaging domain and antennas’ locations

are found using the outermost layer as previously done in Chapter 4.

Fig. 5.19 shows the boundaries of the forward problem MRI models and the esti-

mated models using both Glycerin/Water solution and ultrasound gel using the imaginary-
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(a) K-means Cluster (b) Binary image

(c) Prepared segment (d) Edge Detection

Figure 5.13: Extracting the boundaries of the real part relative permittivity Low-
Permittivity cluster with ultrasound gel for MRI model 1.

(a) K-means Cluster (b) Binary image

(c) Prepared segment (d) Edge Detection

Figure 5.14: Extracting boundaries of the real part relative permittivity Low-Permittivity
cluster with ultrasound gel for MRI model 2.

part clusters. In addition, the locations of the new imaging domain and antennas’ loca-

tions are labeled.

5.6. Inversion Results

After building the estimated models using both real and imaginary parts of rela-

tive permittivity reconstructions, they are used as prior information related to the struc-
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(a) K-means Cluster (b) Binary image

(c) Prepared segment (d) Edge Detection

Figure 5.15: Extracting boundaries of the real part relative permittivity Low-Permittivity
cluster with ultrasound gel for MRI model 3.

ture of the OI. For the estimated models obtained using the real-part clustering, two

of the inhomogeneous background scenarios discussed in Section 4.1, are followed to

incorporate prior information about the dielectric properties of layers. These scenarios

are the mid-value layer and the skin-fat layer. For the imaginary-part clustering, these

two prior information scenarios as well as the third inhomogeneous background using

skin-fat-muscle are considered. Furthermore, as shown in Chapter 4, the best outcomes

came when the imaging domain and the location of antennas were closer to the OI; thus,

they are directly applied within the inversion algorithm, which is using the estimated

models as inhomogeneous background.

Figures 5.20 and 5.21 show the inversion results of the real-part based clustering

model using Glycerin/Water solution in MRI images 1, 2, and 3 with mid-value and

skin-fat scenarios, respectively. In addition, Figures 5.22 and 5.23 show the results

using the ultrasound gel matching medium.

The results of the inversion using the imaginary-part based clustering model

are shown in Fig. 5.24, 5.25, and 5.26 with mid-value, skin-fat, and skin-fat-muscle

scenarios, respectively.
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.16: Extracting the boundaries of the imaginary part relative permittivity clus-
ters with Glycerin/Water solution (Left = Low-Permittivity, Right = High-Permittivity).
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.17: Extracting the boundaries of the imaginary part relative permittivity clus-
ters with ultrasound gel (Left = Low-Permittivity, Right = High-Permittivity).
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.18: The boundary of the estimated model created using real part relative per-
mittivity clusters along with new imaging domain and antennas location (Left = For-
ward problem MRI models, Middle = Glycerin/Water solution models, Right = Ultra-
sound gel models).

5.7. Analysis and Observations

The inversion results using the real part relative permittivity models results in

good reconstruction of both bones. For the mid-value inhomogeneous background sce-

nario, the location of the two bones was detected in both Glycerin/Water solution and

ultrasound gel inverted images. However, MRI model 3 did not provide efficient re-

constructions in term of bone location and dielectric properties. This was overcame

using the skin-fat scenario where tibia bone became detectable, as well as its dielectric

properties values.
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.19: The boundary of the estimated model created using imaginary part rela-
tive permittivity clusters along with new imaging domain and antennas location (Left
= Forward problem MRI models, Middle = Glycerin/Water solution models, Right =
Ultrasound gel models).

Using the imaginary-part relative permittivity clustering models resulted in ob-

taining almost the same outcomes as the previous real-part clustering models inversion.

However, it can be seen that the imaginary-part overestimates regions, therefore, sce-

narios were less accurate compared to the real-part results. This is clearly seen in the

skin-fat-muscle scenario, as the results were very poor due to the over estimation of

muscle regions.

