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Abstract 

 

This work focuses on accurate and efficient real-time estimation of Li-ion battery model 

parameters for electric vehicle (EV) traction systems. The contributions made by this 

thesis are: accurate estimation of Li-ion battery parameters using a two-stage adaptive 

optimization strategy, which minimizes the need of offline processing, and enables 

efficient real-time estimation of Li-ion battery model parameters for EV traction 

systems. In the first part of this thesis, a two-stage universal adaptive stabilizer (UAS) 

based optimization technique is proposed for estimation of Li-ion battery model 

parameters. The first stage utilizes a UAS based APE technique to acquire an initial 

estimate of battery parameters. The second stage utilizes one of the three different 

optimization techniques, i.e., fmincon, particle swarm optimization (PSO), and hybrid 

PSO to improve the accuracy of battery model parameters obtained by the APE. The 

parameters estimated by the APE help in reducing the search space interval required by 

the optimization technique, thus reducing the computation time for the optimization 

process. This thesis presents detailed comparison of experimental results using the 

proposed approach, and other well-known optimization techniques from the literature. 

In the second part of this thesis, a modification to the existing UAS based APE strategy 

is proposed. The existing UAS based APE strategy requires a small amount of prior 

offline experimentation and some post-processing to determine some of the battery 

parameters. However, the proposed modified APE strategy estimates all battery 

parameters in a single experimental run. Mathematical proofs, simulation and 

experimental results supporting the proposed modified APE strategy are also presented. 

In the third part of this thesis, the modified APE strategy is employed for real-time 

parameters estimation of a 400 V, 6.6 Ah Li-ion battery bank, which supplies power to 

a field-oriented control based EV drive system. Some of the distinct features of the 

modified APE strategy, such as simple real-time implementation, fast convergence, and 

minimal experimental effort, show the effectiveness of the modified APE strategy 

developed in this work for real-time Li-ion battery model parameters estimation of EV 

traction systems.     

 

Keywords: Adaptive parameters estimation; Li-ion battery; particle swarm 

optimization; universal adaptive stabilizer. 
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Chapter 1. Introduction and Literature Review

Li-ion batteries have gained global attention, compared to other batteries, due to

their appealing features, such as high energy density, portability, low self-discharge, and

extended life cycle. Due to the above-mentioned characteristics of Li-ion batteries, they

have become the premium candidate for electric vehicles (EVs), aerospace, portable

electronics, renewable energy storage, biomedical applications etc.

Different types of Li-ion batteries are being used in several applications. The

fundamental difference among various Li-ion batteries is the material of electrodes. Li-

ion batteries with high specific energy are often employed for long runtime applications.

Whereas, the Li-ion batteries of high specific power are used to supply high power

loads. Lithium Cobalt Oxide (LiCoO2), Lithium Nickel Manganese Cobalt Oxide

(LiNiMnCoO2 or NMC), and Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2)

are the kind of Li-ion batteries which have high specific energy, and, therefore, these are

used in portable electronics and medical devices. However, these types of Li-ion batter-

ies are expensive, have shorter lifespan, exhibit lower specific power, and less safe com-

pared to Lithium Manganese Oxide (LiMn2O4), Lithium Iron Phosphate (LiFePO4),

and Lithium Titanate (Li4Ti5O12) batteries, which are widely used for high power loads

[1]. Li-ion batteries outperform nickel-cadmium, lead-acid, and nickel-metal hydride

batteries due to higher energy density, lighter weight, and comparatively lesser physical

volume. Scientists are modifying the existing Li-ion battery technologies and focusing

on developing new chemistry to enhance the performance of Li-ion batteries. Some of

the important aspects of advanced research on Li-ion batteries include adaptive parame-

ters estimation [2, 3], battery management system [4], state-of-charge (SoC) estimation

[5], and detection of terminal voltage collapse [6].

1.1. Literature Review

Accurate state of charge (SoC) estimation is critical for battery energy manage-

ment and protection. SoC plays a vital role in assessing remaining battery lifetime,

protection against overcharging and accidental over-discharging, fault detection and for

a safe and reliable operation of a Li-ion battery [2]. SoC of a battery cannot be mea-
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sured directly but needs to be estimated through online or offline methods. Some SoC

estimation strategies include chemical methods where specific gravity or battery elec-

trolyte pH is translated to SoC. In the voltage method, the open circuit voltage vs SoC

curve is used to estimate the SoC. In the Coulomb counting method a simple integration

of the battery current provides a measure of battery SoC. The shortcomings of voltage

and Coulomb counting methods can be overcome by Kalman filtering. Adaptive non-

linear observer based SoC estimation is presented in [7]. Different algorithms for SoC

estimation are reviewed in [8].

A comprehensive review of existing SoC estimation methods for electric vehicle

applications is presented in [5]. The ‘big cell’ concept, which considers multiple series

or parallel connected batteries as a big cell, is also reviewed in [5]. For accurate estima-

tion of SoC, a neural network-based approach is employed in [9] to adaptively adjust

the switching gain of a sliding-mode observer. This strategy also requires the parame-

ters of a Li-ion battery circuit model, which are identified through an online recursive

least squares approach. The online parameters identification and learning capability of

a neural network provides robustness to the sliding-mode observer against battery non-

linearities. The technique to improve the accuracy of SoC using an adaptive extended

Kalman filter is reported in [10]. Instead of using a conventional battery circuit model,

the authors in [10] split the battery model into two sub models, i.e. separate SoC and

RC voltage sub models.

As stated in [3], “Precise estimation of a battery SoC requires an accurate battery

model. Electro-chemical [11] and mathematical models [12] of a battery are complex

and can be computationally expensive. The battery model in [13] presents an equiv-

alent circuit model of a battery which provides real time voltage, current dynamics,

and all other essential dynamic characteristics. The battery model in [13] is utilized

in this work because this model captures the effect of variation of SoC on the battery

model parameters. Also as mentioned in [2], the model from [13] can incorporate ef-

fects of temperature, and number of charge-discharge cycles. Therefore, it is simple

enough for easy implementation in control oriented purposes, yet it is detailed enough

to capture essential dynamic characteristics. However, the method suggested in [13]

requires a lot of experimental effort to acquire battery model parameters.” Our earlier
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work [2] proposed an adaptive methodology for the parameters estimation of the model

suggested in [13], which reduces experimental effort compared to strategies available

in the literature.

A recently developed sensitivity-based group-wise Li-ion battery parameters es-

timation strategy is reported in [14]. The term sensitivity of a parameter quantifies the

significance of a parameter on the output of a Li-ion battery model. In [14], the pa-

rameters having similar sensitivities are identified and grouped together using sensitiv-

ity analysis and are then identified by using the Levenberg-Marquardt algorithm. The

author in [15] proposes a generic approach to estimate the Li-ion battery model pa-

rameters by utilizing Particle Swarm Optimization (PSO) strategy. The algorithm for

the Li-ion battery parameters estimation using a Butterworth filter is outlined in [16].

The estimation of SoC and temperature dependent parameters of a Li-ion battery by

Gauss-Newton and PSO techniques is studied in [17]. Battery model parameters are

obtained experimentally via discharge data interpolation in [18]. A multi-objective op-

timization strategy to estimate equivalent circuit model battery parameters is analyzed

in [19]. Non-linear least squares based battery parameters identification is reported in

[20]. Genetic algorithm (GA) based optimization is used in [21] for battery parameters

identification. Co-evolutionary particle swarm optimization PSO has been developed in

[22] for optimum battery model parameters estimation. In [22], each battery parameter

is optimized separately and the acquired optimized battery parameters are utilized in se-

quence to get the optimal solution for rest of the parameters. The PSO strategy is used

in [23] to estimate an electrochemical Li-ion battery model’s parameters. A study on

convergence and stability analysis of the PSO algorithm is reported in [24]. Extended

Levenberg-Marquart based optimization is used [25] to estimate Li-ion electrical circuit

model parameters.

An online estimation of internal series resistance of a Li-ion battery is utilized

as State-of-Health indicator for electric vehicle battery operation in [26]. A simple

dynamical model of Li-ion battery, based on voltage and current, is derived using a

black box identification method. Using this dynamical model, a 10 seconds battery

discharge test is performed for an online estimation of internal series resistance of a

Li-ion battery. Recently, dual unscented Kalman filter and H∞ Kalman filter based
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approaches are proposed in [27] and [28], respectively, to overcome the limitations

of Kalman Filter (KF) and Extended Kalman Filters (EKF) for accurate estimation of

battery SoC. The strategies presented in [27], and [28] simultaneously identify both the

battery model circuit elements and SoC. A fractional calculus theory-based intuitive and

highly accurate fractional-order equivalent circuit model of Li-ion battery is presented

in [29]. The fractional-order circuit model is capable of modeling many electrochemical

aspects of Li-ion battery which are typically ignored by integer-order RC equivalent

circuit model of Li-ion battery. The authors in [29] used a modified version of Particle

Swarm Optimization algorithm for accurate estimation of equivalent circuit elements

and validated their results on various operating conditions of Li-ion battery.

To reduce the complexity and computational cost for online identification of

equivalent circuit elements along with SoC co-estimation of Li-ion battery, the author

in [30] proposed a moving window based least squares method. The technique pre-

sented in [30] utilizes the piece-wise linear approximations of the open circuit voltage

curve. The authors in [31] attempt to identify the equivalent circuit elements of a Li-

ion battery model by means of voltage relaxation characteristics. Although the strategy

described in [31] requires several pulse discharge and pulse charge experiments, it ex-

tracts the equivalent circuit elements with good accuracy. Two extended Kalman filters

are combined, i.e., named as dual EKFs, in [32] for the simultaneous estimation of Li-

ion battery parameters and SoC. However, to overcome the issue of high computational

cost of dual EKFs, the concept of the dead zone is explained in [32]. The dead zone de-

fines the duration for no adaptive estimation of parameters and SoC while the terminal

voltage error stays within the user-designed error boundary.

1.2. Motivation

The strategies presented in the literature review have merits. However, the anal-

yses of shortcomings of these strategies motivated us to utilize the existing high-gain

universal adaptive stabilizer (UAS) based adaptive parameters estimation (APE) method

[2] to overcome the limitations of existing Li-ion battery parameters and SoC estimation

strategies. For example, the data-driven algorithms in [5] are used offline and require

intensive computation. Moreover, these algorithms may not ensure convergence with

16



inappropriate initial parameters selection. The ‘big cell’ realization in [5] requires bat-

tery pack voltage and current for SoC estimation and ignores unavoidable inconsistent

characteristics of batteries such as resistance, capacity, and voltage variation. The fast

convergence of SoC estimation error in [9] may compromise the accuracy of estimated

SoC. The method in [10] requires a prior knowledge of battery model parameters, for

onboard SoC estimation in electric vehicles. Because GA is based on heuristics, and

convergence for a GA based optimizer in [21] may take a very long time, and still may

converge to a local optimum. The results obtained in [22] are accurate but the process

is computationally time consuming. The combination of two or more strategies in [14],

[17] may produce accurate estimates of Li-ion battery parameters, but this may increase

computational time.

Most of the optimization based Li-ion battery parameters estimation approaches

are unguided, i.e. the search space, or search interval is selected randomly. The opti-

mization techniques in [15], [17], [22] and [23] may substantially prolong the time

required to obtain the solutions. The estimation method in [26] requires an accurate

knowledge of SoC and needs to be reiterated for different SoC and temperature val-

ues. Usually, model-based KF and EKF methods in [27] and [28], respectively, require

prior knowledge of battery parameters via some offline method, which is normally time-

consuming and may prone to error. The strategy in [29] requires precise knowledge of

open circuit voltage. Moreover, the optimization based strategy in [29] may require

high computational effort. In [30], the length of the moving window may affect the

overall performance of the system and the accuracy of the equivalent circuit elements

estimates. Some possible downsides of the strategy in [31] include offline identification

and, like other techniques described earlier, rely on accurate open circuit voltage mea-

surement. In addition, the accuracy of estimated parameters and open circuit voltage is

not analyzed in [32].

In contrast to the above mentioned techniques, the APE technique described

in [2] has low computational cost, captures dynamic characteristics of a battery, and

ensures convergence of battery parameters estimates, yet it works offline, requires ac-

curate and prior knowledge of open circuit voltage and battery parameters estimates.

Therefore, the aim of this is the modification of existing APE [2] method for simultane-
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ous real-time estimation of battery parameters, open circuit voltage, and battery series

resistance, and incorporation of optimization routines for accuracy enhancement of ex-

isting APE method, while simultaneously reducing the computational time required as

much as possible, compared to purely optimization based techniques.

1.3. Research Contributions

Following are the three primary contributions of this research work.

I. In the first part of this thesis, a two stage strategy for battery model parameters

estimation is developed. The APE process is the first stage of the proposed bat-

tery parameters estimation technique, this helps in narrowing the search space for

an optimizer i.e. the second stage of the proposed technique. This allows the

optimization technique to quickly converge as compared to initializing an opti-

mization routine with arbitrary guesses of initial conditions, and arbitrary search

intervals. Compared to parameters estimation done by using APE alone, the pro-

posed strategy minimizes the influence of initial guesses of parameters and their

upper, lower bounds. This portion of the work provides detailed simulation and

experimental results related to charging and discharging of batteries, and also

considers three different optimization routines following the adaptive estimation

process and provides a comprehensive analysis of battery parameters estimation

accuracy, and the computation time required by each approach. The proposed

two-stage methodology increases the accuracy of estimated battery model param-

eters, and battery terminal voltage estimation. It is also shown that the proposed

battery model parameters estimation methodology reduces the computation time

compared to using purely optimization based methods, and increases accuracy

compared to the purely adaptation based method presented in [2].

II. The second contribution of this thesis is the mathematical proof of UAS based

adaptive estimation strategy which estimates all equivalent circuit elements, in-

cluding open circuit voltage and series resistance, of a Li-ion battery model. This

mathematical proof is an extension of previous work provided in [2], where open

circuit voltage and series resistance parameters were found by the voltage relax-
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ation test and curve fitting, respectively. In contrast to [27, 32], the proposed

modified APE strategy does not require any prior knowledge of open circuit volt-

age. Furthermore, this work also provides some simulation results, performed on

a 4.1 V, 270 mAh Li-ion battery model, and comprehensive experimental vali-

dation on sixteen 22.2 V, 6.6 Ah Li-ion batteries to illustrate the accuracy of the

proposed modified APE approach.

III. The last contribution of this thesis includes parameters estimation of a 400 V, 6.6

Ah Li-ion battery bank via modified APE strategy. The 400 V, 6.6 Ah Li-ion

battery bank is developed by connecting sixteen 25 V, 6.6 Ah Li-ion batteries

in series. The offline verification of estimated parameters on a 400 V battery

bank allows us to implement the modified APE strategy for an induction motor

driven EV traction system. The EV traction system is controlled by indirect field-

orientation strategy and powered by a 400 V, 6.6 Ah Li-ion battery bank. The

real-time, accurate, and simultaneous estimation of all equivalent circuit elements

of a battery bank, including open circuit voltage and series resistance, in EV trac-

tion systems can be utilized for highly desired applications such as precise SoC

and state-of-health (SoH) estimation, fault diagnosis and protection, temperature

control, and power management.

1.4. Thesis Organization

The organization of this thesis is as follows. A two-stage UAS based optimiza-

tion strategy for Li-ion battery model parameters estimation is described in Chapter 2.

Chapter 3 proposes the modified APE strategy which estimates the open circuit volt-

age and series resistance along with the other circuit elements in a single adaptation

run. Rigorous and comprehensive validation of the modified APE strategy and its real-

time implementation are presented in Chapter 4. Concluding remarks and some future

possibilities of research are given in Chapter 5.
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Chapter 2. Universal Adaptive Stabilizer Based Optimization for Li-ion Battery
Model Parameters Estimation

In this chapter, a two-stage strategy based on adaptation and optimization is

developed for parameters estimation of a Li-ion battery. The aim of this strategy is to

enhance the accuracy of estimated Li-ion battery parameters while consuming relatively

less computational effort. The chapter begins with the background section that briefly

reviews the formulation of APE strategy followed by the details of PSO algorithm.

Section 2.2 describes UAS based optimization methodology for parameters estimation

of a Li-ion battery. A comprehensive comparison of simulation and experimental results

is provided in sections 2.3 and 2.4, respectively.

2.1. Background

This work utilizes Chen and Mora’s equivalent circuit model [13] of the Li-ion

battery. Subsection 2.1.1 presents Chen and Mora’s equivalent circuit model of a Li-ion

battery, which has been verified by rigorous experimentation in [13]. Subsection 2.1.2

presents the UAS based APE technique [2] which is used to obtain estimated values of

the Chen and Mora’s battery model parameters. Finally, subsection 2.1.3 presents the

optimization techniques [33] that are employed to improve the accuracy of the battery

model parameters estimated by UAS based APE.

2.1.1. Equivalent circuit model of a Li-ion battery. The equivalent circuit

model [13] of a Li-ion battery is shown in Figure 2.1. This equivalent circuit model

is easy to simulate [2], [34], [35]. The equivalent circuit parameters of this model are

Figure 2.1: Equivalent circuit model used for Li-ion battery.
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non-linear functions of battery SoC. In this model, transient response is captured by

the RC network as shown in Figure 2.1. A voltage-controlled voltage source models

the dependence of the open circuit voltage (OCV) on the battery SoC. The state space

equations for Figure 2.1 are described by (1)-(4).

ẋ1(t) =−
1

Cc
i(t), Cc = 3600C f1 f2 f3 (1)

ẋ2(t) =−
x2(t)

Rts(x1(t))Cts(x1(t))
+

i(t)
Cts(x1(t))

(2)

ẋ3(t) =−
x3(t)

Rtl(x1(t))Ctl(x1(t))
+

i(t)
Ctl(x1(t))

(3)

y(t) = Eo(x1(t))− x2(t)− x3(t)− i(t)Rs(x1(t)) (4)

State x1 ∈ [0,1] denotes battery SoC, x2 and x3 represent voltage across Rts‖Cts

and Rtl‖Ctl respectively. Factors f1, f2 and f3 account for temperature effects, charge-

discharge cycle and self-discharge respectively which, for simplicity, are taken as 1 in

this work. Cc is the Ampere-hour (Ah) capacity of a battery and y(t) denotes battery

terminal voltage. The SoC dependent battery equivalent circuit elements of Figure 2.1

are presented by (5)-(10).

