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Abstract 

Securing and protecting a power grid system is critical because a power grid transmits 

and distributes power to millions of people across a country. One of the significant 

topics in this field is having a real time model that monitors and controls power 

system grids. A robust monitoring system can be built based on State Estimation (SE) 

techniques especially when dealing with non-linear structures such as power systems. 

In order to have a secured power network, the data acquired by the Supervisory 

Control And Data Acquisition (SCADA) systems has to be reliable and consistent. 

This is achieved by enforcing false data detection methods where a malicious 

interference can be detected. Such methods can differentiate between rubbish data and 

an intrusion attacking the network.  Neural Networks (NNs) are considered one of the 

widely used techniques in detecting false data injections. This work develops a 

strategy for automatic detection of data manipulation in a power system network. The 

main contribution is to introduce a Neural Network (NN) based system that can detect 

any data manipulation whether bypassed by the state estimators or not. The model is 

capable of detecting the intrusion with a minimum of three random meters in a grid 

being manipulated. This provides power system operators the ability to take the 

required decision before a large-scale attack can occur. 

 

Keywords: Power grid, Neural Network, State Estimation, False Data Injection, 

SCADA. 
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Chapter 1. Introduction 

 

In this chapter, a short introduction about the power and energy management 

systems and the problems encountered in this field is provided. Then, the specific 

problem investigated in this study as well as the thesis contribution is presented. 

Finally, general organization of the thesis is illustrated. 

1.1. Overview 

Energy management is deliberated as the fastest developing segment in the 

power industry and as one of the biggest engineering success stories of the past 

decade. An essential goal behind this development is to monitor, coordinate and 

control the process of generation, transmission and distribution of electrical energy. 

Consequently, an optimized, reliable and accurate power network can be achieved [1]. 

Commonly, these functions are done by the control centre which is divided into three 

subsystems as described in Figure 1.1.  

 

 

Figure 1.1: Functional diagram of modern energy management system [1]. 

 

To achieve the above mentioned objective, a Supervisory Control And Data 

Acquisition system (SCADA) has been employed in power networks since it can 
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provide the required real time data at a reasonable complexity and cost. It offers the 

operator the ability to anticipate, study and control the optimal response against 

measured conditions. In fact, obtaining a clear picture of the states is obtained through 

State Estimation (SE) which is considered as the backbone of the Energy 

Management System (EMS). This technique is widely utilized in most power systems 

to estimate the state variables (bus voltages and phase angles). Basically, such 

technique is introduced to replace the need of having hardware monitoring devices at 

each bus. The state estimator is able to filter the raw data and determine the values of 

state variables to allow the operators to take decisions aimed at maintaining the 

security of the power grid. One of the commonly used algorithms in SE is Weighted 

Least Squares (WLS) [2]. The overall objective of the SE is to reduce the errors as 

well as improve the efficiency of the power system. 

Furthermore, there are various types of measurement errors in power grids. 

These types are divided into random errors; which happens due to lack of precision of 

the measurement equipment, gross errors; which arise from outside interference, 

topological errors; which are due to configuration errors [1]. SE is only capable of 

filtering the data from random errors. There are other types of errors, such as an attack 

or data manipulation, which may affect the state estimator from providing an accurate 

estimate of the states. Hence, a bad data detection and identification step, is of vital 

importance in every SE procedure. 

Neural Networks (NNs) have been implemented widely in false data detection 

when dealing with security assessment of power systems.  It is a multilayer based 

solution that consists of input layers followed by hidden layers which are connected to 

output layers. In other words, NNs can be described as a huge number of neurons 

interconnected with each other to resolve a certain problem. NNs can be trained by 

feeding them with different scenarios and examples with the corresponding outputs. 

A NN is based on pattern recognition, where it can detect and identify patterns 

inherent in both linear and non-linear systems [3, 4, 5].   

Recently, certain attacks have been developed in a way to bypass the 

conventional SE based bad data detection techniques employed in a power network 

[5, 6]. Hence, in this thesis, a NN is designed to detect if a False Data Injection (FDI) 
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attack has occurred, even if the state estimator bypassed such data. This will ensure a 

continuous, reliable and smooth operation of the power network [6, 7]. 

1.2. Thesis Objectives 

Detect any data manipulation through the designed NN whether such 

manipulated data is passed by the state estimator or not and hence, enhance the 

quality of the estimated data being monitored by the operators of the power systems. 

1.3. Research Contribution 

Each part of a mechatronic system needs focus to develop a better overall 

system architecture. Therefore, this work focuses on the decision-making aspects of a 

mechatronic system. Specifically, a NN based decision making system is developed 

for a power grid, which not only involves software-based monitoring but also acting 

upon the decision taken. However, due to the subject at hand involving power grids, it 

is not possible to carry out actual full-scale tests. Therefore, this work uses simulation 

results developed on a standard IEEE-30 bus power system model. The main 

contributions of this work are as follows: 

 A NN based-system is developed to detect a certain type of an intrusion 

namely a random FDI attack in power grids. 

 Detect an FDI attack even if only three random meters are attacked, and the 

magnitude of meter readings are manipulated by a minimum of 4% of their 

actual value. 

 Verify the above detection scheme works successfully under different load 

scenarios. 

1.4. Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides background 

about power systems architecture and recent techniques used for SE. Moreover, works 

related to this research are discussed. The employed methods and algorithms are 

discussed in Chapter 3 along with the implementation of the preliminary architecture. 

Chapter 4 provides some preliminary simulation results based on the proposed work 

in the previous chapter. Finally, Chapter 5 concludes the work and outlines future 

work efforts.  
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Chapter 2. Background and Literature Review 

 

In this chapter, the basic principles of the power network are discussed. 

Basically, the chapter is organized as follows; first it highlights the recent work 

achieved in regards of power grids, SE and NNs. Later, it provides an introduction on 

each of the previously mentioned topics that emphasizes their significance in 

providing a reliable power system.  

2.1. Literature Review 

The authors in [8], have proposed the idea of considering both the physical 

and system theory aspects when investigating the vulnerabilities of smart grids. In 

July 2010, a malware called “Stuxnet” was found targeting vulnerable SCADA 

systems [9]. Stuxnet reflects a clear example of a cyber-attack used to induce physical 

consequences. Authors have illustrated that the proposed approach is capable of 

modelling the malicious behaviours as either components’ failures, external inputs, or 

noises. In addition, it is found that utilizing such algorithm will help in analysing the 

attacks’ effects on the system, and hence, designing several detection algorithms or 

counter measures against attacks. 

In recent years, SE [10, 11] theory paved the way to exploit the time varying 

structure of the system in its estimation. It was originally invented by Adrien-Marine 

Legendre and Carl Friedrich Gauss in 1805-1809. Fred Schweppe in [11] modeled the 

SE problem as the basis selection problem. Thus, the estimated state vector can be 

obtained by using well-known algorithms in the field of power electricity. Shweppe 

introduced how to estimate the state vector using the WLS algorithm [11]. 

In power grids, maintaining synchronism between each power sub-systems is 

one of the major factors that helps in increasing the reliability of the power system in 

meeting the future demand growth. The security assessment of any power system 

comprises vulnerabilities resulting in voltage insecurity, static insecurity and dynamic 

insecurity [12]. The instability can be as a form of an increase in the angular swings 

of some generators which can lead to a loss of synchronism with other generators 

[13]. Further, Artificial Neural Network (ANN) has been utilized widely in the field 

of security that helps estimating the steady state, transient state and dynamic 
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stability/security status. This is due to its ability in solving non-linear pattern 

recognition problems.  

In [14], a divergence-based feature selection algorithm has been introduced in 

combination with the ANN for online security monitoring of the power systems.  The 

ANN works as a classifier in which it categorizes the operating data state into secure 

and insecure. This is achieved by passing the data into feature selection step. The 

feature selection step includes a pre-disturbance real and reactive power generation 

data of each generator. The main aim of this stage is to eliminate the insensitive 

features in prior to avoid exhaustive search of second stage. In the second stage, 

classes are classified based on the concept of divergence which is a measure of 

dissimilarity between the classes.  

In [15], authors proposed an error correction method based on ANN which can 

detect the erroneous measurements and replace it with the corresponding correct 

values. False measurements were added to the estimated state vectors and fed into the 

ANN. Results show that the proportion of divergent SE operations is somehow 

reduced as well as the mean square error of the estimated system state. 

In [16], a NN model has been proposed which is capable of detecting random 

FDI attack over IEEE-14, 30 and 300 bus systems. In fact, the system parameters 

were simulated using MATPOWER tool box. Results show that the proposed 

algorithm can detect the occurrence of an attack if four or more meters have been 

attacked.  

2.2. Background 

An overview of the investigated techniques is illustrated in this section. First, 

power systems are discussed in which power flow problem is stated followed by load 

flow solution. Later, the SE is presented in which WLS algorithm is utilized. Finally, 

the NN basics are explained as well as the algorithm used in building the NN. 

2.2.1. Power systems. This section describes the architecture of power 

systems and introduces the most common method in solving the power flow problem. 

In addition, it highlights the importance of the power flow calculation in monitoring 

the power grid. 
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2.2.1.1. Power flow. The power flow problem is the computation of voltage 

magnitude and phase angle at each bus in a power system under balanced three-phase 

steady-state conditions. There are several methods used to solve the power flow 

problem such as Gauss-Seidel, Newton Raphson (NR), Fast-decoupled power flow 

[17, 18]. The starting point of a power flow problem is a single line diagram of the 

power system where input data can be extracted. The input data comprises bus data, 

transmission line data, and transformer data. Each bus is associated with four 

variables defined as below [18, 19]. 