From this chapter the following points can be concluded,

• Image processing techniques could be useful to obtain structural information

about the OI being imaged.
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.20: Inversion results for the real-part based clustering model using the Glyc-
erin/Water solution with mid-value inhomogeneous scenario.
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.21: Inversion results for the real-part based clustering model using the Glyc-
erin/Water solution with skin-fat inhomogeneous scenario.
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.22: Inversion results for the real-part based clustering model using the ultra-
sound gel with mid-value inhomogeneous scenario.
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.23: Inversion results for the real-part based clustering model using the ultra-
sound gel with skin-fat inhomogeneous scenario.
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.24: Inversion results for the imaginary-part based clustering model using the
Glycerin/Water solution with mid-value inhomogeneous scenario.
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.25: Inversion results for the imaginary-part based clustering model using the
Glycerin/Water solution with skin-fat inhomogeneous scenario.
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.26: Inversion results for the imaginary-part clustering model using the Glyc-
erin/Water solution with skin-fat-muscle inhomogeneous scenario.
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.27: Inversion results for the imaginary-part clustering model using the ultra-
sound gel with mid-value inhomogeneous scenario.
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.28: Inversion results for the imaginary-part clustering model using the ultra-
sound gel with skin-fat inhomogeneous scenario.
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(a) MRI Image 1

(b) MRI Image 2

(c) MRI Image 3

Figure 5.29: Inversion results for the imaginary-part based clustering model using the
ultrasound gel with skin-fat-muscle inhomogeneous scenario.
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• Both real and imaginary parts of the reconstructed relative permittivity can be

used to build an estimated structural model of the OI, however, it is recommended

to use the real-part model due to proper estimations.

• The results of the inversion algorithm suggest that using mid-value inhomoge-

neous scenario could be useful for skin to mid fat leg models, while skin-fat in

recommended for thick fat scenarios.

• The use of skin-fat-muscle requires accurate localization of boundary points re-

lated to each layer, as any over-estimations could results in poor reconstructed

images.

Considering these points, and as the process of imaging human bones has been

enhanced, the evaluation of bone health is required. However, it is considered a chal-

lenge to build the estimated model, as for each BVF scenario, the reconstructed images

are going to differ. This is going to be investigated in the next chapter.
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Chapter 6: Analysis on Bone Health Monitoring

In this chapter, the effect of varying bone density is investigated. Five BVF sce-

narios are taken into consideration to represent various bone health conditions. For the

five BVF variations, the blind inversion is applied for each scenario. Each blind inver-

sion is used to build the corresponding estimated models of the OI using the clustering

technique described in Chapter 5. Then, statistical analysis on the results is applied to

explore the feasibility of using MWT in bone health monitoring.

6.1. Bone Density Variations

As previously shown in Chapter 3, variations in the bone volume fraction (BVF)

will cause changes to the overall dielectric properties of bones; a decrease in the density

of bones results in an increase in the dielectric properties. Therefore, MWT can be used

to detect such differences. In addition to the three BVF cases chosen in Section 3.3,

two additional scenarios are added to improve the quality of the analysis. Based on

values shown [1], the five bone BVF scenarios and their corresponding relative complex

permittivity values are,

• Healthy Bone: εr = 13− j3.0,

• Bone with 0.45 BVF: εr = 14− j3.05,

• Bone with 0.35 BVF: εr = 16− j3.1,

• Bone with 0.25 BVF: εr = 18− j3.2,

• Bone with 0.1 BVF: εr = 23− j3.4.

A bone with 0.5 BVF is selected as an example of a healthy bone case. In addi-

tion, a bone with 0.1 BVF is a scenario with a severe bone density loss. In the case of

Vitamin D deficiency, the actual bone condition is unknown. Therefore, each bone sce-

nario goes initially through the blind inversion process described in Chapter 3. Figures

6.1 and 6.2 show, respectively, the relative complex permittivity blind inversion recon-

structions using the 80:20 Glycerin/Water solution and the ultrasound gel mediums for

the five BVF scenarios from MRI model 1. Figures 6.3 and 6.4 show the results from

MRI model 2. Figures 6.5 and 6.6 show the results from MRI model 3.
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(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.1: MRI model 1: The real and imaginary components of the relative permit-
tivity reconstructions using Glycerin/Water solution.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.2: MRI model 1: The real and imaginary components of the relative permit-
tivity reconstructions using ultrasound gel.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.3: MRI model 2: The real and imaginary components of the relative permit-
tivity reconstructions using Glycerin/Water solution.
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(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.4: MRI model 2: The real and imaginary components of the relative permit-
tivity reconstructions using ultrasound gel.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.5: MRI model 3: The real and imaginary components of the relative permit-
tivity reconstructions using Glycerin/Water solution.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.6: MRI model 3: The real and imaginary components of the relative permit-
tivity reconstructions using ultrasound gel.
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(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(1) 80:20 Glycerin/Water solution

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

(2) Ultrasound gel

Figure 6.7: MRI model 1: The real-part based clustering estimated models.