Eo(x1(t)) =−p1e−p2x1(t)+ p3 + p4x1(t)− p5x2
1(t)+ p6x3

1(t) (5)

Rts(x1(t)) = p7e−p8x1(t)+ p9 (6)

Rtl(x1(t)) = p10e−p11x1(t)+ p12 (7)

Cts(x1(t)) =−p13e−p14x1(t)+ p15 (8)

Ctl(x1(t)) =−p16e−p17x1(t)+ p18 (9)

Rs(x1(t)) = p19e−p20x1(t)+ p21 (10)

Voltage relaxation tests (see [2]) are required to obtain the OCV curve for a

battery. After this, curve fitting is used to obtain the parameters p1, . . . , p6 in (5).

The parameters of (5), for a 4V, 275mAh Li-ion battery obtained via curve fitting in

[2] are p1 = 1.031, p2 = 35, p3 = 3.685, p4 = 0.2156, p5 = 0.1178, p6 = 0.3201. The
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remaining Li-ion battery model parameters described by (6)-(9) are obtained by the

APE technique (see [2]). After estimating the battery parameters p7, . . . , p18 using APE

method, the battery series resistance parameters p19, p20 and p21 can be obtained from

the Rs(x1(t)) vs SoC curve using curve fitting as described in [2].

2.1.2. UAS based adaptive parameter estimation. The Mittag-Leffler (ML)

function [36] is described by (11). Where Γ(z+1)= zΓ(z),z> 0 is the standard Gamma

function. UAS strategies have employed the ML function as a Nussbaum switching

function [37] because fast error convergence is observed. A Nussbaum function is a

piecewise right continuous function N(·) : [k
′
,∞)→ R, k0 > k

′
, if it satisfies (12) and

(13), [38]. The ML function is implemented as a Nussbaum switching function in

MATLAB in [39] and an example is illustrated in Figure 2.2.

Eα(z) =
∞

∑
k=0

zk

Γ(kα +1)
(11)

sup
k>k0

1
k− k0

k∫
k0

N(τ)dτ =+∞ (12)

inf
k>k0

1
k− k0

k∫
k0

N(τ)dτ =−∞ (13)
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Figure 2.2: Mittag-Leffler function Eα(−λ tα) as a Nussbaum switching function for
λ = 1 and α = 2.5.
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The ML function Eα(−λ tα) is a Nussbaum function if α ∈ (2,3] and λ > 0

[40]. The speed, at which the Nussbaum function increases, controls how rapidly the

error between actual and estimated terminal voltage converges. In this work, we select

λ = 1 and α = 2.5. The circuit elements, described by (14)-(17), are estimated via

the APE method using (19) which estimates the parameters p̂7, . . . , p̂18. Where p̂n > 0

for n ∈ {7,8, . . . ,18}. The adaptive equation (19) requires the steady-state upper, lower

bounds and their respective confidence levels for each parameter.

R̂ts(x̂1(t)) = p̂7e−p̂8x̂1(t)+ p̂9 (14)

R̂tl(x̂1(t)) = p̂10e−p̂11x̂1(t)+ p̂12 (15)

Ĉts(x̂1(t)) =−p̂13e−p̂14x̂1(t)+ p̂15 (16)

Ĉtl(x̂1(t)) =−p̂16e−p̂17x̂1(t)+ p̂18 (17)

R̂s(x̂1(t)) = p̂19e−p̂20x̂1(t)+ p̂21 (18)

˙̂pn(t) = e2(t)+λxn(pnu− p̂n(t))+λyn(pnl− p̂n(t)) (19)

The upper and lower bounds of the steady-state value of each parameter in (19)

are pnu and pnl respectively; and λxn, λyn represent the confidence levels in upper and

lower bounds respectively. The upper and lower bounds represent limits on the final

steady-state value of the parameters p̂n. The state space model given by (20)-(23), is

a high-gain adaptive estimator used in the APE method. Where x̂1 is the SoC, and is

the same as x1, x̂2 and x̂3 are the estimates of x2 and x3, and ŷ is the estimated battery

terminal voltage.

˙̂x1(t) =−
1

Cc
i(t) (20)

˙̂x2(t) =−
x̂2(t)

R̂ts(x̂1(t))Ĉts(x̂1(t))
+ u(t), x̂2(t)> 0 (21)

˙̂x3(t) =−
x̂3(t)

R̂tl(x̂1(t))Ĉtl(x̂1(t))
+ u(t), x̂3(t)> 0 (22)

ŷ(t) = Êo(x̂1(t))− x̂2(t)− x̂3(t) (23)

The term u(t) required by the observer equations (21)-(22) is calculated using

(24)-(27). The error e(t) between actual voltage y(t), and estimated terminal voltage
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ŷ(t) is given by (24). The error e(t) is used in (24) to adjust the growth rate of the

adaptive gain i.e. k(t). The value of λ and α in (26) are taken as 1 and 2.5 respectively.

e(t) = y(t)− ŷ(t) (24)

k̇(t) = e2(t), k(t0) = k0 (25)

N(k(t)) = Eα(−λk(t)α) (26)

u(t) =−N(k(t))e(t) (27)

The selection of initial guesses, upper, lower bounds with their respective con-

fidence levels for each parameter according to the conditions described by (28)-(33)

from [2] ensure the convergence of terminal voltage estimation error e(t) to zero. The

APE algorithm is shown in Figure 2.3. For details related to the execution of the APE

process, readers are requested to see [2].

p̂13(t0)> p̂15(t0)> 0, (28)

λx15 +λy15 > λx13 +λy13, (29)

λx15 p15u +λy15 p15l < λx13 p13u +λy13 p13l , (30)

p̂16(t0)> p̂18(t0)> 0, (31)

λx18 +λy18 > λx16 +λy16, (32)

λx18 p18u +λy18 p18l < λx16 p16u +λy16 p16l . (33)

Figure 2.3: Adaptive parameter estimation methodology.
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A very small positive discharge current needs to be maintained during the course

of the APE process, which leads to the results as shown in (34)-(35), i.e. the products

of estimated and actual battery equivalent circuit elements are equal [2].

R̂ts(x̂1(t))Ĉts(x̂1(t)) = Rts(x1(t))Cts(x1(t)) (34)

R̂tl(x̂1(t))Ĉtl(x̂1(t)) = Rtl(x1(t))Ctl(x1(t)) (35)

2.1.3. Particle swarm optimization. There are several ways to solve an op-

timization problem. This work uses three optimization techniques, i.e. fmincon from

MATLAB, PSO, Hybrid PSO, either alone or in combination with adaptive parameters

estimation. These optimization techniques are used at the second stage of the pro-

posed battery parameters estimation methodology. The optimization function fmincon

is a standard and widely used function readily available in the MATLAB optimization

toolbox [41]. The description of Particle Swarm Optimization (PSO) is included in

this work because it produces accurate results for our work. While Hybrid PSO is the

combination of fmincon and PSO. Next we present the basics of PSO used in this work.

Figure 2.4 shows the flowchart of PSO algorithm for optimum battery param-

eters estimation. Whereas, Figure 2.5 illustrates the proposed APE followed by opti-

mization strategy for accurate Li-ion battery model parameters estimation. The details

of Figure 2.5 are provided in next section. The key feature of PSO is that it is a non-

gradient method which utilizes particles. For the work in this paper, the size of a particle

is 1×n where n = 15, i.e. each element in the 1×n vector (forming a particle), repre-

sents one of the estimated Li-ion battery model parameters p̂7, . . . , p̂21. The number of

elements within a particle are called the decision variables, so for our 1× n vector of

battery parameters a decision variable is a particular parameter i.e. p̂n, n ∈ {7, · · · ,21}.

The upper and lower bounds for each decision variable (as stated in line-18 of Algo-

rithm 1), swarm size S (i.e. number of particles), where S ∈ Z, S > 0, and maximum

number of iterations R also needs to be specified. In PSO terminology, a vector contain-

ing decision variables of the kth particle, where k ∈ {1, · · · ,S}, is called the particle’s

position dk(t) at time t. A vector containing the values of the change in the values
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Figure 2.4: PSO algorithm for optimum battery parameters estimation.

of the decision variables of this particle per time step, is called the particle’s velocity

vk(t) at time t. The optimization process begins with the initialization of a particle’s

position, i.e. each decision variable in a particle is randomly assigned a number within

the range specified by its lower bound and upper bound. Let C(dk(t)) represents the

cost function of the optimization problem, i.e. C(dk(t)) needs to be minimized. In this

work, C(dk(t)) = |e(t)|, and e(t) is given by (24). For all k particles, the cost function

C(dk(t)) is evaluated at each time step. For all k ∈ {1, · · · ,S}, let dkl(t
′) be a particle

having minimum cost C(dk(t ′)) for t ′ ∈ [t0, t],kl ∈ {1, · · · ,S}. Further let dk∗g(t
∗) be a

particle dkl(t
′) with minimum cost C(dkl(t

′)) over all kl , t∗ ∈ [t0, t]. The particle dkl(t
′)

is said to have local best position in time interval [t0, t], and particle dk∗g(t
∗) is said to

have global best position in interval [t0, t] and across all the swarms.

The velocity of each particle is set to zero at initialization, i.e. vk(t0) = 0. Fur-

ther, C(dkl(t0)) and C(dk∗g(t0)) are assigned a very high value. The local best position

of each particle at initial time is assigned as dkl(t0) = dk(t0). After the initialization, the

new velocity and new position of each particle is found by using (36) and (37). The

vector r1 and r2 have size 1× n and each element of vector r1 and r2 is a uniformly

distributed random number within the range (0,1). Here m represents particle’s inertia,

m ∈ (0,1], and a smaller value of m usually provides less oscillations around a value

at which a particle’s decision variable converges. The weights assigned to local and
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global best positions are s1 and s2 respectively. The ◦ operator in (36) is the Hadamard

product. It is used for element wise multiplication of two vectors having the same sizes,

i.e. the size of each vector is 1× n. The resultant vector, obtained after element wise

multiplication of two same sized vectors, has the size of 1×n. Thus, the element wise

multiplication of vectors in (36) gives the vector vk(t + 1) of size 1× n. The velocity

and position of the kth particle are updated continuously in a loop using (36) and (37)

until C(dk∗g(t
∗)) falls below a desired small positive value, say ε , or the number of itera-

tions j exceeds the maximum value R, as shown in Figure 2.4. Details related to the use

of the PSO algorithm for estimating Li-ion battery parameters are presented in Section

2.2.

vk(t +∆t) = mvk(t)+ s1r1 ◦ (dkl(t
′)−dk(t))+ s2r2 ◦ (dk∗g(t

∗)−dk(t)) (36)

dk(t +∆t) = dk(t)+ vk(t +∆t) (37)

In contrast to PSO, there are also gradient based optimization techniques, e.g.

MATLAB’s fmincon function provides an implementation of such gradient based opti-

mization techniques. The combination of PSO and fmincon together is known as Hybrid

PSO. In Hybrid PSO, the fmincon algorithm is executed on the output of the PSO al-

gorithm, after the PSO algorithm terminates, to further refine the output produced by

PSO. In this work we compare the results of applying the fmincon, PSO, and Hybrid

PSO strategies as a second stage of the proposed UAS based optimized battery pa-

rameters estimation methodology. The proposed methodology is explained in the next

section.

2.2. UAS based Optimized Li-ion Battery Model Parameters Estimation Method

This section explains the proposed adaptation based optimized strategy to es-

timate Li-ion battery model parameters. The left half of Figure 2.5 shows the APE

process. The formulation of the adaptive parameter estimation process is available in

section 2.1, and details are available in [2]. The UAS based optimization process and

Algorithm 1 can be briefly described as follows. The adaptive parameters estimation

process requires the OCV curve, which provides the value of the estimated OCV, i.e.,
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Figure 2.5: Architecture of APE followed by optimization methodology.

Ê0(x̂1(t)). This, along with the measured battery current i(t), and the output u(t) of the

universal adaptive stabilizer, is used by the APE block to calculate the estimated battery

terminal voltage ŷ(t). The difference between the measured battery terminal voltage

y(t), and ŷ(t) gives the terminal voltage estimation error e(t). This error e(t) is used to

adaptively adjust values of the Li-ion battery model parameters. This process outputs

parameters p̂7, · · · , p̂18, which along with some further curve fitting based operations

as shown in [2], produces parameters p̂19, · · · , p̂21. The values of the battery terminal

voltage y(t), the battery current i(t) at each time step of execution, and the values of

estimated parameters p̂7, · · · , p̂21 are stored in a data storage unit.

In the right half of Figure 2.5, the dotted box represents the optimization process

of the battery parameters obtained via UAS based estimation. The discrete data points

i.e. the voltage and current data points stored in the data storage unit, are extracted by

the data organizer block and forwarded to the sample and hold unit. The data orga-

nizer block also assigns the upper and lower bounds for battery parameters p̂7, · · · , p̂21

required by optimization routine. The sample and hold block simply reads the termi-

nal voltage and current values one by one, and holds them until one iteration of the

optimization routine is completed. The optimization routine block also requires some

constraints e.g. the number of iterations, number of swarms, upper and lower bounds

of decision variable values, and desired minimum value for the cost function. The

mint∈[t0,T ],k∈{1,··· ,S}C(xk∗g(t
∗)), where t∗ = [t0,T ], k∗g ∈ {1, · · · ,S} optimization is then

performed. Here T is the time at which battery SoC is 7%, C(xk(t)) = |e(t)|, and e(t)
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is given by (24). When the error |e(t)| from cost function reaches a desired minimum

value ε , the battery parameters p∗7, · · · , p∗21 are recorded in arrays B7, · · · ,B21. When

Algorithm 1 Adaptation, and optimization based Li-ion battery parameters estimation
algorithm.
Requirements: Current i(t) and voltage y(t) for battery discharge through a constant
load resistance, where t = [t0, tend] and tend is the time at which battery SoC is 7%.
Data: Initial values p̂n(0) > 0, n ∈ {7, · · · ,18}, upper bounds pnu, lower bounds pnl ,
and their respective confidence levels λxn and λyn for each parameters p7, . . . , p18. Bat-
tery capacity Cc (Ah) value. Maximum number of optimization iterations R, number of
swarms S for PSO, and a small positive constant ε . Upper and lower limits of search
space interval for optimization, i.e. p̂7±δ7, . . . , p̂21±δ21, where δn ∈R, n∈{7, · · · ,21}
and p̂7, . . . , p̂21 obtained from APE.
Initial conditions x̂1(t0) = 1, x̂2(t0) = x̂3(t0) = 0, ŷ(t0) = y(t0)V , and SoC(t0) = 1. Ini-
tialize the iterator variables h = 1, j = 1, and z = 1.
Output: Optimized estimated battery model parameters p̃7, . . . , p̃21.

1: for t = t0 : tstep : tend do . Adaptive parameters estimation of Li-ion battery.
2: Read discharge current i(t) and voltage y(t).
3: Update the error using (24).
4: Find the estimated terminal voltage error using (24), and calculate the SoC(t)

using equation (1).
5: Get estimated parameters from (19).
6: Find the equivalent circuit elements from (14) to (17).
7: Evaluate state estimates from (21) and (22), and find estimated terminal voltage

using (23).
8: if (|e(t)|< ε) then
9: Store the estimates of Li-ion battery parameters in arrays, A7[h] ←

p̂7(t), · · · ,A18[h]← p̂18(t), and
10: h← (h+1).
11: else
12: Continue loop execution.
13: end if
14: end for
15: Find the mean value of all individual arrays A7, · · · ,A18 to get the estimates of Li-

ion battery parameters p̂7, . . . , p̂18.
16: Estimate p̂19, p̂20 and p̂21 parameters from R̂s(x̂1(t)) vs SoC curve using curve

fitting as in [2].
17: Store all the battery parameters p̂7, . . . , p̂21, voltage y(t), current i(t), and SoC(t)

profiles in the data storage unit.
18: Organize the data for optimization by setting upper and lower limits of search

space interval for each parameter, i.e. p̂7 ± δ7, . . . , p̂21 ± δ21, where δn ∈ R,
n ∈ {7, · · · ,21}, and p̂7, . . . , p̂21 obtained from APE.

19: Set the constraints, such as ε , S, and R, for optimization process.
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20: while SoC(z)> 7% do . Optimization of Li-ion battery model parameters.
21: Read constant load discharge current i(z), voltage y(z) and SoC(z) at zth sample.
22: Run an optimization routine (fmincon, PSO or Hybrid PSO) to identify the best

value of battery parameters in the preset search space interval, i.e. get battery pa-
rameter values that minimize |e(z)|.
. The optimization process described in Figure 2.4, along with (36) and (37), is
used for APE with PSO (T3-II) or APE with Hybrid PSO (T3-III) techniques.

23: if (|e(z)|< ε) or ( j > R) then
24: Store the estimates of Li-ion battery parameters in arrays, B7[z] ←

p∗7( j), · · · ,B21[z]← p∗21( j) and
25: j← 1 and z← (z+1).
26: else
27: Continue j← ( j+1).

. Increment optimization algorithm iteration number.
28: end if
29: end while
30: Find the mean value of all individual arrays B7, · · · ,B21 to get the optimized esti-

mates of Li-ion battery parameters p̃7, . . . , p̃21.

either the number of iterations or the minimum error criteria in estimated terminal volt-

age is satisfied, the iterator variable j is incremented to optimize the battery parameters

at the next sample of voltage and current data point. The average of recorded battery

parameters in B7, · · · ,B21 arrays, after the optimization process, provides the optimized

estimates of Li-ion battery parameters and they are named as p̃7, · · · , p̃21. The imple-

mentation details of the proposed technique, whose architecture is given in Fig 2.5, has

been described in the Algorithm 1. It is also worth noting that T is selected as the

time at which battery SoC is 7% [2] because it enables capturing battery behavior over

a sufficiently long range of battery cycle life, while making sure that batteries are not

discharged to dangerously low operating SoC.

