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Abstract 
 

Vibration suppression, cancellation or absorption is an expansive field of research, 

which has been the focus of numerous studies performed by scientists and engineers 

for decades.  Metamaterials are a new class of semi-active composites that can be 

deployed to reduce vibration of the host structure (beam) within a desired frequency. In 

this thesis, we investigate the nonlinear vibrations of a metamaterial structure that 

consists of an Euler-Bernoulli beam host attached to a periodic array of spring-mass-

damper subsystems deployed for vibration absorption. The governing equations of 

motion of the coupled system are derived and solved numerically. A mathematical 

model is first utilized to perform the linear free and forced vibration analyses. The effect 

of the local resonators on the suppression of the oscillations of the host beam is studied. 

The ability to mitigate the vibration of the host structure at a desired resonant frequency 

is achieved by tuning the resonant frequencies of the local absorbers. More 

interestingly, the results show that the simultaneous suppression of several modes is 

possible by tuning and properly placing each absorber along the host structure. More 

importantly, the results show that simply adding bulk mass to the host structure barely 

suppresses the vibration. The comparison between metastructure and adding bulk mass 

confirmed that the added mass using the metastructure assembly is essentially the 

reason for the mitigation and not the extra mass.  Furthermore, the mathematical model 

is used to investigate the effect of the resonators (local absorbers) on the nonlinear 

behavior of the main structure when being subject to external forcing over an extended 

frequency range. The numerical study reveals that proper tuning of the local resonators 

allows significant vibration suppression of the metamaterial beam when being excited 

in the neighborhood of any of the first three natural frequencies. We demonstrate the 

capability of the metamaterial structure to withstand to external loading even when 

operating near resonance. Finally, we combine the nonlinear mathematical model with 

an optimizer to identify the number and tuning frequencies of the absorbers that 

maximize the vibration suppression. The optimization results show that significant 

mitigation can be achieved by tuning properly the absorbers in the vicinity of the host 

structure’s natural frequencies.   

Keywords: Metastructure; metamaterial; conserved-mass; local absorbers; 
nonlinear Dynamics; vibration suppression. 



7 
 

 

Table of Contents 
Abstract .......................................................................................................................... 6 

List of Figures ................................................................................................................ 9 

List of Tables ............................................................................................................... 10 
Chapter 1. Introduction ................................................................................................ 11 

1.1. Overview ....................................................................................................... 11 

1.2. The Need to Mitigate Vibration .................................................................... 11 

1.3. Metamaterials ................................................................................................ 12 

1.4. Metastructures ............................................................................................... 13 
1.5. Experimental and Simulation Work .............................................................. 14 

1.6. Conservation of Mass .................................................................................... 15 

1.7. Thesis Objective ............................................................................................ 16 

1.8. Research Contribution ................................................................................... 16 
1.9. Thesis Organization....................................................................................... 17 

Chapter 2. Nonlinear Metamaterial Beam Model ........................................................ 18 

2.1.  Mettler Model Derivation From Euler-Bernoulli Beam Model .................... 18 

2.1.1. Nonlinear strains in 3d theory. ............................................................... 19 
2.1.2. The Euler-Bernoulli beam...................................................................... 21 

2.1.3. Equations of motion ............................................................................... 22 

2.1.4. Simplification of the angular momentum .............................................. 24 

2.1.5. Component form of the equations of motion. ........................................ 24 
2.1.6. Axially restrained elastic beams. ........................................................... 25 

2.2.  Metastructure Mathematical Model .............................................................. 26 

2.2.1. Nondimensionalization .......................................................................... 26 

2.2.2. Galerkin discretization ........................................................................... 27 
Chapter 3. Linear Free and Forced Vibration Analysis ............................................... 30 

3.1. Effect of the absorbers................................................................................... 32 

3.2. Effect of the damping ratio............................................................................ 34 

3.3.  Mitigating multiple modes simultaneously ................................................... 35 

3.4. Effect of adding extra mass to the host ......................................................... 37 
Chapter 4. Nonlinear Response of the Metamaterial Beam ......................................... 39 

4.1. Nonlinear response: single bending mode without absorbers ....................... 39 

4.2. Nonlinear response: multi modes with absorbers ......................................... 43 



8 
 

4.3. Case studies: effect of local absorbers distribution ....................................... 46 

4.3.1. Case 1 (9-0-0). ....................................................................................... 47 

4.3.2. Case 2 (3-3-3). ....................................................................................... 49 
4.3.3. Case 3 (6-2-1). ....................................................................................... 49 

4.4. Response of the Absorbers ............................................................................ 50 

Chapter 5. Optimization of the Nonlinear Metamaterial Beam Response ................... 52 

5.1. Optimization Tool: Pattern Search Algorithm .............................................. 52 
5.2. Optimization Results ..................................................................................... 53 

Chapter 6. Conclusion and Future Work ..................................................................... 59 

6.1. Conclusion ..................................................................................................... 59 

6.2.  Future Work .................................................................................................. 59 
References .................................................................................................................... 61 

Vita ............................................................................................................................... 65 
 

  



9 
 

List of Figures 
 
Figure 2.1: Planar motion of a beam [63] .................................................................... 19 
Figure 2.2: Planar motion of beam: stretch vector and strains as components                         
…………../of the v [63]............................................................................................... 20 
Figure 2.3: Schematic of the metamaterial hinged-hinged beam ................................ 27 
Figure 2.4: The lowest mode shapes of the hinged-hinged beam [63] ........................ 27 
Figure 3.1: Frequency-response function of beam without absorbers ......................... 32 
Figure 3.2: Frequency-response function of the metamaterial beam: effect of the    
…………...number of absorbers. ................................................................................. 33 
Figure 3.3: Frequency-response  function of the metamaterial beam: effect of the 
…………...damping ratio. ........................................................................................... 34 
Figure 3.4: The frequency-response up to the lowest three modes. The absorbers are 
…………...tuned to control the fundamental mode only (red) and lowest three 
…………...modes (green)............................................................................................ 36 
Figure 3.5: Frequency-response function of increasing the bulk mass of the beam by 
…………...1% (green) vs. adding 1% absorbers to the original beam (red) ............... 38 
Figure 4.1: Frequency-response of the metamaterial beam near the primary 
…………...resonance................................................................................................... 40 
Figure 4.2:  (a) Time history of q1 for f = 5 × 10 − 3, σ = 0 and (b) the 
……………corresponding frequency response function at midpoint of beam. .......... 41 
Figure 4.3: Frequency-response of the metamaterial beam for varying beam 
…………...amplitudes ................................................................................................. 42 
Figure 4.4: The frequency-response curves of the beam around the first three natural 
…………...frequencies ................................................................................................ 48 
Figure 4.5: Comparison between frequency response of the host beam and the  
………….. absorber at mid-span. ................................................................................ 51 
Figure 5.1: Frequency response of metamaterial beam optimized for 1 mode + 1 
…………...absorber ..................................................................................................... 54 
Figure 5.2: Frequency response of metamaterial beam optimized for 3 mode + 3 
…………...absorbers ................................................................................................... 55 
Figure 5.3: Frequency response of metamaterial beam optimized for varying number 
……………of absorbers .............................................................................................. 56 
Figure 5.4: Converge obtained for the objective function ........................................... 58 
 

 

  



10 
 

List of Tables 
 
Table 3.1: Parameters of the metastructure beam ........................................................ 30 
Table 3.2: The corresponding frequencies of the lowest bending modes .................... 30 
Table 4.1: Breakdown of nine absorbers (tuning frequency) in each case .................. 47 
Table 5.1: Summary of optimal frequency of each absorber along with the area under 
…………..the graph..................................................................................................... 57 

 

  



11 
 

Chapter 1. Introduction 
 

1.1. Overview 

Vibration is the scope of dynamics which deals with repetitive motion of 

generally small amplitude. In our world, vibration is present almost everywhere. 

Vibrations range from the macro-scale such as the vibration of buildings or the vibration 

of a guitar string  all through the micro-scale vibration such as the vibration of your 

vocal cords or the vibration of the human cells in the oncotripsy procedure [1] as an 

example. Vibration is desired in few cases such as in musical instruments and targeting 

of cancer cells using oncotripsy and can be exploited in some engineering applications 

such as filtering and sensing. Nevertheless, most of the applications require the 

suppression of the vibration as much as possible and remedy its effects. The periodic 

vibration of the wing of an aircraft will accumulate fatigue stress which in turn will 

cause failure. While building a bridge, the designer should account for avoiding 

frequencies of the external excitation to be equal to the natural frequency of the bridge. 

The aforementioned phenomenon is called resonance and this phenomenon causes 

drastic deflections and failure. Cars, aircrafts and even washing machines devices are 

equipped with devices which help in suppressing any kind of vibration for the comfort 

of the user. Thus, vibration, in most cases, needs to be mitigated by some way or another 

to avoid undesirable effects that may lead to the failure of the structure/system.  

1.2. The Need to Mitigate Vibration 

Control of vibration  has been under constant research for the past years. Excess 

of vibration leads to the discomfort of the aircraft passengers for instance and moreover 

leads the aircraft itself to fatigue and fail. Generally, in vibration applications, numerous 

designs have been proposed and implemented to allow the minimal vibration possible. 

Most vibration mitigation techniques can be divided into active or passive systems. 

Active systems are where energy is required to control the vibration. Sensors and 

actuators that act against the vibration are examples of active systems. On the other 

hand, a passive vibration suppression system does not require any form of external 

energy. The suspension system of an automobile is an infamous example of such 

control. The suspension system of a car is based upon the passive vibration mitigation 

concept which is available in typical   vibration reference books [62]. However, since 

this is a design process, there is not typically a unique solution for vibration mitigation.  
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1.3. Metamaterials 

One of the proposed designs that has been the scope of research in the recent 

years is the concept of  metamaterials. The term, metamaterial, is not widely spread in 

books but is gaining growing attention in recent literature. Being a recent topic, the 

history of this term is relatively easy to track. 

The first metamaterial research started by studying the electromagnetic 

metamaterials which showed a negative permeability and/or permittivity [2,3]. In recent 

years, materials with negative permeability were experimentally established [4]. 

Metamaterials are man-made materials   that behave differently from the nature of  their 

own  constituencies. In fact, this is what makes metamaterials special. Some unique 

properties to electromagnetic metamaterials are invisibility [5,6], negative refractive 

index [7] and inverse Doppler effect [8]. The aforementioned properties result purely 

from mechanically adjusting the material rather than affecting the material on a 

molecular level such as any chemical reactions applied on the material. For instance, 

the size, shape, alignment and prearrangement of the microstructure alter the 

transmission of light and create the unique, unusual material properties. Possible 

applications of such electromagnetic metamaterials are optical microscopes capable of 

observing atoms, artificial magnetic apparatus made of non-magnetic materials, 

photolithography for microfluidics applications, optical fibers with minimal 

transmission loss, photon tunneling, accurate image processing for biomedical 

applications, tracking on a cellular level, subwavelength waveguides and X-ray 

crystallography [9-11]. As an example, the conventional microscopes can look down 

as low as 400 nm, the limit of the visible light, which is a fraction of a red blood cell. 

On the other hand, optical super lenses which are electromagnetic metamaterials exhibit 

negative refractive index which enables the user to resolve images with a resolution 

which is almost one sixth of the wavelength of the visible light used in the conventional 

optical microscope [12]. The success of the electromagnetic metamaterials and their 

unique properties encourage researches to extend the metamaterial concepts to acoustic 

metamaterials [3, 13-19].  

As mentioned before, electromagnetic metamaterials exhibit unusual properties 

in terms of permittivity and permeability just by altering the design of the material. 

Likewise, in acoustic metamaterials, subunits (resonators) can be designed to be 
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embedded with the host structure which is made of natural conventional material. These 

subunits locally resonate with the mechanical waves excited at the structure. This local 

resonance, exhibited by the mechanical subunits, result in material properties different 

from its constituents such as negative stiffness and negative effective mass [16-19, 20]. 

In short, acoustic metamaterials are artificial materials imbedded with internal 

microstructures to exhibit unusual properties such as negative modulus [21,22] and 

negative effective density [23,24]. This phenomenon is essentially the concept of 

acoustic metamaterial in particular. Fortunately, compared to the electromagnetic 

metamaterials, the manufacturing of acoustic metamaterials and their subunits is 

relatively easier. Nevertheless, modeling and simulating metamaterials is not easy 

because of their complex built-up composite structures. The utilization of these acoustic 

metamaterials is pronounced in metastructures that are proposed in the literature with 

few simple models [13-17, 19]. Notice that metastructures are the direct implementation 

of the metamaterials concept. In fact, the work presented in this thesis is mainly about 

the metastructure. 

1.4. Metastructures 

Metastructures or mechanical metamaterials, as stated in the preceding 

paragraph, are inspired by the metamaterial concept. Metastructures, in general, are the 

structures with distributed periodic vibration resonators. These structures are normal 

conventional structures integrated with a lattice or a periodic geometry of small 

absorbers. These periodic structures which are made up of an arrangement of absorbers 

are designed in a similar manner to show unique dynamic properties. These properties 

arise from their capability to function as mechanical filters for wave propagation. In the 

light of the preceding lines, one can define the metastructures as the structures 

integrated with localized resonant subunits for vibration damping. This wave damping 

is mainly due to the structural periodicity. Essentially, the periodicity is what makes 

these structures exhibit interesting dynamic characteristics which is worth the 

investigations in the literature. 

Metastructures exhibit some interesting dynamic properties such as the 

bandgaps and pass bands. The local resonators suppress the vibration by allowing 

waves with certain frequency to propagate along the periodic subunits. These bands of 

frequency are called the ‘’Pass bands’’. On the other hand, these resonators block 
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certain waves with another set of frequencies to pass. This range of frequencies where 

propagation of waves is stopped or minimized are called “stop bands or bandgaps”. The 

stopbands can further be divided into Bragg-type bandgaps and resonant-type ones. The 

brag-type are practical for attenuating waves in the high frequency region. On the other 

hand, the locally resonant (LR) bandgaps is easier to manipulate and control [25-29]. It 

is the periodicity of the resonator which makes the stopband in action. Although the 

resonators might be made of non-dispersive materials, they still act as dispersive ones 

and prevent waves with a certain frequency (stopband) to propagate forward [20,30]. 