6.2. Building the Estimated Models

The next step after performing the blind inversions is to use the reconstruction

results to extract structural information about the leg. An estimated model for each

scenario is built from the blind inversion images following the procedure detailed in

Chapter 5. This is done for each BVF case separately to investigate the possibility of

building the estimated models for unknown health conditions. Each estimated model

is considered as the OI boundaries for the use within the inhomogeneous background

inversion scenarios. Figures 6.7, 6.8, and 6.9 show the results of building MRI model

1, 2, and 3 estimated models, respectively, based on using the real part of relative per-

mittivity reconstructions. The figures show the results of using two matching media:

Glycerin/Water solution and Ultrasound gel.

The imaginary-part based clusters were also used for each scenario to recon-

struct the estimated models. Figures 6.10, 6.11. and 6.12 show the results of building

MRI models 1, 2, and 3 estimated models, respectively, using the imaginary-part based

clustering for Glycerin/Water solution and ultrasound gel.

6.3. Enhanced Inversion Results

As previously recommended in Chapter 5, the real-part based clustering es-

timated models are preferred to be used as they do not overestimate regions of the

OI. Therefore, each MRI estimated model using the real-part based clustering is used
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(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(1) 80:20 Glycerin/Water solution

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

(2) Ultrasound gel

Figure 6.8: MRI model 2: The real-part based clustering estimated models.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(1) 80:20 Glycerin/Water solution

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

(2) Ultrasound gel

Figure 6.9: MRI model 3: The real-part based clustering estimated models.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(1) 80:20 Glycerin/Water solution

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

(2) Ultrasound gel

Figure 6.10: MRI model 1: The imaginary-part based clustering estimated models.
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(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(1) 80:20 Glycerin/Water solution

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

(2) Ultrasound gel

Figure 6.11: MRI model 2: The imaginary-part based clustering estimated models.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(1) 80:20 Glycerin/Water solution

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

(2) Ultrasound gel

Figure 6.12: MRI model 3: The imaginary-part based clustering estimated models.

within the inversion algorithm using different inhomogeneous background scenarios.

MRI model 1 inversion results using the real-part based clustering estimated model

are shown in Figures 6.13, 6.14, 6.15, and 6.16. MRI model 2 inversion results using

the real-part based clustering estimated model are shown in Figures 6.17, 6.18, 6.19,

and 6.20. MRI model 3 inversion results using the real-part based clustering estimated

model are shown in Figures 6.21, 6.22, 6.23, and 6.24.
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(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.13: MRI model 1: The mid-value inversion results using the real-part based
clustering estimated model for 80:20 Glycerin/Water solution.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.14: MRI model 1: The skin-fat inversion results using the real-part based
clustering estimated model for 80:20 Glycerin/Water solution.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.15: MRI model 1: The mid-value inversion results using the real-part based
clustering estimated model for ultrasound gel.
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(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.16: MRI model 1: The skin-fat inversion results using the real-part based
clustering estimated model for ultrasound gel.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.17: MRI model 2: The mid-value inversion results using the real-part based
clustering estimated model for 80:20 Glycerin/Water solution.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.18: MRI model 2: The skin-fat inversion results using the real-part based
clustering estimated model for 80:20 Glycerin/Water solution.
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(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.19: MRI model 2: The mid-value inversion results using the real-part based
clustering estimated model for ultrasound gel.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.20: MRI model 2: The skin-fat inversion results using the real-part based
clustering estimated model for ultrasound gel.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.21: MRI model 3: The mid-value inversion results using the real-part based
clustering estimated model for 80:20 Glycerin/Water solution.
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(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.22: MRI model 3: The skin-fat inversion results using the real-part based
clustering estimated model for 80:20 Glycerin/Water solution.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.23: MRI model 3: The mid-value inversion results using the real-part based
clustering estimated model for ultrasound gel.