We select the sampling period of 0.01 seconds for battery voltage and current

in this work, which is sufficient enough to capture the nonlinear behavior of discharge

voltage especially when SoC is between seven and twenty percent. The factors influ-

encing the computational time and accuracy of Algorithm 1 are as follows: 1. Sampling

period of battery voltage and current, 2. Maximum number of optimization iterations,

3. Swarm size in optimization stage, 4. Search space interval for each decision vari-

able in optimization stage, 5. Desired minimum value of cost function in optimization
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stage. The selection of these factors requires a trade-off between more accurate esti-

mates of Li-ion battery parameters and overall less computational time of Algorithm 1.

Furthermore, the accuracy of Algorithm 1 is more sensitive to factor 4 and 5, and the

computational time depends mainly on factor 1, 2, and 3.

Our two-stage adaptive-optimized strategy focuses on optimum estimation of

Li-ion battery parameters while requiring reduced number of iterations, number of

swarms, and search space interval needed by the optimization technique. In next sec-

tion, we present a comprehensive comparison of estimates of Li-ion battery parameters

and overall computational time between APE technique, our proposed algorithm, and

optimization routine.

2.3. Computer Simulations for Battery Model Parameters Estimation

The parameters of a 4.1 V, 850 mAh polymer Li-ion battery are obtained by

Chen and Mora in [13]. We used the same parameters as a benchmark to perform the

computer simulations in this work. However, a Li-ion battery of 275 mAh capacity is

employed to reduce the simulation time to almost one-third of 850 mAh Li-ion battery,

which Chen and Mora utilize in their experiments. Three different techniques are used

to estimate the battery parameters p̂7, · · · , p̂21. In this work, these techniques will be

termed as Technique 1 (T1), Technique 2 (T2), and Technique 3 (T3), and they are

defined as follows.

• Technique 1 (T1): This technique utilizes one of the three optimization routines

i.e. fmincon (T1-I), PSO (T1-II), and Hybrid PSO (T1-III). These optimization

routines have a random search space interval for each parameter and number of

iterations R = 50. A swarm size of S = 50 is set for PSO (T1-II) and Hybrid PSO

(T1-III).

• Technique 2 (T2): This technique [2] uses Universal Adaptive Stabilizer (UAS)

based Adaptive Parameters Estimation (APE) alone to acquire the set of Li-ion

battery model parameters.

• Technique 3 (T3): This is our newly proposed technique which consists of a two-

stage process. The first stage utilizes UAS based APE to obtain the initial values

of the parameters. The second stage utilizes one of the three optimization routines
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i.e. fmincon, PSO, and Hybrid PSO. Thus, Technique 3 employs one of the three

two-stage processes, i.e. APE with fmincon (T3-I), APE with PSO (T3-II), and

APE with Hybrid PSO (T3-III). Complete details for the implementation of the

proposed technique are given in the Algorithm 1. The search space interval, as

defined in Algorithm 1, for each parameter is p̂7± δ7, . . . , p̂21± δ21. The values

of parameters p̂7, . . . , p̂21 are obtained from APE (T2) while the values of δn is

set at 10 percent of the value of a parameter estimated by the APE process, i.e.

δn = 0.1p̂n and n ∈ {7, · · · ,21}. The number of iterations for all optimization

routines are R = 10 and swarm sizes of S = 10 are selected for PSO and Hybrid

PSO. Please note that the number of iterations and swarm size are deliberately set

to five times lesser than T1 to illustrate the effectiveness of the proposed technique

T3.

The parameters estimated using techniques T1, T2, and T3 are first assessed by

comparing the estimated battery parameter values output by each of them, with the pa-

rameter values that were experimentally obtained by Chen and Mora. The simulation

results of estimated parameters using techniques T1, T2, and T3, and the estimation

error results are shown in Table 2.1 and Table 2.2, respectively. The computational time

needed by each technique is also noted, and compared. Secondly, the values of battery

circuit elements Rts,Rtl,Cts,Ctl, and Rs are calculated using the parameters p̂7, . . . , p̂21.

The values of these battery circuit elements are compared with the ones that are pro-

Table 2.1: Simulation results of a 4.1 V, 275 mAh Li-ion battery model parameters.

Technique 1: S = 50 and R = 50 Technique 2 Technique 3: S = 10 and R = 10

Parameters Chen & Mora’s model
values

(T1-I)
fmincon

(T1-II)
PSO

(T1-III)
Hybrid PSO

(T2)
APE

(T3-I)
APE with
fmincon

(T3-II)
APE with

PSO

(T3-III)
APE with

Hybrid PSO

p̂7 0.3208 9.5897 9.8156 9.7002 0.5555 0.4671 0.4269 0.4518
p̂8 29.14 49.8232 52.6729 50.8992 29.9996 29.7794 28.9964 29.2309
p̂9 0.0467 0.4188 0.4843 0.503 0.0552 0.0508 0.0476 0.0481
p̂10 6.603 49.6475 49.3597 49.0668 6.2806 5.1921 5.2384 5.5205
p̂11 155.2 399.9443 422.7023 421.5437 149.999 149.8901 150.0354 154.4826
p̂12 0.0498 0.3937 0.4592 0.5064 0.0577 0.0516 0.05 0.0498
p̂13 752.9 999.9688 1020.6 1016.1 760.867 759.2227 711.8321 724.5906
p̂14 13.51 49.2998 43.0861 45.9953 10.6713 10.28 11.5074 11.715
p̂15 703.6 2000 1816.6 1937.2 684.614 684.5661 685.6799 700.3178
p̂16 6056 5000 5034.2 4994.2 5999.7 5999.6 6002.2 6001.6
p̂17 27.12 199.7554 241.1454 243.94 27.5014 26.5309 27.4755 27.3444
p̂18 4475 4000 3934.2 3907 3666.6 3666.6 3898 4089.5
p̂19 0.1562 2.4398 4.756 4.1083 0.4963 0.2482 0.217 0.2731
p̂20 24.37 199.6888 330.0194 327.6911 33.07 31.6387 26.9885 27.362
p̂21 0.0745 0.1027 0.2168 0.3136 0.06546 0.0526 0.0681 0.0673
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Table 2.2: Absolute average percentage error in estimated parameters.

Technique 1: S = 50 and R = 50 Technique 2 Technique 3: S = 10 and R = 10

Parameters (T1-I)
fmincon

(T1-II)
PSO

(T1-III)
Hybrid PSO

(T2)
APE

(T3-I)
APE with
fmincon

(T3-II)
APE with

PSO

(T3-III)
APE with

Hybrid PSO

p̂7 2889.31 2959.73 2923.75 73.16 45.60 33.07 40.84
p̂8 70.98 80.76 74.67 2.95 2.19 0.49 0.31
p̂9 796.98 937.27 977.32 18.23 8.80 1.95 3.02
p̂10 651.89 647.53 643.10 4.88 21.37 20.67 16.39
p̂11 157.70 172.36 171.61 3.35 3.42 3.33 0.46
p̂12 689.93 821.35 916.05 15.77 3.53 0.32 0.08
p̂13 32.82 35.56 34.96 1.06 0.84 5.45 3.76
p̂14 264.91 218.92 240.45 21.01 23.91 14.82 13.29
p̂15 184.25 158.19 175.33 2.70 2.71 2.55 0.47
p̂16 17.44 16.87 17.53 0.93 0.93 0.89 0.90
p̂17 636.56 789.18 799.48 1.41 2.17 1.31 0.83
p̂18 10.61 12.08 12.69 18.06 18.06 12.89 8.61
p̂19 1461.97 2944.81 2530.15 217.73 58.90 38.92 74.84
p̂20 719.40 1254.20 1244.65 35.70 29.83 10.74 12.28
p̂21 37.93 191.16 321.17 12.09 29.36 8.54 9.62

vided by Chen and Mora. Finally, the accuracy of the estimated parameters is evaluated

by comparing the estimated battery terminal voltage using the above estimated battery

parameters, with the battery terminal voltage given by Chen and Mora.

2.3.1. Parameters estimation accuracy comparison. The values of battery

parameters p̂7, . . . , p̂21 estimated by using three techniques, T1, T2, and T3 are given in

Table 2.1. Whereas, Table 2.2 shows the estimation error of each parameter with respect

to the benchmark parameters obtained from Chen and Mora’s work [13]. The results in

Table 2.1 and Table 2.2 show that the battery parameters obtained using the proposed

two-stage parameters estimation methodology (T3) are more accurate compared to the

parameters that are obtained either by using the optimization technique (T1) alone or

by using the APE (T2) alone.

The battery parameters obtained using APE with fmincon (T3-I) are more accu-

rate as compared to the ones that are obtained by using optimization techniques (T1)

alone and are somewhat comparable with the ones that are obtained by using APE (T2)

alone. However, the parameters obtained by the proposed technique T3-II and T3-III

i.e. APE in combination with PSO and Hybrid PSO respectively are more accurate

and have much lesser error with reference to the Chen and Mora’s benchmark param-
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eters values. In purely optimization based technique (T1), the number of iterations are

R = 50 and the swarm size of S = 50 are selected. However, the parameters estimation

error in Table 2.2 suggests that it requires a bigger population of particles and number

of iterations to give reasonable estimates of battery model parameters.

Table 2.1 and 2.2 show that the parameters estimated by the optimization tech-

nique (T1) alone have a larger error. Therefore, the following discussion will only focus

on APE (T2) and our proposed technique (T3). Table 2.1 shows a good match between

the parameters obtained by the proposed technique (T3-II and T3-III), and the Chen and

Mora’s parameters values. We further evaluate the parameters estimation accuracy by

calculating the battery equivalent circuit elements and estimating the battery terminal

voltage. The equivalent circuit element values and estimated battery terminal voltage

are compared with the ones given by Chen and Mora.

We also record the average simulation time (over 10 simulations of each tech-

nique), required by the three proposed techniques, i.e. T3-I, T3-II, and T3-III. These

results are shown in Figure 2.6. It can be seen from Figure 2.6 that APE with PSO

(T3-II), and APE with Hybrid PSO (T3-III) which give the best estimation of battery

parameters have relatively larger time consumption when compared to APE (T2), APE

with fmincon (T3-I), and the fmincon optimization technique (T1-I). However, the time

consumption of APE with PSO (T3-II) and APE with Hybrid PSO (T3-III) is much less

than the PSO (T1-II) and Hybrid PSO optimization (T1-III) techniques.

Figure 2.6: Time consumption comparison of parameters estimation strategies.
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Since the accuracy of the estimated parameters using optimization techniques

alone is very poor. Therefore, there will be no further assessment of optimization based

technique (T1). The rest of the simulation and implementation work will focus on

Technique 2 and Technique 3.

2.3.2. Battery circuit elements (Rts,Rtl,Cts,Ctl,Rs) estimation comparison.

In this section, the battery is subjected to 0.5 amperes constant resistive load and pa-

rameters p̂7, . . . , p̂21 are estimated during the simulation. These parameters are then

used to calculate the battery circuit elements Rts,Rtl,Cts,Ctl, and Rs. The accuracy of

the circuit elements is evaluated by comparing the error between the estimated circuit

elements and reference values of Chen and Mora’s circuit elements. The error in the

estimated circuit elements, using the APE technique (T2) alone and the proposed tech-

niques T3-I, T3-II, and T3-III, is shown in Figure 2.7.

The estimation error percentage, during the course of simulation, in each circuit

element is obtained by subtracting the Chen and Mora’s circuit element value at a par-

ticular time instant, from the ones that are obtained either via technique T2 or T3 at the

same time instant, and then dividing by the Chen and Mora’s circuit element value at

that instant. The absolute value of this estimation error in circuit elements are recorded

during the simulation and the mean of this estimation error array gives the average per-

centage error in circuit elements estimation. Overall Figure 2.7 shows that APE with

PSO (T3-II) and APE with Hybrid PSO (T3-III) have lesser circuit elements estimation

error compared to APE alone (T2) and APE with fmincon (T3-I) technique.

Figure 2.7: Circuit elements error analysis for technique 2 (T2) and technique 3 (T3).

35



2.3.3. Battery terminal voltage estimation comparison. The battery termi-

nal voltage is estimated using four different load profiles with irregular discharging

intervals. These load profiles are given in Table 2.3. The battery current in these load

profiles varies from 0.5 amperes to 6 amperes while the total simulation time period

changes from 150 seconds to 25 seconds as shown in Table 2.3. For all the four load

profiles, the battery is discharged until the SoC reaches 7%. The results of battery ter-

minal voltage estimation and their respective estimation error for the designed four load

profiles are illustrated in Figure 2.8a to Figure 2.8d.

The voltage estimated by using Chen and Mora’s parameters values, is termed

as actual voltage in Figure 2.8. The voltage estimation error is obtained by subtracting

the voltage estimated by Technique 2 or 3 from Chen and Mora’s voltage. The terminal

voltage estimation error is reduced using the battery parameters obtained from APE

(a) Terminal voltage estimation and error calcu-
lation for load profile 1.

(b) Terminal voltage estimation and error calcu-
lation for load profile 2.

(c) Terminal voltage estimation and error calcu-
lation for load profile 3.

(d) Terminal voltage estimation and error calcu-
lation for load profile 4.

Figure 2.8: Terminal voltage estimation and error comparison among Chen and Mora,
technique 2 (T2) and technique 3 (T3) for four load profiles.
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Table 2.3: Battery discharging load profiles.

Load
profiles

Magnitude
A

Time period
seconds

OFF time
seconds

ON time
seconds

Load profile 1 0.5 150 52.5 97.5
Load profile 2 2 100 30 70
Load profile 3 4 120 24 96
Load profile 4 6 25 12.5 12.5

with PSO (T3-II) and APE with Hybrid PSO (T3-III), especially in the relaxation period

when the battery is not discharging and when SoC becomes less than 10%.

Under the discharging current profiles defined in Table 2.3, the ∑
T
t=t0 e2(t) and

average of absolute percentage error of terminal voltages, estimated using techniques

T2 and T3, are also highlighted in Figure 2.9 and Figure 2.10 respectively. The time

duration for the terminal voltage error analysis is t = [t0,T ], where T is the time at

which the battery SoC approaches to 7%. The overall results in these figures for four

designed discharging load profiles show that the ∑
T
t=t0 e2(t) and average of absolute

terminal voltage error for APE (T2) and APE with fmincon (T3-I) are larger than APE

with PSO (T3-II) and APE with Hybrid PSO (T3-III).

The only anomaly in these computer simulations is that APE with PSO (T3-II)

has higher ∑
T
t=t0 e2(t) when the discharging load profile 1 is used, i.e. the battery is

discharged with a low current and larger time period. This anomaly will be further

evaluated in our experimental investigation.

Figure 2.9: ∑
T
t=t0 e2(t) analysis for technique 2 (T2) and technique 3 (T3) for four load

profiles.
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Figure 2.10: Average of absolute terminal voltage error for technique 2 (T2) and tech-
nique 3 (T3) for four load profiles.

Our simulation results for parameters estimation, battery circuit elements calcu-

lation and battery terminal voltage estimation show that proposed two-stage methodol-

ogy consisting of APE with PSO (T3-II) and APE with Hybrid PSO (T3-III) perform

better than the purely optimization based techniques (T1), APE (T2) and APE with

fmincon (T3-I) techniques. Moreover, the proposed APE with PSO (T3-II), and APE

with Hybrid PSO (T3-III) techniques need less computation time compared to purely

optimization based techniques (T1-II), and (T1-III) to estimate battery model parame-

ters more accurately.

2.4. Experimental Validations of The Proposed Technique

The simulation results showed very poor accuracy of the estimated parameters

p̂7, . . . , p̂21 when using purely optimization based technique (T1). Therefore, only Tech-

nique 2 and our proposed Technique 3 will be experimentally investigated for the ac-

curacy assessment of the estimated parameters. The experimental setup designed for

this work is shown in Figure 2.11. This setup similar to [2] includes a Thunder-Power

22.2 V, 6.6 Ah Lithium-Polymer battery (T P6600−6SP+25), different type of loads

for battery discharging, voltage and current sensors for the battery voltage and current

measurements. A dSPACE 1103 board is used for experimentation and data acquisition.

The sampling period of 0.01 seconds is selected to measure the voltage and current of

Lithium-Polymer battery.

The voltage relaxation test is performed to get the OCV curve as a function

of battery SoC. Curve fitting, as mentioned in the background section (II.A), is used
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Figure 2.11: Experimental setup.

to get the OCV parameters p̂1, . . . , p̂6 of equation (5). The values obtained for these

parameters are; p1 = 5.112, p2 = 40.955, p3 = 22.195, p4 = 1.9215, p5 = 1.759, p6 =

3.0435, which are same as shared in our earlier work [2]. The major focus of this work

is estimation and accuracy assessment of the remaining battery parameters p̂7, . . . , p̂21.

Subsection 2.4.1 presents the experimental estimation of the battery model pa-

rameters p̂7, . . . , p̂21. Subsection 2.4.2 assess the accuracy of estimated battery param-

eters by comparing the estimated and measured voltage for sixteen discharging load

profiles. Finally, subsection 2.4.3 evaluates the parameters estimation accuracy again

by comparing the estimated and measured voltage for charging process of sixteen indi-

vidual batteries.

2.4.1. Experimental estimation of battery model parameters. In this sec-

tion, the battery model parameters p̂7, . . . , p̂21 are estimated using the APE (T2) and our

proposed two-stage parameters estimation technique (T3). The fully charged Lithium-

Polymer battery is connected with the 50 Ω resistive load to discharge the battery with a

small load current of about 0.4 amperes. The slow battery discharging during APE pro-

cess ensures the convergence of product of estimated resistances and capacitances to the

product of actual resistances and capacitances, as proved in our earlier work [2]. There-

fore, it will provide accurate estimate of battery model circuit elements Rts,Rtl,Cts,Ctl,

and Rs which will ensure an accurate estimation of battery terminal voltage. The battery

terminal voltage and discharging current profiles are shown in Figure 2.12. It took about
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Figure 2.12: Discharging voltage and current profiles of Lithium-Polymer battery con-
nected with 50 Ω resistor.