Speaking of bandgaps, wave propagation models are normally used to predict the stop 

bands in LR structures and represent the dispersive behavior of the wave. Some of these 

wave propagation models are the Transfer Matrix Method, Floquet models and Bloch-

wave [31-34] In addition, Nouh et al. [48] uses the structural power flow approach to 

predict the stop bands. The structural power flow model is a mathematical tool which 

quantifies the transmission paths and energy flow in vibrating structures [35-41]. The 

band gap prediction is often represented as a part of the metastructure research. Some 

papers investigate the detailed analysis of the band gap prediction [55], whereas other 

papers concentrate on the actual working mechanism of the metastructure whether by 

mathematical models or finite element simulations or even experimental work.  

1.5. Experimental and Simulation Work 

Some of the relevant investigations done on 1D metastructures were conducted 

by Pai [46]. In [42], the author models a longitudinal host structure integrated with 

many small mass-spring absorbers. Xiao et al. [43] investigated an analogous structure 

to that used by Pai [46] but the absorbers have multiple degree of freedom. Xiao et al. 

concentrates on bandgap prediction and formation as well. Yu et al. [44] investigated 

the bending wave excitation on a metastructure beam embedded with many resonators. 

Chen et al. [45], had a similar model to Zhu but the host is a sandwich beam and the 

resonators are placed inside. Pai [46] studied the suppression of the longitudinal wave 

propagation and suggested metamastructures to be used for a broader mitigation of 

vibration. Liu [25] modeled a chiral latticed metastructure which proved to be 

functional for low-frequency vibration attenuation applications.  Banerjee et al. [54] 

studied an impact-based mass-in-mass unit cell as a potential sub unit of a resonating 

metamaterial. Rather than beams, author such as Peng et al. [47] and Nouh et al. [48] 

studied metamaterial plates. Hu et al. [49] further investigated the possibility of 
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harvesting energy while suppressing the vibration of a metastructure. Very relevant to 

our work was the work done by Reichl and Inman [50] who studied and optimized a 

conserved-mass 1D metastructure model. Moreover, Casalotti et al. [51] investigated 

the effect of integrating nonlinear resonators to a structural metamaterial beam. The 

aforementioned studies mostly started with mathematical beam models. Some authors 

such as Chen et al. [52] and Pai et al. [53] used the extended Hamilton principle to 

obtain the equations of motion. Others used Newton’s second law [50,54]. Moreover, 

these papers utilized well-known beam theories. For structural beams, the Euler-

Bernouli beam and the Timoshkenko beam theory are the most used theories. Regarding 

the plates, Kirchoff’s plate theory and Mindlin-Reissner plate theory are amongst the 

most used ones. A number of these studies validate their research further by employing 

a finite element model/package or performing an actual experiment.  

A finite element model is usually developed to study the structural dynamics, 

frequency responses of metamaterial beams or plates embedded with an array of 

periodic local absorbers. Chen et al. [52] and Reichl et al. [50] used Abaqus [50,54] 

whereas Nouh et al. [48] and Harne et al. [55] used COMSOL Multiphysics. A few 

other researches introduced the challenging task of implementing an actual experiment 

on a built up metastructure. Chen et al. [52] presented experimental setup and results 

on a sandwich structure containing spring-mass absorbers. Maystre et al. [56] created 

one of the first metastructures. Calius et al. [57] verified that a silicone rubber coated 

steel ball in polymer resin matrix may function as a resonating subunit of the 

metastructure. The study showed that the steel ball acts as a resonating mass, the 

polymer matrix as an outer mass and the rubber coating as an internal spring. This was 

an overview of what has been done roughly on metastructures.  

1.6. Conservation Of Mass 

In light of the preceding sections, it is noticed that the previous work kept on 

adding the mass (resonators) to the host structure to keep the stiffness constant as in 

[58-60]. In our work, the mass is conserved which means that any added mass in the 

resonators are taken off the host structure itself. This is because mass and suppression 

are cross linked. Logically, one can increase the suppression capability of a host 

structure by simply adding mass to it. By conserving the mass, it is shown that the 

increased performance does not result from the additional mass. Our work aims at 
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showing that the altering of the dynamic properties occurs mainly due to the 

metastructure alignment and not due to any additional mass. Moreover, it is well known 

that an industry such as aerospace can save tons of money by minimizing the weight of 

the structure as much as possible.  

1.7. Thesis Objective 

The work of Reichl and Inman [50], Igusa and Xu [61], and Casalotti et al. [51] 

are all similar to the work done here in principle, but there are some important crucial 

differences. Igusa and Xu [61] used high levels of local damping in their subunits as a 

method of suppressing the vibration. Our work includes dampers for each absorber. 

However, these dampers are due to the internal damping of the absorbers and not 

external damping systems. It is the damping nature of the material of the absorbers. 

Moreover, their metastructure -with resonators – is heavier than the host structure 

without absorbers. Again, our work examines whether the suppression functionality 

comes from simply adding mass or the effect of the resonators. Reichl and Inman [50] 

used lumped conserved mass models but the metastructure are allowed to oscillate only 

longitudinally. Our work presented is interested in the flexural deformation, which is 

the case of many applications where beams are the host structure. The movement of the 

host structure and resonators occur in the vertical direction rather than the horizontal 

direction. Casalotti et al. [51] presented a metamaterial beam with integrated absorbers 

that can move in the vertical direction. Mass was not conserved, nevertheless. 

Moreover, the author takes the path of investigating the effect of the nonlinearity of the 

springs of the subunits on the assessment of the metastructure. In our work, the springs 

are modeled as linear springs and the optimization is performed essentially on linear 

vibration absorbers. The main contribution of this thesis is the integration of the 

optimizer which enables identifying the optimum tuning frequencies of the local 

absorbers for the maximum vibration suppression.     

1.8. Research Contribution 

The contributions of this research work can be summarized as follows:   

• Propose a promising design on metastructures to mitigate multiple modes of a 

structural hinged-hinged beam in the linear regime 

• Compare the effect of adding bulk mass to the host beam versus adding extra 

mass in the form of local periodic subunits  
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• Investigate the effect of the absorbers in the nonlinear regime and modulate the 

hardening effect in the neighbourhood of the first three modes 

• Implement an optimization technique to maximize the reduction in the 

amplitude of vibrations while varying some control parameters 

1.9. Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides the formulation 

and derivation of the metastructure beam mathematical model coupled with the local 

absorbers. The obtained reduced order model and the numerical solution approach are 

also presented. Chapter 3 deals with the linear free and forced vibration analyses of the 

metastructure. The effect of adding absorbers and tuning their frequencies and damping 

ratios is investigated. In Chapter 4, the nonlinear frequency response of the 

metamaterial beam is examined. The impact of adding absorbers and modulating their 

frequencies on the nonlinear response of the beam is discussed. Finally, in Chapter 5, 

we perform an optimization analysis to maximize the vibration suppression by the 

appropriate selection of the local absorbers’ tuning frequencies. The tuning frequencies 

of the absorbers are optimized to achieve the maximum possible mitigation of the beam 

with few absorbers. 
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Chapter 2. Nonlinear Metamaterial Beam Model 
 

In this thesis, a metastructure beam is under investigation. Before getting into 

the formulation of the beam embedded with the absorbers, the derivation of the Mettler 

beam model is presented. A beam is a slender three-dimensional body with one 

geometric dimension prevailing over the other, and hence it is modelled as a one-

dimensional structure 

2.1.  Mettler Model Derivation From Euler-Bernoulli Beam Model 
 

The straight stress-free configuration is taken as the reference configuration. 

The fixed frame of reference is denoted by (𝑂𝑂, 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3) as seen in Figure 2.1. A 

reference line 𝐶𝐶° in 𝐵𝐵° is chosen as a base curve. In the derivation of this theory, the 

rigidity of the cross sections according to which they are assumed to fully preserve their 

original shape no matter what the loading conditions are.   

From Figure 2.1, let 𝑟𝑟(𝑠𝑠, 𝑡𝑡) be the position vector of  𝐶𝐶. Moreover, it is proved 

in [63] that the base fiber 𝜕𝜕𝑠𝑠 𝑟𝑟° orthogonal to the cross section at s is transformed into 

𝑣𝑣 ∶= 𝜕𝜕𝑠𝑠𝑟𝑟. This vector is called stretch vector and it has two projection as seen in Figure 

2.2.  

The stretch vector is written as: 

𝒗𝒗(𝑠𝑠, 𝑡𝑡) =: 𝑣𝑣(𝑠𝑠, 𝑡𝑡)𝒃𝒃𝟏𝟏(𝑠𝑠, 𝑡𝑡) + 𝜂𝜂(𝑠𝑠, 𝑡𝑡)𝒃𝒃𝟐𝟐(𝑠𝑠, 𝑡𝑡)                            (2.1) 

where 

𝑣𝑣 ≔ 𝜕𝜕𝑠𝑠 𝒓𝒓.𝒃𝒃𝟏𝟏   𝑎𝑎𝑎𝑎𝑎𝑎  𝜂𝜂 ≔ 𝜕𝜕𝑠𝑠 𝒓𝒓.𝒃𝒃𝟐𝟐                                  (2.2) 

denote the beam stretch and the shear strain, respectively. Moreover, the rate of change 

of the rotation angle 𝜃𝜃 with respect to the arclength s is defined as: 

𝜇𝜇(𝑠𝑠, 𝑡𝑡) ≔ 𝜕𝜕𝑠𝑠𝜃𝜃(𝑠𝑠, 𝑡𝑡)     (2.3) 

This is not the geometric curvature but is known as the bending curvature which is 

completely different. Consequently, the geometric boundary conditions are in the 

form:  

𝒓𝒓(0, 𝑡𝑡) = 𝒓𝒓𝟏𝟏���(𝑡𝑡), 𝒓𝒓(𝑙𝑙, 𝑡𝑡) = 𝒓𝒓𝟐𝟐���(𝑡𝑡), 𝜃𝜃(0, 𝑡𝑡) = 𝜃𝜃1���(𝑡𝑡),   𝜃𝜃(𝑙𝑙, 𝑡𝑡) = 𝜃𝜃2���(𝑡𝑡)    (2.4) 
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The strains expressed in terms of the displacement gradient 𝑢𝑢𝑠𝑠 = 𝑢𝑢𝑠𝑠𝑒𝑒1 + 𝑣𝑣𝑠𝑠𝑒𝑒2 become 

𝑣𝑣(𝑠𝑠, 𝑡𝑡) = (1 + 𝑢𝑢𝑠𝑠) cos 𝜃𝜃 + 𝑣𝑣𝑠𝑠 sin𝜃𝜃,    𝜂𝜂(𝑠𝑠, 𝑡𝑡) =  −(1 + 𝑢𝑢𝑠𝑠) sin𝜃𝜃 + 𝑣𝑣𝑆𝑆 cos 𝜃𝜃    (2.5) 

where the subscript s means differentiation with respect to s. Moreover, using the 

Taylor expansion and the linearization of the strain-displacement relationships, the 

result gives: 

𝑣𝑣(1) = 𝑢𝑢𝑠𝑠
(1),     𝜂𝜂(1) = 𝑣𝑣𝑠𝑠

(1) − 𝜃𝜃(1), 𝑎𝑎𝑎𝑎𝑑𝑑  𝜇𝜇(1) = 𝜃𝜃𝑠𝑠
(1)   (2.6) 

2.1.1. Nonlinear strains in 3d theory. The position vector (an arbitrary point) 

of the base curve is 

𝒑𝒑(𝑠𝑠, 𝑡𝑡) = 𝑟𝑟1𝒆𝒆𝟏𝟏 + 𝑟𝑟2𝒆𝒆𝟐𝟐 + 𝑥𝑥2𝒃𝒃𝟐𝟐 + 𝑥𝑥3𝒃𝒃𝟑𝟑 = 

(𝑟𝑟1 − 𝑥𝑥2 sin𝜃𝜃)𝒆𝒆𝟏𝟏 + (𝑟𝑟2 + 𝑥𝑥2 cos 𝜃𝜃 ) 𝒆𝒆𝟐𝟐 + 𝑥𝑥3𝒆𝒆𝟑𝟑             (2.7) 

 

 

Figure 2.1: Planar motion of a beam [63] 
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Figure 2.2 Planar motion of beam: stretch vector and strains as components of the  v 
[63] 

 

The deformation gradient can be calculated according to 𝑭𝑭𝑇𝑇 = ∇ 𝒑𝒑 = �𝒆𝒆𝟏𝟏𝜕𝜕𝑥𝑥1 +

𝒆𝒆𝟐𝟐𝜕𝜕𝑥𝑥2 + 𝒆𝒆𝟑𝟑𝜕𝜕𝑥𝑥3�( 𝑝𝑝1𝒆𝒆𝟏𝟏 + 𝑝𝑝2𝒆𝒆𝟐𝟐 + 𝑝𝑝3𝒆𝒆𝟑𝟑), from which 

                       𝑭𝑭 = (𝜕𝜕𝑠𝑠𝑟𝑟1 − 𝑥𝑥2𝜕𝜕𝑠𝑠𝜃𝜃 cos 𝜃𝜃)𝒆𝒆𝟏𝟏𝒆𝒆𝟏𝟏 + cos 𝜃𝜃𝒆𝒆𝟐𝟐𝒆𝒆𝟐𝟐 + 𝒆𝒆𝟑𝟑𝒆𝒆𝟑𝟑 

                                         +(𝜕𝜕𝑠𝑠𝑟𝑟2 − 𝑥𝑥2𝜕𝜕𝑠𝑠𝜃𝜃 sin 𝜃𝜃)𝒆𝒆𝟐𝟐𝒆𝒆𝟏𝟏 − sin 𝜃𝜃𝒆𝒆𝟏𝟏𝒆𝒆𝟐𝟐  (2.8) 

with 𝜕𝜕𝑥𝑥1 = 𝜕𝜕𝑠𝑠. 

