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Abstract

This research is an attempt to introduce a connection between graph theory and linear

transformations of finite dimensional vector spaces over a field F (in our case we will

be considering R). Let Rm,Rn be finite vector spaces over R, and let L be the set

of all non-trivial linear transformations from Rm to Rn. An equivalence relation ∼ is

defined on L such that two elements f, k ∈ L are equivalent, f ∼ k, if and only if

ker (f) = ker (k). Let V be the set of all equivalence classes of ∼. We define a new

graph, G ([t] : Rm → Rn), to be the undirected graph with vertex set equal to V , such

that two vertices, [x] , [y] ∈ G ([t] : Rm → Rn) are adjacent if and only if ker (x) ∩

ker (y) 6= 0. The relationship between the connectivity of the graph G ([t] : Rm → Rn)

and the values of m and n has been investigated. In addition, we determine the values

of m and n for a complete and totally disconnected graph, as well as the diameter and

girth of the graph if connected.

Keywords: Graph theory; linear transformations; mathematics.
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Chapter 1. Introduction

In this chapter, we provide a short overview of connecting graph theory with

algebraic structures. Then, we present the problem investigated in this study as well as

the thesis contribution. Finally, a general organization of the thesis is presented.

1.1 Overview

Graphs can be used to model different types of relations and processes in phys-

ical, biological, social and information systems. Many practical problems can be rep-

resented by graphs. To emphasize their application to real world systems, the term

network is sometimes used to define a graph in which attributes are associated with the

nodes and/or edges.

In mathematics, graphs are useuful in geometry and certain topics in topology

such as knot theory. In addition, algebraic graph theory has close links with group

theory.

Recently, there has been considerable attention in the literature to associat-

ing graphs with commutative rings (and other algebraic structures), as well as, study-

ing the interplay between ring-theoretic and graph-theoretic properties; see the re-

cent survey articles (10) and (40). Probably the most attention has been given to the

zero-divisor graph Γ (R) for a commutative ring R. The set of vertices of Γ (R) is

Z(R)∗ = Z (R) \ {0}, and two vertices x and y are adjacent if and only if xy = 0.

The concept of a zero-divisor graph goes back to I. Beck (25) who was interested in

the notion of coloring a commutative ring R. Here R is considered as a simple graph

whose vertices are the elements of R, such that two different elements x and y of R are

adjacent if and only if xy = 0. This idea establishes a connection between graph theory

and commutative ring theory which will be mutually beneficial for these two branches

of mathematics.

1.2 Thesis Objectives

Driven by the developing interest in establishing links between graph theory

and algebraic structures, in this research we will introduce a connection between graph

theory and non-trivial linear transformations of finite dimensional vector spaces over
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a field F (in our case we will be considering R). Let Rm,Rn be finite vector spaces

over R, and let L be the set of all non-trivial linear transformations from Rm to Rn. An

equivalence relation ∼ is defined on L such that two elements f, k ∈ L are equivalent,

f ∼ k, if and only if ker (f) = ker (k). Let V be the set of all equivalence classes of

∼. We define a new graph, G ([t] : Rm → Rn), to be the undirected graph with vertex

set equal to V , such that two vertices, [x] , [y] ∈ G ([t] : Rm → Rn) are adjacent if and

only if ker (x) ∩ ker (y) 6= 0.

1.3 Research Contribution

The contributions of this research work can be summarized as follows:

• Investigate the relationship between the connectivity of the graph

G ([t] : Rm → Rn) and the values of m and n.

• Determine the values of m and n for a complete and totally disconnected graph.

• Determine the diameter and girth of the graph if connected.

1.4 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 provides a historical

background and relevant introductory concepts of graph theory, as well as a discussion

on related work in connecting graph theory and different algebraic structures. Chapter 3

presents a detailed discussion of the problem statement, and the results obtained along

with the analysis of each result. Finally, Chapter 4 concludes the thesis and outlines the

future work.
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Chapter 2. Background and Literature Review

This chapter is divided into three sections. In the first section, we present a

brief historical background of graph theory, followed by a section on the introductory

concepts on graph theory that are relevant to our research. In the final section, we

discuss the literature review and previous research in connecting between graph theory

and algebraic structures.

2.1 Graph Theory

2.1.1 Historical Background. In the 1700s, seven bridges were situated across

the Pregolya River which passed through the city of Kenigsberg, a former German

city, that is now Kaliningrad, Russia. Strangely, no resident of the city was ever able

to walk a route that crossed each of these bridges exactly once. In 1736, the Swiss

mathematician Leonhard Euler, learned of this frustrating problem and wrote an article

called ‘Kenigsberg Bridge Problem’ which is considered to be the beginning of the field

of graph theory.

Figure 2.1: A drawing of the seven bridges of Kenigsberg.

At first, the impact of Euler’s ideas in ‘graph theory’ was merely realized in

solving puzzles and in analyzing games and other recreations. However, in the mid

1800s, the notion of graphs became of more interest as a useful tool to model social

and physical phenomena. One of the most famous and stimulating problems in graph

theory is the ‘Four Color Map Conjecture,’ introduced by De Morgan in 1852. The

conjecture stated that four is the maximum number of colors required to color any map

where bordering regions are colored differently.

This problem was first posed by Francis Guthrie in 1852 and its first written
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record is in a letter of De Morgan addressed to Hamilton the same year. Many incorrect

proofs have been proposed, including those by Cayley, Kempe, and others. The study

and the generalization of this problem by Tait, Heawood, Ramsey and Hadwiger led

to the study of the colorings of the graphs embedded on surfaces with arbitrary genus.