15 hours to discharge the battery upto 7% of its rated capacity with a load resistance

of 50 Ω. Each voltage and current data contains 5,493,994 number of samples and are

utilized in Algorithm 1 to estimate Lithium-Polymer battery parameters. Algorithm 1

is the combination of APE algorithm (Line 1 to 16) and optimization algorithm (Line

17 to 29). APE algorithm, detailed in section (2.2), uses UAS, adaptive equation (19),

and curve fitting to estimate the Lithium-Polymer battery parameters. The estimated

parameters, using APE technique (T2), are recorded in column 2 of Table 2.4.

Next, the parameters obtained by the APE technique (T2) are utilized to design

the search space interval of p̂7, . . . , p̂21 parameters for optimization. The parameters

obtained by APE (T2) are optimized at the second stage of Algorithm 1. The search

space interval of the optimization techniques (T3-I) to (T3-III) for each parameter is

designed by setting the upper and lower bounds, δn. The value of δn is set at 10 percent

of the value of parameters estimated by the APE process, i.e. δn = 0.1p̂n and n ∈

{7, · · · ,21}. Thus the search space interval of the estimated parameters are defined as

p̂7± δ7, . . . , p̂21± δ21. Furthermore, at the second stage of proposed technique (T3),

the number of iterations R = 10 for (T3-I) to (T3-III) and a swarm size of S = 10 for

(T3-II) and (T3-III) are selected. The estimated parameters using APE with fmincon
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Table 2.4: Experimental parameters estimation of 22.2 V, 6.6 Ah Lithium-Polymer bat-
tery.

Technique 2 Technique 3: S = 10 and R = 10

Parameters
(T2)
APE

values

(T3-I)
APE with
fmincon

(T3-II)
APE with

PSO

(T3-III)
APE with

Hybrid PSO

p̂7 0.5505 0.5493 0.5525 0.5436
p̂8 30.0475 29.9866 30.0538 29.7022
p̂9 0.0551 0.0549 0.0536 0.0538
p̂10 6.2585 6.0380 6.2454 5.9850
p̂11 30 29.8603 30.0176 29.5146
p̂12 0.0551 0.0549 0.0545 0.0536
p̂13 760.2266 760.2144 754.6998 754.6072
p̂14 10.7686 10.0683 10.0012 9.3990
p̂15 685.7457 685.7182 674.5923 674.6247
p̂16 6036.4 6036.7 5991.9 5995.3
p̂17 27.5422 27.2466 27.4837 26.8348
p̂18 3696 3696 3649.5 3650
p̂19 0.0439 0.0449 0.0450 0.0447
p̂20 59.07 58.8419 60.0453 58.8088
p̂21 0.2246 0.2078 0.1186 0.1527

(T3-I), APE with Particle Swarm Optimization (T3-II) and APE with Hybrid PSO (T3-

III) are tabulated in column 3, 4, and 5 of Table 2.4 respectively. The optimization

techniques are employed to improve the accuracy of the parameters that are originally

obtained by using APE (T2). Therefore, the acquired parameters accuracy is assessed

in the following subsection 2.4.2 and 2.4.3.

2.4.2. Parameters estimation accuracy assessment via battery discharging

tests. This section evaluates the accuracy of the estimated parameters obtained by

APE (T2) and our proposed technique (T3) via battery discharging. The estimated

parameters are used to calculate the values of battery circuit elements Rts,Rtl,Cts,Ctl,Rs

which are then used to estimate the battery terminal voltage. Thus, the accuracy of

estimated parameters is evaluated by comparing the estimated and measured battery

voltage. The 22.2 V, 6.6 Ah Lithium-Polymer battery is connected with resistive load

and the battery is discharged until the SoC approaches 7%. Sixteen different rigorous

load profiles are designed for battery discharging and data for estimated and measured
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voltages are acquired. These sixteen discharging load profiles are separated in the form

of five groups. Group 1 constantly discharge the battery, Group 2 discharges the battery

with the periodic ON and OFF intervals while Group 3 to 5 discharge the battery with

random ON and OFF intervals. The details of these sixteen discharging load profiles

are given below.

• Group 1 (G1), 4 Tests: The battery is subjected to a constant discharging using

four resistive loads of 50 Ω, 25 Ω, 11.11 Ω and 7.5 Ω.

• Group 2 (G2), 4 Tests: In this group the battery is periodically discharged and

relaxed with different loads. The four load profiles designed in this group are:

– The battery is discharged for 15 minutes followed by relaxation time of 15

minutes using two load resistors, 25 Ω and 11.11 Ω.

– The battery is discharged for 1 minutes followed by relaxation time of 1

minutes using two load resistors, 25 Ω and 11.11 Ω.

• Group 3 (G3), 3 Tests: The discharging tests in this group are conducted with

randomly varying ON and OFF time in contrast to Group 2 periodic ON and OFF

time. The experiments are performed with three values of resistor loads, i.e. 25

Ω, 11.11 Ω and 7.5 Ω.

• Group 4 (G4), 2 Tests: These tests are also performed with randomly varying ON

and OFF time using light bulbs as a load. The following two load profiles are

designed.

– Parallel combination of two 24 V, 60 W DC bulbs

– Parallel combination of three 24 V, 60 W DC bulbs

• Group 5 (G5), 3 Tests: This group contains the last three load profiles of our

rigorous testing. The tests are again conducted with randomly varying ON and

OFF time. Three load profiles are designed using parallel combination of three

24 V, 60 W DC bulbs. The number of bulbs in parallel combination is randomly

varied from one bulb to three bulbs.

The Lithium-Polymer battery is discharged under the aforementioned 16 load

profiles that are separated in five groups. The terminal voltage estimation errors, for

all the sixteen discharging load profiles, are recorded in an array, for APE technique

(T2) and for the developed two-stage technique (T3). As a sample, the estimated and
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Figure 2.13: Terminal voltage estimation and error comparison for resistive load of
11.11 Ω with 15 minutes ON and OFF times.

measured terminal voltage along with the absolute voltage estimation error for two of

the sixteen discharging load profiles are shown in Figure 2.13 and Figure 2.14. Figure

2.13 shows that voltage error profiles of APE (T2) and APE with fmincon (T3-I) tech-

niques are about the same. However, APE with PSO (T3-II) and APE with Hybrid PSO

(T3-III) show a significant drop in the voltage estimation error magnitude. In Figure

2.14, the voltage estimation error is investigated when the battery is subjected to a ran-

dom and relatively higher discharging current. The significant reduction in error profile

magnitude is noticed in Figure 2.14 when APE with PSO (T3-II) and APE with Hybrid

PSO (T3-III) techniques are employed. Thus, the reduction in the terminal voltage es-

timation error for (T3-II) and (T3-III) techniques verifies the accuracy of the estimated

parameters.

Sixteen terminal voltage estimation error arrays are obtained from sixteen dis-

charging load profiles. Due to the different discharging interval of each load profile,

Table 2.5: Terminal voltage estimation error statistics while discharging the battery with
sixteen different load profiles using technique 2 (T2) and technique 3 (T3).

Parameters estimation
methods

Mean of
error (V)

Median of
error (V)

Mode of
error (V)

Standard deviation
of error (V)

APE (T2) 0.0211 0.027 -0.055 0.5026
APE with fmincon (T3-I) 0.0022 0.0234 -0.083 0.489

APE with PSO (T3-II) -0.0973 -0.0252 0.0278 0.4316
APE with Hybrid PSO (T3-III) -0.0604 -0.0023 0.138 0.4496
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Figure 2.14: Terminal voltage estimation and error comparison for randomly varying
load with random ON and OFF times drawing 5 A and 7.5 A.

each array has different number of samples. To perform the overall error analysis, all

the sixteen terminal voltage estimation error arrays are stacked to form a large array.

Such four large terminal voltage estimation error arrays, i.e. one array for technique T2

and one for each of the techniques T3-I, T3-II and T3-III, are formed. The total number

of samples in each large terminal voltage estimation error array are 2.75e7. The mean,

median, mode and standard deviation for each of these four terminal voltage estimation

error arrays are described in Table 2.5. The extensive investigation for the overall termi-

nal voltage estimation error arrays was carried out by further showing their histogram

and cumulative distribution graphs in Figure 2.15 and Figure 2.16 respectively. Where

the red vertical lines in Figure 2.16 indicate the ± 4.5% terminal voltage estimation

error i.e. ± 1 V. The following observations can be made from the data presented in

Table 2.5, Figure 2.15 and Figure 2.16.

• In Table 2.5, the standard deviation values imply that the terminal voltage estima-

tion error is less dispersed and settled around the small mode value for APE with

PSO (T3-II) and APE with Hybrid PSO (T3-III) techniques.

• Figure 2.15 shows that more than 95% of terminal voltage error lies within± 1 V

for T2 and all T3 techniques. Also, the low standard deviation of terminal voltage

estimation error, settled around mode value, for T3-II and T3-III techniques can

be visualized from histogram analysis in Figure 2.15.
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Figure 2.15: Histogram of terminal voltage estimation error for technique 2 (T2) and
technique 3 (T3) under sixteen different discharging profiles.

-5 0 5

Percentage Error

0

20

40

60

80

100

P
er

ce
n

ta
g

e 
o

f 
S

a
m

p
le

s

Cumulative Distribution

APE (T2)

APE & fmincon (T3-I)

APE & PSO (T3-II)

APE & Hybrid PSO (T3-III)

Figure 2.16: Cumulative distribution of terminal voltage estimation error for techique 2
(T2) and technique (T3) under sixteen different discharging profiles.

• Figure 2.16 shows that the voltage estimation error data that lies within ± 1 V

(± 4.5% range) is: 95.43% for APE (T2), 95.78% for APE with fmincon (T3-

I), 97.29% for APE with PSO (T3-II), and 97.08% for APE with Hybrid PSO

(T3-III). Furthermore, the voltage estimation error data that lies within ± 0.5 V

(± 2.25% range) is: 86.90% for APE (T2), 87.33% for APE with fmincon (T3-

I), 91.74% for APE with PSO (T3-II), and 89.12% for APE with Hybrid PSO

(T3-III).
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Thus the statistical analysis presented in Table 2.5, Figure 2.15 and Figure 2.16

for battery discharging shows that battery parameters estimated using APE with PSO

(T3-II) and APE with Hybrid PSO (T3-III) are more accurate as compared to APE (T2)

and APE with fmincon (T3-I) techniques.

2.4.3. Parameters estimation accuracy assessment via battery charging

tests. In this section, we charged sixteen individual batteries with a constant current of

2.5 amperes using the Thunder-Power charger (TP820CD). The estimated and measured

voltage of the battery using Technique 2 and Technique 3 are compared to assess the

accuracy of the estimated battery parameters. The voltage estimation error is recorded

for each battery during the charging process. As a sample, detailed data collected for

one battery during the charging process is shown in Figure 2.17. The error magnitude

plot shows that APE (T2) and APE with fmincon (T3-I) techniques have higher termi-

nal voltage estimation errors compared to APE with PSO (T3-II) and APE with Hybrid

PSO (T3-III) techniques.

For all the sixteen batteries, four terminal voltage estimation error arrays using

T2, T3-I, T3-II, T3-III techniques, similar to the battery discharging case, are formed.

Each array includes the terminal voltage estimation error of all the sixteen individual

Figure 2.17: Terminal voltage estimation and error comparison while charging the 22.2
V, 6.6 Ah Li-Polymer battery, technique 2 (T2) and technique 3 (T3).
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batteries. The total number of samples collected in each array during the batteries charg-

ing are 1.258e7. The statistical error analysis of these four error arrays is provided in

Table 2.6. The terminal voltage estimation error, of all the sixteen individual batteries,

is further analyzed by performing the histogram and cumulative distribution as shown

in Figure 2.18 and Figure 2.19 respectively. The data presented in Table 2.6, Figure

2.18 and Figure 2.19 can be analyzed as follows:

• Table 2.6 shows that mean, median, mode and standard deviation values for APE

with PSO (T3-II) and APE with Hybrid PSO (T3-III) are relatively lower than

APE (T2) and APE with fmincon (T3-I) techniques.

• Figure 2.18 shows that more than 94% of terminal voltage error lies within± 1 V

for T2 and all T3 techniques. Also, the voltage error is less dispersed and settled

around a small mode value, for T3-II and T3-III techniques.

• Figure 2.19 shows that the voltage estimation error data that lies within ± 1 V

(± 4.5% range) is: 94.34% for APE (T2), 95.55% for APE with fmincon (T3-I),

99.35% for APE with PSO (T3-II), and 98.26% for APE with Hybrid PSO (T3-

III). Furthermore, the voltage estimation error data that lies within± 0.6 V (2.7%

range) for different techniques is: 38.32% for APE (T2), 50.72% for APE with

fmincon (T3-I), 89.01% for APE with PSO (T3-II), and 81.98% for APE with

Hybrid PSO (T3-III).

The study of terminal voltage estimation error while charging sixteen individ-

ual batteries with a constant 2.5 amperes current shows that the proposed APE with

PSO (T3-II) and APE with Hybrid PSO (T3-III) techniques estimate the battery model

parameters more accurately compared to APE (T2) and optimization techniques (T1)

alone.

Table 2.6: Terminal voltage estimation error statistics while charging sixteen different
batteries with a constant 2.5 amperes for technique 2 (T2) and technique 3 (T3).

Parameters estimation
methods

Mean of
error (V)

Median of
error (V)

Mode of
error (V)

Standard deviation
of error (V)

APE (T2) -0.6509 -0.6396 -0.641 0.3847
APE with fmincon (T3-I) -0.6110 -0.5969 -0.589 0.3828

APE with PSO (T3-II) -0.3879 -0.3699 -0.308 0.3787
APE with Hybrid PSO (T3-III) -0.4723 -0.4538 -0.4895 0.3824
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Figure 2.18: Histogram of terminal voltage estimation error for technique 2 (T2) and
technique 3 (T3) while charging sixteen individual batteries with a constant 2.5 A cur-
rent.
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Figure 2.19: Cumulative distribution of terminal voltage estimation error for technique
2 (T2) and technique 3 (T3) while charging sixteen individual batteries with a constant
2.5 A current.
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Chapter 3. Real-Time Parameters Estimation of a Li-ion Battery Model via
Universal Adaptive Stabilizer

In this chapter, a modification of the UAS based APE strategy is presented.

The existing UAS based APE strategy reported in [2, 3] requires a prior knowledge of

open circuit voltage (OCV), and curve fitting at the end for series resistance estimation.

Therefore, the modified APE strategy proposes high-gain UAS based adaptive estima-

tors for OCV and series resistance estimation and incorporates them into previously

developed APE strategy. Because this modified strategy estimates all the equivalent cir-

cuit elements of a Li-ion battery model at once, and does not require any prior knowl-

edge of OCV, or post processing for series resistance, so it can be used for real-time

implementation. Development of such a real-time methodology is a motivation for the

modification of the APE strategy proposed in this work.

This chapter begins by presenting Chen and Mora’s model, but this time we also

introduce two additional states, one related to the OCV, the other related to the series

resistance. Section 3.2 presents the formulation of the proposed modified APE strategy.

The mathematical proof of the proposed modified APE strategy is given in Section 3.3.

Section 3.4 provides a comparison of simulation results against well-established results

from [13] on a 4.1 V, 270 mAh Li-ion battery.

3.1. Li-ion Battery Equivalent Circuit Model- With Introduction of Two Addi-
tional States

Chen and Mora’s model [13], as presented earlier in equations (1)-(4), is shown

again in Figure 3.1. The difference is that this time we include two additional states i.e.

x1 which is the OCV, and x4 which is the series resistance Rs itself.

Figure 3.1: Li-ion battery equivalent circuit model-with additional states.
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Eo(z) =−r1e−r2z + r3 + r4z− r5z2 + r6z3 = x1(z) (38)

Rts(z) = r7e−r8z + r9 (39)

Rtl(z) = r10e−r11z + r12 (40)

Cts(z) =−r13e−r14z + r15 (41)

Ctl(z) =−r16e−r17z + r18 (42)

Rs(z) = r19e−r20z + r21 = x4(z). (43)

For convenience we present the equations representing the battery circuit ele-

ments in terms of parameters r1 to r21, as displayed in (38)-(43) above. Unlike SoC

and battery parameters representations in Chapter 2, here the battery SoC is denoted by

z ∈ [0,1], and the battery parameters are represented by rn, n ∈ {1,2, · · · ,21}. Whereas

the open circuit voltage (OCV), and the voltage across Rts||Cts, Rtl||Ctl , and Rs are

represented by the states x1, x2, x3, and x4 respectively. The term Cc and y(t) simply

denote the battery capacity in ampere-hour (Ah) and battery terminal voltage. The fac-

tors f1, f2, f3 ∈ [0,1] are to represent the temperature effects, charge-discharge cycles,

and self discharge. The equations for battery open circuit voltage x1 in (45), battery

series resistance x4 in (48), and equivalent circuit elements Rts,Rtl,Cts,Ctl in (38)-(43)

are derived from Chen and Mora’s work [13]. Further the battery dynamics are now

given by (44)-(49).

ż(t) =− 1
Cc

i(t), Cc = 3600C f1 f2 f3 (44)

ẋ1(t) =
∂x1(z)
∂ z(t)

ż(t) =−
(

r1r2e−r2z + r4−2r5z+3r6z2
)

i(t)
Cc

(45)

ẋ2(t) =−
x2(t)

Rts(z)Cts(z)
+

i(t)
Cts(z)

(46)

ẋ3(t) =−
x3(t)

Rtl(z)Ctl(z)
+

i(t)
Ctl(z)

(47)

ẋ4(t) =
∂x4(z(t))

∂ z(t)
ż(t) =

(
r19r20e−r20z

)
i(t)
Cc

(48)

y(t) = x1(z)− x2(t)− x3(t)− i(t)x4(t). (49)
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In the following section, we will formulate the UAS observer-based Li-ion bat-

tery model parameters estimator for estimating Li-ion battery model parameters, i.e.

r1, · · · ,r21.