By using the definition of the stretch vector [63],  

𝒗𝒗𝟏𝟏 = 𝑭𝑭 ⋅ 𝒃𝒃𝟏𝟏 = (𝜕𝜕𝑠𝑠𝑟𝑟1 − 𝑥𝑥2𝜕𝜕𝑠𝑠𝜃𝜃 cos 𝜃𝜃 ) 𝒆𝒆𝟏𝟏 + (𝜕𝜕𝑠𝑠𝑟𝑟2 − 𝑥𝑥2𝜕𝜕𝑠𝑠𝜃𝜃 sin 𝜃𝜃)𝒆𝒆𝟐𝟐   (2.9) 

The magnitude of 𝑣𝑣1 is the stretch of the material fiber given by  

𝑣𝑣1 = [ (𝜕𝜕𝑠𝑠𝑟𝑟1)2 +  (𝜕𝜕𝑠𝑠𝑟𝑟2)2 − 2𝑥𝑥2𝜕𝜕𝑠𝑠𝜃𝜃(𝜕𝜕𝑠𝑠𝑟𝑟1 cos 𝜃𝜃 + 𝜕𝜕𝑠𝑠𝑟𝑟2 cos𝜃𝜃) + 𝑥𝑥22(𝜕𝜕𝑠𝑠𝜃𝜃)2]
1
2    (2.10) 

If the material fiber coincides with the base curve, it is 𝑥𝑥2 = 0, from which the stretch 

vector and it s magnitude, become, 

𝒗𝒗𝟏𝟏° = 𝜕𝜕𝑠𝑠𝑟𝑟1𝒆𝒆𝟏𝟏 + 𝜕𝜕𝑠𝑠𝑟𝑟2𝒆𝒆𝟐𝟐   𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣1° = �(𝜕𝜕𝑠𝑠𝑟𝑟1)2 + (𝜕𝜕𝑠𝑠𝑟𝑟2)2 = |𝜕𝜕𝑠𝑠𝒓𝒓| (2.11) 

where the superscript ° refers to the a quantity in the base curve.  



21 
 

On the other hand, the shear strain (check the basic deformation of shear strain!) 

between the material fiber collinear with the baseline and the material line of the cross 

section collinear with 𝑏𝑏2° = 𝑒𝑒2 is found to be 

sin 𝛾𝛾° = 𝜕𝜕𝑠𝑠𝒓𝒓 ⋅ 𝒃𝒃𝟐𝟐/𝑣𝑣1° = (− sin 𝜃𝜃 𝜕𝜕𝑠𝑠𝑟𝑟1 + cos 𝜃𝜃 𝜕𝜕𝑠𝑠𝑟𝑟2)/|𝜕𝜕𝑠𝑠𝒓𝒓|   (2.12) 

where 𝛾𝛾 is the shear strain between the material fibers 𝑏𝑏1°  𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏2° .  

 The vector 𝜕𝜕𝑠𝑠𝑟𝑟 = 𝜕𝜕𝑠𝑠𝑟𝑟2𝑒𝑒1 + 𝜕𝜕𝑠𝑠𝑟𝑟2𝑒𝑒2 is projected along the unit vectors (𝑏𝑏1, 𝑏𝑏2) 

obtaining 

𝜕𝜕𝑠𝑠𝒓𝒓.𝒃𝒃𝟏𝟏 = 𝜕𝜕𝑆𝑆𝑟𝑟1 cos 𝜃𝜃 + 𝜕𝜕𝑠𝑠𝑟𝑟2 sin𝜃𝜃,     𝜕𝜕𝑆𝑆𝒓𝒓 ⋅ 𝒃𝒃𝟐𝟐 =  −𝜕𝜕𝑠𝑠𝑟𝑟1 sin𝜃𝜃 + 𝜕𝜕𝑠𝑠𝑟𝑟2 cos 𝜃𝜃  (2.13) 

By revisiting Eq. (2.2)     

𝑣𝑣 ≔ 𝜕𝜕𝑠𝑠 𝒓𝒓.𝒃𝒃𝟏𝟏   𝑎𝑎𝑎𝑎𝑎𝑎  𝜂𝜂 ≔ 𝜕𝜕𝑠𝑠 𝒓𝒓.𝒃𝒃𝟐𝟐 

It follows that 

              𝜂𝜂 = 𝑣𝑣1° sin 𝛾𝛾°,   𝑣𝑣 = 𝑣𝑣1° cos 𝛾𝛾° = ��𝑣𝑣1°�
2
− 𝜂𝜂2   (2.14) 

which are the beams stretch and shear strain respectively.  

Moreover, the bending (flexural) curvature is given by: 

𝜇𝜇(𝑠𝑠, 𝑡𝑡) ≔ 𝜕𝜕𝑠𝑠𝜃𝜃(𝑠𝑠, 𝑡𝑡)     (2.15) 

Again, this is different from the geometric curvature which is given as: 

𝜇𝜇𝐺𝐺 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠

𝜕𝜕𝑠𝑠
𝜕𝜕𝑠𝑠�  

= 𝜕𝜕𝑠𝑠𝜃𝜃+𝜕𝜕𝑠𝑠𝛾𝛾
|𝜕𝜕𝑠𝑠𝒓𝒓|

= 𝜇𝜇+𝜕𝜕𝑠𝑠𝛾𝛾
𝑣𝑣1°

       (2.16) 

To ensure the motions are admissible, the condition det F > 0 must be enforced and 

therefore leading to  

𝑑𝑑𝑑𝑑𝑑𝑑 𝑭𝑭 = 𝑣𝑣 − 𝑥𝑥2𝜇𝜇 > 0    (2.17) 

 

2.1.2. The Euler-Bernoulli beam. The Euler-Bernoulli assumes a beam being 

sufficiently slender and thus the shearing effects turn out to be barely appreciable [63]. 

This unshearability (𝜂𝜂 = 0) leads to kinematic and strain-displacement relationships 

denoted as follows: 
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𝒓𝒓𝒔𝒔 = 𝑣𝑣𝒃𝒃𝟏𝟏, cos𝜃𝜃 = 1+𝑢𝑢𝑠𝑠
𝑣𝑣

, sin 𝜃𝜃 = 𝑣𝑣𝑠𝑠
𝑣𝑣

,     𝜃𝜃 = arctan � 𝑣𝑣𝑠𝑠
1+𝑢𝑢𝑠𝑠

�   (2.18) 

𝑣𝑣 = �(1 + 𝑢𝑢𝑠𝑠)2 + 𝑣𝑣𝑠𝑠2,        𝜇𝜇 = [𝑣𝑣𝑠𝑠𝑠𝑠(1 + 𝑢𝑢𝑠𝑠) − 𝑢𝑢𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠]/𝑣𝑣2  (2.19) 

Solving the inextensibility constraint with respect to the horizontal displacement 

gradient 𝑢𝑢𝑠𝑠 and 𝑣𝑣 given as above, and substituting the result into the bending curvature 

above, one gets 

𝑢𝑢𝑠𝑠 =  −1 ± �1 − 𝑣𝑣𝑠𝑠2,   𝜃𝜃 = ± arctan� 𝑣𝑣𝑆𝑆

�1−𝑣𝑣𝑠𝑠2
� ,   𝜇𝜇 =  ± 𝑣𝑣𝑠𝑠𝑠𝑠

�1−𝑣𝑣𝑠𝑠2
   (2.20) 

Only the plus sign is meaningful. The obtained kinematic relationships show that the 

problem can be formulated in terms of one kinematic unknown only, namely, the 

transverse displacement 𝑣𝑣(𝑠𝑠, 𝑡𝑡). The obtained beam model is referred to as the Euler-

Bernoulli beam model. The linearization of the kinematic relationships of the Euler-

Bernoulli beams yields: 

𝜃𝜃(1) = 𝑣𝑣𝑠𝑠
(1)      𝑎𝑎𝑎𝑎𝑎𝑎 𝜇𝜇(1) = 𝑣𝑣𝑠𝑠𝑠𝑠

(1)    (2.21) 

2.1.3. Equations of motion. The equations of motion will be derived. First, 

we introduce the linear and angular momentum per unit reference length: 

𝒍𝒍(𝑠𝑠, 𝑡𝑡) ∶=  ∫ 𝜕𝜕𝑡𝑡𝒑𝒑(𝑠𝑠, 𝑡𝑡)𝜌𝜌(𝑠𝑠)𝑑𝑑𝑑𝑑,   𝒉𝒉(𝑠𝑠, 𝑡𝑡) ≔  ∫ 𝒑𝒑(𝑠𝑠, 𝑡𝑡)  × 𝜕𝜕𝑡𝑡𝒑𝒑(𝑠𝑠, 𝑡𝑡)𝜌𝜌(𝑠𝑠)𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆     (2.22) 

where 𝜕𝜕𝑡𝑡  𝒑𝒑(𝑠𝑠, 𝑡𝑡) is the velocity of the material points (recall the 𝑝𝑝 = 𝑟𝑟(𝑠𝑠, 𝑡𝑡) + 𝑥𝑥2𝑏𝑏2 +

𝑥𝑥3𝑏𝑏3 ) of the cross section at s which occupy the current position 𝒑𝒑(𝑠𝑠, 𝑡𝑡). The derivative 

of the position vector given above can be written as 𝜕𝜕𝑡𝑡𝒑𝒑(𝑠𝑠, 𝑡𝑡) = 𝜕𝜕𝑡𝑡𝒓𝒓(𝑠𝑠, 𝑡𝑡) +

𝑥𝑥2𝜕𝜕𝑡𝑡𝒃𝒃𝟐𝟐(𝑠𝑠, 𝑡𝑡). This allows us to write the linear and angular momentum per unit 

reference length as: 

                𝒍𝒍(𝑠𝑠, 𝑡𝑡) =  ∫ [𝜕𝜕𝑡𝑡𝒓𝒓 + 𝑥𝑥2𝜕𝜕𝑡𝑡𝒃𝒃𝟐𝟐]𝜌𝜌(𝑠𝑠)𝑑𝑑𝑑𝑑 = 𝜌𝜌𝜌𝜌(𝑠𝑠)𝜕𝜕𝑡𝑡𝒓𝒓 + 𝜌𝜌𝜌𝜌(𝑠𝑠)𝜕𝜕𝑡𝑡𝒃𝒃𝟐𝟐𝑆𝑆   (2.23) 

                        ℎ(𝑠𝑠, 𝑡𝑡) = �[𝒓𝒓 + (𝑥𝑥2𝒃𝒃𝟐𝟐 + 𝑥𝑥3𝒃𝒃𝟑𝟑)] × [𝜕𝜕𝑡𝑡𝒓𝒓 + 𝑥𝑥2𝜕𝜕𝑡𝑡𝒃𝒃𝟐𝟐]𝜌𝜌(𝑠𝑠)𝑑𝑑𝑑𝑑 
𝑆𝑆

 

                  = 𝒓𝒓 × [𝜌𝜌𝜌𝜌(𝑠𝑠)𝜕𝜕𝑡𝑡𝒓𝒓 + 𝜌𝜌𝜌𝜌(𝑠𝑠)𝜕𝜕𝑡𝑡𝒃𝒃𝟐𝟐] + 𝒃𝒃𝟐𝟐 × [𝜌𝜌𝜌𝜌(𝑠𝑠)𝜕𝜕𝑡𝑡𝒓𝒓 + 𝜌𝜌𝜌𝜌(𝑠𝑠)𝜕𝜕𝑡𝑡𝒃𝒃𝟐𝟐]  

  (2.24) 

where 
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𝜌𝜌𝜌𝜌(𝑠𝑠) ≔  ∫ 𝜌𝜌(𝑠𝑠)𝑑𝑑𝑑𝑑𝑆𝑆 ,𝜌𝜌𝜌𝜌(𝑠𝑠) ≔  ∫ 𝑥𝑥2𝜌𝜌(𝑠𝑠)𝑑𝑑𝑑𝑑𝑆𝑆 , 𝜌𝜌𝜌𝜌(𝑠𝑠) ≔  ∫ 𝑥𝑥22𝜌𝜌(𝑠𝑠)𝑑𝑑𝑑𝑑𝑆𝑆   (2.25) 

The beam mass per unit length is 𝜌𝜌𝜌𝜌(𝑠𝑠). The first and second mass moments of area 

with respect to the axis collinear with 𝒃𝒃𝟑𝟑 are 𝜌𝜌𝜌𝜌(𝑠𝑠) 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝜌𝜌(𝑠𝑠). 

Let 𝒏𝒏(𝑠𝑠, 𝑡𝑡) ≔ 𝑁𝑁(𝑠𝑠, 𝑡𝑡) 𝒃𝒃𝟏𝟏(𝑠𝑠, 𝑡𝑡) + 𝑄𝑄(𝑠𝑠, 𝑡𝑡) 𝒃𝒃𝟐𝟐(𝑠𝑠, 𝑡𝑡)  𝑎𝑎𝑎𝑎𝑎𝑎  𝒎𝒎(𝑠𝑠, 𝑡𝑡) = 𝑀𝑀(𝑠𝑠, 𝑡𝑡)  𝒆𝒆𝟑𝟑 

denote the beam generalized stress resultants and contact couple (bending moment). N 

is the tension, Q is the shear force, M is the bending moment. 

The balance of linear and angular momentum of the beam is enforced through 

                                              𝒇𝒇𝟏𝟏 + 𝒇𝒇𝟐𝟐 +  � 𝒇𝒇 𝑑𝑑𝑑𝑑 =
𝑑𝑑
𝑑𝑑𝑑𝑑

 � 𝒍𝒍 𝑑𝑑𝑑𝑑,    
𝑙𝑙

0

𝑙𝑙

0
 

            𝑐𝑐1 + 𝑐𝑐2 + ∫ 𝒓𝒓 × 𝒇𝒇 𝑑𝑑𝑑𝑑 +  ∫ 𝒄𝒄 𝑑𝑑𝑑𝑑 + 𝒓𝒓(𝑙𝑙, 𝑡𝑡) × 𝒇𝒇𝟐𝟐 = 𝑑𝑑
𝑑𝑑𝑑𝑑

 ∫ 𝒉𝒉 𝑑𝑑𝑑𝑑𝑙𝑙
0

𝑙𝑙
0

𝑙𝑙
0         (2.26) 

where f and c are the resultant applied force and resultant couple per unit length. 

Moreover, (𝒇𝒇𝟏𝟏, 𝒄𝒄𝟏𝟏) and (𝒇𝒇𝟐𝟐, 𝒄𝒄𝟐𝟐) are the resultant forces and couples at the beam ends 

𝑠𝑠 = 0 and 𝑠𝑠 = 𝑙𝑙, respectively. 