(a) Healthy Bone (b) BVF = 0.45 (c) BVF = 0.35 (d) BVF = 0.25 (e) BVF = 0.1

(f) Healthy Bone (g) BVF = 0.45 (h) BVF = 0.35 (i) BVF = 0.25 (j) BVF = 0.1

Figure 6.24: MRI model 3: The skin-fat inversion results using the real-part based
clustering estimated model for ultrasound gel.
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(a) Expert-Eye Local-
ization

(b) Real Part Masking (c) Extracted Bones (d) Wrong Values Re-
moval

Figure 6.25: MRI model 1: The complete bone values extraction procedure results
using 80:20 Glycerin/Water solution.

6.4. Statistical Analysis of Bone Health Variations

To obtain information about the health of bones, both bones are extracted sep-

arately, whenever possible, to acquire their corresponding estimated relative complex

permittivity values. This is achieved by following these steps,

1. Expert-Eye Localization: Manual localization of bones from the imaginary part

reconstructed images to obtain bone masks.

2. Real Part Extraction: Applying the mask on the real part reconstructed images to

obtain corresponding segments.

3. Discarding Wrong Values: Removing any values that are more than the first quar-

tile of the obtained bone data points, which are considered as wrong bone values.

4. Finding Mean and Standard Deviation: Obtaining the mean and standard devia-

tion of each estimated bone location.

As an example, the results of this procedure applied on healthy bone scenarios

for MRI models 1, 2, and 3 utilizing mid-value inhomogeneous background and 80:20

Glycerin/Water solution matching medium are shown in Figures 6.25, 6.26, and 6.27.

This procedure is applied on all scenarios of BVF and MRI models.

Furthermore, Figures 6.28, 6.29, and 6.30 show the line plots of MRI model 1,

2, and 3, respectively, using 80:20 Glycerin/Water solution and ultrasound gel. In these

figures, the mean value of the estimated real part for the bones’ relative permittivity ver-

sus BVF is plotted. Moreover, in each figure, the circles represent successful detection

of bones, while the crosses represent the failure to detect bones.

125



(a) Expert-Eye Local-
ization

(b) Real Part Masking (c) Extracted Bones (d) Wrong Values Re-
moval

Figure 6.26: MRI model 2: The complete bone values extraction procedure results
using 80:20 Glycerin/Water solution.

(a) Expert-Eye Local-
ization

(b) Real Part Masking (c) Extracted Bones (d) Wrong Values Re-
moval

Figure 6.27: MRI model 3: The complete bone values extraction procedure results
using 80:20 Glycerin/Water solution.

6.5. Analysis and Observations

Based on the results shown in Section 6.3, bone health variations are success-

fully observed. As BVF decreases, the real part relative permittivity increases. In

addition, the fibula bone, in most cases, started disappearing and emerging with the

(a) Glycerin/Water Solution (b) Ultrasound Gel

Figure 6.28: MRI model 1: The line plot representation of the mean value of the real
part relative permittivity of bones.
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(a) Glycerin/Water Solution (b) Ultrasound Gel

Figure 6.29: MRI model 2: The line plot representation of the mean value of the real
part relative permittivity of bones.

(a) Glycerin/Water Solution (b) Ultrasound Gel

Figure 6.30: MRI model 3: The line plot representation of the mean value of the real
part relative permittivity of bones.

surrounding muscle layer. Both the Glycerin/Water solution and the ultrasound gel pro-

vided the described behavior of the reconstruction process. Furthermore, the mid-value

inhomogeneous background scenario helped in localizing both bones much better than

the skin-fat scenario. However, the latter resulted in bones’ relative permittivity values

closer to the literature values than the former.

The line plots show that whenever the bone is increasing in terms of its BVF

value, the plot follows a decreasing pattern. This is easily observable for all three MRI

models for both inhomogeneous scenarios. In addition, as the bones’ BVF decreases,

the fibula bone was not detected successfully as it get emerged with the muscle tissues.
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From this chapter, the following can be observed,

• The blind inversion images at any BVF scenario could be used to build estimated

models using the proposed procedures.