 Voltage magnitude 𝑉𝑘. 

 Phase angle 𝛿𝑘 . 

 Net real power 𝑃𝑘. 

 Reactive power 𝑄𝑘 supplied to the bus. 

At each bus, two of the above variables are always known (as an input) and 

the others can be calculated by the power flow solution as shown in Figure 2.1. The 

power injection at each bus 𝑘 is the difference between the power generated and the 

load power which is defined as below. 

 𝑃𝑘 = 𝑃𝐺𝑘 − 𝑃𝐿𝑘 (1) 

 
𝑄𝑘 = 𝑄𝐺𝑘 − 𝑄𝐿𝑘 (2) 

 

 

Figure 2.1: Bus variables 𝑉𝑘, 𝑑𝑘, 𝑃𝑘 [19]. 
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Furthermore, there are three different types of buses named as below: 

 Swing bus (Slack bus): In each power system, there is only one bus defined as 

Slack bus (usually numbered as bus-1) which is considered as a reference bus 

characterized by an input of voltage of 1.0 per unit and zero phase angle. 

Thus, power flow calculates the 𝑃 and 𝑄 for this bus. 

 Load (𝑃𝑄) bus: In this bus, 𝑃𝑘 and 𝑄𝑘 are considered as inputs and hence, 

power flow computes 𝑉𝑘 and 𝛿𝑘. 

 Voltage controlled bus (𝑃𝑉) bus: The inputs to this bus are 𝑃𝑘 and 𝑉𝑘 and 

consequently 𝑄𝑘 and 𝛿𝑘 are found by power flow. This bus is also known as 

Generator Bus. 

The above types of buses are summarized in Table 2.1. 

 

Table 2.1: Types of buses and its variables. 

Type of bus Known variables Unknown variables 

Load Bus (𝑃- 𝑄 Bus) 𝑃, 𝑄 𝑉, 𝛿 

Generator Bus (𝑃 - 𝑉 Bus) 𝑃, 𝑉 𝑄, 𝛿 

Slack Bus (𝑉- 𝛿 Bus) 𝑉, 𝛿 𝑃, 𝑄 

 

Moreover, the input data to each transmission line is represented as a π circuit 

series impedance 𝑍′̅ and shunt admittance 𝑌′; the two buses to which the line is 

connected. In this thesis, all vectors are denoted with a bar above the variable. The 

bus admittance matrix 𝑌 is formulated from the nodal equations defined as below [18, 

19]. 

 

[

𝑌11 𝑌12 𝑌13 … 𝑌1𝑁

𝑌21 𝑌22 𝑌23 … 𝑌2𝑁

⋮ ⋮ ⋮ ⋮ ⋮
𝑌𝑁1 𝑌𝑁2 𝑌𝑁3 … 𝑌𝑁𝑁

] [

𝑉10

𝑉20

⋮
𝑉𝑁0

]  =  [

𝐼1
𝐼2
⋮
𝐼𝑁

] 
(3) 

The above can be re-written as follows 

 𝑌𝑉̅ = 𝐼 ̅ (4) 

Where 𝑌 is the bus admittance matrix, 𝑉̅ is the 𝑁-bus voltages and 𝐼 ̅ is the column 

vector of 𝑁-current sources. The 𝑌-bus is molded as below:  
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 Diagonal elements: 𝑌𝑘𝑘= sum of admittances connected to bus 𝑘 (𝑘= 1, 2, 3, 

…,𝑁). 

 Off-diagonal elements: 𝑌𝑘𝑛= - (sum of admittances connected between buses 

𝑘 and 𝑛) (𝑘 ≠  𝑛). 

The significance of writing nodal equations is to generate the admittance 

matrix easily and solve accordingly for the bus voltage vector when currents are 

known [19]. 

Further, in this thesis, IEEE-30 bus system is considered where six generators 

are distributed among the buses, one slack bus referenced as the first bus and the rest 

of the buses considered as load buses. The architecture of the above system is shown 

in Figure 2.2. 

 

 

Figure 2.2: IEEE 30-bus system [19]. 

 

2.2.1.2. Newton Raphson (NR) method. This method is an iterative algorithm 

that solves a set of non-linear equations with an equal number of unknowns [20, 21]. 

It is widely used for solving load flow problems due to its ability to obtain the state 

variables (voltages and phase angles) of all the buses. The power equations are  
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defined as following: 

 

𝑃𝑘(𝑥) = 𝑉𝑘 ∑ 𝑌𝑘𝑛𝑉𝑛 cos(𝛿𝑘 − 𝛿𝑛 − 𝜃𝑘𝑛)

𝑁

𝑛=1

 (5) 

 

𝑄𝑘(𝑥) = 𝑉𝑘 ∑ 𝑌𝑘𝑛𝑉𝑛 sin(𝛿𝑘 − 𝛿𝑛 − 𝜃𝑘𝑛)

𝑁

𝑛=1

 (6) 

Where 𝑘= 2, 3, ….., 𝑁. The first slack bus (𝑘=1) is excluded since it is known. 

However, after the formation of the Y-bus, the Jacobian matrix is computed as 

following 

 
𝐽11 = [

𝐿22 ⋯ 𝐿2𝑥

⋮ ⋱ ⋮
𝐿𝑥2 ⋯ 𝐿𝑥𝑥

] (7) 

Where  

𝐿𝑖𝑘 =
𝜕𝑃𝑖

𝜕𝛿𝑘
 , 𝐿𝑖𝑖 =

𝜕𝑃𝑖

𝜕𝛿𝑖
 

 
𝐽21 = [

𝑀22 ⋯ 𝑀2𝑥

⋮ ⋱ ⋮
𝑀𝑥2 ⋯ 𝑀𝑥𝑥

] (8) 

Where  

𝑀𝑖𝑘 =
𝜕𝑄𝑖

𝜕𝛿𝑘
 , 𝑀𝑖𝑖 =

𝜕𝑄𝑖

𝜕𝛿𝑖
 

 
𝐽12 = [

𝑁22 ⋯ 𝑁2𝑥

⋮ ⋱ ⋮
𝑁𝑥2 ⋯ 𝑁𝑥𝑥

] (9) 

Where  

𝑁𝑖𝑘 = |𝑉𝑘|
𝜕𝑃𝑖

𝜕|𝑉𝑘|
 , 𝑁𝑖𝑖 = |𝑉𝑖|

𝜕𝑃𝑖

𝜕|𝑉𝑖|
 

 
𝐽22 = [

𝑍22 ⋯ 𝑍2𝑥

⋮ ⋱ ⋮
𝑍𝑥2 ⋯ 𝑍𝑥𝑥

] (10) 

Where  

𝑍𝑖𝑘 = |𝑉𝑖|
𝜕𝑄𝑖

𝜕|𝑉𝑘|
 , 𝑍𝑖𝑖 = |𝑉𝑖|

𝜕𝑄𝑖

𝜕|𝑉𝑘|
 

The above equations are solved iteratively and formed into one vector that can 

be used later in the SE equation [22]. 
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2.2.2. State Estimation (SE) overview. Yet, with the late integration of low 

carbon technology in power grids, an enhanced observability of the networks has 

become crucial. As a result, SE started receiving a significant attention by distribution 

system operators in performing security analysis and managing the networks. Indeed, 

SE is considered a key energy management system function that enables achieving a 

reliable operation of the power system. Its responsibility lies in providing a database 

of the real time state of the system which helps other energy management functions 

[22, 23]. 

 The state of an electric power system holds both the bus voltage magnitudes 

and their respective phase angles. SE is an algorithm that utilizes statistical techniques 

to estimate the actual values of the unknown state variables. This was first introduced 

by Schweppe in [3], [5] at the initials of 1970’s. Many methods have been proposed 

to compute the state vector of the power system in the most efficient approach due to 

its high computational complexity. Obtaining this state vector includes collecting the 

real time measurements data such as line flows, power injection values, and voltage 

measurements. This was done through SCADA systems and proposed SE algorithms. 

Nevertheless, SE is divided into two types [24, 25]: 

 Static SE. The state vector in this type obtains the instant values of the 

measurement set and is repeated regularly at suitable time intervals. This sort 

of algorithm is commonly used in “quasi-static” power systems where power 

changes slowly but steadily [26, 27, 28]. 

 Dynamic SE. Such type is frequently used in dynamic power systems where 

power changes due to the change of driven loads. The power generation varies 

as the load changes which in turn affects the power flow and injections across 

the whole system. Thus, the use of dynamic SE arises to satisfy the need of 

monitoring and controlling the power grid at short intervals unlike static SE. 

Dynamic state estimators are capable of computing the next state vector at 

instant (t+k) knowing the current state vector at instant (t). This has been 

considered of prominent importance in power systems due to the ability in 

performing security analysis one step ahead and hence, allowing the operators 

more time to take the required action [26, 27, 28].  

WLS method is considered one of the common techniques that SE uses and 

was invented since the 19th century. The basis of this technique is to minimize the 



22 

 

sum of the squares of the error between the estimated and actual value of the state 

variable [28].  

2.2.2.1. Weighted Least Squares (WLS) algorithm. The WLS method is the 

optimal technique to solve an over-determined system. An over-determined system is 

when the number of equations is more than the number of unknowns. The over-

determined system can be best approximated through the least squares method. The 

least square method is a way to estimate the unknown parameters in an equation by 

minimizing the sum of the squared errors (deviation) between the data and the 

model." Weighted" means that a certain number is assigned to each result based on 

the reliability of the data [29]. 