The balance of linear and angular momentum is enforced on the beam part 

according to  

–𝒏𝒏(𝑠𝑠1, 𝑡𝑡) +  ∫ 𝒇𝒇(𝜉𝜉, 𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝒍𝒍(𝜉𝜉, 𝑡𝑡)𝑑𝑑𝑑𝑑𝑠𝑠

𝑠𝑠1
𝑠𝑠
𝑠𝑠1

− 𝒓𝒓(𝑠𝑠1, 𝑡𝑡) × 𝒏𝒏(𝑠𝑠1, 𝑡𝑡) + 𝒓𝒓(𝑠𝑠, 𝑡𝑡) × 𝒏𝒏(𝑠𝑠, 𝑡𝑡) −

𝒎𝒎(𝑠𝑠1, 𝑡𝑡) + 𝒎𝒎(𝑠𝑠, 𝑡𝑡) + ∫ 𝒄𝒄𝑑𝑑𝑑𝑑 𝑠𝑠
𝑠𝑠1

+  ∫ 𝒓𝒓 × 𝒇𝒇 𝑑𝑑𝑑𝑑𝑠𝑠
𝑠𝑠1

= 𝑑𝑑
𝑑𝑑𝑑𝑑

 ∫ 𝒉𝒉(𝜉𝜉, 𝑡𝑡)𝑑𝑑𝑑𝑑𝑠𝑠
𝑠𝑠1

                        (2.27) 

By applying the integration-by-part rules, we gain one vector-valued equation and one 

scalar equations as follows: 

𝜕𝜕𝑠𝑠𝒏𝒏 + 𝒇𝒇 = 𝜌𝜌𝜌𝜌𝜕𝜕𝑡𝑡𝑡𝑡𝒓𝒓 + 𝜌𝜌𝜌𝜌𝜕𝜕𝑡𝑡𝑡𝑡𝒃𝒃𝟐𝟐    (2.28) 

𝜕𝜕𝑠𝑠𝑴𝑴 + (𝒗𝒗 × 𝒏𝒏) ⋅ 𝒆𝒆𝟑𝟑 + 𝑐𝑐 = {𝒃𝒃𝟐𝟐 × [𝜌𝜌𝜌𝜌𝜕𝜕𝑡𝑡𝑡𝑡𝒓𝒓 + 𝜌𝜌𝜌𝜌𝜕𝜕𝑡𝑡𝑡𝑡𝒃𝒃𝟐𝟐]} ⋅ 𝒆𝒆𝟑𝟑  (2.29) 

where 𝑣𝑣 ≔ 𝜕𝜕𝑠𝑠𝑟𝑟 is the stretch vector of the base curve at s and time t. Hence, if the 

base curve 𝐶𝐶°is taken to be the beam centerline, the equations of motion reduce to the 

simpler form: 

𝜕𝜕𝑠𝑠𝒏𝒏 + 𝒇𝒇 = 𝜌𝜌𝜌𝜌𝜕𝜕𝑡𝑡𝑡𝑡𝒓𝒓,      (2.30) 

𝜕𝜕𝑠𝑠𝑴𝑴 + (𝒗𝒗 × 𝒏𝒏) ⋅ 𝒆𝒆𝟑𝟑 + 𝑐𝑐 = 𝜌𝜌𝜌𝜌𝜕𝜕𝑡𝑡𝑡𝑡𝜃𝜃     (2.31) 
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2.1.4. Simplification of the angular momentum. After relaxing the 

assumption that the section-fixed director 𝑏𝑏2 was always assumed to be collinear to the 

axis of symmetry of the beam, and rewriting Eq. (2.24).  we get the following 

expression of the angular momentum  

𝒉𝒉(𝑠𝑠, 𝑡𝑡) =  �[𝒓𝒓 + (𝑥𝑥2𝒃𝒃𝟐𝟐 + 𝑥𝑥3𝒃𝒃𝟑𝟑)] × [𝜕𝜕𝑡𝑡𝒓𝒓 + 𝑥𝑥2𝜕𝜕𝑡𝑡𝒃𝒃𝟐𝟐]𝜌𝜌(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑆𝑆

  

 = 𝒓𝒓 × (𝜌𝜌𝜌𝜌𝜕𝜕𝑡𝑡𝒓𝒓 + 𝜌𝜌𝐼𝐼3𝜕𝜕𝑡𝑡𝒃𝒃𝟐𝟐) 

                      + 𝒃𝒃𝟐𝟐 × (𝜌𝜌𝐼𝐼3𝜕𝜕𝑡𝑡𝒓𝒓 + 𝜌𝜌𝐽𝐽33𝜕𝜕𝑡𝑡𝒃𝒃𝟐𝟐) + 𝒃𝒃𝟑𝟑 × (𝜌𝜌𝐼𝐼2𝜕𝜕𝑡𝑡𝒓𝒓 − 𝜌𝜌𝐽𝐽23𝜕𝜕𝑡𝑡𝒃𝒃𝟐𝟐)               (2.32) 

where 

𝜌𝜌𝐼𝐼2 ∶= � 𝑥𝑥3𝜌𝜌𝜌𝜌𝜌𝜌,   𝜌𝜌𝐼𝐼3 = 𝜌𝜌𝜌𝜌 ∶=  �𝑥𝑥2𝜌𝜌𝜌𝜌𝜌𝜌
𝑆𝑆𝑆𝑆

,    

𝜌𝜌𝐽𝐽33 = 𝜌𝜌𝜌𝜌 ∶=  � 𝑥𝑥22𝜌𝜌𝜌𝜌𝜌𝜌,   𝜌𝜌𝐽𝐽23 = 𝜌𝜌𝜌𝜌 ∶=  −�𝑥𝑥2𝑥𝑥3𝜌𝜌𝜌𝜌𝜌𝜌
𝑆𝑆𝑆𝑆

 

Here, 𝜌𝜌𝐽𝐽𝑖𝑖𝑖𝑖𝑏𝑏𝑖𝑖𝑏𝑏𝑗𝑗 is the inertia tensor of the cross section. If 𝑏𝑏2 is collinear to the axis of 

symmetry, then  

𝜌𝜌𝐼𝐼2 ∶=  �𝑥𝑥3𝜌𝜌𝜌𝜌𝜌𝜌 = 0
𝑆𝑆

,   𝜌𝜌𝐽𝐽23 ≔  −�𝑥𝑥2𝑥𝑥3𝜌𝜌𝜌𝜌𝜌𝜌 = 0
𝑆𝑆

 

2.1.5. Component form of the equations of motion. Let 𝒓𝒓 ∶= 𝒓𝒓° + 𝑢𝑢1𝒃𝒃𝟏𝟏 +

𝑢𝑢2𝒃𝒃𝟐𝟐so that the acceleration in the local basis can be obtained. The ensuing component 

form of the equations of motion is  

𝜕𝜕𝑠𝑠𝑁𝑁 − 𝜇𝜇𝜇𝜇 + 𝑓𝑓1𝑏𝑏 = 𝜌𝜌𝜌𝜌[𝜕𝜕𝑡𝑡𝑡𝑡𝑢𝑢1 − (𝜕𝜕𝑡𝑡𝜃𝜃)2𝑢𝑢1 − 2𝜕𝜕𝑡𝑡𝑢𝑢2𝜕𝜕𝑡𝑡𝜃𝜃 − 𝑢𝑢2𝜕𝜕𝑡𝑡𝑡𝑡𝜃𝜃]  (2.33) 

𝜕𝜕𝑠𝑠𝑄𝑄 + 𝜇𝜇𝜇𝜇 + 𝑓𝑓2𝑏𝑏 = 𝜌𝜌𝜌𝜌[𝜕𝜕𝑡𝑡𝑡𝑡𝑢𝑢2 − (𝜕𝜕𝑡𝑡𝜃𝜃)2𝑢𝑢2 + 2𝜕𝜕𝑡𝑡𝑢𝑢1𝜕𝜕𝑡𝑡𝜃𝜃 − 𝑢𝑢1𝜕𝜕𝑡𝑡𝑡𝑡𝜃𝜃]  (2.34) 

𝜕𝜕𝑠𝑠𝑀𝑀 + 𝑣𝑣𝑣𝑣 − 𝜂𝜂𝜂𝜂 + 𝑐𝑐 = 𝜌𝜌𝜌𝜌𝜕𝜕𝑡𝑡𝑡𝑡𝜃𝜃     (2.35) 

where 𝑓𝑓𝑘𝑘𝑏𝑏 ≔ 𝒇𝒇 ⋅ 𝒃𝒃𝒌𝒌, 𝑘𝑘 = 1,2 

When we consider the case of unshearable beams, when the material constraint 

𝜂𝜂 =  0 is introduced into Eq. (2.33), the reactive shear force Q yields, 

𝑄𝑄 =  −(𝜕𝜕𝑠𝑠𝑀𝑀 + 𝑐𝑐 − 𝜌𝜌𝜌𝜌𝜕𝜕𝑡𝑡𝑡𝑡𝜃𝜃)/ 𝑣𝑣    (2.36) 
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The shear force is then substituted into Eq. (2.31) and becomes the equations of 

contrained motion for unshearable beams 

𝜌𝜌𝜌𝜌[𝜕𝜕𝑡𝑡𝑡𝑡𝑢𝑢1 − (𝜕𝜕𝑡𝑡𝜃𝜃)2𝑢𝑢1 − 2𝜕𝜕𝑡𝑡𝑢𝑢2𝜕𝜕𝑡𝑡𝜃𝜃 − 𝜕𝜕𝑡𝑡𝑡𝑡𝜃𝜃𝑢𝑢2] +
𝜇𝜇

𝑣𝑣𝑣𝑣𝑣𝑣𝜕𝜕𝑡𝑡𝑡𝑡𝜃𝜃
 

−𝜕𝜕𝑠𝑠𝑁𝑁 − �𝜇𝜇
𝑣𝑣
� 𝜕𝜕𝑠𝑠𝑀𝑀 = 𝑓𝑓1𝑏𝑏 + �𝜇𝜇

𝑣𝑣
� 𝑐𝑐    (2.37) 

2.1.6. Axially restrained elastic beams. An explicit expression of the tension 

can be found once the constitutive equation for a linearly elastic beam is expressed in 

the form 𝑁𝑁(𝑠𝑠, 𝑡𝑡) = 𝐸𝐸𝐸𝐸𝐸𝐸(𝑠𝑠, 𝑡𝑡). The uniformity of N allows its computation as an average 

of the domain [0, 𝑙𝑙]: 

𝑁𝑁� (𝑡𝑡) =
1
𝑙𝑙

 � 𝑁𝑁�𝑑𝑑𝑑𝑑 =
1
𝑙𝑙

 � 𝐸𝐸𝐸𝐸 �𝑢𝑢𝑠𝑠 +
1
2

 𝑣𝑣𝑠𝑠2� 𝑑𝑑𝑑𝑑
𝑙𝑙

0

𝑙𝑙

0
 

= 𝐸𝐸𝐸𝐸
𝑙𝑙

[𝑢𝑢(𝑙𝑙, 𝑡𝑡) − 𝑢𝑢(0, 𝑡𝑡)] + 𝐸𝐸𝐸𝐸
𝑙𝑙 ∫

1
2

 𝑣𝑣𝑠𝑠2𝑑𝑑𝑑𝑑
𝑙𝑙
0  (2.38) 

The next step is to consider the equation of motion in the transverse direction by 

introducing the following approximations: 

𝑴𝑴� (𝑠𝑠, 𝑡𝑡) = 𝐸𝐸𝑰𝑰𝑣𝑣𝑠𝑠𝑠𝑠 ,     �
𝑀𝑀𝑠𝑠

𝑣𝑣
�
𝑠𝑠

~ 𝑀𝑀𝑠𝑠𝑠𝑠 = (𝐸𝐸𝐸𝐸𝑣𝑣𝑠𝑠𝑠𝑠)𝑠𝑠𝑠𝑠, 

𝒇𝒇 ⋅ 𝒃𝒃𝟐𝟐 ~ 𝒇𝒇 ⋅ 𝒆𝒆𝟐𝟐 = 𝑓𝑓2,        𝜌𝜌𝜌𝜌𝒓𝒓𝒕𝒕𝒕𝒕 ⋅ 𝒃𝒃𝟐𝟐 ~ 𝜌𝜌𝜌𝜌𝑣𝑣𝑡𝑡𝑡𝑡 ,         𝑎𝑎𝑎𝑎𝑎𝑎  𝜇𝜇𝜇𝜇 ~ 𝑣𝑣𝑠𝑠𝑠𝑠𝑁𝑁�  

The resulting approximate equation of motion is the following integral-partial-

differential equation which was first proposed by Mettler 

𝜌𝜌𝜌𝜌𝑣𝑣𝑡𝑡𝑡𝑡 + 𝐸𝐸𝐸𝐸𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −
𝐸𝐸𝐸𝐸
𝑙𝑙

 𝑣𝑣𝑠𝑠𝑠𝑠[𝑢𝑢(𝑙𝑙, 𝑡𝑡) − 𝑢𝑢(0, 𝑡𝑡)] − 𝐸𝐸𝐸𝐸
2𝑙𝑙

 𝑣𝑣𝑠𝑠𝑠𝑠 ∫ 𝑣𝑣𝑠𝑠2𝑑𝑑𝑑𝑑 𝑙𝑙
0 = 𝑓𝑓2  (2.39) 

Eq. (2.37) was first proposed by Mettler [23] and is employed in our study of nonlinear 

structural dynamics. This equation, however, has a limited range of validity, mostly 

restricted to linearly elastic beams that are: (a) axially restrained at the boundaries, (b) 

not loaded by resonant longitudinal forces, and (c) loaded by moderate transverse forces 

𝑓𝑓2 so that the resulting flexural motions are of moderately large amplitude in agreement 

with hypotheses (b) and (c) and with the second-order kinematic truncation of the 

elongation. 
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2.2.  Metastructure Mathematical Model 

The metamaterial beam modeled as a Mettler beam as in Eq. (2.37) is coupled  

with an array of 𝑁𝑁𝑣𝑣𝑣𝑣 linear vibrator absorber each having mass 𝑚𝑚𝑖𝑖. By investigating 

Figure 2.3, the effect of the local resonators will be considered as an external force 