Tait’s reformulation generated a new class of problems, the factorization problems, par-

ticularly studied by Petersen and König. The works of Ramsey on Colorations and more

specially the results obtained by Turàn in 1941 was at the origin of another branch of

graph theory, extremal graph theory. The four color problem remained unsolved for

more than a century.

In 1969 Heinrich Heesch published a method for solving the problem using

computers. A computer-aided proof produced in 1976 by Kenneth Appel and Wolfgang

Haken makes fundamental use of the notion of ‘discharging’ developed by Heesch. The

proof involved checking the properties of 1,936 configurations by computer, and was

not fully accepted at the time due to its complexity. Twenty years later, a simpler proof

considering only 633 configurations was given by Robertson, Seymour, Sanders and

Thomas.

The autonomous development of Topology from 1860 and 1930 fertilized graph

theory back through the works of Jordan, Kuratowski and Whitney. Another important

factor of common development of graph theory and topology came from the use of the

techniques of modern algebra. The first example of such a use is signified in the work of

the physicist Gustav Kirchhoff, who published in 1845 his Kirchhoff’s Circuit laws for

calculating the voltage and current in electric circuits. The introduction of probabilistic

methods in graph theory, especially in the study of Erdös and Renyi of the asymptotic

probability of graph connectivity, gave rise to yet another branch, known as random

graph theory, which has been a fruitful source of graph-theoretic results.

2.1.2 Introductory Concepts. A graph is a structure that constitutes a set of

objects, which correspond to mathematical abstractions called vertices and each of the

related pairs of vertices is called an edge. A graph G is a pair of sets (V,E), where V

is the set of vertices and E is a set of 2-element subsets of V , called the set of edges.

G = (V,E)

12



Figure 2.2: Example of a graph.

V = {a, b, c, d, e}

E = {{a, b} , {b, c} , {c, d} , {a, d} , {a, e} , {b, e} , {c, e} , {b, d}}

Remark 2.1.1 We will be considering simple and undirected graphs. A simple graph

is a graph with neither loops nor multiple edges. An undirected graph is a graph where

its edges have no ”direction”, that is the set {a, b} is the same as the set {b, a}.

Definition 2.1.2 A walk in a graph G = (V,E) is a sequence of the form

{v1, {v1, v2} , v2, {v2, v3} , . . . , vk, {vk, vk+1} , vk+1}

v1 − v2 − . . .− vk − vk+1

where k ≥ 0, such that {vi, vi+1} ∈ E for 1 ≤ i ≤ k. The length (number of edges) of

the walk is k.

Definition 2.1.3 A path in a graph G = (V,E) is a walk of length k ≥ 1, v1 − v2 −

. . .− vk − vk+1 in which the vertices v1, . . . , vk+1 are all distinct.

Definition 2.1.4 A cycle in a graph G = (V,E) is a walk of length k ≥ 1, v1 − v2 −

. . .− vk − v1 in which the vertices v1, . . . , vk are distinct.

Example 2.1.5 Referring to Figure 2.3, we have:

walk = b− e− c− b− d.

path = b− c− e− a− d.
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Figure 2.3: Comparison between walk, path and cycle.

Figure 2.4: Connected and disconnected graphs.

cycle = b− c− e− a− d− b.

Definition 2.1.6 Two vertices u and v of a graph G are adjacent if there is an edge

{u, v} joining them.

Definition 2.1.7 A graph G = (V,E) is connected if there is a path in G from u to v

for every u, v ∈ V . Therefore, a graph is said to be disconnected, if there exist at least

two vertices u, v ∈ V that are not joined by a path.

Definition 2.1.8 A graph G is totally disconnected if no vertices of G are adjacent.

Definition 2.1.9 A graphG = (V,E) is complete if every two distinct vertices u, v ∈ V

are joined by exactly one edge. Kn is a complete graph with n vertices.

Example 2.1.10 Figure 2.4 gives an example of connected and disconnected graphs.

The graph G1 is connected, however the graphs G2 and G3 are disconnected.

Example 2.1.11 Figure 2.5 gives an example of complete graphs.

Definition 2.1.12 The distance in a graph G = (V,E) between to vertices u and v,

14



Figure 2.5: Complete graphs.

Figure 2.6: Demonstrating the diameter and girth of a graph.

denoted by d (u, v) is the length (number of edges) of a shortest u − v path in G

(d (u, u) = 0 and d (u, v) =∞ if there is no such path).

Definition 2.1.13 The diameter of G, diam (G) = sup{d (u, v) |u and v are vertices of

G}.

Definition 2.1.14 The girth of a graph G denoted by gr (G), is the length of a shortest

cycle in G (gr (G) =∞ if G contains no cycles).

Example 2.1.15 In this example as shown in Figure 2.6, we have, d (a, f) = 2,

diam (G) = 4, and gr (G) = 4

2.2 Literature Review

In his 1988 paper, ’Coloring of Commutative Rings’, (Journal of Algebra), I.

Beck (25), set out to establish a connection between graph theory and commutative ring

theory, by introducing the notion of coloring a commutative ring R. R is considered

a simple graph whose vertices are the elements of R, such that two distinct vertices x

and y of R are adjacent if and only if xy = 0 (the additive identity of R). A k-coloring

of R is an assignment of k colors to the elements of R in such a way that every two

adjacent elements have different colors. The main aim is to characterize and discuss

the chromatic number, χ (R), that is the minimal number k where R is k-colorable, for

15



Figure 2.7: In this example χ (R) = 3.

rings that are finitely colorable.

The investigation of colorings of a commutative ring was further continued by

D. Anderson and M. Nasser in (3). They introduced the zero-divisor graph, denoted by

Γ0 (R). The vertices of Γ0 (R) constitute all elements of R, and two distinct vertices x

and y are adjacent if and only if xy = 0. In Γ0 (R), the vertex 0 is adjacent to every

other vertex but non-zero divisors are adjacent only to 0.