3.2. Modified Adaptive Parameters Estimation Methodology for a Li-on Battery
Model

This section first provides the formulation details and algorithm for the pro-

posed modified UAS based APE strategy. Whereas, the second subsection presents the

operation through a flowchart of our proposed methodology.

3.2.1. Modified UAS based battery parameters estimation methodology.

A high gain adaptive estimator for a Li-ion battery model, based on (44)-(49), is de-

scribed by (50)-(55).

˙̂z(t) =− 1
Cc

i(t), Cc = 3600C f1 f2 f3 (50)

˙̂x1(t) =
∂ x̂1(ẑ)
∂ ẑ(t)

˙̂z(t)−u(t) =−
(

r̂1r̂2e−r̂2ẑ + r̂4−2r̂5ẑ+3r̂6ẑ2
)

i(t)
Cc
−u(t), x̂1(t)≥ 0

(51)

˙̂x2(t) =−
x̂2(t)

R̂ts(ẑ)Ĉts(ẑ)
+

i(t)

Ĉts(z)
+u(t), x̂2(t)≥ 0 (52)

˙̂x3(t) =−
x̂3(t)

R̂tl(ẑ)Ĉtl(ẑ)
+

i(t)

Ĉtl(z)
+u(t), x̂3(t)≥ 0 (53)

˙̂x4(t) =
∂ x̂4(ẑ(t))

∂ ẑ(t)
˙̂z(t)+u(t) =

(
r̂19r̂20e−r̂20ẑ

)
i(t)
Cc

+u(t), x̂4(t)≥ 0 (54)

ŷ(t) = x̂1(t)− x̂2(t)− x̂3(t)− i(t)x̂4(t) (55)

Here i(t) is the actual battery current and ẑ(t) is the same as z(t) in (44). The

states x̂1, x̂2, x̂3, and x̂4 denote the estimates of OCV, voltage across R̂ts||Ĉts, R̂tl||Ĉtl ,

and estimated series resistance, respectively. For simplicity, the values of f1, f2, f3

are taken 1 in this work and the their effects will be considered in future work. The

estimated voltage is represented by ŷ(t), whereas the estimated circuit elements are

given by (56)-(61).
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Êo(ẑ) =−r̂1e−r̂2ẑ + r̂3 + r̂4ẑ− r̂5ẑ2 + r̂6ẑ3 = x̂1(ẑ) (56)

R̂ts(ẑ) = r̂7e−r̂8ẑ + r̂9 (57)

R̂tl(ẑ) = r̂10e−r̂11ẑ + r̂12 (58)

Ĉts(ẑ) =−r̂13e−r̂14ẑ + r̂15 (59)

Ĉtl(ẑ) =−r̂16e−r̂17ẑ + r̂18 (60)

R̂s(ẑ) = r̂19e−r̂20ẑ + r̂21 = x̂4(ẑ). (61)

The control input u(t) of the UAS based-observer, as described in chapter 2, is designed

by employing (62)-(65).

e(t) = y(t)− ŷ(t), (62)

k̇(t) = e2(t), k(t0) = k0 (63)

N(k(t)) = Eα(−λk(t)α), (64)

u(t) =−N(k(t))e(t). (65)

The adaptive equation for battery parameters estimation, recalled from [2, 3] and chap-

ter 2, is given by (66).

˙̂rn(t) = e2(t)+λxn(rnu− r̂n(t))+λyn(rnl − r̂n(t)). (66)

The adaptive equation (66) requires an upper bound rnu and a lower bounds rnl

for each estimated parameter r̂n(t), n ∈ {1,2, · · · ,21}\{3,21}, and user’s confidence

levels on the upper and lower bounds, i.e. λxn and λyn respectively. It is shown in

Lemma 3.3 that the non-negative real values of rnu , rnl , λxn , and λyn leads to r̂(t) > 0,

for t > t0. The flowchart of proposed modified APE method for Li-ion battery pa-

rameters estimation is shown in Figure 3.2. Note that the UAS based parameters

estimation method, explained above, is capable of estimating the battery parameters

n ∈ {1,2, · · · ,21}\{3,21}. The estimates of r̂3 and r̂21 can be obtained, during or after

the adaptation process, by applying the least squares estimation or curve fitting tech-
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i(t)

u(t)

ŷ(t)
y(t)

ẑ(t)

R̂ts(ẑ(t)),
R̂tl(ẑ(t)),
Ĉts(ẑ(t)),
Ĉtl(ẑ(t)).

e(t)

r̂n(t)
n 6= {3,21}

r̂3(t),
r̂21(t).

x̂1(t), x̂4(t).

Figure 3.2: Flowchart of modified UAS based adaptive parameters estimation of a Li-
ion battery model.

niques, etc., on (56) and (61) respectively. However, this work uses a direct approach

to estimate r̂3 and r̂21, during the adaptation process. Our approach to estimate r̂3

and r̂21 is based on the results of Theorem 3.2. In Theorem 3.2, where it is shown

that x̂1(t)→ x1(t) and x̂4(t)→ x4(t) as t → ∞, and convergence of r̂n → rn, where

n ∈ {1,2, · · · ,21}\{3,21} as t→∞ respectively. Thus, x̂1(t)→ x1(t) and x̂4(t)→ x4(t)

at t→ ∞ lets us write the equations (56) and (61) into (67) and (68) form to estimate r̂3

and r̂21 respectively.

r̂3 = x1(t)+ r̂1e−r̂2ẑ− r̂4ẑ+ r̂5ẑ2− r̂6ẑ3, (67)

r̂21 = x4(t)− r̂19e−r̂20ẑ. (68)

The steps to implement the modified UAS based adaptation methodology for

battery model parameters estimation are described in Algorithm 2. In the following

subsection, the flowchart for algorithm 2 is presented and transcribed.

3.2.2. Proposed modified algorithm for Li-ion battery parameters estima-

tion. This section provides the details of our proposed modified UAS based adapta-

tion algorithm to estimate Li-ion battery parameters. The flowchart of the algorithm

2 is shown in Figure (3.2). The UAS based adaptation process begins with the mea-

surement of current and voltage of a Li-ion battery. A small positive current needs to
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Algorithm 2 Modified UAS based algorithm for real-time adaptive parameters estima-
tion of a Li-ion battery.
Requirements: Data acquisition circuit to measure the terminal voltage y(t) and current
i(t) of a Li-ion battery.
Data: Initial values r̂n(0), upper bounds rnu , lower bounds rnl , confidence levels λxn ,
and λyn for n ∈ {1,2, · · · ,21}\{3,21}. Satisfying Lemma 3.1. Initial states x̂1(0) =
Eo(0), x̂2(0) = 0, x̂3(0) = 0, x̂4(0) = 0, and ŷ(0) = y(0). A small positive tracking error
bound ε . Battery capacity value Cc(Ah).
Output: Estimated Li-ion battery model parameters r̂1(t), r̂2(t), · · · , r̂21(t).

1: for t = t0 : tstep : tend do
2: Read battery terminal voltage y(t) and current i(t).
3: Update the error e(t) using (62).
4: Estimate battery SoC value ẑ(t) using (50).
5: Evaluate (66) for r̂n(t) estimation, where n ∈ {1,2, · · · ,21}\{3,21}.
6: Calculate equivalent circuit element R̂ts(ẑ), R̂tl(ẑ), Ĉts(ẑ), Ĉtl(ẑ) using (57)-(60).
7: Find u(t) using (65).
8: Estimate the states x̂1(̂t), x̂2(t), x̂3(t), x̂4(̂t) using (51)-(54).
9: Estimate the terminal voltage ŷ(t) using (55).

10: Update the error e(t) using (62).
11: if (|e(t)|< ε) then

12: if

[
r̂14(t)>−

1
ẑ(t)

ln
(

r̂15(t)
r̂13(t)

)]
and

[
r̂17(t)>−

1
ẑ(t)

ln
(

r̂18(t)
r̂16(t)

)]
then

13: Solve (67) and (68) to get r̂3(t) and r̂21(t).
14: Return

[
r̂1(t), r̂2(t), · · · , r̂21(t)

]
.

15: else
16: Continue loop execution.
17: end if
18: else
19: Continue loop execution.
20: end if
21: end for

be maintained during the adaptation, as per Theorem 3.2, for accurate results. The er-

ror between actual and estimated terminal voltages is used by UAS and the adaptive

estimation equation in (66) to identify r̂n(t), where n ∈ {1,2, · · · ,21}\{3,21}. These

estimated parameters are employed to calculate the equivalent circuit elements. Next,

the equivalent circuit elements’ estimates together with the output of UAS and current

are input to high gain adaptive estimator. The adaptation process ends with the evalua-

tion of state estimates, i.e. x̂1(̂t), x̂2(t), x̂3(t), x̂4(̂t), of a Li-ion battery model followed

by the error update. When the error magnitude goes below the user’s defined threshold
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during the adaptation, the estimated states approach to actual states of a Li-ion battery

model, as per Theorem 3.2. Thereafter, the convergence of estimated states to their

actual values lets us use equation (67) and (68) for identification of r̂3(t) and r̂21(t). In

the following section, we provide mathematical justification of our proposed modified

UAS based adaptation strategy for a Li-ion battery model parameters estimation.

3.3. Mathematical Justification

In this section, the convergence of terminal voltage estimation error e(t) to zero

is proved. The proof of e(t)→ 0 as t→ ∞ lets us derive the following results: x̂1(t)→

x1(t), R̂ts(ẑ)Ĉts(ẑ)→ Rts(z)Cts(z), R̂tl(ẑ)Ĉtl(ẑ)→ Rtl(z)Ctl(z), and x̂4(t)→ x4(t) as t→

∞. Afterward, the analysis of the above results leads to the conclusion that the Li-ion

battery model parameters can be estimated using the proposed method. Before proving

the above mentioned statements, some results for λxn,λyn ,rnu, and rnl selection needs to

be established in Lemma 3.1.

Lemma 3.1. Suppose λxn ,λyn,rnu , and rnl are the positive real numbers for

n = {13,15,16,18}, and ẑ(t) ∈ (0,1], then the following conditions hold for all t > t0.

• If r̂13(t0) > r̂15(t0) > 0, λx15 +λy15 > λx13 +λy13 , λx15 r̂15u +λy15 r̂15l < λx13 r̂13u +

λy13 r̂13l , and r̂14(t)>−
1

ẑ(t)
ln
(

r̂15(t)
r̂13(t)

)
, then Ĉts(ẑ(t))> 0.

• If r̂16(t0) > r̂18(t0) > 0, λx18 +λy18 > λx16 +λy16 , λx18 r̂18u +λy18 r̂18l < λx16 r̂16u +

λy16 r̂16l , and r̂17(t)>−
1

ẑ(t)
ln
(

r̂18(t)
r̂16(t)

)
then Ĉtl(ẑ(t))> 0.

The detailed proof of Lemma 3.1 is available in [2]. The conditions established

in Lemma 3.1 are utilized in the following theorem to prove the convergence of terminal

voltage error e(t) to zero and, thereafter, the convergence of estimated circuit elements

to actual circuit elements of a Li-ion battery.

Theorem 3.2. Suppose that conditions needed for Lemma 3.1 to hold are satisfied. If

the Li-ion battery discharge current i(t), t > 0, is a small positive value then we get the

following as t→ ∞.

• x̂1(t) = x1(t),

• R̂ts(ẑ)Ĉts(ẑ) = Rts(ẑ)Cts(ẑ),

• R̂tl(ẑ)Ĉtl(ẑ) = Rtl(ẑ)Ctl(ẑ),
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• x̂4(t) = x4(t).

Proof. Suppose the assumptions mentioned above are satisfied. Take the time derivative

of (62) to get

ė(t) = ẏ(t)− ˙̂y(t), (69)

Addition and subtraction of e(t) to R.H.S of (69), and recognizing that e(t) = y(t)− ŷ(t)

provides

ė(t) =−e(t)+ y(t)− ŷ(t)+ ẏ(t)− ˙̂y(t). (70)

Now, substitution of −ŷ(t) and ˙̂y(t) from (55) in (70) provides

ė(t) =− e(t)+ y(t)+ ẏ(t)− x̂1(ẑ(t))+ x̂2(t)+ x̂3(t)+ i(t)x̂4(ẑ(t))

− ˙̂x1(ẑ(t))+ ˙̂x2(t)+ ˙̂x3(t)+
di(t)

dt
x̂4(ẑ(t))+ i(t) ˙̂x4(ẑ(t)),

(71)

Using (52) and (53) in (71) gives

ė(t) =− e(t)+ y(t)+ ẏ(t)− x̂1(ẑ(t))+ x̂2(t)+ x̂3(t)+ i(t)x̂4(ẑ(t))− ˙̂x1(ẑ(t))

− x̂2(t)

R̂ts(ẑ(t))Ĉts(ẑ(t))
− x̂3(t)

R̂tl(ẑ(t))Ĉtl(ẑ(t))
+

i(t)

Ĉts(ẑ(t))
+

i(t)

Ĉtl(ẑ(t))
+2u(t)

+
di(t)

dt
x̂4(ẑ(t))+ i(t) ˙̂x4(ẑ(t)),

(72)

Re-arrangement of (72) yields the following

ė(t) =− e(t)+ y(t)+ ẏ(t)+ x̂2(t)
(

1− 1

R̂ts(ẑ(t))Ĉts(ẑ(t))

)
+ x̂3(t)

(
1− 1

R̂tl(ẑ(t))Ĉtl(ẑ(t))

)
− x̂1(ẑ(t))+ i(t)x̂4(ẑ(t))− ˙̂x1(ẑ(t))+ i(t)

(
1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)
+

di(t)
dt

x̂4(ẑ(t))+ i(t) ˙̂x4(ẑ(t))+2u(t).

(73)

Since by definition of (57) and (58), R̂ts(ẑ(t)) > 0, R̂tl(ẑ(t)) > 0 for all t > t0. Also

by Lemma 3.1, we know that Ĉts(ẑ(t)) > 0 and Ĉtl(ẑ(t)) > 0 for all t > t0. Therefore,
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R̂ts(ẑ(t))Ĉts(ẑ(t))> 0 and R̂tl(ẑ(t))Ĉtl(ẑ(t))> 0.

which implies 1− 1

R̂ts(ẑ(t))Ĉts(ẑ(t))
< 1, (74)

From (52), x̂2(t)≥ 0, Thus,

x̂2(t)
(

1− 1

R̂ts(ẑ(t))Ĉts(ẑ(t))

)
≤ x̂2(t), (75)

Similarly using x̂3(t)≥ 0 from (53) provides

x̂3(t)
(

1− 1

R̂tl(ẑ(t))Ĉtl(ẑ(t))

)
≤ x̂3(t), (76)

From (75) and (76) we get

x̂2(t)+ x̂3(t)≥ x2(t)
(

1− 1

R̂ts(ẑ(t))Ĉts(ẑ(t))

)
+ x̂3(t)

(
1− 1

R̂tl(ẑ(t))Ĉtl(ẑ(t))

)
. (77)

Using (77) in (73) and re-arrangement of terms provides the following

ė(t)≤− e(t)+ y(t)+ ẏ(t)− x̂1(ẑ(t))+ x̂2(t)+ x̂3(t)+ i(t)x̂4(ẑ(t))− ˙̂x1(ẑ(t))

+
di(t)

dt
x̂4(ẑ(t))+ i(t) ˙̂x4(ẑ(t))+ i(t)

(
1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)
+2u(t),

(78)

Simplification of (78) using (55) and (62) gives

ė(t)≤− y(t)+ ŷ(t)+ y(t)+ ẏ(t)− ŷ(t)− ˙̂x1(ẑ(t))+
di(t)

dt
x̂4(ẑ(t))+ i(t) ˙̂x4(ẑ(t))

+ i(t)
(

1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)
+2u(t),

(79)

ė(t)≤ ẏ(t)− ˙̂x1(ẑ(t))+
di(t)

dt
x̂4(ẑ(t))+ i(t) ˙̂x4(ẑ(t))+ i(t)

(
1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)
+2u(t).

(80)

Using (51) and (54) in (80) gives
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ė(t)≤ẏ(t)− ∂ x̂1(ẑ(t))
∂ ẑ(t)

˙̂z(t)+
di(t)

dt
x̂4(ẑ(t))+ i(t)

∂ x̂4(ẑ(t))
∂ ẑ(t)

˙̂z(t)+ i(t)u(t)

+ i(t)
(

1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)
+3u(t).

(81)

Following this, the proof of error e(t) convergence to zero is derived from the equation

(81). We will consider two cases of error, i.e. e(t) can be either positive or negative, and

each case produces a particular form. This particular form in both cases lets us show

that e(t)→ 0 as t→ ∞. Prior to considering the case of positive or negative error, some

inequalities are required to be established.