(point forces) at particular spatial locations along the beam. Moreover, the displacement 

of the 𝑖𝑖𝑡𝑡ℎ mass relative to the cross section centerline is represented by 𝑦𝑦𝚤𝚤�(𝑡𝑡). Thus the 

Euler-Bernoulli equation becomes 

𝜌𝜌𝜌𝜌𝑣̈𝑣 + 𝑐𝑐2𝑣̇𝑣 + 𝐸𝐸𝐸𝐸𝜕𝜕𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣 −
𝐸𝐸𝐸𝐸
𝑙𝑙
𝜕𝜕𝑠𝑠𝑠𝑠𝑣𝑣 �

1
2

𝑙𝑙

0
𝜕𝜕𝑠𝑠𝑣𝑣2𝑑𝑑𝑑𝑑 

                                + ∑ 𝑚𝑚𝑖𝑖[𝑣̈𝑣(𝑠𝑠𝑖𝑖, 𝑡𝑡) + 𝑦𝑦𝚤𝚤�̈(𝑡𝑡)]𝛿𝛿(𝑠𝑠 − 𝑠𝑠𝑖𝑖) = 𝑓𝑓2(𝑠𝑠, 𝑡𝑡)𝑁𝑁𝑣𝑣𝑣𝑣
𝑖𝑖=1   (2.40) 

where 𝛿𝛿(𝑠𝑠 − 𝑠𝑠𝑖𝑖) is the Dirac delta function representing the concentrated force exerted 

by the ith absorber. The  equation of motion of a typical absorber is given as  

                                   𝑚𝑚𝑖𝑖[𝑣̈𝑣(𝑠𝑠𝑖𝑖, 𝑡𝑡) + 𝑦𝑦�̈𝑖𝑖(𝑡𝑡)] + 𝑐𝑐𝑖𝑖𝑦𝑦�𝚤̇𝚤(𝑡𝑡) + 𝑘𝑘𝑖𝑖𝑦𝑦𝚤𝚤�(𝑡𝑡) = 0   (2.41) 

2.2.1. Nondimensionalization. The equations of motion are rendered 

nondimensional by rescaling time by the characteristic time 1
𝜔𝜔𝑐𝑐

= �𝜌𝜌𝜌𝜌𝑙𝑙4

𝐸𝐸𝐸𝐸
 and the 

displacement by the beam span 𝑙𝑙. Therefore, 𝑠𝑠∗ = 𝑠𝑠
𝑙𝑙
 , 𝑡𝑡∗ = 𝜔𝜔𝑐𝑐𝑡𝑡,    𝑣𝑣∗ = 𝑣𝑣

𝑙𝑙
   𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑖𝑖 =

𝑦𝑦𝚤𝚤�/𝑙𝑙. The equations of motion in nondimensional form become 

𝑣̈𝑣 + 2𝜁𝜁𝑣̇𝑣 + 𝑣𝑣′′′′ − 𝜆𝜆2𝑣𝑣′′ �
1
2

(𝑣𝑣′)2𝑑𝑑𝑑𝑑 
𝑙𝑙

0
+ �𝜇𝜇𝑖𝑖�𝑣̈𝑣𝑠𝑠𝑖𝑖 + 𝑦𝑦𝚤̈𝚤� 𝛿𝛿(𝑠𝑠 − 𝑠𝑠𝑖𝑖) = 𝑓𝑓2,

𝑁𝑁𝑣𝑣𝑣𝑣

𝑖𝑖=1

 

𝜇𝜇𝑖𝑖�𝑣𝑣𝑠𝑠𝚤𝚤̈ + 𝑦𝑦𝚤̈𝚤� + 2𝜁𝜁𝑖𝑖𝜇𝜇𝑖𝑖𝛼𝛼𝑖𝑖𝜔𝜔�𝑦𝑦𝚤̇𝚤 + 𝜇𝜇𝑖𝑖𝛼𝛼𝑖𝑖2𝜔𝜔�2𝑦𝑦𝑖𝑖 + 𝑁𝑁𝑖𝑖(𝑦𝑦𝑖𝑖2,𝑦𝑦𝑖𝑖3) = 0   (2.42) 

where the stars are dropped and the following nondimensional parameters were 

introduced 

𝜁𝜁 =
𝑐𝑐2

2𝜌𝜌𝜌𝜌𝜔𝜔𝑐𝑐
,        𝜆𝜆2 =

𝐸𝐸𝐸𝐸𝑙𝑙2

𝐸𝐸𝐸𝐸
,           𝜔𝜔� =

𝜔𝜔𝑐𝑐𝑐𝑐
𝜔𝜔𝑐𝑐

 

𝜇𝜇𝑖𝑖 = 𝑚𝑚𝑖𝑖
𝜌𝜌𝜌𝜌𝜌𝜌

,              𝛼𝛼𝑖𝑖 = 𝜔𝜔𝑣𝑣𝑣𝑣
𝜔𝜔𝑐𝑐𝑐𝑐

,              𝜁𝜁𝑖𝑖 = 𝑐𝑐𝑖𝑖
2𝑚𝑚𝑖𝑖𝜔𝜔𝑣𝑣𝑣𝑣𝑖𝑖

,            𝜔𝜔𝑣𝑣𝑣𝑣2 = 𝑘𝑘𝑖𝑖
𝑚𝑚𝑖𝑖

   (2.43) 
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Figure 2.3 Schematic of the metamaterial hinged-hinged beam 

 
The mass ratio and linear frequency of the 𝑖𝑖𝑡𝑡ℎ absorber are denoted by 𝜇𝜇𝑖𝑖and 𝜔𝜔𝑣𝑣𝑣𝑣,𝑖𝑖. 

Moreover, 𝛼𝛼𝑖𝑖 represents the ratio of the absorber frequency to the frequency to be 

controlled, 𝜔𝜔� is the ratio of frequency to be controlled to the characteristic frequency, 

𝜁𝜁𝑖𝑖 is the linear damping frequency factor of the 𝑖𝑖𝑡𝑡ℎ absorber. 

2.2.2. Galerkin discretization. Next, the Galerkin’s discretization method is 

used to reduce the dependence of the equations of motion on the space and end up with   

a finite set of ordinary differential equations in time only By referring back to Rao [62], 

the mode shapes of a hinged-hinged beam can be seen in Figure 2.4.  

                                      𝑣𝑣(𝑠𝑠, 𝑡𝑡) = ∑ 𝑞𝑞𝑘𝑘(𝑡𝑡)𝜙𝜙𝑘𝑘(𝑠𝑠)𝑁𝑁𝑚𝑚
𝑘𝑘=1                                 (2.44) 

where 𝑁𝑁𝑚𝑚 is the number of modes retained in the discretization, 𝑞𝑞𝑘𝑘(𝑡𝑡) is the 𝑘𝑘th 

generalized coordinate, and 𝜙𝜙𝑘𝑘(𝑠𝑠) is the corresponding trial function taken as the 𝑘𝑘th 

eigenfunction normalized according to ∫ 𝜙𝜙𝑘𝑘2(𝑠𝑠)𝑑𝑑𝑑𝑑 = 11
0 .  

 

Figure 2.4 The lowest mode shapes of the hinged-hinged beam [63] 
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The trial function  for the simple supported beams   is   

𝜙𝜙𝑘𝑘(𝑠𝑠) = √2 sin  �𝑘𝑘𝑘𝑘𝑘𝑘
𝑙𝑙
�       (2.45) 

Substituting Eq. 2.42 into the equation of motion in the non-dimensional form Eq. 

(2.40), the 𝑘𝑘th Galerkin-reduced equation is  

� 𝜙𝜙𝑘𝑘{ �[𝑞𝑞𝚥̈𝚥𝜙𝜙𝑗𝑗 + 2𝜁𝜁𝑞𝑞𝚥̇𝚥𝜙𝜙𝑗𝑗 + 𝑞𝑞𝑗𝑗𝜙𝜙𝑗𝑗′′′′  
𝑁𝑁𝑚𝑚

𝑗𝑗=1

1

0
 

 −𝜆𝜆2𝑞𝑞𝑗𝑗𝜙𝜙𝑗𝑗′′ �
1
2
�𝑞𝑞𝑗𝑗𝜙𝜙𝑗𝑗�

2
𝑑𝑑𝑑𝑑 

1

0
− 𝑓𝑓2(𝑠𝑠, 𝑡𝑡) 

   +∑ 𝜇𝜇𝑖𝑖�∑ 𝑞𝑞𝚥̈𝚥𝜙𝜙𝑗𝑗(𝑠𝑠𝑖𝑖) + 𝑦𝑦𝚤̈𝚤 
𝑁𝑁𝑚𝑚
𝑗𝑗=1 �𝛿𝛿(𝑠𝑠 − 𝑠𝑠𝑖𝑖)

𝑁𝑁𝑚𝑚
𝑖𝑖=1  }  𝑑𝑑𝑑𝑑 = 0  

 (2.46) 

while the equation of motion of the ith absorber becomes  

𝜇𝜇𝑖𝑖 �∑ 𝑞𝑞𝚥̈𝚥𝜙𝜙𝑗𝑗(𝑠𝑠𝑖𝑖) + 𝑦𝑦𝚤𝚤�̈  𝑁𝑁𝑚𝑚
𝑗𝑗=1 � + 2𝜁𝜁𝑖𝑖𝜇𝜇𝑖𝑖𝛼𝛼𝑖𝑖𝜔𝜔�𝑦𝑦𝚤̇𝚤 + 𝜇𝜇𝑖𝑖𝛼𝛼𝑖𝑖2𝜔𝜔�2𝑦𝑦𝑖𝑖 + 𝑁𝑁(𝑦𝑦𝑖𝑖2,𝑦𝑦𝑖𝑖3) = 0  (2.47) 

The orthogonality conditions of modes, are used to simplify the discretized equations. 

The equations of motion is projected onto the modal space and is expressed in matrix 

form. By introducing 𝑥𝑥 = {𝑞𝑞𝑘𝑘,𝑦𝑦𝑖𝑖}, we obtain, 

𝑴𝑴𝒙̈𝒙 + 𝑪𝑪𝒙̇𝒙 + 𝑲𝑲𝑲𝑲 + 𝑵𝑵− 𝒇𝒇 = 0   (2.48) 

where 𝑴𝑴,𝑪𝑪 and 𝑲𝑲 are the mass, damping and stiffness matrices, respectively, in the 

modal space; f is the vector containing the modal components of the external 

excitations,  and N is the vector containing the quadratic and cubic nonlinearities 

expressed in modal coordinates.  

The obtained ODE can be further expressed in state space by introducing 𝑦𝑦 = 𝑥̇𝑥 

and 𝑧𝑧 = {𝑥𝑥,𝑦𝑦}. The dynamic system in its compact form can be written as  

𝒛̇𝒛 = 𝑨𝑨𝒛𝒛 − 𝑵𝑵� + 𝒇𝒇�        (2.49) 

where  

𝑨𝑨 = � 𝟎𝟎 𝑰𝑰
−𝑴𝑴−𝟏𝟏𝑲𝑲 −𝑴𝑴−𝟏𝟏𝑪𝑪� ,   𝑵𝑵� = � 𝟎𝟎

−𝑴𝑴−𝟏𝟏𝑵𝑵�   ,𝒇𝒇� = � 𝟎𝟎
−𝑴𝑴−𝟏𝟏𝒇𝒇� 



29 
 

Equations (2.46) and (2.47) will be further demonstrated and explained in the upcoming 

chapters. Essentially, the equations of motion should be written in the Matrix format to 

keep it programming friendly. This means that the equations are in a format to be solved 

using Matlab. 

After going through the derivation of the beam model, the equation is tweaked 

to include the effect of the local absorbers and any external forces. The non-

dimensionalization technique is then implemented to simplify and parametrize the 

problem. The resulting equation was an integro-differential equation. It is, in fact, hard 

to solve. Therefore, the mode shapes of a hinged-hinged beam is utilized and the 

Galerkin discretization is implemented. The equation becomes a set of ordinary 

differential equations and the orthogonality conditions eases the computation. 

Furthermore, the equations are written in a matrix format to include it in a software 

package such as Matlab and do the investigations.  

With the equations in hand, the first step is to analyze the beam in the linear 

regime. This means the entries of 𝑁𝑁 is Eq. (2.46) is disregarded. The analysis is shown 

next. 
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Chapter 3. Linear Free and Forced Vibration Analysis 
 

In this chapter, we conduct a linear analysis to gain an insight on the dynamic 

behavior of the metamaterial beam when ignoring the geometric nonlinearity. In the 

subsequent analysis,  we consider a beam having an undeformed length 𝑙𝑙 = 1 𝑚𝑚, a cross 

sectional area 𝐴𝐴 = 0.00103 m2 and an inertia moment 𝐼𝐼 = 1.71 × 10−6 𝑚𝑚4. The 

metamaterial is made of a homogenous elastic material with a mass density 𝜌𝜌 =

7860 𝑘𝑘𝑘𝑘/𝑚𝑚3 and a Young’s modulus 𝐸𝐸 = 210 𝐺𝐺𝐺𝐺𝐺𝐺. The damping ratio is set to 𝜁𝜁 =

1%. The parameters are summarized in Table 3.1 at the end of this section. Such 

parameter lead to a value of characteristic frequency of 𝜔𝜔𝑐𝑐 = 210 𝐻𝐻𝐻𝐻. Moreover, the 

first six natural frequencies of the beam under study are given in Table 3.2. 

 

Table 3.1: Parameters of the metastructure beam 

Parameter Magnitude 
Length (𝑙𝑙) 1 m 
Area (𝐴𝐴) 0.00103 𝑚𝑚2 

Moment of intertia (𝐼𝐼) 1.71 × 10−6 𝑚𝑚4 
Density (𝜌𝜌) 7860 𝑘𝑘𝑘𝑘/𝑚𝑚3 

Young’s modulus (𝐸𝐸) 210 𝐺𝐺𝐺𝐺𝐺𝐺 
Damping Ratio (𝜁𝜁) 1% 

Characteristic frequency (𝜔𝜔𝑐𝑐) 210 Hz 
 

 

Table 3.2: The natural frequencies of the first six bending modes 

Mode Frequency [Hz] 

First 330.825 

Second 1323.298 

Third 2977.42 

Fourth 5293.19 

Fifth 8270.6 

Sixth 11909.68 
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In this section, the behavior of the finite host (beam) embedded with an array of 

resonators is investigated. The transfer matrix method is implemented to achieve the 

linear dynamic response of the metamaterial beam.  