• Bone health variations in terms of BVF ratio differences can be successfully ex-

tracted from MWT reconstructed images.

• The line plot follows a decreasing pattern in terms of real part of the bones’

relative permittivity with respect to an increase in BVF.

• The imaginary part fails to localized the fibula bone when the BVF decreases.

All these observations support the hypothesis of this thesis: MWT succeeded

in detecting variations in the bones’ relative complex permittivity, which correspond

to BVF variations that represent changes in bone density. For Vitamin D deficiency

treatment, the overall bone density can be measured using MWT to monitor the progress

of the treatment.
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Chapter 7: Conclusion and Future Work

In this thesis, an investigation for feasibility of using microwave tomography as

a monitoring system for bone healing was performed. Three two-dimensional models

illustrating the middle part of a human leg with three fat layer thicknesses were created.

Using a finite element solver, the synthetic data was obtained from the forward prob-

lem for bones with different values of electrical properties. In the inverse problem, the

synthetic measurements from the forward simulations were inverted to create an esti-

mate map of electrical properties of the human leg; the inversion technique used was

the contrast source inversion algorithm.

An enhancement procedure for the overall MWT configuration was investigated

to improve the reconstruction process of the real and imaginary relative permittivity im-

ages. Based on the enhancement procedure, an image processing approach was intro-

duced and evaluated in terms of successful image reconstruction for both tibia and fibula

bones. The reconstruction process showed potential of successfully imaging bones.

Further, analysis was carried out for different BVF scenarios, to illustrate bone

density loss. In the analysis a process was designed to obtain statistical data about

the permittivity values of bones. The results of the analysis were line plots, which

showed that changes in the bones’ mineralization are reflected as detectable changes in

the bones’ dielectric properties. In addition, in most reconstructed images, the statistical

line plot followed a downward trend in the electrical properties as BVF increases. The

results show clearly the potential of using MWT for bone health monitoring.

The future work and recommendations for this thesis include the following

points:

• Testing the inversion procedure on actual real bones and performing the degener-

ation process in the lab.

• Designing an experimental system as a wearable MWT system.

• Imaging the actual treatment process for a Vitamin D deficient patient after de-

veloping the actual MWT hardware system.
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Appendix A: Dielectric Probe Measurements

The equipment used to measure the dielectric properties of different materi-

als are Keysight’s N1501A dielectric probe connected to a vector network analyzer

(VNA) [52]. The VNA is controlled by a computer hosting a software that calculates

the dielectric properties based on VNA measurements. The measurement setup, shown

in Fig. 7.1, is available in microwave engineering laboratory at the American University

of Sharjah.

Before starting with the measurements, the dielectric probe software is cali-

brated using three known loads, which are free-space, a short load, and distilled water.

The calibration is performed in the frequency range at which the permittivity will be

measured. A picture of the two calibration loads is shown in Fig. 7.2. The frequency

range at which calibrations and measurements were performed was 0.5 GHz to 1.5 GHz.

After calibration is done, the dielectric probe is inserted into the liquid whose

properties are to be measured. In this thesis, the liquid was the AquaSonic 100 ultra-

sound gel. Next, the software on the host computer is run, and the outputs are two plots

of the real and imaginary components of the complex relative permittivity of the liquid

within the chosen frequency range.

An example of measurement results compared to theoretical literature values are

shown in Fig. 7.3 for distilled water. The theoretical values of water electrical properties

Vector Network Analyzer

Dielectric Probe

Sample

Host Computer with Dielectric 

Probe Software

Figure 7.1: The setting used to measure AquaSonic 100 ultrasound gel dielectric prop-
erties.
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Short Circuit

Distilled Water

Dielectric Probe

Figure 7.2: The loads used for calibrating the probe: short-circuit load and distilled
water.

can be obtained using the Cole-Cole model [57]. As can be seen from the figure, the

results are similar to each other with small variations. These variation may occur due

to the water used not being truly distilled, or due to measurements errors like cable

movement as the probe is lowered into the liquid.

(a) Real part (b) Imaginary part

Figure 7.3: Relative permittivity values of distilled water: theoretical values versus
measurements.
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