Consider the following inequality related to e(t) and the first term of R.H.S of (81),

(
e(t)− ẏ(t)

)2

≥ 0,

1
2

e2(t)+
1
2

ẏ2(t)≥ e(t)ẏ(t). (82)

The inequality related to e(t) and the second term of R.H.S of (81) is as follows,

(
e(t)+

∂ x̂1(ẑ(t))
∂ ẑ(t)

˙̂z(t)
)2

≥ 0,

1
2

e2(t)+
1
2

(
∂ x̂1(ẑ(t))

∂ ẑ(t)
˙̂z(t)
)2

≥−e(t)
∂ x̂1(ẑ(t))

∂ ẑ(t)
˙̂z(t). (83)

The inequality related to e(t) and the third term of R.H.S of (81) is given as,

(
e(t)− di(t)

dt
x̂4(ẑ(t))

)2

≥ 0,

1
2

e2(t)+
1
2

(
di(t)

dt

)2

x̂2
4(ẑ(t))≥ e(t)

di(t)
dt

x̂4(ẑ(t)). (84)

The inequality related to e(t) and the fourth term of R.H.S of (81) is as follows,

(
e(t)− i(t)

∂ x̂4(ẑ(t))
∂ ẑ(t)

˙̂z(t)
)2

≥ 0,

1
2

e2(t)+
1
2

i2(t)
(

∂ x̂4(ẑ(t))
∂ ẑ(t)

˙̂z(t)
)2

≥ e(t)i(t)
∂ x̂4(ẑ(t))

∂ ẑ(t)
˙̂z(t). (85)

The inequality related to e(t) and the sixth term of R.H.S of (81) is given below,
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(
e(t)− i(t)

(
1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

))2

≥ 0,

1
2

e2(t)+
1
2

i2(t)
(

1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)2

≥ e(t)i(t)
(

1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)
. (86)

From (82), (83), (84), (85), and (86), we get (87)

5
2

e2(t)+
1
2

ẏ2(t)+
1
2

(
∂ x̂1(ẑ(t))

∂ ẑ(t)
˙̂z(t)
)2

+
1
2

(
di(t)

dt

)2

x̂2
4(ẑ(t))+

1
2

i2(t)
(

∂ x̂4(ẑ(t))
∂ ẑ(t)

˙̂z(t)
)2

+
1
2

i2(t)
(

1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)2

≥ e(t)ẏ(t)− e(t)
∂ x̂1(ẑ(t))

∂ ẑ(t)
˙̂z(t)+ e(t)

di(t)
dt

x̂4(ẑ(t))

+ e(t)i(t)
∂ x̂4(ẑ(t))

∂ ẑ(t)
˙̂z(t)+ e(t)i(t)

(
1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)
. (87)

Similarly, consider the following inequalities related to e(t) and the first term of R.H.S

of (81),

−
(

e(t)+ ẏ(t)
)2

≤ 0,

−1
2

e2(t)− 1
2

ẏ2(t)≤ e(t)ẏ(t). (88)

The inequality related to e(t) and the second term of R.H.S of (81) is as follows,

−
(

e(t)− ∂ x̂1(ẑ(t))
∂ ẑ(t)

˙̂z(t)
)2

≤ 0,

−1
2

e2(t)− 1
2

(
∂ x̂1(ẑ(t))

∂ ẑ(t)
˙̂z(t)
)2

≤−e(t)
∂ x̂1(ẑ(t))

∂ ẑ(t)
˙̂z(t). (89)

The inequality related to e(t) and the third term of R.H.S of (81) is given as,

−
(

e(t)+
di(t)

dt
x̂4(ẑ(t))

)2

≤ 0,

−1
2

e2(t)− 1
2

(
di(t)

dt

)2

x̂2
4(ẑ(t))≤ e(t)

di(t)
dt

x̂4(ẑ(t)). (90)

The inequality related to e(t) and the fourth term of R.H.S of (81) is as follows,

−
(

e(t)+ i(t)
∂ x̂4(ẑ(t))

∂ ẑ(t)
˙̂z(t)
)2

≤ 0,
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−1
2

e2(t)− 1
2

i2(t)
(

∂ x̂4(ẑ(t))
∂ ẑ(t)

˙̂z(t)
)2

≤ e(t)i(t)
∂ x̂4(ẑ(t))

∂ ẑ(t)
˙̂z(t). (91)

The inequality related to e(t) and the sixth term of R.H.S of (81) is given below,

−
(

e(t)+ i(t)
(

1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

))2

≤ 0,

−1
2

e2(t)− 1
2

i2(t)
(

1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)2

≤ e(t)i(t)
(

1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)
. (92)

From (88), (89), (90), (91), and (92), we get (93).

− 5
2

e2(t)− 1
2

ẏ2(t)− 1
2

(
∂ x̂1(ẑ(t))

∂ ẑ(t)
˙̂z(t)
)2

− 1
2

(
di(t)

dt

)2

x̂2
4(ẑ(t))−

1
2

i2(t)
(

∂ x̂4(ẑ(t))
∂ ẑ(t)

˙̂z(t)
)2

− 1
2

i2(t)
(

1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)2

≤ e(t)ẏ(t)− e(t)
∂ x̂1(ẑ(t))

∂ ẑ(t)
˙̂z(t)+ e(t)

di(t)
dt

x̂4(ẑ(t))

+ e(t)i(t)
∂ x̂4(ẑ(t))

∂ ẑ(t)
˙̂z(t)+ e(t)i(t)

(
1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)
. (93)

In the following part, we will consider (81) with two cases of error, i.e. error being

positive and negative, and utilize (87) and (93) for the positive and negative error cases

respectively to show the convergence of error e(t).

Case. 1. Consider e(t)> 0, at some instant t > t0. Multiplying (81) by e(t) and

using (65) gives

e(t)ė(t)≤e(t)ẏ(t)− e(t)
∂ x̂1(ẑ(t))

∂ ẑ(t)
˙̂z(t)+ e(t)

di(t)
dt

x̂4(ẑ(t))+ e(t)i(t)
∂ x̂4(ẑ(t))

∂ ẑ(t)
˙̂z(t)

+ e(t)i(t)
(

1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)
− (3+ i(t))N(k(t))e2(t),

(94)

Now use (87) in (94) to get the following

e(t)ė(t)≤5
2

e2(t)+
1
2

ẏ2(t)+
1
2

(
∂ x̂1(ẑ(t))

∂ ẑ(t)
˙̂z(t)
)2

+
1
2

(
di(t)

dt

)2

x̂2
4(ẑ(t))

+
1
2

i2(t)
(

∂ x̂4(ẑ(t))
∂ ẑ(t)

˙̂z(t)
)2

+
1
2

i2(t)
(

1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)2

− (3+ i(t))N(k(t))e2(t).

(95)

60



Since d
dt

(1
2e2(t)

)
= e(t)ė(t), thus integrating (95) from t0 to t, and using (63) provides

1
2

e2(t)≤5
2
(k(t)− k(t0))+

1
2

∫ t

t0
ẏ2(τ)dτ +

1
2

∫ t

t0

(
∂ x̂1(ẑ(τ))

∂ ẑ(τ)
˙̂z(τ)

)2

dτ

+
1
2

∫ t

t0

(
di(τ)

dτ

)2

x̂2
4(ẑ(τ))dτ +

1
2

∫ t

t0
i2(τ)

(
∂ x̂4(ẑ(τ))

∂ ẑ(τ)
˙̂z(τ)

)2

dτ

+
1
2

∫ t

t0
i2(τ)

(
1

Ĉts(ẑ(τ))
+

1

Ĉtl(ẑ(τ))

)2

dτ−3
∫ t

t0
N(k(τ))k̇(τ)dτ

−
∫ t

t0
i(τ)N(k(τ))k̇(τ)dτ,

(96)

Let k̃(t) = k(t)− k(t0). Dividing (96) by k̃(t) and recognizing that ˙̂z(t) =− i(t)
Cc

,∫ t
t0 N(k(τ))k̇(τ)dτ =

∫ k(t)
k(t0)

N(k)dk and
∫ t

t0 i(τ)N(k(τ))k̇(τ)dτ = i(t)
∫ k(t)

k(t0)
N(k)dk gives

e2(t)

2k̃(t)
≤5

2
+

1

2k̃(t)

∫ t

t0
ẏ2(τ)dτ +

1

2k̃(t)

∫ t

t0

(
i(τ)
Cc

∂ x̂1(ẑ(τ))
∂ ẑ(τ)

)2

dτ

+
1

2k̃(t)

∫ t

t0

(
di(τ)

dτ

)2

x̂2
4(ẑ(τ))dτ +

1

2k̃(t)

∫ t

t0

(
i2(τ)
Cc

∂ x̂4(ẑ(τ))
∂ ẑ(τ)

)2

dτ

+
1

2k̃(t)

∫ t

t0
i2(τ)

(
1

Ĉts(ẑ(τ))
+

1

Ĉtl(ẑ(τ))

)2

dτ− 3

k̃(t)

∫ k(t)

k(t0)
N(k)dk

− i(t)

k̃(t)

∫ k(t)

k(t0)
N(k)dk.

(97)

The equation (97) is the result established for e(t) > 0 case. Now, the Case 2, i.e. for

e(t)< 0, is considered and an inequality having a form similar to (97) will be derived.

The results of both Case 1 and Case 2 will be discussed together after establishing the

required equation for Case 2.

Case. 2. Consider e(t)< 0, at some instant t > t0. Multiplying (81) by e(t) and

using (65) gives

e(t)ė(t)≥e(t)ẏ(t)− e(t)
∂ x̂1(ẑ(t))

∂ ẑ(t)
˙̂z(t)+ e(t)

di(t)
dt

x̂4(ẑ(t))+ e(t)i(t)
∂ x̂4(ẑ(t))

∂ ẑ(t)
˙̂z(t)

+ e(t)i(t)
(

1

Ĉts(ẑ(t))
+

1

Ĉtl(ẑ(t))

)
− (3+ i(t))N(k(t))e2(t),

(98)
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Now use (93) in (98) to get the following

e(t)ė(t)≥− 5
2

e2(t)− 1
2

ẏ2(t)− 1
2

(
∂ x̂1(ẑ(t))

∂ ẑ(t)
˙̂z(t)
)2

− 1
2

(
di(t)

dt

)2

x̂2
4(ẑ(t))

− 1
2

i2(t)
(

∂ x̂4(ẑ(t))
∂ ẑ(t)

˙̂z(t)
)2

− 1
2

i2(t)
(

1

Ĉts(ẑ(t))
− 1

Ĉtl(ẑ(t))

)2

− (3+ i(t))N(k(t))e2(t).

(99)

Since d
dt

(1
2e2(t)

)
= e(t)ė(t), thus integrating (99) from t0 to t, and using (63) provides

1
2

e2(t)≥− 5
2
(k(t)− k(t0))−

1
2

∫ t

t0
ẏ2(τ)dτ− 1

2

∫ t

t0

(
∂ x̂1(ẑ(τ))

∂ ẑ(τ)
˙̂z(τ)

)2

dτ

− 1
2

∫ t

t0

(
di(τ)

dτ

)2

x̂2
4(ẑ(τ))dτ− 1

2

∫ t

t0
i2(τ)

(
∂ x̂4(ẑ(τ))

∂ ẑ(τ)
˙̂z(τ)

)2

dτ

− 1
2

∫ t

t0
i2(τ)

(
1

Ĉts(ẑ(τ))
− 1

Ĉtl(ẑ(τ))

)2

dτ−3
∫ t

t0
N(k(τ))k̇(τ)dτ

−
∫ t

t0
i(τ)N(k(τ))k̇(τ)dτ,

(100)

Let k̃(t) = k(t)− k(t0). Dividing (100) by k̃(t) and recognizing that ˙̂z(t) = − i(t)
Cc

,∫ t
t0 N(k(τ))k̇(τ)dτ =

∫ k(t)
k(t0)

N(k)dk and
∫ t

t0 i(τ)N(k(τ))k̇(τ)dτ = i(t)
∫ k(t)

k(t0)
N(k)dk gives

us

e2(t)

2k̃(t)
≥− 5

2
− 1

2k̃(t)

∫ t

t0
ẏ2(τ)dτ− 1

2k̃(t)

∫ t

t0

(
i(τ)
Cc

∂ x̂1(ẑ(τ))
∂ ẑ(τ)

)2

dτ

− 1

2k̃(t)

∫ t

t0

(
di(τ)

dτ

)2

x̂2
4(ẑ(τ))dτ− 1

2k̃(t)

∫ t

t0

(
i2(τ)
Cc

∂ x̂4(ẑ(τ))
∂ ẑ(τ)

)2

dτ

− 1

2k̃(t)

∫ t

t0
i2(τ)

(
1

Ĉts(ẑ(τ))
− 1

Ĉtl(ẑ(τ))

)2

dτ− 3

k̃(t)

∫ k(t)

k(t0)
N(k)dk

− i(t)

k̃(t)

∫ k(t)

k(t0)
N(k)dk,

(101)

Notice that the (101) and (97) have similar form. The differences between them are

the sign of inequalities and the terms on R.H.S of (101) are negative. The reciprocal of

(101) provides the following
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2k̃(t)
e2(t)

≤
[
− 5

2
− 1

2k̃(t)

∫ t

t0
ẏ2(τ)dτ− 1

2k̃(t)

∫ t

t0

(
i(τ)
Cc

∂ x̂1(ẑ(τ))
∂ ẑ(τ)

)2

dτ

− 1

2k̃(t)

∫ t

t0

(
di(τ)

dτ

)2

x̂2
4(ẑ(τ))dτ− 1

2k̃(t)

∫ t

t0

(
i2(τ)
Cc

∂ x̂4(ẑ(τ))
∂ ẑ(τ)

)2

dτ

− 1

2k̃(t)

∫ t

t0
i2(τ)

(
1

Ĉts(ẑ(τ))
− 1

Ĉtl(ẑ(τ))

)2

dτ− 3

k̃(t)

∫ k(t)

k(t0)
N(k)dk

− i(t)

k̃(t)

∫ k(t)

k(t0)
N(k)dk

]−1

.

(102)

The battery can be discharged for a certain interval of time, say T > t0. After t >

T , the following occurs: i(t) = 0, y(t) = 0, z(t) = 0. Therefore, as t → ∞, ẏ(t) =

0, and d(i)
dt = 0. Thus, from these facts, we can conclude that the terms

∫ t
t0 ẏ2(τ)dτ ,∫ t

t0

(
i(τ)
Cc

∂ x̂1(ẑ(τ))
∂ ẑ(τ)

)2

dτ ,
∫ t

t0

(
di(τ)

dτ

)2

x̂2
4(ẑ(τ))dτ ,

∫ t
t0

(
i2(τ)
Cc

∂ x̂4(ẑ(τ))
∂ ẑ(τ)

)2

dτ , and 1
2
∫ t

t0 i2(τ)×(
1

Ĉts(ẑ(τ))
− 1

Ĉtl(ẑ(τ))

)2

dτ are bounded in (97) and (102) as t → ∞. Now suppose that

k(t)→ ∞ as t→ ∞, then the above discussion lets us write as t→ ∞ for (97),

lim
t→∞

e2(t)

2k̃(t)
≤ 5

2
− 3

k̃(t)

∫ k(t)

k(t0)
N(k)dk− i(t)

k̃(t)

∫ k(t)

k(t0)
N(k)dk, (103)

And from (102), we can write the following

lim
t→∞

2k̃(t)
e2(t)

≤ 1

−5
2 −

3
k̃(t)

∫ k(t)
k(t0)

N(k)dk− i(t)
k̃(t)

∫ k(t)
k(t0)

N(k)dk
. (104)

Now if k(t) → ∞ as t → ∞ then by the definition of a Nussbaum function in (12),

the term + 1
k(t)−k(t0)

∫ k(t)
k(t0)

N(k)dk, in (103) and (104), can take values approaching +∞,

and therefore this will violate the positiveness of the LHS of (103) and (104). By

this contradiction, the assumption that k(t)→ ∞ is false and therefore k(t) is bounded.

However k̇(t) is an increasing function by definition and k(t) is bounded, this implies

that k(t)→ k∞ as t→ ∞ which further implies that k̇(t)→ 0 as t→ ∞, i.e. e2(t)→ 0 as

t→ ∞ or e(t)→ 0 as t→ ∞, i.e. y(t)→ ŷ(t) as t→ ∞. Consider now that y(t)→ ŷ(t),

which implies that

Eo(z(t))− x2(t)− x3(t)− i(t)Rs(z(t)) = x̂1(ẑ(t))− x̂2(t)− x̂3(t)− i(t)x̂4(ẑ(t)), (105)
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[
1 −1 −1 −1

]



Eo(z(t))

x2(t)

x3(t)

i(t)Rs(z(t))

−


x̂1(ẑ(t))

x̂2(t)

x̂2(t)

i(t)x̂4(ẑ(t))



= 0 (106)

The above implies that x̂1(ẑ(t)) = Eo(z(t)), and x̂4(ẑ(t)) = Rs(z(t)). Equation (106) also

implies x̂2(t) = x2(t), and x̂3(t) = x3(t), which means that ˙̂x2(t) = ẋ2(t), and ˙̂x3(t) =

ẋ3(t). Let us consider ˙̂x2(t) = ẋ2(t), the following can be written using (46) and (52)

− x̂2(t)

R̂ts(ẑ(t))Ĉts(ẑ(t))
+ u(t) =− x2(t)

Rts(z(t))Cts(z(t))
+

i(t)
Cts(z(t))

(107)

Since it is proved above that e(t)→ 0 as t→ ∞, u(t) =−N(k(t))e(t), i(t) are infinites-

imally small, and x̂2(t) = x2(t), therefore (107) provides

R̂ts(ẑ(t))Ĉts(ẑ(t)) = Rts(z(t))Cts(z(t)) (108)

Considering ˙̂x3(t) = ẋ3(t) and following the exact same arguments as above, it is sim-

ilarly possible to conclude that R̂tl(ẑ(t))Ĉtl(ẑ(t)) = Rtl(z(t))Ctl(z(t)). This completes

the proof.

Remark 1. The results proved in Theorem 3.2 hold valid provided that the

battery discharging current remains small, i.e. i(t)→ 0 as t → ∞ and the conditions in

Lemma 3.1 are satisfied. Next, we will show the convergence of Li-ion battery model

parameters r̂n(t) as t→ ∞, where n ∈ {1,2, · · · ,21}\{3,21}.

Lemma 3.3. Suppose λxn,λyn,rnu and rnl are the positive real numbers for

n ∈ {1,2, · · · ,21}\{3,21}. If the conditions required for Theorem 3.2 are satisfied,

then r̂n(t) converges to some constant r∞ as t→ ∞.

Proof. The solution of (66) with e2(t)+λxnrnu +λynrnl as an input is as follows

r̂n(t) = r̂n(t0)e−(λxn+λyn)t +

(
(λxnrnu +λynrnl)×

∫ t

t0
e−(λxn+λyn)τdτ

)
+
∫ t

t0
e2(t− τ)e−(λxn+λyn)τdτ

(109)
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Because e−(λxn+λyn)t → 0 as t → ∞, and from Theorem 3.2, e(t)→ 0 as t → ∞. So

e−(λxn+λyn)t and e2(t) remain positive and approach to zero as t → ∞. Thus, on the

R.H.S of (109), the first term will go to zero, the second and third terms will be bounded

and approach to a constant term as t → ∞. Hence, r̂n(t) converges as t → ∞ for n ∈

{1,2, · · · ,21}\{3,21}.