2.2.2.2. Weighted Least Squares (WLS) mathematical modeling. The data of 

the model is received as a vector 𝑧̅, from the SCADA system, and it is of size 𝑚 that 

can be written as: 

 
𝑧̅ 𝑚𝑒𝑎𝑠 = [

𝑧1

⋮
𝑧𝑚

] (11) 

Then, a state vector 𝑥̅ is considered and since the power system is a complex network 

then the SE will be a non-linear function denoted by ℎ̅(𝑥) as follows 

 
ℎ(𝑥) = [

ℎ1(𝑥1  … 𝑥𝑛)
⋮

ℎ𝑚(𝑥1  … 𝑥𝑛)
] (12) 

Where 𝑛 is the total number of the system state variables. There is a true measurement 

values for the state variables. Thus, the calculated estimate from the non-linear 

function ℎ(𝑥) will deviate from the actual value and this deviation is called error (𝑒̅). 

The error vector is represented in the below equation and one can note that the size of 

𝑒̅ is of the same size as 𝑧̅. Also, it is worth mentioning that each error is independent 

of the other errors, with zero mean and independent covariance [30, 31]. 

 
𝑒̅ =  [

𝑒1

⋮
𝑒𝑚

] (13) 

Therefore, the true measurement 𝑧̅ can be best represented by the following equation: 

 𝑧̅ 𝑚𝑒𝑎𝑠 = ℎ(𝑥) + 𝑒̅ (14) 

Where the 𝑧̅ equation represents the state equation after derivation. And the error is 

added to compensate for the difference between the actual and calculated values [30]. 

In order to solve the SE problem using the WLS SE technique, an objective function 
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should be minimized. In other words, the jacobian matrix shall be minimized as given 

below. 

 
𝐻(𝑥) = 𝑚𝑖𝑛𝑥 𝐽(𝑥) =  ∑

(𝑧𝑖 − ℎ𝑖(𝑥))2

𝑅𝑖𝑖

𝑚

𝑖=1

 (15) 

Where: 

𝑥          : the system state variables. 

𝐽(𝑥) : the measurement residual function.  

𝑧𝑖 : ith measurement. 

𝑚 : total number of measurements. 

𝑅 : is called “the covariance matrix of measurement errors” [30]. 

As indicated from the above equation, 𝐽(𝑥) is a summation of the squares of the 

measurement errors, in addition to a weighted matrix known as the covariance matrix 

as described below. 

 

𝐶𝑜𝑣 (𝑒̅) = 𝑅 = [

𝑅11 0 0 0
0 𝑅22 … 0
0 ⋮ ⋱ ⋮
0 0 … 𝑅𝑚𝑚

] =

[
 
 
 
 

𝜎1
2 0 … 0

0 𝜎2
2 0 ⋮

⋮ 0 ⋱ 0
0 … 0 𝜎𝑚𝑚

2]
 
 
 
 (16) 

Where 𝜎𝑖
2 is the 𝑖𝑡ℎ measurement variance and 𝑚 is the number of measurements. 

The objective function can be minimized by taking the partial derivatives of 𝐽(𝑥) with 

respect to the state variables 𝑥. Hence, 
𝜕𝐽 𝑥

𝜕𝑥
 is denoted as 𝑔(𝑥) which is a common 

term in most power systems. Similarly, the measurement function is derived with 

respect to the state variable and is denoted by 𝐻(𝑥) as shown below [32, 33]. 

 

𝐻 =

[
 
 
 
 
 
 
 
 
 
 

𝜕𝑃𝑖𝑖

𝜕𝜃

𝜕𝑃𝑖𝑖

𝜕𝑉
𝜕𝑃𝑖𝑗

𝜕𝜃

𝜕𝑃𝑖𝑗

𝜕𝑉
𝜕𝑄𝑖𝑖

𝜕𝜃

𝜕𝑄𝑖𝑖

𝜕𝑉
𝜕𝑄𝑖𝑗

𝜕𝜃

𝜕𝑄𝑖𝑗

𝜕𝑉
𝜕𝑉𝑚𝑎𝑔

𝜕𝜃

𝜕𝑉𝑚𝑎𝑔

𝜕𝑉 ]
 
 
 
 
 
 
 
 
 
 

 (17) 

Where: 
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𝜕𝑃𝑖𝑖

𝜕𝜃
 : Real power injection measurements at bus i with respect to the phase angles. 

𝜕𝑃𝑖𝑖

𝜕𝑉
 : Real power injection measurements at bus i with respect to the voltage 

magnitudes. 

𝜕𝑄𝑖𝑖

𝜕𝜃
 : Reactive power injection measurements at bus i with respect to the phase 

angles. 

𝜕𝑄𝑖𝑖

𝜕𝑉
 : Reactive power injection measurements at bus i with respect to the voltage 

magnitudes. 

𝜕𝑃𝑖𝑗

𝜕𝜃
 : Real power flow measurements from bus i to bus 𝑗 with respect to the phase 

angles. 

𝜕𝑃𝑖𝑗

𝜕𝑉
 : Real power flow measurements from bus i to bus j with respect to the voltage 

magnitudes. 

𝜕𝑄𝑖𝑗

𝜕𝜃
 : Reactive power flow measurements from bus i to bus j with respect to the 

phase angles. 

𝜕𝑄𝑖𝑗

𝜕𝑉
 : Reactive power flow measurements from bus i to bus j with respect to the 

voltage magnitudes. 

𝜕𝐼𝑚𝑎𝑔

𝜕𝜃
 : Current magnitude measurements from bus i to bus j with respect to the 

phase angles. 

𝜕𝐼𝑚𝑎𝑔

𝜕𝑉
 : Current magnitude measurements from bus i to bus j with respect to the 

voltage magnitudes. 

𝜕𝑉𝑚𝑎𝑔

𝜕𝑉
 : Voltage magnitude measurements with respect to their corresponding voltage 

magnitude at bus 𝑖 or bus 𝑗. Such that: 

𝜕𝑉𝑖

𝜕𝑉𝑖
= 1, 

𝜕𝑉𝑖

𝜕𝑉𝑗
= 0, 

𝜕𝑉𝑖

𝜕𝜃𝑖
= 0, and 

𝜕𝑉𝑖

𝜕𝜃𝑗
= 0  

𝐻(𝑥) is called the measurement Jacobian matrix, which is equal to 
𝜕𝐽( 𝑥)

𝜕𝑥
 [33]. The 

objective function in terms of 𝑔(𝑥) and 𝐻(𝑥) is as follow: 

 
𝑔 (𝑥) =  

𝜕𝐽(𝑥)

𝜕𝑥
=  − 

𝜕ℎ(𝑥)

𝜕𝑥

   𝑇

𝑅−1 (𝑧 − ℎ (𝑥)) =  −𝐻(𝑥)𝑇𝑅−1( 𝑧 − ℎ (𝑥)) = 0 (18) 

Where T is the transpose of the matrix. It is important to highlight that computing 𝐻(𝑥) is 

one of the most significant steps when solving the WLS algorithm. In fact, most of the 
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data acquired from the SCADA systems are integrated in a non-linear form. As a result, 

calculating the Jacobian matrix is more complicated compared with linear systems [34]. 

Furthermore, as per Taylor series expansion in [33], the higher order of the above 

equation can be neglected and hence, the equation can be iteratively resolved by NR 

method. Below equation represents the iterative solution for the state variable, 𝑥: 

 𝑥𝑘+1 = 𝑥𝑘 + [𝐻(𝑥𝑘) 𝑇𝑅−1𝐻(𝑥𝑘)]−1𝐻(𝑥𝑘) 𝑇𝑅−1 (𝑧 − ℎ (𝑥𝑘)) (19) 

 𝑥𝑒𝑠𝑡 = [𝐻(𝑥) 𝑇𝑅−1𝐻(𝑥)]−1𝐻(𝑥) 𝑇𝑅−1 (𝑧 − ℎ( 𝑥)) (20) 

The matrix 𝐺(𝑥𝑘) is sparse, definite and positive noting that the system is fully 

observable [33]. Given that 𝐺(𝑥𝑘) is sparse, the inverse of it is a full matrix which is 

not likely to have on the right side according to the below equation 

 𝑥𝑘+1 = 𝑥𝑘 + 𝐺(𝑥𝑘)−1 𝑔(𝑥𝑘) (21) 

Where: 

𝐺(𝑥𝑘) : 𝐻(𝑥𝑘) 𝑇𝑅−1𝐻(𝑥𝑘) = known as the gain matrix. 

𝑔(𝑥𝑘) : 𝐻(𝑥𝑘) 𝑇𝑅−1( 𝑧 − ℎ (𝑥𝑘)) = the non-linear function. 

𝑘 : iteration number. 

(𝑥𝑘) : solution vector for the 𝑘th iteration. 

Consequently, some adjustments and manipulations are done in which 𝑥𝑘 is 

moved to the left hand side of the equation, which yields the difference between the 

two consecutive iterations, 𝛥𝑥 = (𝑥𝑘+1)  −  (𝑥𝑘). Later, all of the equation is 

multiplied by 𝐺(𝑥𝑘) to discard it from the right side. The new equation will become 

as following 

 𝐺(𝑥𝑘)(∆ 𝑥) =  𝑔(𝑥𝑘) (22) 

 𝐺(𝑥𝑘)(∆ 𝑥) =  𝐻(𝑥𝑘) 𝑇𝑅−1 (𝑧 − ℎ (𝑥𝑘)) (23) 

At the start of the process, 𝑘 is set to zero and the initial value of the state variable 𝑥 is 

set to 1.0 per unit for the voltage and zero for the phase angle. After that, 𝑔(𝑥𝑘) and 

𝐺(𝑥𝑘) are computed to find the next state variable 𝑥1. This procedure is repeated until 

the difference between 𝑥(𝑘 + 1) and 𝑥(𝑘) is below a defined threshold ε [35, 36]. 
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2.2.3. Neural Network (NN) overview. NN has been used extensively in 

complex systems to extract certain patterns and detect trends that cannot be observed 

by humans or other computers. The basis of this technique relies on feeding your 

designed network with information to train it and enhance its performance. One of the 

main advantages of NN is its Adaptive learning; the ability of doing certain tasks 

based on the given data for training. It is also important to highlight that a new 

representation of the information fed during the training will be done by the NN [37, 

38].  