D. Anderson and P. Livingston, (Journal of Algebra, 1999) (16), defined a

slightly different zero-divisor graph of R, denoted by Γ (R), as the (undirected) graph

with vertices Z(R)∗ = Z (R) \ {0}, the set of nonzero zero-divisors of R. Γ (R) is an

induced sub-graph of Γ0 (R), thus the results for Γ (R) have natural analogs to Γ0 (R),

but better illustrates the zero-divisor structure of R. In Γ (R), the vertices x and y are

adjacent if and only if xy = 0. The objective of this paper is to study the ring-theoretic

properties of R with graph-theoretic properties of Γ (R), to help illuminate the alge-

braic structure of Z (R). For x, y ∈ Z (R), define x ∼ y if xy = 0 or x = y. The

relation ∼ is always reflexive and symmetric, but is usually not transitive. The zero-

divisor graph measures this lack of transitivity in the sense that ∼ is transitive if and

only if Γ (R) is complete. They have shown among other things, Γ (R) is connected

with diam (Γ (R)) ∈ {0, 1, 2, 3} and gr (Γ (R)) ∈ {3, 4,∞}. The zero-divisor graph of

a ring R has been studied extensively by other numerous authors, for example see((1)-
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Example showing Γ (Z6) and Γ (Z10) for the commutative rings Z6 and Z10.

Figure 2.8: Example showing Γ (Z6) and Γ (Z10) for the commutative rings Z6 and Z10.

(3), (11), (20)-(21), (33)-(37), (41)-(48), (52)).

Another interesting graph is the total graph of R, presented by D. Anderson

and A. Badawi (12). The total graph, denoted by T (Γ (R)), is the (undirected) graph

with all elements of R as vertices. For x, y ∈ R, the vertices x and y are adjacent if

and only if x + y ∈ Z (R). The total graph (as in (12)) has been investigated in (8),

(7), (6), (5), (40), (42), (46), (31) and (50); and several variants of the total graph have

been studied in (4), (13), (14), (15), (19), (24), (30), (27), (28), (29), (32), and (38). Let

a ∈ Z(R) and let annR(a) = {r ∈ R | ra = 0}. In 2014, A. Badawi (23) introduced

the annihilator graph of R. We recall from (23) that the annihilator graph of R is the

(undirected) graph AG(R) with vertices Z(R)∗ = Z(R)\{0}, and two distinct vertices

x and y are adjacent if and only if annR(xy) 6= annR(x) ∪ annR(y). It follows that

each edge (path) of the classical zero-divisor of R is an edge (path) of AG(R). For

further investigations of AG(R), see (18), (45), and (51).

In 2015, A. Badawi, investigated the total dot product graph of R (22). In this

case R = A×A×· · ·×A (n times), where A is a commutative ring with nonzero iden-

tity, and 1 ≤ n <∞ is an integer. The total dot product graph of R is the (undirected)

graph denoted by TD (R), with vertices R∗ = R\ {(0, 0, . . . 0)}. Two distinct vertices

are adjacent if and only if x.y = 0 ∈ A, where x.y denote the normal dot product of

x and y. The zero-divisor dot product graph of R is the induced subgraph ZD(R) of

TD(R) with vertices Z(R)∗ = Z(R) \ {(0, 0, ..., 0)}. It follows that each edge (path)

of the classical zero-divisor graph Γ (R) is an edge (path) of ZD(R). In (22), both

graphs TD(R) and ZD(R) are studied. For a commutative ring A and n ≥ 3, TD(R)

17



(ZD(R)) is connected with diameter two (at most three) and with girth three. Among

other things, A. Badawi, shows that for n ≥ 2, ZD(R) is identical to the zero-divisor

graph ofR if an only if either n = 2 andA is an integral domain orR is ring-isomorphic

to Z2 × Z2 × Z2.
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Chapter 3. Problem Analysis

In this chapter we present a detailed discussion of the problem statement, then

followed by the results obtained along with the analysis of each result.

3.1 Problem Statement

This research is an attempt to introduce a connection between graph theory and

linear transformations of finite dimensional vector spaces over a field F (in our case we

will be considering R). Let U and W be finite dimensional vector spaces over R, where

m = dim (U) and n = dim (W ). Since every finite dimensional vector space over R,

with dimension k is isomorphic to Rk, we have U isomorphic to Rm and W isomorphic

to Rn.

First we will define a set L as follows; L := {set of all non-trivial linear trans-

formations, t, from Rm into Rn}. Let s, t ∈ L, we say that s is equivalent to t, and write

s ∼ t if and only if ker (s) = ker (t).

Clearly, ∼ is an equivalence relation on L. For each t ∈ L, the set [t] :=

{s ∈ L|s ∼ t} is called the equivalence class of t. We recall the following properties

of equivalence classes:

• For all t ∈ L, [t] 6= ∅.

• If s ∈ [t], then [s] = [t], where s, t ∈ L.

• For all s, t ∈ L either [s] = [t] or [s] ∩ [t] = ∅.

• L = ∪t∈L [t], that is, L is the union of all equivalence classes under ∼.

Definition 3.1.1 Let, V :={set of all equivalence classes of linear transformations, [t],

from Rm into Rn}. We introduce a new undirected graph denoted by

G ([t] : Rm → Rn), with vertex set equals to V , where two distinct vertices [f ] , [k] ∈ V

are adjacent if and only if ker (f) ∩ ker (k) 6= 0.