3.3.1. Accuracy analysis of some estimated Li-ion battery model param-

eters. In this section, we will first demonstrate that the parameters of x̂1(ẑ(t)), and

x̂4(ẑ(t)) converges to their actual values based on the results derived in Theorem 3.2.

Afterward, the accuracy analysis of Rts(ẑ(t)), and Rtl(ẑ(t)) will lead us to show the

convergence of these circuit elements parameters to their actual values. As per the

results derived in Theorem 3.2, x̂1(ẑ(t)) = x1(z(t)), and x̂4(ẑ(t)) = x4(z(t)) as t → ∞.

Using (38), (43), (56), and (61), the above two results can be written as follows

−r̂1e−r̂2ẑ + r̂3 + r̂4ẑ− r̂5ẑ2 + r̂6ẑ3 =−r1e−r2z + r3 + r4z− r5z2 + r6z3, (110)

r̂19e−r̂20ẑ + r̂21 = r19e−r20z + r21. (111)

Since ẑ(t) = z(t), thus the equation (110) can be rewritten as

[
(−r̂1e−r̂2ẑ + r1e−r2z) (r̂3− r3) (r̂4− r4) (−r̂5 + r5) (r̂6− r6)

]


1

1

z(t)

z2(t)

z3(t)


= 0,

(112)

Similarly, the equation (111) can be represented by the following

[
(r̂19e−r̂20ẑ− r19e−r20z) (r̂21− r21)

]1

1

= 0. (113)

At ẑ(t)→ 0 as t → ∞, and ẑ(t) 6= 0 as t → ∞, the equation (112) implies that

r̂1 → r1, r̂3 → r3, r̂4 → r4, r̂5 → r5, and r̂6 → r6. Using r̂1 → r1 in r̂1e−r̂2ẑ = r1e−r2z
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provides r̂2 → r2. Similarly, using the same argument, we can infer from (113) that

r̂19→ r19, r̂20→ r20 and r̂21→ r21. Now consider Ĉts(ẑ(t)) =Cts(z(t))+∆, where ∆ is

the estimation error due to inappropriate selection of parameters such as λxn,λyn,rnu and

rnl for n∈ {1,2, · · · ,21}\{3,21}, and violation of condition i(t)→∞. Since ẑ(t) = z(t),

and R̂ts(z(t))Ĉts(z(t)) = Rts(z(t))Cts(z(t)), from Theorem 3.2, leads to the following

R̂ts(z(t)) =
Rts(z(t))Cts(z(t))

Cts(z(t))+∆
=

Rts(z(t))

1+
∆

Cts(z(t))

. (114)

Because the value of Cts(z(t)) ranges in the order of hundred or thousand Farads,

the magnitude of ∆ is expected to be much smaller than the magnitude of Cts(z(t)). The

above assumption results in R̂ts(z(t))→ Rts(z(t)) from (114). Now using (39) and (57),

we can write the following

[
(r̂7e−r̂8ẑ− r7e−r7z) (r̂9− r9)

]1

1

= 0. (115)

Recalling the same argument that is described earlier for the convergence of estimated

parameters, it is possible to present that r̂7→ r7, r̂8→ r8, and r̂9→ r9.

Similarly, by considering R̂tl(z(t))Ĉtl(z(t)) = Rtl(z(t))Ctl(z(t)) from Theorem

3.2, we can conclude that R̂tl(z(t))→ Rtl(z(t)) and r̂10→ r10, r̂11→ r11, and r̂12→ r12.

The accuracy analysis shows the convergence of fifteen parameters to their actual values

except the parameters of Cts and Ctl , which are due to the aforementioned reasons. The

results derived in this section will be discussed and validated through simulation in the

next section.

3.4. Simulation Results

The mathematical proof for the convergence of Li-ion battery model circuit el-

ements and parameters to their actual values is supported by the MATLAB simulation

results. The experimentally determined Li-ion battery model parameters by Chen and

Mora in [13] are used to validate the accuracy of estimated circuit elements and their

parameters. We use the same 4.1 V, 850 mAh Li-ion battery model, that was utilized in
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[13], for adaptive estimation process. However, to reduce the simulation time to almost

one-third, the battery capacity of 270 mAh is selected in the simulation. Note that the

battery parameters obtained in [13] are constant and independent of battery SoC, bat-

tery capacity, charging and discharging current, and battery temperature. Since these

parameters influence the shape of voltage vs. time profile, therefore the reduction of

battery capacity does not change the battery dynamics. The parameters adaptation pro-

cess begins with the appropriate choice of some constraints. These constraints include

the selection of upper and lower bounds and their respective confidence levels for each

parameter, described in Table 3.1, and initial values of state variables, provided in algo-

rithm 2. Note that selection of upper and lower bounds and their respective confidence

levels for each parameter does not require a strenuous effort from a user who has some

knowledge and experience of Li-ion batteries. Whereas, the selection rules for initial

values of state variables have already been provided in algorithm 2. Since the accurate

convergence of estimated battery parameters and state variables also depends upon the

magnitude of the current, as per Theorem 3.2. Therefore, the battery discharge current

needs to be kept very small during the adaptation process.

Algorithm 2 is run in MATLAB for real-time parameters estimation of a Li-ion

battery, and the results are provided in Table 3.1. Note that each estimated parameter

was recorded in a separate array during the adaptation process, i.e. the estimated pa-

rameters results were recorded in twenty-one arrays. We took an average of each array

which gave us average estimated parameter values that are tabulated in Table 3.1. It can

be inferred from Table 3.1 results that the estimation error is less than 5% for most of

the estimated parameters. Note that appropriate selection of upper and lower bounds

can further reduce the estimation error of all parameters. The estimated parameters are

then employed to calculate circuit elements variation with SoC. During the adaptation

process, the estimates of circuit elements are illustrated in Figure 3.3 and Figure 3.4.

The Chen and Mora’s results are classified as actual values in the simulation results. In

Figure 3.3 and Figure 3.4, the adaptation of each circuit element along with the corre-

sponding estimation error is shown. Excluding Rts, all the circuit elements converged

within 10% estimation error. As mentioned above, the estimation error of Rts and other

circuit elements can be further improved by fixing the upper and lower bounds prop-
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Table 3.1: Simulation results of a 4.1 V, 270 mAh Li-ion battery model parameters.

Parameter Upper bound
(rnu)

Lower bound
(rnl)

λxn λyn
Initial
value

Estimated
value

Desired
value

Estimation
error (%)

r̂1 4 0.1 20 65 100 1.0176 1.031 1.3
r̂2 50 25 50 70 2000 35.4167 35 1.2
r̂3 – – – – – 3.6855 3.685 0.014
r̂4 0.5 0.1 30 70 50 0.22 0.2156 2.04
r̂5 0.5 0.01 20 70 30 0.1189 0.1178 0.934
r̂6 0.5 0.1 60 50 200 0.3182 0.3201 0.594
r̂7 1 0.1 50 50 180 0.3002 0.3208 6.42
r̂8 50 10 50 50 1700 30 29.14 2.95
r̂9 0.1 0.01 50 50 240 0.055 0.04669 17.79
r̂10 10 1 70 50 3600 6.2533 6.603 5.3
r̂11 200 100 50 50 9300 149.9 155.2 3.41
r̂12 0.1 0.01 50 50 264 0.0553 0.04984 10.95
r̂13 1000 500 60 55 50000 760.869 752.9 1.06
r̂14 30 1 5 10 1000 10.6672 13.51 21.04
r̂15 800 500 80 50 50000 684.62 703.6 2.69
r̂16 7000 5000 10 10 50000 6000 6056 0.92
r̂17 50 5 50 50 1000 27.5 27.12 1.40
r̂18 5000 3000 50 50 50000 4500 4475 0.558
r̂19 0.5 0.01 20 50 60 0.15 0.1562 3.97
r̂20 50 15 30 80 1200 24.5455 24.37 0.72
r̂21 – – – – – 0.0826 0.07446 10.93

erly. It is worth to notice that estimation error of circuit elements is higher when SoC

approaches to zero. It is explained in [6] that below certain SoC level, Li-ion battery

becomes unstable and causes the estimated parameters to diverge from their actual val-

ues. Therefore, we estimated the battery parameters until the SoC approaches 7% value.

Whereas, the results in Figure 3.3 are displayed till SoC approaches 1%. Furthermore,

the comparison of actual and estimated terminal voltages during the adaptation process

is shown in Figure 3.5. In Figure 3.5, the estimated terminal voltage converged to the

actual voltage with very low estimation error i.e. about 10e-4. The zoomed in view

of Figure 3.5 is shown in Figure 3.6, which shows the quick convergence of estimated

terminal voltage to the actual 4.1 V, 275 mAh Li-ion battery terminal voltage during the

adaptation process.

To validate the estimated parameters results against the parameters obtained by

Chen and Mora in [13], we construct two 4.1 V, 275 mAh Li-ion battery models. The

first model contains the parameters estimated via our proposed method, whereas the
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second model holds the parameters provided by Chen and Mora in [13]. Each battery

model is subjected to a random discharge current as shown in Figure 3.7a, and their

terminal and open circuit voltages are compared in Figure 3.7c and Figure 3.7d respec-

tively. The low estimation error in both terminal and open circuit voltage profiles in

Figure 3.7c and Figure 3.7d show the accuracy of our proposed battery model parame-

ters estimation strategy. Since the battery model parameters can be utilized for accurate
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Figure 3.3: Comparison of actual and estimated circuit elements of a Li-ion battery
model during adaptive estimation process.

69



0 0.2 0.4 0.6 0.8 1

0

20

40

M
a

g
n

it
u

d
e 

Actual and Estimated R
ts

C
ts

 Comparison

Actual

Estimated

0

10

20

30

P
er

ce
n

ta
g

e 
E

rr
o

r Estimation Error 

0 0.2 0.4 0.6 0.8 1 
 SoC (z)

(a) RtsCts vs SoC.

0 0.2 0.4 0.6 0.8 1

0

200

400

M
a

g
n

it
u

d
e 

Actual and Estimated R
tl
C

tl
 Comparison

Actual

Estimated

0

10

20

30

P
er

ce
n

ta
g

e 
E

rr
o
r Estimation Error 

0 0.2 0.4 0.6 0.8 1 
 SoC (z)

(b) RtlCtl vs SoC.
Figure 3.4: Comparison of actual and estimated RtsCts and RtlCtl during adaptive esti-
mation process.
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Figure 3.6: Zoomed in view of Figure 3.5.

calculation of SoC. Therefore, we used the estimated parameters to determine the SoC

when the battery is subjected to a random discharge current of Figure 3.7a. As explained

in [2], the SoC was estimated via interpolation method using open circuit voltage vs.

SoC information of adaptive process. The estimated SoC in Figure 3.7b is compared
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Figure 3.7: Validation of estimated terminal voltage and OCV of Li-ion battery, and
comparison of estimated SoC with Coulomb counting SOC when the battery is sub-
jected to variable load.

with the conventional Coulomb counting method and thus reveals the deviation of es-

timated SoC from Coulomb counting. This deviation is observed when a small current

is drawn from the battery, i.e. after 25 seconds in Figure 3.7b. Due to the division by

the battery Ah capacity value in equation (44), Coulomb counting method does not cap-

ture small details of SoC when a low current is drawn from a battery, so the proposed

methodology of parameters estimation can help improve the SOC estimation accuracy

by using the OCV curve, whose parameters can be found using the work presented in

this thesis.
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Chapter 4. Experimental Validation and Real-Time Implementation of UAS
Based Modified APE Method

In the first part of this chapter, the modified APE strategy is rigorously verified

experimentally on a 22.2 V, 6.6 Ah Li-ion battery. The results of modified APE strat-

egy are comprehensively compared with the existing APE results and with measured

terminal voltage of a Li-ion battery. Also, the comparative study is further enhanced by

investigating the histogram and cumulative distribution of terminal voltage estimation

error for sixteen different discharging protocols and sixteen constant current charging

protocols.

The second part of this chapter describes the real-time implementation of the

proposed modified APE strategy on a 400 V, 6.6 Ah Li-ion battery bank, which powers

an indirect field-oriented control based EV traction system. The validation of real-time

estimated parameters against the offline experimentations shows the suitability of the

proposed modified APE strategy for real-time parameters estimation of a Li-ion battery

either at pack level or bank level.

4.1. Experimental Validation on a 22.2 V, 6.6 Ah Lithium-Polymer Battery

The results of modified APE strategy are compared in offline mode with the

existing and experimentally verified APE technique. A fully charged 22.2 V, 6.6Ah

TP6600 6S, 25C Lipo battery is connected with a resistive load of 50 ohms, which

allows a small discharging current of about 0.4 amps. Note that a small discharging

current ensures the convergence of estimated equivalent circuit elements to their actual

values, as per mathematical proof provided in section 3.3. It took about 15 hours to

discharge the battery upto 7% of its rated capacity. The voltage and current data during

Lipo battery discharging is recorded via voltage and current sensors, respectively. The

discharging current and voltage profiles of the above 22.2 V, 6.6 Ah Lipo battery are

shown in Figure 4.1.

Algorithm 2 i.e. the proposed modified APE strategy is run in MATLAB with

all the conditions, provided in section 3.3, to estimate the parameters of a 22.2 V, 66 Ah

Lipo battery. The sampling time of the discharging voltage and current is set to 0.01
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Figure 4.1: Lithium-Polymer battery discharging current and voltage profiles during
adaptation process.

seconds. Once the terminal voltage estimation error goes below the user defined error

bound, battery parameters is recorded separately in 21 separate arrays. The average

value of each individual array represents the estimated battery parameter value, i.e.

r̂1, · · · , r̂21, at the end of the estimation process.

Note that the battery parameters of interest to this work are constants indepen-

dent of SoC, and they control the shape of the terminal voltage vs time curve. The

results of estimated parameters obtained from the modified APE strategy are provided

in Table 4.1, and are compared with the results of the existing APE technique shared

in [2]. Note that in Table 4.1, certain values related to parameters r̂3 and r̂21 are shown

by dashes. This is because r̂3 and r̂21 disappear from the observer equations used in

the modified APE strategy. So, parameters r̂3 and r̂21 are not estimated adaptively, but

are estimated using equations (67)-(68). Also, the aim of modifying the existing APE

strategy is to reduce the experimental effort required as in [2] for offline open circuit

voltage and series resistance estimation, without compromising the accuracy of the ex-

isting APE technique for parameters estimation of a Li-ion battery. Next, the results of

modified APE strategy are comprehensively compared with the existing APE technique

against sixteen different discharging load protocols and sixteen constant charging pro-
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Table 4.1: Experimental results of a 22 V, 6.6 Ah Li-ion battery model parameters.

Parameter Upper bound
(rnu)

Lower bound
(rnl)

λxn λyn
Initial
value

Estimated
value

Estimated value
provided in [2]

Estimation
error (%)

r̂1 6 4 50 50 100 5 5.112 2.19
r̂2 50 30 50 50 2000 40 40.955 2.33
r̂3 – – – – – 22.1782 22.195 0.07
r̂4 3 1 50 50 50 2 1.9215 4.08
r̂5 2.5 1 50 50 30 1.75 1.759 0.51
r̂6 4 2 50 50 200 3 3.0435 1.43
r̂7 1 0.1 50 50 180 0.5505 0.5505 0
r̂8 50 10 50 50 1700 30 30.0475 0.16
r̂9 0.1 0.01 50 50 240 0.055 0.0551 0.18
r̂10 10 1 70 50 3600 6.2557 6.2585 0.04
r̂11 50 10 50 50 9300 30 30 0
r̂12 0.1 0.01 50 50 264 0.0555 0.0551 0.73
r̂13 1000 500 60 55 50000 760.8691 760.2266 0.08
r̂14 15 5 70 50 1000 10.8334 10.7686 0.60
r̂15 800 500 80 50 50000 684.615 685.7457 0.16
r̂16 7000 5000 10 10 50000 6000 6036.4 0.60
r̂17 50 5 50 50 1000 27.5 27.5422 0.15
r̂18 5000 3000 10 20 50000 3667 3696 0.78
r̂19 0.1 0.01 50 50 60 0.0551 0.0439 25.5
r̂20 70 50 50 50 1200 60 59.07 1.57
r̂21 – – – – – 0.2408 0.2246 7.21

tocols. The detailed description of discharging load protocols are given in section 4 of

chapter 2.

4.1.1. Estimated parameters accuracy assessment via battery dischraging

tests. The estimated terminal voltage is recorded by subjecting the estimated Li-ion

battery model to sixteen different discharging load profiles successively. As a sample,

the estimated and measured terminal voltages along with the absolute voltage estimation

error for two of the sixteen discharging load profiles are shown in Figure 4.2 and Figure

4.3. The voltage estimation error in Figure 4.2 and Figure 4.3 shows that the modified

APE strategy produces similar results compared to APE technique. The terminal volt-

age estimation error data, for all sixteen discharging profiles, is stacked together to form

a single large error array of 2.75e7 samples. The statistical analysis of terminal voltage

estimation error array is performed to quantify the accuracy of modified APE strategy

against the existing APE technique. The mean, median, mode, and standard deviation

analysis of the error array for modified APE and existing APE strategies are provided
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Figure 4.2: Terminal voltage estimation and absolute error |e(t)| comparison for resis-
tive load of 11.11 Ω with 15 minutes ON and 15 minutes OFF times.
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Figure 4.3: Terminal voltage estimation and absolute error |e(t)| comparison for resis-
tive load of 7.5 Ω with random time period.

in Table 4.2. The mean and standard deviation values for both techniques of interest

are very similar, while the median and mode values of modified APE strategy slightly

deviate from that of existing APE technique.

An extensive investigation of the overall terminal voltage estimation error ar-

ray is carried out by further showing its histogram and cumulative distribution graphs
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Table 4.2: Terminal voltage estimation error statistics while discharging the battery with
sixteen different load profiles for APE and modified APE.