In comparison to conventional computers, NN utilizes an algorithmic 

approach in solving the problems. It processes the information in a similar way to the 

human brain. The network is defined as a huge number of highly interconnected 

processing elements (called neurons) working in parallel to resolve a particular 

problem. NN is trained by examples and not a set of instructions [39, 40, 41]. The 

selection of the examples must be done carefully so the NN can function successfully.  

2.2.3.1. Network layers. The NN consists of three layers; inputs layer which is 

connected to hidden layers connected to outputs layer as shown in Figure 2.3. 

Each layer consists of several units represented as mentioned earlier 

“neurons”. The input layer represents the raw data fed into the network for training. 

Each unit in the hidden layer is responsible to take an action based on the action taken 

by the input units, as well as the weights of the corresponding connections between 

the input and hidden neurons. Similarly, the output units depend on hidden units’ 

activities and the connections between the hidden and output neurons [42, 43]. 

As mentioned earlier, the NN can build its own representation of the input data 

which makes it an attractive topic to most of the developers. However, a hidden unit 

is active based on the weights between the input and hidden units. Thus, any 

modification to the weights change the representation of the hidden unit accordingly 

[44, 45, 46].  

The network’s response in pattern recognition can be classified into two 

general paradigms; associative mapping and regularity detection [47]. In the first 

paradigm, a particular pattern is learnt and produced by the network on the input units 

when a new pattern is applied on the set of input neurons.  
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Figure 2.3: NN layers architecture. 

 

Generally, the associative mapping uses different techniques such as auto- association 

and hetro-association. An auto-association happens whenever the states of both input 

and output units match. This type technique is utilized in order to complete the 

pattern. In other words, it is used whenever the pattern is distorted or incomplete. In 

the second technique, pairs of patterns are stored in the network in which it builds an 

association between two sets of patterns. However, hetero-association can be divided 

into two algorithms; nearest-neighbor in which the output pattern is dependent on the 

stored input pattern being the closest to the pattern generated. The second algorithm is 

interpolative where the output pattern depends on interpolating the stored patterns 

corresponding to the pattern presented.  

The second paradigm is the regularity detection in which units learn to react 

against certain properties of the input patterns. Unlike the associative mapping where 

the network saves the connections of the patterns, in regularity detection the output of 

each unit has a certain meaning. This type can be very useful for feature discovery 

field [48].  Every NN holds knowledge which is kept in the weights of the 

connections between the layers. Adjusting these values in the network as an 

experience function will produce a learning rule for modifying the values of the 

weights. Further, the information stored in the weights are represented by matrix 𝑊 of 

a NN.  
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Following the way learning is performed, NNs can be distinguished into two 

categories [49, 50]: 

 Fixed networks where the weights are fixed, i.e. 
𝑑𝑊

𝑑𝑡
=0. In such networks, the 

weights chosen in advance to solve a problem. 

 Adaptive networks which are flexible to change the weights, i.e. 
𝑑𝑊

𝑑𝑡
 ≠0. 

All learning methods used to train the NN can be classified into two major 

categories; supervised learning which includes an external instructor in order to teach 

each output the required response against a certain input. Paradigms of supervised 

learning include reinforcement learning, error-correction learning and stochastic 

learning. The second method is the unsupervised learning which utilizes local 

information only. It is known as self-organizing network; in which it organizes the 

data by itself to be presented to the network. In addition, it detects the collective 

properties of the data [50].    

The NN can be trained offline if the learning and operation phases are 

different. Usually, supervised learning is executed offline, while unsupervised 

learning is executed online. 

Moreover, to implement the above mentioned learning algorithms, the error 

derivative for the weight (EW) has to be calculated in order to change the weight by 

an amount that is proportional to the rate at which the error changes as the weight is 

changed. To calculate the EW, the weight has to be disrupted slightly so the error 

changes can be observed. However, this method is inefficient since it requires a 

separate disruption for each weight.  

Another way to calculate the EW is to use the Back-Propagation (BP) 

algorithm which is described below, and has become nowadays one of the most 

important tools for training NNs. 

2.2.3.2. The Back-Propagation (BP) algorithm. NN are usually trained by 

computing the error between the desired and calculated output iteratively for each 

unit. This is done by calculating the EW of each unit until the error is minimal. This 

means that the NN has to compute the change of the error whenever the error of each 
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weight is changed. Indeed, the BP algorithm is considered the most widely used 

method for computing the change of error [51]. 

In order to calculate the EW, the NN shall first compute the EA; which is the 

rate as the error changes when the activity level of a unit is varied.  However, for the 

output units, the EA is computed by taking the difference between the actual and 

desired output. For the hidden unit before the output layer, it is important to first 

identify all the weights between the hidden unit and the output units. Once 

recognized, those weights by the EAs of the corresponding outputs shall be multiplied 

and added to the products. The summation will be equal to the EA for the chosen 

hidden unit. Moreover, once all the EAs of the hidden units before the output layer, 

the EAs of the units in other layers shall be computed moving from one layer to 

another in an opposite direction to the way activities propagate throughout the 

network. As a result, this technique is named as back propagation. The EW for each 

incoming connection can be computed easily once the EA of a unit is calculated. EW 

is defined as the product of the change of error into the activity through the 

corresponding connection [52]. This is clearer if we take an example as shown in 

Figure 2.4. 

 

 

 

 

Figure 2.4: NN layers architecture example. 

 

Where 𝑋1 and 𝑋2 are the input signals, 𝐻1and 𝐻2 are the hidden layers and the outputs 

represented by 𝑌1and 𝑌2. The hidden layer 𝐻1 is calculated as following 

 𝐻1 = (𝑥1 × 𝑤1) + (𝑥2 × 𝑤2) (24) 

After that, the activation function (sigmoid denoted by  𝑆 [51]) is used  

 
𝑆(𝑥) =

1

1 + 𝑒−𝑥
 (25) 

in which the output of  𝐻1 will become 

 
𝑜𝑢𝑡 𝐻1 = 

1

1 + 𝑒−𝐻1
 (26) 
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The same procedure is applied on 𝐻2 until the output of 𝐻2 is obtained. Later, the 

outputs can be computed as per below 

 𝑌1 = (𝑜𝑢𝑡 𝐻1 × 𝑤5) + (𝑜𝑢𝑡 𝐻2 × 𝑤6) (27) 

 
𝑜𝑢𝑡 𝑌1 = 

1

1 + 𝑒−𝑌1
 (28) 

The same way is used to obtain  𝑌2. Then, the output values are compared with the 

target values by calculating the total error as below 

 
𝐸𝑡𝑜𝑡𝑎𝑙 = ∑

1

2
(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 )2 (29) 

Consequently, the weights will be updated backwards starting by 𝑤5, 𝑤6, 𝑤7 𝑎𝑛𝑑 𝑤8. 

The total error calculated will be differentiated with respect to each weight. Below is 

done for 𝑤5 

 
𝑤5 = 𝑤5 −  𝜂 × 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
 (30) 

In which 𝜂 is the learning rate and  
𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
 computed as below 

 𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑤5
= 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙

𝜕𝑜𝑢𝑡 𝑌1
×

𝜕𝑜𝑢𝑡 𝑌1

𝜕𝑌1
× 

𝜕𝑌1

𝜕𝑤5
 (31) 

This is done for each weight and then the same forward calculations are done again. 

The NN will stop computing until the total error is below the defined tolerance value 

[52]. 
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Chapter 3. False Data Injection (FDI) System  

This chapter begins with an overview about the problem formulation behind 

this thesis. After that, the system architecture is explained thoroughly by presenting 

the process of the proposed design with a detailed flowchart. Later, the use of SE and 

its role in this work is illustrated. Finally, NN design is explored carefully. 

3.1. Problem Formulation 

Smart grid systems are considered one of the main evolving segments in the 

power industry. Indeed, smart grids are structured in a way that requires sophisticated 

and decentralized monitoring control schemes to guarantee a stable functionality of 

the operation. Yet, allocating monitoring devices at all the buses of the power system 

is highly costly. As a result, SE is introduced where different techniques can be 

utilized. Moreover, the communication between the monitoring devices and the 

SCADA system is vulnerable to external attacks and hence, adding a cyber-layer to 

the infrastructure is a key element in the power network.  The main aim behind this 

work is to introduce a trustworthy NN that is capable of providing an automatic 

detection of data manipulation whether bypassed by the state estimator or not over the 

whole power network. Accordingly, operator will be informed when there is an 

intrusion over the power network. 

3.2. System Model 

Several meters have been placed at some buses as shown in Figure 3.1. These 

meters are used to obtain the data of the buses including real and reactive power 

injections as well as real and reactive power flowing between the buses. These data 

are listed in Appendix B. The bus data is utilized to find the bus state variables (phase 

angles) through the SE. This technique can be used later in validating the phase angles 

found by SE. In this algorithm, 𝑄- 𝑉 equations are totally neglected, and all the bus 

voltages are constants at 1.0 per unit. Thus, the line power flow equation between bus 

𝑗 and 𝑘 with 𝑋 reactance is simplified to  

 𝑃𝑗𝑘 =
𝛿𝑗 − 𝛿𝑘

𝑋𝑗𝑘
  (32) 
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Figure 3.1: IEEE-30 bus system with located meters. 