A linear transformation s : Rm → Rn, can be represented by a standard n×m

matrix Ms over R. Therefore, ker (s) = null (Ms), is the solution set of the homoge-

neous system of linear equations Msx = 0.

Let, a : Rm → Rn be a linear transformation, so it can be represented by the standard
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n×m matrix Ma.

Let, b : Rm → Rn be a linear transformation, so it can be represented by the standard

n×m matrix Mb.

Definition 3.1.2 Mb is row-equivalent to Ma, if Mb can be obtained from Ma by a

finite sequence of elementary row operations.

We recall the following results:

• Result 1: If Ma and Mb are row-equivalent n ×m matrices, then null (Ma) =

null (Mb).

• Result 2: Every n×m matrix over a field F is row-equivalent to a unique row-

reduced echelon matrix.

Therefore, by using Results 1 and 2, if Ma is row-equivalent to Mb, then the

linear transformations a and b lie in the same equivalence class, say [f ] ∈ V . However,

if Ma and Mb are not row-equivalent, then the linear transformations a and b lie in two

distinct equivalence classes, say a ∈ [f ] and b ∈ [k].

3.2 Results and Analysis

3.2.1 Generalizing the GraphG ([t] : Rm → R). In this section, we provide a

general result for the connectivity of the graphG ([t] : Rm → R) which is demonstrated

in Theorem 3.2.4. However, we first give the following examples to help us visualize

the problem at hand by considering the graph G ([t] : Rm → R), when m = 1, 2 and 3.

Example 3.2.1 Let us consider the graph, G ([t] : R→ R). We have, V = {set of all

equivalence classes, [t] : R2 → R}. Choose [f ] , [k] ∈ V .

Using: dim (ker) + dim (range) = dim (domain).

• dim (range) = 1, since we are considering non-trivial linear transformations.

• dim (domain) = 1.

Therefore, we have dim (ker) = 0, which implies ker (f) , ker (k) only contain

the origin. Thus, ker (f) and ker (k) intersect at the origin. Hence, ker (f) ∩ ker (k) =

0. This means the graph G ([t] : R→ R) is totally disconnected.

Example 3.2.2 Let us consider the graph, G ([t] : R2 → R). We have, V = {set of all

20



equivalence classes, [t] : R2 → R}. Choose [f ] , [k] ∈ V .

Using: dim (ker) + dim (range) = dim (domain).

• dim (range) = 1, since we are considering non-trivial linear transformations.

• dim (domain) = 2.

Therefore, we have dim (ker) = 1, which implies ker (f) , ker (k) are straight

lines passing through the origin. Thus, ker (f) and ker (k) intersect at the origin.

Hence, ker (f) ∩ ker (k) = 0. This means the graph G ([t] : R2 → R) is totally dis-

connected.

Example 3.2.3 Let us consider the graph, G ([t] : R3 → R). We have, V = {set of all

equivalence classes, [t] : R3 → R}. Choose [f ] , [k] ∈ V .

Using: dim (ker) + dim (range) = dim (domain).

• dim (range) = 1, since we are considering non-trivial linear transformations.

• dim (domain) = 3.

Therefore, we have dim (ker) = 2, which implies ker (f) , ker (k) are planes

passing through the origin. Thus, ker (f) and ker (k) intersect at a line. Hence,

ker (f) ∩ ker (k) 6= 0. This means the graph G ([t] : R3 → R) is complete.

Theorem 3.2.4 The undirected graph G ([t] : Rm → R) is totally disconnected if and

only if m = 1 or m = 2.

Proof: It is clear for m = 1, that the graph G ([t] : R→ R) is totally disconnected as

shown in Example 3.2.1.

‘⇐’: Let m = 2, and choose [f ] , [k] ∈ V .

We want to show ker (f) ∩ ker (k) = 0.

Let, Mf be the standard 1× 2 matrix representation of [f ].

Let, Mk be the standard 1× 2 matrix representation of [k].

By construction, Mf is not row-equivalent to Mk. Say,

Mf =
[
f11 f12

]
Mk =

[
k11 k12

]
Let, Mfk =

 Mf

Mk

.
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Consider the system, Mfkx = 0, that is,

 f11 f12

k11 k12

 x1

x2

 =

 0

0


Since Mf is not row-equivalent to Mk, the rows

[
f11 f12

]
and

[
k11 k12

]
are independent, which implies Mfk is invertible. Hence, the solution for Mfkx = 0

is x = 0. Therefore, ker (f) ∩ ker (k) = 0, that is the vertices [f ] and [k] are not

adjacent. Further, since [f ], [k] were chosen randomly we conclude that the graph

G ([t] : Rm → R) is totally disconnected for m = 2.

‘⇒’: Using contrapositive.

Suppose, m > 2, show that the graph is connected.

Let, [f ] , [k] ∈ V .

We want to show that, ker (f) ∩ ker (k) 6= 0.

Let, Mf be the standard 1×m matrix representation of [f ].

Let, Mk be the standard 1×m matrix representation of [k].

By construction, Mf is not row-equivalent to Mk. Say,

Mf =
[
f11 f12 · · · f1m

]
Mk =

[
k11 k12 · · · k1m

]
Let, Mfk =

 Mf

Mk

.

Consider the system, Mfkx = 0, that is,

 f11 f12 · · · f1m

k11 k12 · · · k1m



x1

x2
...

xm

 =


0

0
...

0


Since, m > 2, the number of equations < the number of unknown variables.