Parameters estimation
methods

Mean of
error (V)

Median of
error (V)

Mode of
error (V)

Standard deviation
of error (V)

APE 0.0211 0.027 -0.4038 0.5026
Modified APE 0.0218 0.0143 -0.347 0.5139

Figure 4.4: Histogram of terminal voltage estimation error for APE and modified APE
under sixteen different discharging profiles.

in Figure 4.4 and Figure 4.5 respectively. Where, the red vertical lines in Figure 4.5

indicate the ± 4.5% terminal voltage estimation error limits, i.e. ± 1 V. Figure 4.4

and Figure 4.5 show no significant deviation of modified APE results compared to the

existing APE technique. As mentioned in chapter 2, the accuracy of modified APE

and existing APE strategies can be further enhanced by subsequent incorporation of

optimization strategies.

4.1.2. Estimated parameters accuracy assessment via battery charging tests.

The estimated parameters obtained from modified APE strategy are further assessed

against the results of existing APE technique over sixteen constant current charging

protocols. The actual Lipo battery is charged with a constant current of 2.5 amperes us-

ing the Thunder-Power charger (TP820CD). As a sample, the estimated and measured

76



-5 0 5

Percentage Error

0

20

40

60

80

100

P
er

ce
n

ta
g

e 
o

f 
S

a
m

p
le

s

Cumulative Distribution

APE

Modified APE

Figure 4.5: Cumulative distribution of terminal voltage estimation error for APE and
modified APE under sixteen different discharging profiles.

terminal voltages along with the absolute voltage estimation error for a single test is

shown in Figure 4.6. The statistical analysis, similar to discharging load protocols, is

performed to compare the terminal voltage estimation errors of both the modified and

existing APE strategies. The total number of samples collected in terminal voltage es-

timation array while charging the batteries are 1.258e7. The histogram and cumulative
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Figure 4.6: Terminal voltage estimation and absolute error |e(t)| comparison while
charging the 22.2 V, 6.6 Ah Li-Polymer battery.
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Figure 4.7: Histogram of terminal voltage estimation error for APE and modified APE
techniques while charging sixteen individual batteries with a constant 2.5 A current.
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Figure 4.8: Cumulative distribution of terminal voltage estimation error for APE and
modified APE techniques while charging sixteen individual batteries with a constant
2.5 A current.

distribution graphs of terminal voltage estimation error are shown Figure 4.7 and Fig-

ure 4.8, respectively, for both the existing and modified APE strategies. Moreover, the

statistical analysis of terminal voltage estimation error is provided in Table 4.3. The

statistical analysis along with histogram and cumulative distribution graphs show that
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Table 4.3: Terminal voltage estimation error statistics while charging sixteen different
batteries with a constant 2.5 Amperes for APE and modified APE.

Parameters estimation
Methods

Mean of
error (V)

Median of
error (V)

Mode of
error (V)

Standard deviation
of error (V)

APE -0.6518 -0.6451 -2.1223 0.2271
Modified APE -0.7080 -0.7059 -2.1470 0.2231

the modified APE strategy produces results similar to APE technique while charging a

Lipo battery.

In the next section, the modified APE strategy is employed for real-time param-

eters estimation of a 400 V, 6.6 Ah, Li-ion battery bank. The Li-ion battery bank is

utilized to power an indirect field-oriented control based electric vehicle (EV) traction

system. The real-time estimated parameters are also validated against the offline results

on a 400 V, 6.6 Ah Li-ion battery bank.

4.2. Real-time Parameters Estimation of a 400 V, 6.6 Ah Lithium-Polymer Bat-
tery Bank

In this section, the modified APE strategy is implemented and validated on a

400 V, 6.6 Ah Lithium-Polymer battery bank for electric vehicle (EV) traction system,

which is controlled by indirect field-oriented strategy. The picture of a complete proto-

type EV traction testbench is shown in Figure 4.9. Starting from the right side, a 400 V,

6.6 Ah Li-ion battery bank is connected to a three-phase IGBT inverter. The induction

motor (IM) is powered and controlled by the three-phase inverter and the dynamometer

is employed to load the prototype EV traction system. The computer system on the

left side allows the control and real-time monitoring of the EV traction testbench. The

dSPACE 1103 control board is responsible for performing several real-time tasks such

as control of three-phase PWM inverter, voltage and current measurements of Li-ion

battery bank and IM, implementation of indirect FOC algorithm for IM drive and mod-

ified APE strategy for real-time parameters estimation of Li-ion battery bank. Due to

accurate and high-speed Input/Output operation, dSPACE real-time processor board has

become a primary choice for prototype automotive and drive applications. The detailed

specifications of the prototype EV traction testbench are provided in Table 4.4.
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Figure 4.9: Li-ion battery bank powered EV traction system.

Table 4.4: Prototype EV traction system specifications.

Induction motor parameters

Nominal voltage 400 V-Y, 50 Hz
Nominal current 1.37 A
Nominal power 0.55 kW
Nominal efficiency 78.1%
Nominal power Factor 0.74
Nominal speed 1440 RPM
Nominal torque 3.65 Nm
Poles pairs 2
Stator resistance (Rs) 17.36 Ω

Rotor resistance (Rr) 6.3 Ω

Stator inductance (Lls) 0.12185 H
Rotor inductance (Llr) 0.03614 H
Mutual inductance (Lm) 0.87097 H

Drive system specifications

Inverter rating 500 V, 10 A
Controller board dSPACE 1103
Sampling time 0.1 ms
Encoder resolution 1024 pulses per revolution
Voltage sensor (LEM LV-25 P) 500 V
Current sensor (LEM LA-25 NP) 25 A

Li-Ion battery bank specifications

Battery model (Lithium-Polymer) TP6600-6SP+25
Number of batteries 16
Battery bank capacity 6.6 Ah
Nominal voltage of each battery 22.2 V
Maximum voltage of each battery 25.2 V
Maximum battery bank voltage 403.2 V
Maximum charging current of each battery 33 A

80



4.2.1. Experimental estimation of battery bank parameters. The real-time

adaptive parameters estimation of a 400 V, 6.6 Ah Li-ion battery bank is performed by

executing algorithm 2 with all the required conditions described in section 3.2. The Li-

ion battery bank powers an indirect field-orientation based EV traction system. The no-

load operation of an induction motor in EV traction system draws around 0.2 amperes

current and, thus, satisfies one of the essential conditions, i.e. the low discharge current

requirement, of UAS based parameters estimation method. The estimated parameters

at no-load operation of an induction motor in EV traction system are presented in Table

4.5. Note that in Table 4.5, certain values related to parameters r̂3 and r̂21 are shown

by dashes. This is because r̂3 and r̂21 disappear from the observer equations used in

the modified APE strategy. So, parameters r̂3 and r̂21 are not estimated adaptively, but

are estimated using equations (67)-(68). The battery parameters estimated at no-load

condition can be employed for SoC and SoH estimation, open circuit voltage and series

resistance estimation, and fault detection in a battery management system during any

loading condition of EV traction system.

4.2.2. Accuracy assessment of estimated parameters via battery bank dis-

charging test. The effectiveness of modified APE strategy is further quantified by
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Figure 4.10: Lithium-Polymer battery bank discharging SoC, current, and voltage pro-
files during adaptation process.
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investigating the estimated parameters obtained through offline experimentation. For

that purpose, the 400 V, 6.6 Ah Li-ion battery bank is discharged through a 384 ohms,

600 W resistive load. The battery bank discharge current and voltage profiles along

with the estimated terminal voltage during the adaptation process are shown in Figure

4.10. The detailed procedure of modified APE strategy has been described in Section

3.2, and the results of estimated battery bank parameters are given in Table 4.5. The

real-time estimated parameters of a 400 V, 6.6 Ah Li-ion battery bank model are quanti-

fied against the parameters obtained through offline mode. The estimation error in Table

4.5 shows the accuracy of real-time parameters. The accuracy of offline estimated pa-

rameters is assessed by analyzing the estimated terminal voltage against an offline and

fast periodic measured discharging voltage profile at 230 ohms, 1000 W load. The time

period of discharging profile is two minutes with 50% duty cycle. The measured and

estimated terminal voltage along with the estimation error are illustrated in Figure 4.11.

The terminal voltage estimation error in Figure 4.11 is around 1% which signifies the

potential of modified APE strategy.

Table 4.5: Experimental results of a 400 V, 6.6 Ah Li-ion battery bank model parame-
ters.

Parameter Upper bound
(rnu)

Lower bound
(rnl)

λxn λyn
Initial
value

Estimated value
(Real-time)

Estimated value
(Offline)

Estimation
error (%)

r̂1 150 45 50 50 100 97.5 97.51 0.01
r̂2 50 20 50 50 2000 35 35.01 0.03
r̂3 – – – – – 356.865 357.236 0.1
r̂4 7.5 1.5 50 50 100 4.5 5.2 13.4
r̂5 20 2 50 50 230 11 11.01 0.1
r̂6 50 25 50 50 400 37.5 37.55 0.13
r̂7 1 0.1 50 50 180 0.6125 0.5643 8.54
r̂8 50 10 50 50 1700 30 30.01 0.03
r̂9 0.1 0.01 50 50 240 0.0568 0.069 17.68
r̂10 10 1 70 50 3600 6.4074 6.262 2.32
r̂11 200 100 50 50 9300 150 150 0
r̂12 0.1 0.01 50 50 264 0.0694 0.0693 0.14
r̂13 1000 500 60 55 50000 760.8586 760.882 0.003
r̂14 15 5 70 50 1000 10.8367 10.845 0.07
r̂15 800 500 80 50 50000 684.6064 684.626 0.16
r̂16 7000 5000 10 10 50000 5998.5 6000 0.025
r̂17 50 5 50 50 1000 27.507 27.514 0.025
r̂18 5000 3000 10 20 50000 3666 3666.71 0.02
r̂19 25 5 50 50 100 15 15.014 0.1
r̂20 40 15 50 50 1200 27.505 27.514 0.033
r̂21 – – – – – 5.01 5.428 7.7
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tive load of 230 ohms, 1000 W, with 1 minutes ON and 1 minute OFF times.

The statistical analysis of terminal voltage estimation error is performed, and

the details have been shared in Section 2.3 and Section 4.1. Note that the total number

of samples collected in the estimation error array during the discharging test are 73,529.

The mean, median, mode, and standard deviation analysis of the error array for modified

APE are provided in Table 4.6. Moreover, the histogram and cumulative distribution

Figure 4.12: Histogram of terminal voltage estimation error for modified APE under
Figure 4.11 battery bank discharge profile.
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Table 4.6: Terminal voltage estimation error statistics under Figure 4.11 battery bank
discharge profile.

Parameters Estimation
Methods

Mean of
error (V)

Median of
error (V)

Mode of
error (V)

Standard deviation
of error (V)

Modified APE -2.7754 -2.7828 -6.1766 1.3199

graphs of terminal voltage estimation error are shown Figure 4.12 and Figure 4.13,

respectively. The red vertical lines in Figure 4.13 indicate the ± 1.5% terminal voltage

estimation error i.e. ± 6 V. The statistical analysis of terminal voltage estimation error

shows the effectiveness of modified APE strategy for real-time parameters estimation

of EV traction system.
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Figure 4.13: Cumulative distribution of terminal voltage estimation error for modified
APE under Figure 4.11 battery bank discharge profile.
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Chapter 5. Conclusions and Future Work

5.1. Conclusions

This thesis work is divided into three parts: accurate estimation of battery model

parameters, reduction of experimental effort for battery parameters identification by

proposing modified adaptive parameters estimation strategy, and real-time implementa-

tion of proposed parameters estimation strategy on a 400 V, 6.6 Ah Li-ion battery bank

powered EV traction system.

The first part of this thesis demonstrated the effectiveness of our proposed two-

stage technique for accurate estimation of Li-ion battery parameters. The parameters

obtained from the first stage, i.e. adaptive parameters estimation (APE), are utilized

to narrow the search space intervals for the second stage, i.e. optimization, for fur-

ther refinement of the initially estimated parameters values. The narrowed search space

interval when used with an optimization routine, requires less computation time, com-

pared to an unguided or arbitrarily initialized optimization routine. The simulation

study compares the estimated parameters and circuit elements values, with the results

available in the literature. In the experimental study, the effectiveness of the proposed

technique is evaluated by comparing the estimated and the actual voltage measured

across the battery terminals, and by further performing a statistical analysis. The results

show that the accuracy of the battery model parameters obtained by the optimization

techniques alone is poor, and the required computation time is high. The accuracy of

parameters obtained by UAS-based APE is good with very low computation time, while

it is best when UAS based APE is used in combination with the PSO, or hybrid PSO

optimization techniques while requiring an intermediate amount of computation time.

The existing APE strategy requires prior offline experimentation for open volt-

age estimation, and some post-processing for series resistance estimation. Therefore,

the second part of this thesis proposes the modified APE strategy which estimates the

open circuit voltage and series resistance along with the other circuit elements in a sin-

gle adaptation run. Numerical simulations are performed on a 4.1 V, 270 mAh Li-ion

battery model to quantify the accuracy of estimated parameters by comparing them
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against well-known results obtained experimentally by Chen and Mora. The terminal

voltage estimation error is less than 1%, which illustrates the effectiveness of the pro-

posed modified APE strategy. Moreover, mathematical proofs are provided to support

the modified APE strategy.

The third part of this thesis deals with the rigorous experimental validation of

modified APE strategy and real-time implementation on a 400 V, 6.6 Ah Li-ion battery

bank powered EV traction system. First, the results of modified APE strategy are com-

pared with the existing APE technique and with the measured terminal voltage across

22.2 V, 6.6 Ah Li-ion battery. A comprehensive statistical analysis of terminal volt-

age estimation error is presented for sixteen different discharging and sixteen constant

charging protocols. It can be inferred from the results that the modified APE strat-

egy produces similar results compared to the existing APE strategy while minimizing

the experimental effort and parameters estimation process time required by the exist-

ing APE scheme. The existing APE strategy requires eight experiments to estimate all

battery model parameters. However, the proposed modified APE scheme needs just

two experiments to be performed, i.e. one for open circuit voltage measurement be-

fore the adaptation process and one adaptive estimation experiment for battery model

parameters. Second, the modified APE strategy is implemented for real-time parame-

ters estimation of a 400 V, 6.6 Ah Li-ion battery bank, which powers a field-orientation

controlled EV traction system. The real-time results are validated against an offline and

fast periodic discharging battery bank voltage profile. The terminal voltage estimation

error is around 1%, which shows the accuracy of the proposed modified APE strategy

for real-time battery bank parameters estimation of EV traction systems.

5.2. Future Work

The modified APE strategy can be utilized for quick and accurate battery param-

eters estimation with minimal experimental effort and may be employed for numerous

applications of a battery bank powered EV traction system. Some future directions re-

lated to battery parameters estimation work, especially for EV traction system, are as

follows:
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• An accurate Li-ion battery bank model can be used to develop an effective bat-

tery management system that optimizes the charging and discharging of a Li-ion

battery to reduce the degradation of battery state-of-health (SoH).

• The operation of a Li-ion battery bank at higher temperature may deteriorate the

battery capacity and thus causes inaccurate estimation of SoC and SoH. This

event may degrade the overall performance of an EV traction system. Therefore,

future efforts also include the incorporation of temperature effects in the adaptive

parameters estimation process.

• Several control strategies are available in the literature for speed/torque control of

an induction motor driven EV traction system, such as direct/indirect field orien-

tation, direct torque control, model predictive control, model reference adaptive

control, sliding mode control, to name a few. However, accurate SoC and SoH

information may also be incorporated in the above control strategies for opti-

mum EV performance in terms of EV drive time, Li-ion battery bank depth of

discharge, and maximum allowed EV speed.
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[17] D. Dvorak, T. Bäuml, A. Holzinger, and H. Popp, “A comprehensive algorithm

for estimating Lithium-ion battery parameters from measurements,” IEEE Trans-

actions on Sustainable Energy, vol. 9, no. 2, pp. 771–779, 2018.

[18] K. Mueller, E. Schwiederik, and D. Tittel, “Analysis of parameter identification

methods for electrical Li-ion battery modelling,” in World Electric Vehicle Sym-

posium and Exhibition (EVS27), Barcelona, Spain, Nov 2013, pp. 1–9.

89



[19] P. Kumar and P. Bauer, “Parameter extraction of battery models using multiobjec-

tive optimization genetic algorithms,” in 14th IEEE International Power Electron-

ics and Motion Control Conference (EPE/PEMC), Ohrid, Macedonia, 2010, pp.

106–110.

[20] D. Kapoor, P. Sodhi, and A. Keyhani, “Estimation of parameters for battery stor-

age models,” in IEEE Conference on Energy Conversion (CENCON), Johor Bahru,

Malaysia, Oct 2014, pp. 406–411.

[21] J. C. Forman, S. J. Moura, J. L. Stein, and H. K. Fathy, “Genetic identification

and fisher identifiability analysis of the Doyle–Fuller–Newman model from ex-

perimental cycling of a LiFePO4 cell,” Journal of Power Sources, vol. 210, pp.

263–275, 2012.

[22] Z. Yu, L. Xiao, H. Li, X. Zhu, and R. Huai, “Model Parameter Identification

for Lithium Batteries Using the Coevolutionary Particle Swarm Optimization

Method,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5690–

5700, Jul 2017.

[23] M. A. Rahman, S. Anwar, and A. Izadian, “Electrochemical model parameter

identification of a Lithium-ion battery using particle swarm optimization method,”

Journal of Power Sources, vol. 307, pp. 86–97, 2016.

[24] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and conver-

gence in a multidimensional complex space,” IEEE transactions on Evolutionary

Computation, vol. 6, no. 1, pp. 58–73, 2002.

[25] N. Omar, D. Widanage, M. Abdel Monem, Y. Firouz, O. Hegazy, P. Van den

Bossche, T. Coosemans, and J. Van Mierlo, “Optimization of an advanced battery

model parameter minimization tool and development of a novel electrical model

for Lithium-ion batteries,” International Transactions on Electrical Energy Sys-

tems, no. 12, pp. 1747–1767, Dec 2014.

[26] G. Giordano, V. Klass, M. Behm, G. Lindbergh, and J. Sjöberg, “Model-based
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