 

So, the real power equations reduce to a linear problem as 

 −𝐵̅𝛿̅ = 𝑃̅  (33) 

Where 𝐵̅ is an imaginary component of 𝑌𝑏𝑢𝑠 calculated neglecting line resistance, 𝛿̅  

is the phase angles vector and 𝑃̅ is a vector of real power injections (with assumed 

positive generation). Later, SE is performed to estimate the state variables of the 

buses. After that, the phase angles are compared with the ones obtained in the load 

power flow (NR) to validate the correctness of the SE technique. Finally, the obtained 

data is passed through a NN model to detect and ensure no data manipulation has 

occurred. The flowchart in Figure 3.2 illustrates the process proposed in this thesis. 

3.3. State Estimation (SE) Algorithm 

The SE is done through WLS method. The raw data attained from the bus 

system are used to estimate the voltages and phase angles of all the buses. This 

method outstands other techniques in minimizing the error as much as possible.  
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3.4. False Data Injection (FDI) Attack 

FDI attacks can be conducted on different parts of the power grid such as 

transmission systems, distribution systems, advanced metering infrastructure, etc [30]. 

 

 

Figure 3.2: Process flowchart. 

 

In this thesis, a random FDI attacks on the static SE in the AC power 

transmission system are considered. In fact, the attacker is assumed to have a limited 

access to a certain number of meters in which their physical data (voltages, currents, 

phase angles) can be manipulated. This is achieved by corrupting the measurement 

vector communicated by the SCADA and hence launch an FDI attack. However, this 

requires a pre-knowledge of the needed elements of the measurement matrix 𝐻. It is 

assumed that the attacker has the ability to learn these system information prior to 

devising the attack, either because the attacker is a trusted insider or has hacked into 

the system databases.   

The process for constructing a vector for an FDI attack is as follows. Any non-

zero arbitrary vector can be chosen by the attacker to be as attack vector 𝑎̅  in order to 

corrupt the measurement vector 

 
𝑧𝑎̅ = 𝑧̅ + 𝑎̅ 

 (34) 
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Where 𝑧̅ is the original measurement vector. This vector holds all the power injections 

and flow measurements that are used to estimate the state variables (voltages and 

phase angles) of the plant buses.  Once this vector is corrupted then the estimated state 

variables will be affected accordingly. In usual state estimators, traditional bad data 

detection methods are able to detect an attack if the residual 𝑟̅ = ‖𝑧𝑎̅ − 𝐻𝑥̂̅‖ is more 

than a certain predefined threshold 𝜏 (usually chosen to be 3 [30]). Nevertheless, if the 

attacker uses 𝐻̅𝑐̅ as the attack vector 𝑎̅ (i.e., 𝑎̅  =  𝐻𝑐̅); where 𝑐̅ is a non-zero error 

vector of length n injected by the attacker; then, the 𝐿2-norm of the measurement 

residual of 𝑧𝑎̅ is equal to that of 𝑧̅, as shown below.  

 

‖𝑧𝑎̅ − 𝐻𝑥̂̅‖ = ‖𝑧̅ + 𝑎̅ − 𝐻(𝑥̂̅ + 𝑐̅)‖ 

                          = ‖𝑧̅ − 𝐻𝑥̂̅ + (𝑎̅ − 𝐻𝑐̅)‖ 

           = ‖𝑧̅ − 𝐻𝑥̂̅‖ ≤ 𝜏 

 (35) 

In other words, if the attacker chooses 𝑎̅ as a linear combination of the column 

vectors of 𝐻, then, 𝑧𝑎̅ can pass the detection as long as 𝑧̅ can pass the detection [30]. 

Hence, the resulted state variables vector 𝑥̂̅𝑏𝑎𝑑 can be expressed as 𝑥̂̅ + 𝑐̅; where 𝑥̂̅ is 

the healthy state variables vector. Using this method will allow the corrupted vector to 

be processed without being detected by the state estimators. 

In this thesis, the above system model is constructed in which a NN model is 

proposed to detect an FDI attack that it is bypassed by the traditional state estimators. 

It is important to note that the attack vector is being generated randomly and the 

attacked meters are being selected randomly as well. The simulated results are shown 

in the simulation results section. 

3.5. Neural Network (NN) Model  

The NN tool in MATLAB is used in which is based on the BP algorithm. The 

estimated input data vectors are passed into the NN to check if the estimated data are 

the same as the target values. A certain threshold has been set in which if the change 

in data exceeds that threshold, an intrusion is detected. The NN acts as a cyber layer 

to protect and ensure a reliable data being displayed to the operators. The NN model 

consists of ten hidden layers with one input vector and one output vector.  
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Chapter 4. Power System Simulation 

In this chapter, the previously mentioned IEEE-30 bus system is used in 

estimating the bus state variables. Implementation of this architecture along with the 

employed algorithms for real-time data monitoring is presented. MATLAB simulator 

is used to validate the proposed design.  

4.1.      Power Flow by Newton Raphson (NR) 

To begin with, a power flow analysis using NR method has been performed to 

find out the phase angles of the buses so it can be used later on in validating the SE 

algorithm. The 30-buses system data are fed into the load power flow calculation in 

which there are six generator buses, one slack bus and the rest of the buses are 

considered as load buses.  Furthermore, the line data parameters are selected as per 

Appendix A. These data are used to calculate the nodal admittance matrix known as 

the Y-bus matrix.  

Once the admittance matrix is calculated, the Susceptance (B) matrix can be 

attained since it is the imaginary part of the admittance as mentioned earlier in the 

report. Nevertheless, the slack bus is removed before calculating the real power of 

lines which is used accordingly in determining the phase angles as shown Figure 4.1.  

 

 

Figure 4.1: Phase angles of the IEEE-30 bus system using NR. 
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4.2.      State Estimation (SE) Validation 

In this design, SE is performed using the WLS technique to acquire the state 

variables; voltages and phase angles. The previous IEEE-30 bus system is utilized 

considering both real and reactive powers as per Appendix B. 

The same line data presented in Appendix A is used in calculating the Y-bus 

matrix. The admittance matrix is used in calculating power flow equations to estimate 

the state variables. The resulting phase angles are compared with the NR results in 

order to assess the reliability of the SE algorithm in estimating the correct state 

variables. Both results are plotted as shown in Figure 4.2. 

 

 

Figure 4.2: Comparison between estimated and real phase angles. 

 

It is clearly shown in Figure 4.2 that the estimated phase angles are exactly 

matching the real values for a single sample measured at each of the 30 buses. After 

validating the SE technique, the attack vector is built in order to be injected to the 

measurement vector.  

4.3.      Attack Vector 

The attack vector can be simulated as an offset added to the measurement 

vector. For example, if the attacker has an access to meters 12, 76, and 84 in the 
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IEEE-30 bus system shown in Figure 3.1 then, the attack vector 𝑎̅ is shown in 

Table 4.1. 

 

Table 4.1: Attack vector. 

Meter # Offset value 

1 
⋮ 

0
⋮
 

12 0.021194 

⋮ 
0
⋮
 

76 0.023478 

⋮ 
0
⋮
 

84 0.0353159 

93 
⋮
0

 

 

Note that the empty elements are zeros. Hence, the corrupted measurement vector 

𝑧𝑎̅ = 𝑧̅ + 𝑎̅, is fully shown in Appendix C, however, the corrupted meters are 

highlighted in Table 4.2 below. 

 

Table 4.2: Healthy measurement vector vs. corrupted measurement vector. 

Type of measurement Meter # 
Healthy 

measurement value 
Corrupted measurement 

value 
 
⋮ 

1  
⋮ 

 
⋮ 

 
⋮ 

Real power injection 12 -0.032 -0.011 
 
⋮ 

 
⋮ 

 
⋮ 

 
⋮ 

Reactive power flow 76 -0.159 -0.136 
 
⋮ 

 
⋮ 

 
⋮ 

 
⋮ 

Reactive power flow 84 -0.097 -0.062 
 
⋮ 

 
⋮ 

93 

 
⋮ 

 
⋮ 

 

Comparing both measurement vectors, it is observed that the measurement 

values of the attacked meters only (highlighted) have been changed. In this thesis, the 

meters reachable by the attacker are randomly selected in each trial since this may 

vary each time depending on the knowledge the attacker has with respect of the power 

plant topology. Similarly, the offset values of the selected meters are randomly 
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generated within the range of (0 to 1) in each trial. The same is applied with the IEEE-

30 bus system. 

4.4.      Neural Network (NN) Training 

In order to train the NN, several tests have been conducted in which five sets 

of measurements are taken at different times of the day. In each test, SE has been 

applied to estimate the corresponding voltages and phase angles. Later, different 

meters are attacked with different attack vectors to be fed to the NN for FDI attack 

detection. A total of 30 random attack vectors are injected into each measurement set 

of values. All the tests are listed in Appendix D.  

4.4.1. Test 1. In this test, SE is first conducted and the results of the state 

variables compared to the real ones are shown in Figure 4.3. It is observed that the 

estimated state variables are almost the same as the real variables obtained by NR 

method.  

 

 

Figure 4.3: Comparison between estimated and real phase angles (test 1). 

  

4.4.2. Test 2. In this test, different meters for real and reactive power 

injections have been changed as indicated in Appendix D (Test 2). However, SE is 
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first conducted and the results of the state variables compared to the real ones are 

shown in Figure 4.4. 

 

 

Figure 4.4: Comparison between estimated and real phase angles (test 2). 

 

It is observed from Figure 4.4 that the estimated state variables are almost the 

same as the real variables obtained by NR method.  