Hence, the system Mfkx = 0 has infinitely many solutions. Therefore, ker (f) ∩

ker (k) 6= 0, that is the vertices [f ] and [k] are adjacent. Further, since [f ], [k] were

chosen randomly we conclude that the graph G ([t] : Rm → R) is complete for m > 2.
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3.2.2 Generalizing the Graph G ([t] : Rm → Rn). In this section, we provide

a detailed generalization for the connectivity of the graph G ([t] : Rm → Rn) which is

demonstrated in Theorems 3.2.5, 3.2.6, 3.2.7, and 3.2.10. Finally, we discuss the girth

of the graph G ([t] : Rm → Rn) in Theorem 3.2.12.

Theorem 3.2.5 If m = 1 or m = 2, then the undirected graph G ([t] : Rm → Rn) is

totally disconnected.

Proof: It is clear for m = 1, that the graph G ([t] : R→ Rn) is totally disconnected.

For this case, since we are only considering non-trivial linear transformations, we can

only have a single equivalence class. The kernel of each element belonging to this

equivalence class is 0. Hence the graph G ([t] : R→ Rn) is totally disconnected.

‘⇒’: Let m = 2, and choose [f ] , [k] ∈ V .

We want to show ker (f) ∩ ker (k) = 0.

Let, Mf be the standard n× 2 matrix representation of [f ].

Let, Mk be the standard n× 2 matrix representation of [k].

Let, Mfk =

 Mf

Mk

.

Consider the system, Mfkx = 0, that is,

 Mf

Mk


2n×2

 x1

x2

 =

 0

0


Since Mf is not row-equivalent to Mk by construction, then there is at most one

row from Mf and one row from Mk that are independent. Therefore, rank (Mfk) = 2,

that is Mfk has two independent rows say, R1 and R2. This means our system can be

reduced to the following:  R1

R2

 x1

x2

 =

 0

0


Since

[
R1 R2

]T
is a 2×2 invertible matrix, we have null

([
R1 R2

]T)
=

(0, 0). This implies ker (f)∩ker (k) = 0, that is the vertices [f ] and [k] are not adjacent.

Since [f ], [k] were chosen randomly we conclude that the graph G ([t] : Rm → Rn) is

totally disconnected for m = 2.
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We will be showing in our subsequent discussion, that Theorem 3.2.5 is actually

both a necessary and sufficient condition.

Theorem 3.2.6 Consider the undirected graph G ([t] : Rm → Rn), then the graph is

complete if and only if m ≥ 2n+ 1.

Proof: We will choose [f ] , [k] ∈ V , such that [f ] 6= 0, and [k] 6= 0.

Let, Mf be the standard n×m matrix representation of [f ].

Let, Mk be the standard n×m matrix representation of [k].

Let, Mfk =

 Mf

Mk

.

Assume, (x1, x2, · · · , xm) ∈ Rm is a solution to Mfkx = 0, that is,

 Mf

Mk


2n×m


x1

x2
...

xm


m×1

=


0

0
...

0


2n×1

Let, r = rank (Mfk).

‘⇐’: Let, m ≥ 2n+ 1, we want to show ker (f) ∩ ker (k) 6= 0.

For this situation, r ≤ 2n, and m ≥ 2n + 1, that is, we have number of equations

< number of unknown variables. Hence, the system Mfkx = 0 has infinitely many

solutions, or null (Mfk) 6= 0. Therefore, ker (f) ∩ ker (k) 6= 0, that is the vertices

[f ] and [k] are adjacent. Further, since this is the only case and [f ], [k] were chosen

randomly we conclude that the graph G ([t] : Rm → Rn) is complete for m ≥ 2n+ 1.

‘⇒’: Using contrapositive.

Suppose m < 2n+ 1, we want to show that the graph is not complete.

Let [f ] , [k] ∈ V , such that [f ] 6= 0, and [k] 6= 0.

Case I: Suppose r = m.

We conclude that Mfk has m independent rows, say R1, R2, · · · , Rm.
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Consider the system, 
R1

R2

...

Rm




x1

x2
...

xm

 =


0

0
...

0



Since
[
R1 R2 · · · Rm

]T
is an invertible m×m matrix, we have

null
([

R1 · · · Rm

])T
= (0, · · · , 0). This implies ker (f) ∩ ker (k) = 0, hence the

vertices [f ] and [k] are disconnected.

Case II: Suppose r < m. Thus we have the following system:
R1

R2

...

Rr




x1

x2
...

xm

 =


0

0
...

0


Since number of equations < number of unknown variables, we conclude that

null

([
R1 · · · Rr

]T)
6= (0, · · · , 0). This implies ker (f)∩ker (k) 6= 0, hence the

vertices [f ] and [k] are connected.

Since, the vertices [f ] and [k] can either be connected or disconnected, we can

say that the graph is incomplete for m < 2n+ 1.

Theorem 3.2.7 Consider the undirected graph G ([t] : Rm → Rn). Assume m ≤ n

and m > 2. Then: (i) Graph is connected. (ii) Graph diameter, d = 2.

Proof: Let [T ], [L] ∈ V , such that [T ] and [L] are not adjacent (ker (T )∩ker (L) = 0m),

and [T ] 6= 0, [L] 6= 0. In addition, [T ] and [L] are non-trivial vertices, that is if f ∈ [T ]

and k ∈ [L], then rank (Mf ) 6= m and rank (Mk) 6= m where, Mf and Mk are the

standard matrix representations of f and k, with size n×m.

Remark 3.2.8 If rank (Mf ) = 1 and rank (Mk) = 1, then null (Mfk) 6= 0, since

by construction Mf and Mk are not row-equivalent, and m > 2. This implies that

ker (f)∩ker (k) 6= 0, hence [T ] and [L] are connected. Therefore, this case is intuitively
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not considered in the next discussion.

• If we have:

rank (Mf ) = m− i, where i ∈ N, i 6= 1, and

rank (Mk) = m− j, where j ∈ N, j 6= 1.