The ordinary differential equations, Eqs. (2.46), are further expressed in state-

space form by introducing the vector collecting the velocities of the variables 𝑦𝑦 = 𝑥̇𝑥 =

{𝑝𝑝𝑘𝑘,𝑦𝑦𝑝𝑝,𝑖𝑖}. The augmented dynamics system becomes 

𝑥̇𝑥 = 𝑦𝑦 

𝑀𝑀𝑦̇𝑦 + 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝑁𝑁 − 𝑓𝑓 =  0     (3.1) 

The forcing term 𝑓𝑓  is assumed to be harmonic in the form 𝑓𝑓 = 𝐹𝐹𝑒𝑒𝑖𝑖Ω𝑡𝑡.  From the first 

part of Eq. (3.1), since the differential equation is homogenous, one can express the 

following: 

𝑥𝑥 = 𝑋𝑋𝑒𝑒𝑖𝑖Ω𝑡𝑡        (3.2) 

Moreover, since y is the first   derivative of x, one can express the following: 

𝑦𝑦 = 𝑥̇𝑥 = 𝑖𝑖Ω𝑋𝑋𝑒𝑒𝑖𝑖Ω𝑡𝑡     (3.3) 

By assuming the forcing term to be harmonic and substituting the assumed harmonic 

solution into Eq. (3.1), we obtain 

[−Ω2𝑀𝑀 + 𝑖𝑖Ω𝐶𝐶 + 𝐾𝐾] 𝑋𝑋 = 𝐹𝐹     (3.4) 

This equation is written in a matrix format to ease up the computation and be able to 

program it. As a reminder, 𝑥𝑥 is the vector of generalized coordinates 𝑥𝑥 = {𝑞𝑞𝑘𝑘,𝑦𝑦𝑖𝑖} whose 

size is [(𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) × 1]. This means that getting the solution of 𝑥𝑥 simply 

gives us the solution of each generalized coordinate and thus the entire response of the 

beam and the host structure.  

By inverting the matrix in this equation, which is called the impedance matrix 

𝐻𝐻 ∶=  −Ω2𝑀𝑀 + 𝑖𝑖Ω𝐶𝐶 + 𝐾𝐾 , the frequency response of the system can be obtained. 

Thereby, the response to the harmonic external excitation 𝐹𝐹𝑒𝑒𝑖𝑖Ω𝑡𝑡 can be written as 

𝑥𝑥 = 𝐻𝐻−1𝐹𝐹𝑒𝑒𝑖𝑖Ω𝑡𝑡     (3.5) 

This is the backbone expression of the linear analysis. This is a direct application where 

an integro-differential model (Euler-Bernoulli) was simplified into a series of 
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differential equations and eventually obtain a simple relation to get the solution of our 

generalized coordinates.  

 

Figure 3.1: Frequency-response function of beam without absorbers 

 

3.1. Effect of the absorbers 

Initially, the aim is to verify the applicability of this equation. The frequency 

response of the host alone was plotted, and the forcing terms were kept as unity. The 

number of modes was kept as ten (10). The results are shown in Figure 3.1. The 

logarithmic scale is used in the y-axis and this is commonly used for frequency-

response plots. This enables us to include a wide range of values. 

Here, in Figure 3.1, one can notice the rise of six (6) peaks. The number of peaks 

are expected to be high since the number of modes implemented is 10. In fact, the 

frequency response depicts the natural frequency of the system. A simple code was 

implemented to check the first ten natural frequencies of the system and the results are 

shown in Table 3.1. The results in the table that are up to a frequency of 15 kHz, the 

fundamental six natural frequencies are present.  

Therefore, Figure 3.1 showed the first six peaks which are essentially the first 

six modes of the structure. Our aim, as usual, is to suppress the vibration at resonant 

frequencies using the local absorbers. Hence, the next step is to include the effect of 

local absorbers. 
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Figure 3.2 combines the results of four different scenarios. Again, the 

frequency-response is plotted for a few cases. The first scenario (blue) is the same as 

Figure 3.1. This is the response of the host beam without absorbers. It is essential to 

include it as a baseline of the figure to visualize the effect of including absorbers. The 

subsequent cases are all showing the effect of including the absorbers. The number of 

absorbers was changed 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 10, 50, 100 as well as their spatial collocation 

since the absorbers are evenly space and distributed along the beam. In all these cases, 

the absorbers were tuned to the 5𝑡𝑡ℎ mode with a frequency 𝑓𝑓5 = 8.27  𝑘𝑘𝑘𝑘𝑘𝑘.  

 

Figure 3.2: Frequency-response function of the metamaterial beam: effect of the 
number of absorbers.  

 

Figure 3.2 shows the arise of the double peak phenomena. In the proximity of 

the fifth mode, the effect of the absorbers is very noticeable. The peak exactly at the 

5𝑡𝑡ℎ natural frequency is greatly suppressed, and the peak is divided into two smaller 

peaks on the sides of this natural frequency. This is the effect one can depict from the 

addition of absorbers in general. By analyzing the number of absorbers further, one can 

see the effect of adding more absorbers. The amplitude of the secondary (double) peaks 

is still relatively high when 10 absorbers was used. The response is better than the host 

without absorbers, but further suppression of these peaks is needed. Therefore, the 

effect of integrating 50 (black) and 100 (red) absorbers is shown. The amplitude of the 

secondary peaks is further mitigated. The integration of absorbers proves to be 

beneficial. This is important in practical applications since the useful operation range 
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of absorbers is widened and the structure is no longer prone to face resonant effects 

within specific frequency ranges.  

3.2. Effect of the Damping Ratio 

As shown in the previous discussion, the effect of the absorbers was found to 

be major in suppressing the vibration of the host material when tuned at the natural 

frequencies of the beam. Nevertheless, this gave rise to the frequency split given the 

two peaks observed in the frequency response. This is simply because the new 

metastructure (beam + absorbers) now has a new combined natural frequency.  

This double peak formed needs to be suppressed as well.  Therefore, the effect 

of the linear damping factor of each absorber is investigated. The damping in the 

previous section was set to 1/1000. Here, this factor is altered and the effect is shown 

in Figure 3.3. The figure shows the response of hundred (100) absorbers but with 

different damping ratios. The figure starts to the established backbone result (without 

absorbers) and damping ratio set to 1/1000 shown (blue). The damping ratio is 

gradually increased.  

 

 

Figure 3.3: Frequency-response  function of the metamaterial beam: effect of the 
damping ratio. 
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Here, Figure 3.3 shows that as the damping ratio increases, the bandwidth of 

operation is improved. Examination of Figure 3.3 shows that as 𝜁𝜁 is increased, the 

amplification of the host structure can be reduced. Moreover, increasing 𝜁𝜁 results in the 

mitigation of this double peak. The damping ratio increase shows great effects until 𝜁𝜁 

reaches around 0.08. This is the optimal damping ratio upon which the unwanted 

internal modes (double peaks) are almost flat (red), while the frequency stop-band is 

still well positioned. It is important to notice that just increasing the damping ratio does 

not necessarily yield the lowest amplitude. Note from Figure 3.3 that 𝜁𝜁 = 0.08 (red) 

produces a smaller amplification over a larger region than does the higher ratio, 𝜁𝜁 =

0.2 (green).  

This means that an overestimated damping is not always a trivial solution. In 

fact, 𝜁𝜁 should be varied wisely to reach an optimal value where the onset of the double 

peak phenomena is observed. Therefore, the optimal 𝜁𝜁 for the given parameters is 

obtained using the model. This is an intriguing result since the double peak (side effect) 

was almost eliminated.  

  One needs to recall that the analysis has been done on the 5𝑡𝑡ℎ natural frequency 

which is almost not achievable in most practical application since the operational 

frequency is very large (8.27 𝑘𝑘𝑘𝑘𝑘𝑘). Therefore, the linear analysis will end with a more 

interesting manner by operating within the first three vibration modes. 

3.3.  Mitigating Multiple Modes Simultaneously 

The conducted linear analysis allows to study the impact of embedding 

absorbers to the host structure and the corresponding stop-bands over a wide frequency 

range. The study has been implemented on the 5𝑡𝑡ℎ mode which is in the range of 

8.27 𝑘𝑘𝑘𝑘𝑘𝑘. Nevertheless, the goal is to study the metastructure beam with enhanced 

structural damping properties, i.e limit the oscillations of the beam in a more practical 

range. In reality, the wide range of frequencies is of less interest. The operating range 

of frequencies is usually not high. This is because in structural application only the 

lower frequencies and thus the first few modes of the structure are of real interest, since 

they involve the majority of the beam mass.  

Mathematically, if we go back to Eq. (2.44) which is rewritten here 
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𝑣𝑣(𝑠𝑠, 𝑡𝑡) =  � 𝑞𝑞𝑘𝑘(𝑡𝑡)𝜙𝜙𝑘𝑘(𝑠𝑠)
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘=1

 

The 𝜙𝜙𝑘𝑘(𝑠𝑠) is the mode shape and 𝑞𝑞𝑘𝑘(𝑡𝑡) is the 𝑘𝑘𝑡𝑡ℎ generalized coordinate. In 

simple terms, however, 𝑞𝑞𝑘𝑘(𝑡𝑡) can be regarded as a weighting contribution. This means 

that for the first mode, 𝑞𝑞1(𝑡𝑡) ideally should have a much higher percentage than the 

𝑞𝑞2(𝑡𝑡) which is the coefficient of the second mode 𝜙𝜙2(𝑠𝑠). This is because of the 

contribution of higher mode shapes dominance degrades as we progress. The first mode 

shape is the most dominant of the all, then comes the second mode and third mode and 

so on. The more we progress, the less significant the mode shape become since the 

beam barely reaches such modes.  

 

Figure 3.4: The frequency-response up to the lowest three modes. The absorbers are 
tuned to control the fundamental mode only (red) and the lowest three modes 

(green). 

 

In light of the preceding discussion, the last result presented here in the linear 

regime is the analysis of the frequency response function for absorbers which were 

tuned to the first three modes since they are the most dominant modes. Figure 3.4 shows 

a combination of cases as well. The first case (blue), as usual, is the host beam with no 

absorbers, which is the baseline for comparison. The peaks match the first three modes 

as mentioned in Table 3.1. The second scenario is tuning all the absorbers (100 in this 

case) to the first mode. As expected, the amplification was suppressed in the proximity 
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of the first mode while the other two modes remain unaffected. More intriguing, the 

last plot (green) shows a very desirable effect. The absorbers (100) were now tuned to 

three different frequencies, namely to the first three modes. The first three modes are 

now mitigated all at once just by using different tuning frequencies for the local 

absorbers. This is an interesting result because using this strategy the first three modes 

can be suppressed simultaneously. In fact, unable to hit more than one frequency was 

one of the limitations of the passive vibration control over the active vibration control 

(i.e. using electrical components). This is an interesting outcome because by adding just 

1% of the beam mass to the absorbers, the amplification near the most crucial resonant 

frequencies (first three modes) are decreased by tuning the parameters and hence the 

frequency of each absorber. Before getting into the nonlinear regimes, another 

interesting figure (comparison) is presented in regards of the extra mass added to the 

host.  

3.4. Effect of Adding Extra Mass to the Host 

What has been implemented in the previous analysis was integrating absorbers 

to the host mass to suppress the vibration at certain frequencies. The results showed 

promising effects. Nevertheless, absorbers, are after all, added masses. Adding extra 

mass to the host can simply be a suggested solution in mitigating the host vibrations. 

One can be skeptical that the results obtained in the previous sections might have been 

dominantly due to the extra mass of the absorbers rather than the tuning effect of the 

metastructure absorbers as suggested. Therefore, a couple of plots are shown in Figure 

3.5 to justify the role of metastructure. 

In Figure 3.5, the frequency response of the host with a particular mass (M) 

without absorbers is plotted (blue). Another frequency response is plotted over (green). 

However, this time the mass of the host is increased to 1.01 of the original mass, i.e. 

(1.01 M) is shown. The graphs are almost identical. If we just zoom in a little bit, there 

is a slight change in the position of the peaks due to the new mass. However, the 

amplitude of the peak is barely changed. 

On the other hand, the third plot (red) shows frequency-response of a host 

structure with mass M embedded with 100 absorbers with a total absorber mass of 1%. 

This makes the entire structure weighs 1.01 M. Moreover, these absorbers are tuned to 

the 5𝑡𝑡ℎ mode. The suppression of the vibration is clearly seen. This means that simply 
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adding mass to the structure is not a rewarding solution. By adding bulk mass to the 

host, the effect is minimal and a slight change in the natural frequencies is observed. 

However, adding the same amount of mass but in a metastructure manner (i.e. host + 

local absorbers) shows very promising effects. The linear analysis has been extensively 

investigated and therefore, the study is extended to the nonlinear regimes.  

 

Figure 3.5: Frequency-response function of increasing the bulk mass of the beam by 
1% (green) vs. adding 1% absorbers to the original beam (red) 
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Chapter 4. Nonlinear Response of the Metamaterial Beam 
 

The previous chapter was totally devoted to the linear dynamic analysis of the 

metamaterial beam. However, in reality, there are sources of geometric nonlinearities 

in the host beam or in the absorbers. The analytical approach used in the linear analysis 

to generate the frequency response cannot be implemented in the subsequent study. 

Therefore, a space discretization approach, namely Galerkin’s decomposition method, 

will be followed to obtain the nonlinear dynamic response.   

Similar to the study presented in the preceding section, the nonlinear response 

of the metamaterial host (beam) is first investigated without adding any absorbers to 

the structure. This is to establish the baseline case for any analysis conducted hereafter.  