4.4.3. Test 3. In this test, different meters for real power injections, reactive 

power injections, real power flow and reactive power flow measurements have been 

changed as indicated in Appendix D (Test 3). However, SE is first conducted and the 

results of the state variables compared to the real ones are shown in Figure 4.5. It is 

observed that the estimated state variables are almost the same as the real variables 

obtained by NR method.  

4.4.4. Test 4. In this test, different meters for real power injections, reactive-  

power injections, real power flow and reactive power flow measurements have been 

changed as indicated in Appendix D (Test 4). However, SE is first conducted and the 

results of the state variables compared to the real ones are shown in Figure 4.6. From 

Figure 4.6, it is noticed that the estimated state variables are approximately the same 

as the real variables obtained by NR method. However, there is a difference of one 

degree between some of the phase angles as highlighted. However, there are several 

reasons behind why the numbers are so different from the original values. 
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Figure 4.5: Comparison between estimated and real phase angles (test 3). 

 

One of the reasons is obviously the measurement. Sometimes, the 

measurements themselves are deviated from the “True” value by almost 10% [32]. 

The second reason is the error variance of the measuring devices. In this case, σ was 

taken to be 0.01. Therefore, the main objective function behind the WLS method is to 

minimize the Jacobian matrix, given in equation 15. 

4.4.5. Test 5. In this test, SE is again conducted and the results of the state 

variables (phase angles) compared to the real ones are shown in Figure 4.7. It is 

observed that the estimated phase angles are almost the same as the real angles 

obtained by NR method. However, there is 0.13 degree difference in some of the 

phase angles. As mentioned earlier, this difference could be due to several reasons 

such as variances in the error of a meter’s measurement. Each of the above SE results 

are attacked with 30 random attack vectors that ranges between 0 -20% of the 

measurement values and fed into the NN.  

A total number of 250 samples representing voltages and phase angles have 

been fed into the NN in which it includes 175 corrupted and 75 healthy samples. In 

the proposed NN model, twenty hidden layers have been chosen since it provides the 

required optimum output in a shortest timely manner compared to higher number of 

layers. 
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Figure 4.6: Comparison between estimated and real phase angles (test 4). 

 

 

Figure 4.7: Comparison between estimated and real phase angles (test 5). 

  

Figure 4.8 illustrates the NN architecture taken by MATLAB. It is clearly 

shown in Figure 4.8 that the input vector consists of 59 state variables representing 

the voltages and phase angles of the IEEE-30 bus system excluding the slack bus. 

Following that, 20 hidden layers are chosen to be connected to the output layer. 

Finally, the output vector consists of two categories as True and False. 
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Figure 4.8: NN architecture. 

 

The confusion matrix is plotted to observe the behaviour of the NN design as 

shown in Figure 4.9. 

A closer look at Figure 4.9 indicates that 165 samples have been identified and 

detected correctly. However, 9 samples are detected as healthy samples while they are 

corrupted measurements. Further, the NN model has been validated in which 2 

samples only were detected wrong out of 38 samples. In the test stage, two samples 

are only detected wrongly while the other 36 samples are detected successfully.  

4.5.      Tested System Model 

Two tests have been conducted on the 30-bus system in which the number of 

corrupted meters is changed. It has been shown in [10] that the minimum number of 

attacked meters needed to detect an FDI intrusion, is four. However, this work 

illustrates that the designed NN can detect FDI attacks when four meters are attacked, 

or even if only three meters are attacked.  

4.5.1. Four meters test. Measurements from a random set of four meters have 

been corrupted with random offset values. For example, the corrupted meters are (62, 

17, 12, 90) with added offset values of [0.070, 0. 166, 0. 153, 0.169] respectively. The 

SE is performed with the given measurements and the obtained state variables are 

shown in Appendix D. However, a major change is highlighted in Table 4.3 below. It 

is observed from Appendix D that the main impact is on the phase angles in which it 

deviates with a maximum value of 17.65 degrees as highlighted in Table 4.3. The 

resulting vector is passed through the NN and the result is shown Table 4.4. 
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Figure 4.9: Confusion matrix. 

 

Table 4.3: Measurement vectors of healthy and corrupted vectors (four meters). 

Bus  

Corrupted measurement 
vector 

True measurement 
vector Deviation of 

Voltage from 
the true value 

Deviation of 
phase angle 
from the true 
value 

Voltage 
(p.u) 

Phase 
angle 
(degree) 

Voltage 
(p.u) 

Phase 
angle 
(degree) 

26 1.11198 1.604819 0.9071 -19.2564 0.204881 17.6516 

 

Table 4.4: NN result (four meters). 

NN categories Confidence rate for 4 meters test 

True 5.6 % 

False 94.4 % 

 

4.5.2. Three meters test. Measurements from three meters have been 

corrupted with random offset values. The meters (12, 76, 84) are corrupted with an 

attack vector of [0.235, 0.353, 0.182] respectively. The obtained SE results are shown 

in Appendix E. However, the major change highlighted in Table 4.5. 
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Table 4.5: Healthy and corrupted measurement vectors (three meters with residual 

higher than 3). 

Bus  

Corrupted measurement 
vector 

True measurement 
vector Deviation of 

Voltage from 
the true value 

Deviation of 
phase angle 
from the true 
value 

Voltage 
(p.u) 

Phase 
angle 
(degree) 

Voltage 
(p.u) 

Phase 
angle 
(degree) 

18 1.043305 -14.1118 0.935246 -19.4165 0.108059 5.304693 

 

It is observed from Table 4.5 that the phase angles deviate with a maximum 

value of 5.3 degrees. As per [31], if the residual is bigger than a certain threshold 𝜎 

(usually 3 degrees) then, it is detected by normal state estimators. Further, another 

three meters test has been conducted in which meters (9, 59, 85) are corrupted with an 

attack vector of [0.234, 0.253, 0.132] respectively. However, SE is not capable of 

detecting the corruption since the residual is below than 3. The results of the 

estimated state variables are shown in Appendix F. However, the major change is 

highlighted in Table 4.6. It is observed from Table 4.6 that the maximum difference is 

2.3 degrees which is usually not detected by SE. Yet, the corrupted measurement 

vector is fed into the NN and the results are shown in Table 4.7. 

 

Table 4.6: Healthy and corrupted measurement vectors (three meters with residual 

less than 3). 

Bus  

Corrupted measurement 
vector 

True measurement 
vector Deviation of 

Voltage from 
the true value 

Deviation of 
phase angle 
from the true 
value 

Voltage 
(p.u) 

Phase angle 
(degree) 

Voltage 
(p.u) 

Phase 
angle 
(degree) 

14 0.982818 -16.3776 0.955965 -18.7107 0.026852 2.33318 

 

Table 4.7: NN Result (three meters). 

NN categories Confidence rate for 3 meters test.  

True 5.3 % 

False 94 % 

 

From Table 4.7, NN classifies the tested sample as a corrupted measurement with 

94% confidence. This means that the NN is detecting the corruptions successfully. 
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4.6.      Neural Network (NN) Detection Capability 

The NN model has been tested with descending attack values to test and 

validate its detection capability. As mentioned earlier, the considered change of the 

attack values ranges from 0-20%. Hence, several tests have been simulated in which 

the range of change has been varied considering both three and four meters tests. 

4.6.1. Three meters test. In this test, five different cases are presented. In the 

first case, three meters are attacked with a vector of 20% deviation from the true 

measurement values that represent reactive power injection, real and reactive power 

flow. Further, this test is implemented on the five sets of measurements presented 

earlier in section 4.4. Table 4.8 summarizes the average confidence rates of the NN 

results against the five measurement sets.  

 

Table 4.8: NN Result with 20% change. 

NN categories Confidence rate of 3 meters test for all tests.  

True 1.2 % 

False 98.8 % 

 

It is observed from Table 4.8 that NN classifies the tested sample as a 

corrupted measurement with 98.8% confidence. This means the NN can detect the 

attack successfully. In the second case, the attack vector values have been generated 

with a 10% deviation from the measurement values that represent real power 

injection, reactive power injection and real power flow to check if the NN can still 

detect an attack or not. Table 4.9 summarizes the average confidence rates of the NN 

against the five sets of measurements. 

 

Table 4.9: NN Result with 10% change. 

NN categories Confidence rate of 3 meters test for all tests.  

True 2.4 % 

False 97.6 % 
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It is observed from Table 4.9 that the NN classifies that the average 

confidence of false data is 97.6 % which means the NN can detect the attack. In the 

second case, the attack vector values have been generated with a 5% deviation from 

the measurements values to check if the NN can still detect an attack or not. Table 

4.10 summarizes the average confidence rates of the NN against the five sets of 

measurements. It is clearly shown from Table 4.10 that the NN can detect an attack 

successfully with 55.6 % confidence. Further, the deviation percentage of the attack 

vector from the true measurements has been decreased to 4% and the corresponding 

results of the NN are shown in Table 4.11. 

 

Table 4.10: NN Result with 5% change. 

NN categories Confidence rate of 3 meters test for all tests. 

True 44.4 % 

False 55.6 % 

 

Table 4.11: NN Result with 4% change. 

NN categories Confidence rate of 3 meters test for all tests. 

True 49 % 

False 51 % 

 

Table 4.12: NN Result with 3% change. 

NN categories Confidence rate of 3 meters test for all tests. 

True 63 % 

False 37 % 

 

It is observed from Table 4.11 that the NN results are very close from each 

other, however, the NN can still detect the attack. Moreover, the deviation of the 

attack vector against the measurement values has been decreased further to 3 % as 
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illustrated in Table 4.12. The NN confidence of true data is 63 % which is a wrong 

detection. Indeed, the NN fails to detect any attack lower than 4% deviation from the 

true measurement values.  