Then, we can choose any non-zero row fromMf or Mk, say Y , to form the n×m

matrix Md, where:

Md =


Y

0
...

0


is the standard matrix representation of some d ∈ [W ], such that [T ]− [W ]− [L].

• If we have:

rank (Mf ) = m− 1, and

rank (Mk) = m− 1.

Then, Mf has m − 1 independent rows, R1, R2, . . . , Rm−1. Since, [T ] and [L]

are not adjacent, Mk has one row say R such that, {R1, R2, . . . , Rm−1, R} is an

independent set which forms a basis for Rm.

Let, K 6= R be a non-zero row in Mk, hence K ∈ rowspace (Mk). Since K ∈

Rm, we have:

K = c1R1 + c2R2 + · · ·+ cm−1Rm−1 + cmR

Let, Y = K − cmR.

This implies, Y ∈ rowspace (Mk), (since bothK and cmR are∈ rowspace (Mk)),

and Y ∈ rowspace (Mf ).

Let, Md =


Y

0
...

0


n×m

, be the standard matrix representation of some d ∈ [W ].

Since, Y ∈ rowspace (Mf ), Y becomes a zero row through row opera-

tions using the rows in Mf ,
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⇒ null (Mfd) 6= 0 since rank (Mfd) = m− 1,

⇒ ker (T ) ∩ ker (W ) 6= 0⇒ [T ]− [W ].

Similarly, since, Y ∈ rowspace (Mk), Y becomes a zero row through row

operations using the rows in Mk,

⇒ null (Mkd) 6= 0 since rank (Mkd) = m− 1,

⇒ ker (L) ∩ ker (W ) 6= 0⇒ [W ]− [L].

Therefore, we have [T ]− [W ]− [L].

Example 3.2.9 Suppose m = 3 and n = 4. So we are considering the graph

G ([t] : R3 → R4), wherem ≤ n, andm > 2, as given in Theorem 3.2.7. Let [T ] , [L] ∈

V , such that [T ] and [L] are not adjacent ( ker (T )∩ker (L) = 0), and [T ] 6= 0, [L] 6= 0.

Let f ∈ [T ], and k ∈ [L]. Since [T ] and [L] are non-trivial vertices, then rank (Mf ) 6=

m and rank (Mk) 6= m, where Mf and Mk are the standard matrix representations of

f and k.

Suppose,

Mf =


1 0 0

0 1 1

0 0 0

0 0 0


4×3

,Mk =


0 0 0

0 0 1

1 1 0

0 0 0


4×3

Let, Mfk =

 Mf

Mk


8×3

.

It can be easily seen that rank (Mfk) = 3, which implies that null (Mfk) = 0.

Therefore, ker (f) ∩ ker (k) = 0, that is the vertices [T ] and [L] are not adjacent. We

have:

rank (Mf ) = 2 = 3− 1 = m− 1, and

rank (Mk) = 2 = 3− 1 = m− 1.

Then, Mf has 2 independent rows R1 and R2, such that R1 =
[

1 0 0
]

and

R2 =
[

0 1 1
]
. The vertices [T ] and [L] are not adjacent, thus Mk has one row R,

such that {R1, R2, R} are independent and form a basis for Rm, where m = 3. In this

example, R =
[

0 0 1
]
.
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Let, K 6= R be a non-zero row in Mk, K =
[

1 1 0
]
. K ∈ rowspace (Mk)

and since K ∈ R3 it can be written as a linear combination of {R1, R2, R} as follows:

K = 1.R1 + 1.R2 −R =
[

1 0 0
]

+
[

0 1 1
]
−
[

0 0 1
]

=
[

1 1 0
]

Let, Y = K − (−1) .R = K +R =
[

1 1 0
]

+
[

0 0 1
]

=
[

1 1 1
]
.

This implies Y ∈ rowspace (Mk) and Y ∈ rowspace (Mf ).

Let, Md =


Y

0

0

0


4×3

=


1 1 1

0 0 0

0 0 0

0 0 0


4×3

, be the standard matrix representation of

some d ∈ [W ].

Since, Y ∈ rowspace (Mf ), Y becomes a zero row through row operations

using the rows in Mf ,

⇒ null (Mfd) 6= 0 since rank (Mfd) = 2,

⇒ ker (T ) ∩ ker (W ) 6= 0⇒ [T ]− [W ].

Similarly, since, Y ∈ rowspace (Mk), Y becomes a zero row through row oper-

ations using the rows in Mk,

⇒ null (Mkd) 6= 0 since rank (Mkd) = 2,

⇒ ker (L) ∩ ker (W ) 6= 0⇒ [W ]− [L].

Therefore, we have [T ]− [W ]− [L].

Theorem 3.2.10 Consider the undirected graph G ([t] : Rm → Rn). Assume n < m ≤

2n and m > 2. Then: (i) Graph is connected. (ii) Graph diameter, d = 2.

Proof: Let [T ], [L] ∈ V , such that [T ] and [L] are not adjacent (ker (T )∩ ker (L) = 0),

and [T ] 6= 0, [L] 6= 0. In addition, since n < m ≤ 2n, [T ] and [L] will be non-trivial

vertices. Let, f ∈ [T ] and k ∈ [L], then rank (Mf ) < m and rank (Mk) < m where,

Mf and Mk are the standard matrix representations of f and k, with size n×m.

• If we have, n+ 1 < m ≤ 2n:

rank (Mf ) = n− i, where i = 0, 1, 2, . . ., and

rank (Mk) = n− j, where j = 0, 1, 2, . . .
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Then we can choose any non-zero row from Mf or Mk, say Y , to form the n×m

matrix Md, where:

Md =


Y

0
...