4.1. Nonlinear Response: Single Bending Mode Without Absorbers 

In this section, the simulation results based on a single bending mode (without 

absorbers) are shown. Initially, the beam mode shape is used to discretize the original 

governing equation and transform it to a nonlinear ordinary differential equation as 

given below: 

∫ 𝜙𝜙12 𝑑𝑑𝑑𝑑  𝑞̈𝑞1 + 2𝜁𝜁  ∫ 𝜙𝜙12 𝑑𝑑𝑑𝑑  𝑞̇𝑞1 +  ∫ 𝜙𝜙1𝜙𝜙1⁗ 𝑞𝑞1 − 𝜆𝜆2  �∫ 𝜙𝜙1𝜙𝜙1″  ⋅  ∫ 1
2

(𝜙𝜙1)2 𝑑𝑑𝑑𝑑1
0

1
0 �1

0
1
0

1
0  𝑞𝑞13 =

 ∫ 𝑓𝑓2 ⋅  𝜙𝜙1 𝑑𝑑𝑑𝑑1
0        (4.1) 

Note the presence of a cubic nonlinearity 𝑞𝑞13 that arises from the mid-plane 

stretching of the beam. Again, Eq. (4.1) is not coupled to any absorber. In this case, one 

needs to find the solution for only one generalized coordinate, namely, 𝑞𝑞1. The 

parameters of the discretized beam equation has the following numerical values:  

∫ 𝜙𝜙12 = 11
0  𝜁𝜁 = 1% 𝜋𝜋2𝜆𝜆2

2
= 2972.4  ∫ 𝜙𝜙1𝜙𝜙1⁗ = 𝜔𝜔2 = 𝜋𝜋41

0  

By employing the preceding parameters into the Mettler model, the equation 

reads as  

𝑞̈𝑞1 + 0.02 𝑞̇𝑞1 + 𝜋𝜋4 𝑞𝑞1 +  2972.4 𝑞𝑞13 = 𝑓𝑓  cos  ((𝜋𝜋2 + 𝜎𝜎) ⋅ 𝑡𝑡)   (4.2) 

Inspecting Eq. (4.2), we note that the equation is a second order ordinary 

differential equation. The equation is nonlinear due to presence of cubic terms. 
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Moreover, the equation is nonhomogeneous due to presence of forcing term (harmonic). 

Finally, the natural frequency is  𝜔𝜔2 =  𝜋𝜋4. 

 

Figure 4.1: Frequency-response of the metamaterial beam near the primary 
resonance. 

 

The forcing term has two parameters: the amplitude 𝑓𝑓 and the tuning 𝜎𝜎 which 

indicates the nearness of the excitation frequency to the first natural frequency.We plot 

in Figure 4.1 the frequency response in the vicinity of the first natural frequency when 

setting the amplitude 𝑓𝑓 equal to 1 × 10−3. The frequency response is obtained by 

solving numerically Eq. (4.2) and reporting the maximum amplitude of the center of 

the beam for each excitation frequency. We explain here how the frequency response 

is obtained. Figure 4.2a shows the time history for a fixed amplitude and excitation 

frequency. In this case, the amplitude 𝑓𝑓 is equal to 5 × 10−3 and the tuning parameter 

𝜎𝜎 is set to 0. The simulation time is extended to allow the oscillations reaching its limit 

cycle (steady state solution). The amplitude of the steady-state solution is captured and 

is considered to be the point to plot in the frequency response. This point is shown in 

the cursor in Figure 4.2. Numerically from Figure 4.2, 𝜎𝜎 = 0 and 𝑞𝑞1(𝑡𝑡) 𝑎𝑎𝑎𝑎 𝑡𝑡 →  ∞ =

0.007204. 

Recall, 𝜙𝜙(0.5) = √2 sin(𝜋𝜋 ⋅ 0.5). If we multiply 𝑞𝑞1(∞) × 𝜙𝜙(0.5) = 𝑣𝑣(𝑠𝑠 =

0.5) = 0.01018 . This point corresponds to a single point in the frequency response 

curve. At 𝜔𝜔1 and 𝜎𝜎 = 0 (middle), this point can be seen in Figure 4.2b. This value is 

taken as the initial condition when gradually changing the excitation frequency and 

solving the discretized equation. In this case, the tuning parameter becomes 0.01 and 
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the amplitude does not vary. The same process is looped again until eventually plotting 

all the points of the frequency response as shown in Figure 4.2b. 

 

 
(a) 

 
(b) 

Figure 4.2:  (a) Time history of 𝑞𝑞1 for 𝑓𝑓 = 5 × 10−3, 𝜎𝜎 = 0 and (b) the 
corresponding frequency response function at midpoint of beam.  

 
As can be observed in Figure 4.1, the frequency response shows nearly-linear 

behavior. The graph is almost symmetrical and reaches its peak when the driving 

frequency is equal to the first natural frequency.  Nonlinear characteristics can be seen 

such as the jump phenomena. Next, we will investigate the impact of increasing the 

forcing amplitude on the frequency response.  
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Figure 4.3: Frequency-response of the metamaterial beam for varying beam 
amplitudes 

 

Figure 4.3 illustrates the effect of increasing the amplitude of the forcing term 

on the frequency response. The amplitude is varied from 1 × 10−3 to 10 × 10−3. As 

expected, the curves are shifted to higher values as the amplitude is increased. We 

observe a clear tilt to the right resulting from the hardening effect, which is the 

manifestation of the geometric nonlinearity. Increasing the amplitude to 2.5 × 10−3,the 

nonlinear effect leads to a jump in the stable solutions. The amplitude is still relatively 

low and the nonlinear impact starts on coming into role. Increasing further the 

amplitude of the forcing term to 5 × 10−3 yields the occurrence of a frequency range 

over which no stable solution can be obtained from long time integration. Moreover, 

we observe a significant shift in the peak to higher amplitude. The peak is also shifted 

to the right of the natural frequency due to the significant impact of the cubic 

nonlinearity. The frequency response for the amplitude of 7.5 × 10−3 (denoted by the 

black line) shows similar trend with higher amplitudes. Setting the amplitude of the 

forcing term equal to 10 × 10−3results in large jump in the stable dynamic solution. 

This constitutes an undesirable effect that may lead to the failure of the structure.   

A family of frequency-response curves for various levels of load amplitude are 

presented in Figure 4.3. When the load amplitude is low, the frequency response 
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exhibits linear behavior with the peak amplitude of the motion taking place in close 

proximity to the natural frequency. By increasing the amplitude, the frequency-

response curves tend to be bent to the right and exhibit a multi-valued range with 

hysteresis. The bandwidth of the multi-valued frequency range increases with the 

amplitude. The bending of the frequency-response curves to the right is the 

manifestation of the hardening nature of the geometric nonlinearity. Next, the effect of 

incorporating absorbers to the host structure (beam) is studied in the nonlinear regime. 

The main goal is to investigate the potential use of the absorbers to suppress the 

vibration of the main structure when being subject to high external loading. 

4.2. Nonlinear Response: Multi Modes with Absorbers 

After gaining insight on the system response without absorbers, we proceed 

with the simulation of the behavior of the metamaterial beam equipped with local 

resonators. To do so, we integrate the fully-coupled system given by Eqs. (2.44) and 

(2.45) expressed as 

� 𝜙𝜙𝑘𝑘  ���𝑞̈𝑞𝑗𝑗𝜙𝜙𝑗𝑗 + 2𝜁𝜁𝑞̇𝑞𝑗𝑗𝜙𝜙𝑗𝑗 +  𝑞𝑞𝑗𝑗𝜙𝜙𝑗𝑗′′′′ − 𝜆𝜆2𝑞𝑞𝑗𝑗𝜙𝜙𝑗𝑗′′  �
1
2

 �𝑞𝑞𝑗𝑗𝜙𝜙𝑗𝑗�
2

 𝑑𝑑𝑑𝑑 − 𝑓𝑓2(𝑠𝑠, 𝑡𝑡)
1

0
�

𝑁𝑁𝑚𝑚

𝑗𝑗=1

1

0

+  �𝜇𝜇𝑖𝑖  ��𝑞𝑞𝚥̈𝚥 𝜙𝜙𝑗𝑗(𝑠𝑠𝑖𝑖) + 𝑦𝑦𝚤̈𝚤 
𝑁𝑁𝑚𝑚

𝑗𝑗=1

�  𝛿𝛿(𝑠𝑠 − 𝑠𝑠𝑖𝑖)
𝑁𝑁𝑣𝑣𝑣𝑣

𝑖𝑖=1

�  𝑑𝑑𝑑𝑑 = 0 

𝜇𝜇𝑖𝑖  ��𝑞̈𝑞𝑗𝑗  𝜙𝜙𝑗𝑗(𝑠𝑠𝑖𝑖) + 𝑦̈𝑦𝑖𝑖 
𝑁𝑁𝑚𝑚

𝑗𝑗=1

� + 2𝜁𝜁𝑖𝑖𝛼𝛼𝑖𝑖𝜔𝜔�𝑦𝑦𝚤̇𝚤 + 𝜇𝜇𝑖𝑖𝛼𝛼𝑖𝑖2𝜔𝜔�2𝑦𝑦𝑖𝑖 + 𝑁𝑁𝑖𝑖(𝑦𝑦𝑖𝑖2,𝑦𝑦𝑖𝑖3) = 0 

The different parameters shown in the above equation are introduced and 

defined in Chapter 2. We conduct a parametric study to show the impact of the number 

and location of the absorbers on the level of vibration suppression of the main structure. 

We consider a numerical example to simulate the dynamic behavior of the beam using 

2 bending modes and 2 absorbers. We start with a small number of generalized 

coordinates to gain insight of the dynamic behavior and then extend the set of equations 

to larger number of absorbers and modes. The obtained equations of motion are shown 

below  
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� 𝜙𝜙12  𝒅𝒅𝒅𝒅
1

0
 𝒒̈𝒒𝟏𝟏  + � 𝜙𝜙1𝜙𝜙2 𝑑𝑑𝑑𝑑 𝒒̈𝒒𝟐𝟐

1

0

+ 2𝜁𝜁 � 𝜙𝜙12 𝑑𝑑𝑑𝑑  𝒒̇𝒒𝟏𝟏 + 2𝜁𝜁 � 𝜙𝜙1𝜙𝜙2 𝑑𝑑𝑑𝑑
1

0
 𝒒̇𝒒𝟐𝟐

1

0

+  � 𝜙𝜙1𝜙𝜙1′′′′  𝑑𝑑𝑑𝑑  𝒒𝒒𝟏𝟏 + 
1

0
� 𝜙𝜙1𝜙𝜙2′′′′  𝑑𝑑𝑑𝑑  𝒒𝒒𝟐𝟐
1

0

−
𝜆𝜆2
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 �� 𝜙𝜙1𝜙𝜙1′′ ⋅  � 𝜙𝜙12

1

0

1

0
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1

0

+  𝜇𝜇1  � 𝜙𝜙1𝜙𝜙2 𝛿𝛿 (𝑠𝑠 − 𝑠𝑠1) 𝒒̈𝒒𝟐𝟐
1

0

+ 𝜇𝜇1  � 𝜙𝜙1 𝛿𝛿 (𝑠𝑠 − 𝑠𝑠1)𝒚̈𝒚𝟏𝟏 +  𝜇𝜇2  � 𝜙𝜙12 𝛿𝛿 (𝑠𝑠 − 𝑠𝑠2) 𝒒̈𝒒𝟏𝟏 
1

0

1

0

+  𝜇𝜇2  � 𝜙𝜙1𝜙𝜙2 𝛿𝛿 (𝑠𝑠 − 𝑠𝑠2) 𝒒̈𝒒𝟐𝟐
1

0

+ 𝜇𝜇2  � 𝜙𝜙1 𝛿𝛿 (𝑠𝑠 − 𝑠𝑠2)  𝒚̈𝒚𝟐𝟐  =  � 𝜙𝜙1 𝑓𝑓2 𝑑𝑑𝑑𝑑
1

0
 

1

0
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1
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1

0
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𝜇𝜇1𝜙𝜙1 (𝑠𝑠1) 𝒒̈𝒒𝟏𝟏 +  𝜇𝜇1 𝜙𝜙2(𝑠𝑠1) 𝒒𝒒𝟐̈𝟐 +  𝜇𝜇1 𝑦𝑦1̈ + 2𝜁𝜁1𝜇𝜇1𝛼𝛼1𝜔𝜔� 𝒚̇𝒚𝟏𝟏 +  𝜇𝜇1𝛼𝛼12𝜔𝜔�2 𝒚𝒚𝟏𝟏 = 0 

𝜇𝜇2𝜙𝜙1 (𝑠𝑠2) 𝒒̈𝒒𝟏𝟏 +  𝜇𝜇2 𝜙𝜙2(𝑠𝑠2) 𝒒𝒒𝟐̈𝟐 +  𝜇𝜇2 𝒚𝒚𝟐̈𝟐 + 2𝜁𝜁2𝜇𝜇2𝛼𝛼2𝜔𝜔� 𝒚̇𝒚𝟐𝟐 +  𝜇𝜇2𝛼𝛼22𝜔𝜔�2 𝒚𝒚𝟐𝟐 = 0 (4.3) 

We note that the generalized coordinates and their time derivatives are shown in bold 

and they are preceded with the coefficient needed to be computed. Given the 

orthogonality condition of the mode shapes, the integral ∫ 𝜙𝜙1 𝜙𝜙2
1
0  vanishes.  