4.6.2. Four meters test. In this test, two different cases are presented. In the 

first case, four meters are attacked with 3% change in which the attacked 

measurements represent real power injection, reactive power injection and real power 

flow. Further, this test is implemented on the five sets of measurements presented 

earlier. Table 4.13 summarizes the average rates of the NN against the five sets of 

measurements. 

 

Table 4.13: NN Result with 3% change. 

NN categories Confidence rate of 4 meters test for all tests. 

True 32 % 

False 68% 

 

It is observed from Table 4.13 that the average confidence of false data is 68% 

which means the NN can detect the attack. In the second case, the deviation 

percentage of the attack vector from the true measurements has been decreased to 2% 

to check if the NN can still detect the attack. Table 4.14 summarizes the average rates 

of the NN results against the five sets of measurements. As illustrated in Table 4.14, 

the NN fails to detect an attack since the false confidence rate is only 33%.  

 

Table 4.14: NN Result with 2% change. 

NN categories Confidence rate of 4 meters test for all tests. 

True 67 % 

False 33 % 

 

Furthermore, a random generation of the attack vector is conducted in which it 

changes randomly between 0 - 20% of the measurement values. This has been 
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implemented on the five sets of measurements shown earlier. Table 4.15 summarizes 

the results of the NN against these tests. 

 

Table 4.15: Summarized NN results against the five measurement sets. 

 
How many times attacked Success rate Failure rate 

Test 1 40 97% 3% 

Test 2 40 92% 8% 

Test 3 30 90% 10% 

Test 4 30 91% 9% 

Test 5 30 90% 10% 

Total 92 % 8 % 
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Chapter 5. Conclusion and Future Work 

In this thesis, a Neural Network (NN) based strategy is developed to detect 

data manipulation i.e. external attacks on bus state variables; voltages and phase 

angles, when bypassed by the traditional state estimators (SEs). The NN developed 

for detecting data manipulation is built in Matlab, and it is fed with historical training 

measurements of all buses states variables from different times of the day, to train the 

NN about the normal operational states of the power system buses. External false data 

injection (FDI) attacks, are simulated by manipulating random meters’ measurements 

of real and reactive power injections, as well as real and reactive power flows in the 

IEEE 30-bus system. 

The NN developed, successfully detects the FDI attacks when SE overlooks 

the manipulation, i.e. the threshold of the residual between the true and estimated 

values are satisfied, even if certain states have reasonably significant deviations from 

their true value. Simulation results show that the proposed NN based technique is able 

to detect data manipulation, i.e. FDI attacks even if as low as three meters have been 

manipulated. It is shown that successful detection of the FDI attack by the NN occurs, 

if any three measurements across three meters deviate by at least 4% of their true 

values.  

As a future work, testing the power systems data with different NN structures 

shall be developed to enhance its detection covering different types of system 

topologies. Further, critical meters in power system shall be studied and investigated 

to identify the vulnerabilities in the power grid system. In addition, a field test of the 

designed NN model can be implemented to ensure its robustness and enhance its 

performance accordingly. Moreover, an additional direction for future work is to try a 

different type of intrusion with the developed NN to improve its detection 

capabilities.   
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Appendix A   

Line Data parameters 

From bus To bus R (pu) X (pu) B/2 (pu) 

1 2 0.0192 0.0575 0.0264 

1 3 0.0452 0.1652 0.0204 

2 4 0.057 0.1737 0.0184 

3 4 0.0132 0.0379 0.0042 

2 5 0.0472 0.1983 0.0209 

2 6 0.0581 0.1763 0.0187 

4 6 0.0119 0.0414 0.0045 

5 7 0.046 0.116 0.0102 

6 7 0.0267 0.082 0.0085 

6 8 0.012 0.042 0.0045 

6 9 0 0.208 0 

6 10 0 0.556 0 

9 11 0 0.208 0 

9 10 0 0.11 0 

4 12 0 0.256 0 

12 13 0 0.14 0 

12 14 0.1231 0.2559 0 

12 15 0.0662 0.1304 0 

12 16 0.0945 0.1987 0 

14 15 0.221 0.1997 0 

16 17 0.0824 0.1923 0 

15 18 0.1073 0.2185 0 

18 19 0.0639 0.1292 0 

19 20 0.034 0.068 0 

10 20 0.0936 0.209 0 

10 17 0.0324 0.0845 0 

10 21 0.0348 0.0749 0 

10 22 0.0727 0.1499 0 

21 23 0.0116 0.0236 0 

15 23 0.1 0.202 0 

22 24 0.115 0.179 0 

23 24 0.132 0.27 0 

24 25 0.1885 0.3292 0 

25 26 0.2544 0.38 0 

25 27 0.1093 0.2087 0 

28 27 0 0.396 0 

27 29 0.2198 0.4153 0 

27 30 0.3202 0.6027 0 

29 30 0.2399 0.4533 0 

8 28 0.0636 0.2 0.0214 

6 28 0.0169 0.0599 0.065 
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Appendix B 

IEEE-30 bus system data 

 

Bus Vsp 

(pu) 

Theta PGi 

(pu) 

QGi 

(pu) 

PLi 

(pu) 

QLi 

(pu) 

Qmin 

(pu) 

Qmax 

(pu) 

1 1.06 0 0 0 0 0 0 0 

2 1.043 0 0.622 0.5 0.217 0 -0.4 0.50 

3 1 0 1.2 0 0.024 0 0 0 

4 1.06 0 0 0 0.076 0 0 0 

5 1.01 0 0.344 0.37 0.942 0 -0.4 0.40 

6 1 0 0 0 0 0 0 0 

7 1 0 0 0 0.228 0 0 0 

8 1.01 0 0.242 0.373 0.3 0 -0.1 0.40 

9 1 0 0 0 0 0 0 0 

10 1 0 0 0 0.058 0 0 0 

11 1.082 0 0.216 0.162 0 0 -0.06 0.24 

12 1 0 0 0 0.112 0 0 0 

13 1.071 0 0.28 0.106 0 0 -0.06 0.24 

14 1 0 0 0 0.062 0 0 0 

15 1 0 0 0 0.082 0 0 0 

16 1 0 0 0 0.035 0 0 0 

17 1 0 0 0 0.09 0 0 0 

18 1 0 0 0 0.032 0 0 0 

19 1 0 0 0 0.095 0 0 0 

20 1 0 0 0 0.022 0 0 0 

21 1 0 0 0 0.175 0 0 0 

22 1 0 0 0 0 0 0 0 

23 1 0 0 0 0.032 0 0 0 

24 1 0 0 0 0.087 0 0 0 

25 1 0 0 0 0 0 0 0 

26 1 0 0 0 0.035 0 0 0 

27 1 0 0 0 0 0 0 0 

28 1 0 0 0 0 0 0 0 

29 1 0 0 0 0.024 0 0 0 

30 1 0 0 0 0.106 0 0 0 
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Appendix C 

Healthy measurement against Corrupted measurement 

 

Type of 
measurement Meter # 

Healthy 
measurement 

value 

Corrupted 
measurement value 

Voltage 1 1.06 1.06 

Real power 
injection 

2 -0.076 -0.076 

3 -0.942 -0.942 

4 0 0 

5 -0.3 -0.3 

6 -0.058 -0.058 

7 0 0 

8 0 0 

9 -0.0621 -0.0621 

10 -0.0819 -0.0819 

11 -0.035 -0.035 

12 -0.032 0.789194 

13 -0.022 -0.022 

14 -0.175 -0.175 

15 -0.087 -0.087 

16 0 0 

17 -0.035 -0.035 

18 0 0 

19 -0.024 -0.024 

Reactive 
power 

injection 

20 -0.016 -0.016 

21 0.1538 0.1538 

22 0 0 

23 0.2096 0.2096 

24 -0.02 -0.02 

25 0.2066 0.2066 

26 0.1483 0.1483 

27 -0.016 -0.016 

28 -0.025 -0.025 

29 -0.018 -0.018 

30 -0.009 -0.009 

31 -0.007 -0.007 

32 -0.112 -0.112 

33 -0.067 -0.067 

34 0 0 

35 -0.023 -0.023 

36 0 0 

37 -0.009 -0.009 

Real power 38 0.4377 0.4377 
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Type of 
measurement Meter # 

Healthy 
measurement 

value 

Corrupted 
measurement value 

flow 39 0.8213 0.8213 

40 -0.8487 -0.8487 

41 -0.816 -0.816 

42 0.7161 0.7161 

43 -0.1475 -0.1475 

44 -0.5836 -0.5836 

45 -0.3772 -0.3772 

46 -0.2705 -0.2705 

47 -0.1539 -0.1539 

48 -0.2705 -0.2705 

49 0.081 0.081 

50 -0.1786 -0.1786 

51 0.0623 0.0623 

52 0.0423 0.0423 

53 -0.048 -0.048 

54 -0.0623 -0.0623 

55 -0.0844 -0.0844 

56 -0.176 -0.176 

57 0 0 

58 -0.0554 -0.0554 

59 0.0177 0.0177 

60 -0.0549 -0.0549 

61 -0.05 -0.05 

62 -0.1832 -0.1832 

63 -0.1883 -0.1883 

64 0.037 0.037 

65 -0.0693 -0.0693 

Reactive 
power flow 

66 0.0451 0.0451 

67 0.0402 0.0402 

68 0.0577 0.0577 

69 0.0687 0.0687 

70 -0.2202 -0.2202 

71 0.1027 0.1027 

72 0.0624 0.0624 

73 0.0089 0.0089 

74 0.1463 0.1463 

75 0.0244 0.0244 

76 -0.1599 0.07488 

77 0.0327 0.0327 

78 -0.0977 -0.0977 

79 0.031 0.031 

80 0.042 0.042 

81 -0.0167 -0.0167 
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Type of 
measurement Meter # 