0


is the standard matrix representation of some d ∈ [W ], such that [T ]− [W ]− [L].

• If m = n+ 1, then we have 3 cases:

Case I:

rank (Mf ) = n = m− 1, and

rank (Mk) = n− j, where j = 1, 2, . . .

Then we can choose any non-zero row, say Y from Mf , (that is the matrix

with the higher rank), to form the n×m matrix Md, where:

Md =


Y

0
...

0


is the standard matrix representation of some d ∈ [W ], such that [T ]− [W ]− [L].

Case II:

rank (Mf ) = n− i, where i = 1, 2, . . . and

rank (Mk) = n− j, where j = 1, 2, . . .

In this case any non-zero row Y can be chosen either from Mf or Mk, to

form Md, where:

Md =


Y

0
...

0


Case III:

rank (Mf ) = n, and
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rank (Mk) = n.

Then Mf has n independent rows R1, R2, . . . , Rn. Since, [T ] and [L]

are not adjacent (ker (T ) ∩ ker (L) = 0), Mk has one row say R such that,

{R1, R2, . . . , Rm−1, R} is an independent set which forms a basis for Rm =

Rn+1.

Let, K 6= R be a non-zero row in Mk, hence K ∈ rowspace (Mk). Since

K ∈ Rn+1, we have:

K = c1R1 + c2R2 + · · ·+ cnRn + cn+1R

Let, Y = K − cn+1R.

This implies, Y ∈ rowspace (Mk), (since bothK and cn+1R are∈ rowspace (Mk)),

and Y ∈ rowspace (Mf ).

Let, Md =


Y

0
...

0


n×m

, be the standard matrix representation of some d ∈ [W ].

Since, Y ∈ rowspace (Mf ), Y becomes a zero row through row opera-

tions using the rows in Mf ,

⇒ null (Mfd) 6= 0 since rank (Mfd) = n,

⇒ ker (T ) ∩ ker (W ) 6= 0⇒ [T ]− [W ].

Similarly, since, Y ∈ rowspace (Mk), Y becomes a zero row through row

operations using the rows in Mk,

⇒ null (Mkd) 6= 0 since rank (Mkd) = n,

⇒ ker (L) ∩ ker (W ) 6= 0⇒ [W ]− [L].

Therefore, we have [T ]− [W ]− [L].

Example 3.2.11 Suppose m = 4 and n = 3. So we are considering the graph

G ([t] : R4 → R3), where n < m ≤ 2n, m 6= 1 or m 6= 2 and m = n + 1, as

given in Theorem 3.2.10. Let [T ] , [L] ∈ V , such that [T ] and [L] are not adjacent

(ker (T ) ∩ ker (L) = 0), and [T ] 6= 0, [L] 6= 0.In addition, since n < m ≤ 2n, [T ]
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and [L] are non-trivial vertices. Let f ∈ [T ], and k ∈ [L], then rank (Mf ) < m and

rank (Mk) < m, where Mf and Mk are the standard matrix representations of f and

k, with size n×m = 3× 4. Suppose,

Mf =


1 0 0 0

0 1 0 1

0 0 1 0


3×4

,Mk =


1 0 0 0

0 1 0 0

0 0 0 1


3×4

Let, Mfk =

 Mf

Mk


6×4

.

It can be easily seen that rank (Mfk) = 4, which implies that null (Mfk) = 0.

Therefore, ker (f) ∩ ker (k) = 0, that is the vertices [T ] and [L] are not adjacent. We

have:

rank (Mf ) = 3 = n, and

rank (Mk) = 3 = n.

ThenMf has 3 independent rowsR1,R2, andR3, such thatR1 =
[

1 0 0 0
]
,

R2 =
[

0 1 0 1
]
, and R3 =

[
0 0 1 0

]
. The vertices [T ] and [L] are not ad-

jacent, thus Mk has one row, R =
[

0 0 0 1
]
, such that {R1, R2, R3, R} is an

independent set which forms a basis for R4.

Let K 6= R be a non-zero row in Mk, K =
[

0 1 0 0
]
.

Since K ∈ rowspace (Mk) and K ∈ R4, it can be written as a linear combination of

{R1, R2, R3, R} as follows:

K = 0.R1+1.R2+0.R3+(−1) .R =
[

0 1 0 1
]
−
[

0 0 0 1
]

=
[

0 1 0 0
]

Let, Y = K−(−1) .R = K+R =
[

0 1 0 0
]
+
[

0 0 0 1
]

=
[

0 1 0 1
]
.

This implies Y ∈ rowspace (Mk) and Y ∈ rowspace (Mf ).

Let, Md =


Y

0

0


3×4

=


0 1 0 1

0 0 0 0

0 0 0 0


3×4

, be the standard matrix representation of

some d ∈ [W ].
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Since, Y ∈ rowspace (Mf ), Y becomes a zero row through row operations

using the rows in Mf ,

⇒ null (Mfd) 6= 0 since rank (Mfd) = 3,

⇒ ker (T ) ∩ ker (W ) 6= 0⇒ [T ]− [W ].

Similarly, since, Y ∈ rowspace (Mk), Y becomes a zero row through row oper-

ations using the rows in Mk,

⇒ null (Mkd) 6= 0 since rank (Mkd) = 3,

⇒ ker (L) ∩ ker (W ) 6= 0⇒ [W ]− [L].

Therefore, we have [T ]− [W ]− [L].

Theorem 3.2.12 A connected graph G ([t] : Rm → Rn) has a girth of 3.