Healthy 
measurement 

value 

Corrupted 
measurement value 

82 -0.0133 -0.0133 

83 -0.0205 -0.0205 

84 -0.0973 0.255859 

85 0 0 

86 -0.0361 -0.0361 

87 0.0248 0.0248 

88 -0.0353 -0.0353 

89 -0.0309 -0.0309 

90 -0.0219 -0.0219 

91 0.0399 0.0399 

92 0.0061 0.0061 

93 -0.0136 -0.0136 
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Appendix D   

Measurement vectors of Healthy and corrupted vectors (four meters) 

 

Bus  

Corrupted measurement 
vector 

True measurement 
vector Deviation of 

Voltage from 
the true value 

Deviation of 
phase angle 
from the true 
value 

Voltage 
(p.u) 

Phase 
angle 
(degree) 

Voltage 
(p.u) 

Phase 
angle 
(degree) 

1 0.873902 0 0.986606 0 0.112704 0 

2 0.844335 -8.24539 0.9701 -6.26262 0.125765 1.982766 

3 0.82357 -11.5015 0.947483 -8.84065 0.123913 2.660891 

4 0.814226 -14.1981 0.938487 -10.9005 0.124261 3.297572 

5 0.803442 -21.8339 0.933599 -16.4916 0.130157 5.34234 

6 0.815616 -16.9554 0.939607 -12.9955 0.123991 3.959875 

7 0.799766 -19.8782 0.928822 -15.042 0.129056 4.83628 

8 0.819791 -18.3141 0.944996 -13.9586 0.125205 4.355491 

9 0.845324 -21.8173 0.966768 -16.4787 0.121445 5.338559 

10 0.82357 -24.1806 0.947249 -18.3417 0.123679 5.838875 

11 0.893421 -21.8173 1.009343 -16.4787 0.115922 5.338559 

12 0.862609 -21.8297 0.974636 -17.689 0.112026 4.140771 

13 0.886041 -21.8297 0.995492 -17.689 0.109451 4.140771 

14 0.842421 -23.0443 0.955965 -18.7107 0.113544 4.333531 

15 0.835461 -23.0321 0.949162 -18.727 0.113701 4.305103 

16 0.835715 -23.5301 0.955621 -18.2771 0.119906 5.252961 

17 0.820452 -24.4449 0.944137 -18.5685 0.123685 5.876316 

18 0.831758 -22.1989 0.935246 -19.4165 0.103487 2.782452 

19 0.798509 -26.8442 0.930664 -19.6032 0.132154 7.240949 

20 0.803335 -26.3359 0.933951 -19.3551 0.130617 6.980816 

21 0.807877 -25.0035 0.93283 -18.9791 0.124953 6.024428 

22 0.817024 -24.1978 0.937229 -18.7082 0.120205 5.48957 

23 0.808687 -25.0099 0.933186 -18.9927 0.1245 6.017221 

24 0.825112 -21.9623 0.923167 -19.0758 0.098055 2.886473 

25 0.975079 -9.6089 0.927094 -18.7756 0.047985 9.166694 

26 1.11198 1.604819 0.9071 -19.2564 0.204881 17.6516 

27 1.013506 -9.13707 0.939566 -18.2935 0.07394 9.156404 

28 0.828465 -17.3431 0.939914 -13.7889 0.111449 3.554199 

29 0.993448 -10.3909 0.917726 -19.7575 0.075722 9.366559 

30 0.981847 -11.2908 0.90514 -20.8141 0.076707 9.52326 
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Appendix E 

Measurement vectors of Healthy and corrupted vectors (three meters) 

 

Bus  

Corrupted measurement 
vector 

True measurement 
vector Deviation of 

Voltage from 
the true value 

Deviation of 
phase angle 
from the true 
value 

Voltage 
(p.u) 

Phase 
angle 
(degree) 

Voltage 
(p.u) 

Phase 
angle 
(degree) 

1 1.042114 0 0.986606 0 0.055508 0 

2 1.026545 -5.58124 0.9701 -6.26262 0.056445 0.681375 

3 1.00702 -7.87334 0.947483 -8.84065 0.059538 0.967304 

4 0.999957 -9.67244 0.938487 -10.9005 0.061469 1.228072 

5 0.993093 -14.6603 0.933599 -16.4916 0.059494 1.831272 

6 0.999502 -11.5646 0.939607 -12.9955 0.059895 1.430945 

7 0.988671 -13.3674 0.928822 -15.042 0.059849 1.674537 

8 1.004517 -12.4126 0.944996 -13.9586 0.059521 1.546009 

9 1.016964 -14.8496 0.966768 -16.4787 0.050196 1.629128 

10 1.024053 -16.5591 0.947249 -18.3417 0.076804 1.782548 

11 1.057596 -14.8496 1.009343 -16.4787 0.048253 1.629128 

12 1.065636 -14.45 0.974636 -17.689 0.091001 3.239003 

13 1.084776 -14.45 0.995492 -17.689 0.089284 3.239003 

14 1.050275 -15.1858 0.955965 -18.7107 0.09431 3.524892 

15 1.047386 -15.3467 0.949162 -18.727 0.098224 3.380281 

16 1.036407 -15.8773 0.955621 -18.2771 0.080786 2.399806 

17 1.02029 -16.6517 0.944137 -18.5685 0.076152 1.916822 

18 1.043305 -14.1118 0.935246 -19.4165 0.108059 5.304693 

19 1.000258 -18.4492 0.930664 -19.6032 0.069594 1.154024 

20 1.0046 -18.0852 0.933951 -19.3551 0.070649 1.269865 

21 1.033033 -17.6128 0.93283 -18.9791 0.100204 1.366331 

22 1.017185 -16.8913 0.937229 -18.7082 0.079956 1.816881 

23 1.040053 -17.7842 0.933186 -18.9927 0.106867 1.208489 

24 1.010767 -17.4028 0.923167 -19.0758 0.0876 1.672968 

25 0.9974 -16.782 0.927094 -18.7756 0.070305 1.9936 

26 0.972575 -17.03 0.9071 -19.2564 0.065475 2.226456 

27 1.004761 -16.2882 0.939566 -18.2935 0.065196 2.00531 

28 1.000203 -12.2739 0.939914 -13.7889 0.060289 1.515008 

29 0.984508 -17.5645 0.917726 -19.7575 0.066782 2.192974 

30 0.972799 -18.4811 0.90514 -20.8141 0.067659 2.332996 
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Appendix F 

Measurement vectors of Healthy and corrupted vectors (three meters) 

 

Bus  

Corrupted measurement 
vector 

True measurement 
vector Deviation of 

Voltage from 
the true value 

Deviation of 
phase angle 
from the true 
value 

Voltage 
(p.u) 

Phase 
angle 
(degree) 

Voltage 
(p.u) 

Phase 
angle 
(degree) 

1 0.988265 0 0.986606 0 0.001659 0 

2 0.971319 -6.26148 0.9701 -6.26262 0.001219 0.001144 

3 0.949276 -8.8087 0.947483 -8.84065 0.001793 0.031949 

4 0.940701 -10.8426 0.938487 -10.9005 0.002214 0.057878 

5 0.935133 -16.4485 0.933599 -16.4916 0.001534 0.043036 

6 0.941368 -12.9546 0.939607 -12.9955 0.001761 0.040887 

7 0.930484 -14.9976 0.928822 -15.042 0.001662 0.044382 

8 0.946642 -13.9206 0.944996 -13.9586 0.001647 0.037986 

9 0.969615 -16.3255 0.966768 -16.4787 0.002847 0.15317 

10 0.950409 -18.1718 0.947249 -18.3417 0.00316 0.169902 

11 1.012075 -16.3255 1.009343 -16.4787 0.002732 0.15317 

12 0.982574 -16.9635 0.974636 -17.689 0.007938 0.725475 

13 1.003268 -16.9635 0.995492 -17.689 0.007776 0.725475 

14 0.982818 -16.3776 0.955965 -18.7107 0.026852 2.33318 

15 0.956741 -17.8601 0.949162 -18.727 0.007579 0.866856 

16 0.960522 -17.8837 0.955621 -18.2771 0.004901 0.393397 

17 0.947626 -18.3625 0.944137 -18.5685 0.003489 0.206044 

18 0.94051 -18.9148 0.935246 -19.4165 0.005264 0.501658 

19 0.9345 -19.3512 0.930664 -19.6032 0.003836 0.252041 

20 0.937691 -19.1158 0.933951 -19.3551 0.003739 0.239323 

21 0.937994 -18.6064 0.93283 -18.9791 0.005164 0.372737 

22 0.935628 -19.0668 0.937229 -18.7082 0.001602 0.358609 

23 0.939179 -18.5348 0.933186 -18.9927 0.005992 0.457859 

24 0.919004 -19.7886 0.923167 -19.0758 0.004163 0.712776 

25 0.918914 -19.7847 0.927094 -18.7756 0.00818 1.009146 

26 0.893944 -20.673 0.9071 -19.2564 0.013155 1.416564 

27 0.933115 -19.0692 0.939566 -18.2935 0.006451 0.775741 

28 0.940774 -13.7944 0.939914 -13.7889 0.00086 0.005513 

29 0.911105 -20.5539 0.917726 -19.7575 0.006622 0.796427 

30 0.898424 -21.626 0.90514 -20.8141 0.006716 0.811927 
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