Proof: [T ] , [L] ∈ V , such that [T ] and [L] are adjacent, ker (T ) ∩ ker (L) 6= 0 and

[T ] 6= 0, [L] 6= 0. Let, f ∈ [T ] and k ∈ [L], then Mf and Mk are the standard matrix

representations of f and k with size n ×m. Suppose, that each matrix Mf and Mk, is

composed of only one row, Rf and Rk that are independent of each other since f and k

are in different equivalence classes [T ] and [L]. Mf and Mk can be written as follows:

Mf =


Rf

0
...

0


n×m

,Mk =


Rk

0
...

0


n×m

Let, Y = Rf +Rk. Since, Y is a linear combination of two linearly independent

rows, then the sets {Y,Rf} and {Y,Rk} are linearly independent.

Let, Md =


Y

0
...

0


n×m

, be the standard matrix representation of some non-trivial linear

transformation d.

Since Y is independent of both Rf and Rk, Md is not row-equivalent to either

Mf or Mk, hence d is in a different equivalence class from both f and k, say d ∈ [W ].
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Since, ker (T )∩ker (L) 6= 0, we have null (Mfk) 6= 0, which implies null (Mfd) 6=

0 and null (Mkd) 6= 0. Therefore, we have, [T ]− [L]− [W ]− [T ]. This forms the short-

est possible cycle. Therefore, the length of the shortest cycle or girth of the connected

graph G ([t] : Rm → Rn) is 3.
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Chapter 4. Conclusion and Future Work

In conclusion, the relationship between the connectivity of the graph

G ([t] : Rm → Rn) and the values of m and n had been determined. In addition, we

determined the values ofm and n for a complete and totally disconnected graph, as well

as the diameter and girth of the graph if connected. The main results of the research can

be stated as follows:

• If m = 1 or m = 2, then the undirected graph G ([t] : Rm → Rn) is totally

disconnected.

• The undirected graph G ([t] : Rm → Rn) is complete, if and only if m ≥ 2n+ 1.

• Consider the undirected graph G ([t] : Rm → Rn). Assume m ≤ n and m > 2.

Then: (i) Graph is connected. (ii) Graph diameter, d = 2.

• Consider the undirected graph G ([t] : Rm → Rn). Assume n < m ≤ 2n and

m > 2. Then: (i) Graph is connected. (ii) Graph diameter, d = 2.

• A connected graph G ([t] : Rm → Rn) has a girth of 3.

For future work, it would be interesting to investigate the graph of non-trivial

linear transformations over a finite field. This would allow us to evaluate other features

of the graph such as the chromatic number and dominating number, nD = min (|D|),

such that D is the dominating set. The dominating set, D ⊆ V is such that for every

v ∈ V \D, ∃w ∈ D such that v − w.
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[46] Pucanović, Z., Petrović, Z.: On the radius and the relation between the total graph
of a commutative ring and its extensions. Publ. Inst. Math.(Beograd)(N.S.) 89,
1–9 (2011).

[47] Redmond, S. P.: An ideal-based zero-divisor graph of a commutative ring. Comm
Algebra. 31, 4425–4443 (2003).

[48] Smith, N. O.: Planar zero-divisor graphs, Comm. Algebra 35, 171–180 (2007).
[49] Sharma, P.K., Bhatwadekar, S.M.: A note on graphical representations of rings. J.

Algebra 176, 124–127 (1995).
[50] Shekarriz, M.H., Shiradareh Haghighi, M.H., Sharif, H.: On the total graph of a

finite commutative ring. Comm. Algebra 40, 2798–2807 (2012).
[51] Visweswaran, S., Patel, H. D.: A graph associated with the set of all nonzero anni-

hilating ideals of a commutative ring. Discrete Math. Algorithm. Appl. 6, (2014).
doi: 10.1142/S1793830914500475.

[52] Wickham, C.: Classification of rings with genus one zero-divisor graphs. Comm
Algebra. 36, 325–345, (2008).

37



Vita

Yasmine Ahmed El-Ashi was born on December 31st, 1984, in Khartoum, Su-

dan. She completed her IGCSE O-level and A-level examinations in Unity High School,

a missionary private secondary school in Khartoum, in 2001. She graduated from the

American University of Sharjah, in 2006, with a Bachelor of Science degree in Electri-

cal Engineering and a minor in Applied Mathematics, with a Magna-Cumlaude honor

(3.8 GPA). She enrolled in the Mechatronics Master program in the American Univer-

sity of Sharjah as a graduate assistant, in 2007-2011 (3.78 GPA) .

Furthermore, she worked on a project funded by AUS Research Grant on Model-

ing and Analysis of a Wavelet Network Based Optical Sensor for Vibration Monitoring.

Her research interests are on topology, graph theory, and quantum mechanics.

Published Journal papers:

• Y. El-Ashi, R. Dhaouadi, and T. Landolsi, Modeling and Analysis of a Wavelet

Network Based Optical Sensor for Vibration Monitoring, IEEE Transactions on

Sensors, April 2010.

• Y. El-Ashi, R. Dhaouadi, and T. Landolsi, Position Detection and Vibration Mon-

itoring System Using Quad-cell Optical Beam Power Distribution, Journal of the

Franklin Institute, April 2010.

Published conference papers:

• Y. El-Ashi, R. Dhaouadi, and T. Landolsi, Accuracy of a Gaussian Beam Optical

Vibrometer with a Quad Photodetector Spatial Separation, Proc. of 3rd Interna-

tional Conf. on Modeling, Simulation and Applied Optimization, Sharjah, UAE,

January 2009.

• Y. El-Ashi, R. Dhaouadi, and T. Landolsi, Design of a Novel Optical Vibrom-

eter Using Gaussian Beam Analysis, Proc. of 5th International Symposium on

Mechatronics and its Applications (ISMA08), Amman, Jordan, May 2008.

38