The following numerical values of the parameters and conditions are used to 

simplify the equations above 

∫ 𝜙𝜙𝑘𝑘2 = 11
0 ,   ∫ 𝜙𝜙1 𝜙𝜙2

1
0 = 0,     𝜁𝜁 = 0.01,       𝜆𝜆

2⋅ 𝜋𝜋2

2
= 2972.4,      𝜇𝜇1 = 𝜇𝜇2 = 0.005,  

𝛼𝛼 𝜔𝜔� = 78.622 𝜋𝜋 = 247,  𝑠𝑠1 = 1
3

 𝑠𝑠2 = 2
3
,        𝑙𝑙 = 1𝑚𝑚     𝜙𝜙𝑛𝑛(𝑠𝑠) = √2 sin �𝜋𝜋

𝑙𝑙
⋅ 𝑠𝑠�

  

After evaluating and computing the preceding equations, the following set of nonlinear 

equations are obtained: 

1.015 𝑞̈𝑞1 + 0.0061 𝑦̈𝑦1 + 0.0061 𝑦̈𝑦2 + 0.02  𝑞̇𝑞1 + 𝜋𝜋4 𝑞𝑞1 + 0.05 𝑞𝑞13

=   10 𝑐𝑐𝑐𝑐𝑐𝑐  [ (9.8982 + 𝜎𝜎) ⋅ 𝑡𝑡 ] 

1.015 𝑞̈𝑞2 + 0.0061 𝑦̈𝑦1 −  0.0061 𝑦̈𝑦2 + 0.02 𝑞̇𝑞1 + (16 ⋅ 𝜋𝜋4)  𝑞𝑞1 + 0.5 𝑞𝑞13

=  10 𝑐𝑐𝑐𝑐𝑐𝑐  [ (39.5390 + 𝜎𝜎) ⋅ 𝑡𝑡 ] 

0.0061 𝑞̈𝑞1 + 0.0061 𝑞̈𝑞2 + 0.005 𝑦̈𝑦1 + 0.0247 𝑦̇𝑦1 + 304.3583 𝑦𝑦1 = 0 

             0.0061 𝑞̈𝑞1 −  0.0061 𝑞̈𝑞2 + 0.005 𝑦̈𝑦2 + 0.0247 𝑦̇𝑦2 + 304.3583 𝑦𝑦2 = 0  (4.4) 

We note that the nonlinear term of the kth mode equation in general is k2 ⋅ λ
2 π2

2
= k2 ⋅

2972.4 

The obtained equations are not only coupled but also nonlinear. The equations 

are rewritten in state-space form as: 

𝑀𝑀𝑦̇𝑦 + 𝐶𝐶𝐶𝐶 + 𝐾𝐾𝐾𝐾 + 𝑁𝑁 − 𝑓𝑓 =  0 

where 𝑦𝑦 = 𝑞̇𝑞 

We introduce the state vector 𝑧𝑧 = [𝑞𝑞 𝑦𝑦]′ and consequently we obtain 
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𝑧̇𝑧 = 𝐴𝐴𝐴𝐴 − 𝑁𝑁� + 𝑓𝑓   

where            𝐴𝐴 = � 0 𝐼𝐼
−𝑀𝑀−1𝐾𝐾 −𝑀𝑀−1𝐶𝐶�,   𝑁𝑁

� = � 0
−𝑀𝑀−1𝑁𝑁�,  𝐹𝐹

� = � 0
−𝑀𝑀−1𝐹𝐹� 

The coefficients of the above matrices can be extracted from the below equations  

𝑞̈𝑞1 =  − 97.4 𝑞𝑞1 − 0.02 𝑞̇𝑞1 + 0.005 𝑞𝑞13 + 371.27 𝑦𝑦1 

+0.03 𝑦̇𝑦1 + 371.27 𝑦𝑦2 + 0.03 𝑦̇𝑦2 − 10 cos(𝜔𝜔1) 

𝑞̈𝑞2 =  − 1558.4 𝑞𝑞2 − 0.02 𝑞̇𝑞2 −  0.5 𝑞𝑞23 + 371.27 𝑦𝑦1 

+0.03 𝑦̇𝑦1 −  371.27 𝑦𝑦2 − 0.03 𝑦̇𝑦2 − 10 cos(𝜔𝜔2) 

𝑦̈𝑦2 = 118.8 𝑞𝑞1 + 0.024 𝑞̇𝑞1 − 1901.2 𝑞𝑞2 −  0.024𝑞̇𝑞2 −  61777 𝑦𝑦2 

−5.0135 𝑦̇𝑦2 + 0.006 𝑞𝑞13 − 0.61 𝑞𝑞23 − 12.2 cos(𝜔𝜔1) + 12.2 co s(𝜔𝜔2) 

ÿ1 = 118.8 q1 + 0.024 q̇1 + 1901.2 q2 + 0.024q̇2 + 61777 y1 

−5.0135 ẏ1 + 0.006 q13 + 0.61 q23 + 12.2 cos(ω1) + 12.2 co s(ω2) (4.5) 

The set of coupled nonlinear equations are solved numerically using the Matlab tool 
ode45.  

Proceeding with the nonlinear analysis, the effect of embedding local resonators 

to the main host is studied. The ratio of the mass of the absorber to the mass of the host 

is = 1%. Moreover, this extra mass is divided upon the number of absorbers. This 

means that each absorber will have a mass ratio of 𝜇𝜇𝑖𝑖 = 𝜇𝜇
𝑁𝑁𝑎𝑎

. The crucial parameter here 

is the frequency each absorber is tuned at and its effect on the response of the host. As 

mentioned before, our target is mitigating the amplification in the vicinity of the first 

three fundamental modes. These are the most dominating modes.  

4.3. Case studies: Effect of Local Absorbers Distribution  

Three different scenarios are implemented and studied. A summary of the three 

different cases is given in Table 4.1 In the three different scenarios, nine absorbers are 

embedded to the host. However, the absorbers were tuned at different frequencies for 

the different case tudies. The response of each case is thoroughly investigated. One 

should note what is being calculated is the displacement of the host’s midpoint. 

However, for the frequency response in the neighborhood of the second natural 

frequency, the displacement in the middle of the beam is always zero. As such. the 
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displacement is computed at quarter the beam (s=0.25) when the forcing term is excited 

near the second mode.  

The frequency response curves obtained with and without absorbers are 

displayed in Figure 4.4 as per the cases described in Table 4.1. We simulate the dynamic 

response in the vicinity of the first three natural frequencies. The baseline scenario 

corresponds to the response of the host without any absorbers (denoted by the blue 

curve). In the neighborhood of the first three natural frequencies, we observe high 

amplitudes and significant jump in the stable solutions as discussed in the previous 

section. This is the unmitigated host metamaterial beam. The x-axis is normalized with 

the natural frequency of the first three modes. 

  

 

Next, we analyze each case separately and show the potential vibration 

suppression of the host structure. This parametric study aims at providing guidelines to 

control the large vibrations of the host structure based on the operating frequency range 

of the external loading.  

4.3.1. Case 1 (9-0-0). Moving on with the analysis, in Case 1, all the nine 

absorbers are tuned entirely to the first mode. As Figure 4.4 (a) shows, the vibration is 

mitigated near the first mode only. The second and third natural modes are barely 

affected as seen in Figure 4.4 (b) and (c), and the nonlinearity still dominates the 

dynamic behavior. This case is a simple condition where all the local absorbers are 

tuned to the first mode. Hence, only the first mode is controlled whilst the second and 

third mode turn out to be nearly uncontrolled. The effect of the tuned absorbers on the 

first mode, though, is notable. The peak is highly suppressed, and the nonlinear effects 

diminish. Nevertheless, our aim, is to mitigate the amplitude of motion in the vicinity  

 

Table 4.1: Breakdown of nine absorbers (tuning frequency) in each case     

 𝜔𝜔1 𝜔𝜔2 𝜔𝜔3 

CASE 1 9 0 0 

CASE 2 3 3 3 

CASE 3 6 2 1 
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(a) 

 
(b) 

 
(c) 

Figure 4.4: The frequency-response curves of the beam around the first three natural 
frequencies 
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of the first three modes simultaneously. This is where the role of tuning each absorber 

separately comes into play. 

4.3.2. Case 2 (3-3-3). In Case 2, the nine absorbers are tuned in a pattern to 

cover the lowest three bending modes. The first set (three resonators) are tuned to the 

first, second and third modes, respectively. This pattern is extended to the second and 

third set of absorbers. This mean the first, fourth and seventh absorbers are tuned to the 

first mode and so on. The second, fifth and eights absorbers are tuned to the second 

mode. The rest are tuned to the third mode. Hence, three absorbers are devoted for each 

mode. The effect of the absorbers is observed in the three modes. However, the first 

mode experiences a decrease in the bandwidth of mitigation. The number of absorbers 

and the total mass of resonators devoted to the first mode is less compared to the first 

case. The amplitudes are still suppressed but the range of operation is reduced. Slight 

peaks are observed near the second and third modes. Nevertheless, the second and third 

modes are almost fully mitigated. This is because as the modes progress, the effect of 

the subsequent modes become less prominent and it becomes easier to suppress the 

higher modes with the same number of absorbers as the first mode. The conclusion one 

can draw from this simulation case is that the first mode excites a considerable amount 

of the beam mass and is characterized by larger amplitudes. On the contrast, the second 

and third modes are not as dominant as the first mode and they require less absorbers 

(compared to the first mode) to notice the effect of mitigation. Therefore, it is 

convenient to adopt a different tuned frequency distribution along the absorbers. This 

is discussed in the last scenario (Case 3). 

4.3.3. Case 3 (6-2-1). In Case 3, the nine absorbers are tuned in a biased way. 

Since the hardest mode to suppress is the first fundamental mode, more absorbers are 

tuned to the first natural frequency. Precisely, 66.67% are devoted to the first mode, 

while the second and third modes are devoted by 22.2% and 11.11% of the absorber 

mass, respectively. These percentages in particular are not based on any particular 

calculation. The percentages are taken from the previous work by Casalotti et al. [55]. 

This configuration allows us to have a better region of operation of the first mode whilst 

keeping the second and third modes still under control. This is apparent in Figure 4.4 

where the bandwidth of the first mode increases and the amplitudes of vibration are 

significantly reduced near the second and third modes. As expected, the second and 
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third modes show similar behavior as obtained in Case 2. The magnitude of the dynamic 

solution is significantly reduced used only few absorbers tuned at the second and third 

modes. On the other hand, the first mode needs more absorbers to suppress the large 

vibrations obtained when exciting the host near the first natural frequency. Case 3 

demonstrates the importance of the distribution of the absorbers and selection of their 

tuning frequencies to achieve multi-mode vibration suppression. As such, we formulate 

in the subsequent chapter an optimization problem to explore the possible further 

enhancement in terms of vibration suppression by tuning appropriately the frequencies 

of the absorbers. 

4.4. Response of the Absorbers 

The preceding results showed the promising effect of the absorbers in 

suppressing the vibration of the host structure. On the other hand, there should be some 

kind of trade off. In this situation, the suppression of vibration of the host beam occurs 

at the expense of the excitation of the local absorbers. Figure 4.5 shows the frequency 

response of the metamaterial beam and the response of the single absorber embedded 

to it at the midpoint. As usual, the blue curve shows the response of the host beam 

without absorbers. Moreover, the green plot shows the frequency response of the 

midpoint of the host beam. The mitigation of the host structure is greatly achieved. 

Nevertheless, the absorber undergoes vibrations with amplitude much greater than that 

of the host structure.   

Despite the absorber showing high amplitudes in Figure 4.5, the highest peaks 

are found a bit further from the frequency response. This gives the frequency a wider 

bandwidth. In fact, the use of a single absorber may lead to an optimum control. 

However, it suffers from practical limitations and drawbacks due to mass concentration. 

In Figure 4.5, the extra mass 1% is completely added by just a single absorber. This 

creates a concentrated point force acting on the beam. This relatively huge mass can 

lead to high stress concentration in the region of contact. Therefore, the use of higher 

number of absorbers is preferable.  
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Figure 4.5 Comparison between frequency response of the host beam and the absorber     

at mid-span. 
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Chapter 5. Optimization of the Nonlinear Metamaterial Beam Response 
 

The analyses presented in the previous chapters revealed that integrating local 

absorbers to a host in a metastructure fashion greatly suppresses the vibration when 

being subject to external loading excited near its resonance. Precisely, our main goal 

was to mitigate the vibrations occurring in the vicinity of the first three natural 

frequencies. Moreover, the preceding section showed that amongst the first three 

natural modes, the first mode required more number of absorbers to secure the vibration 

suppression when operating near the first natural frequency. The need to devote more 

absorbers to be tuned to the first mode is clear. However, the optimal frequency to be 

tuned to and its spatial location is not apparent. In addition, the number of absorbers 

can play a role in enhancing the mitigation of the large vibrations. We note that 

increasing the number of absorbers does not add extra mass to the host since the mass 

ratio 𝜇𝜇 is maintained constant. The number of absorbers and their tuned frequencies 

along with the spatial location of these tuned frequencies can all be modulated to further 

suppress the large vibrations obtained near resonance. We explore this by formulating 

an optimization problem with the objective to maximize the reduction in the amplitude 

of vibrations while varying some control parameters.  

5.1. Optimization Tool: Pattern Search Algorithm 

The Matlab tool based on the optimization pattern search algorithm [64] is 

combined with the developed code to generate the nonlinear frequency response of the 

metamaterial beam. We define the objective function as the area underneath the 

frequency-response curve over the frequency bandwidth of ± 10% the natural 

frequency of each considered mode. The objective function is evaluated using the 

proposed numerical model. The control parameter considered in this study is the tuning 

frequencies of the absorbers. Below we give some background on the optimization 

algorithm implemented on Matlab. 

According to [64], pattern search can be used to minimize a real-valued function 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑥𝑥),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 

Pattern search algorithm directs the search for a minimum through a pattern containing 

at least n+1 points per iteration, where the vectors representing the direction and 
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distance of each point relative to the current iterate from a positive bases in 𝑅𝑅𝑛𝑛. 

Furthermore, an iteration of a pattern search algorithm may require as few as one 

function evaluation because the search requires only simple decrease to accept a new 

point. In that way, even large patterns may be used sparingly.  

The pattern search algorithm used here is a built-in function in Matlab. By 

default, patter search looks for a minimum based on an adaptive mesh. To implement 

the function, all parameters are fixed such as number of absorbers/modes, host mass, 

mass ratio of absorbers, etc. The only control parameter is the tuning frequency. 

Consequently, the objective function developed has only one varying input. This 

objective function is the area under the frequency-response curve within ± 10% in the 

vicinity of the first mode. The main goal is to identify the optimal tuning frequencies 

of the absorbers minimizing the aforementioned objective function.  

We first fix the number of absorbers and consider the only variable that can be 

modulated to be the tuned frequency of each absorber. We note that the range of the 

tuning frequencies is taken [0   400] Hz. The optimizer searches for the values of these 

frequencies leading to reduction in the objective function. The Matlab command is 

given below 

𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ (@𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎0,𝐴𝐴, 𝑏𝑏,𝐴𝐴𝐴𝐴𝐴𝐴, 𝑏𝑏𝑏𝑏𝑏𝑏, 𝑙𝑙𝑙𝑙,𝑢𝑢𝑢𝑢) 

where one needs to define a set of lower and upper bounds on the control variable 𝛼𝛼 

(tuning frequency), so that the search of the optimal values is performed within the 

range 𝑙𝑙𝑙𝑙 < 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 < 𝑢𝑢𝑢𝑢.  The 𝐴𝐴𝐴𝐴𝐴𝐴 = [] and 𝑏𝑏𝑏𝑏𝑏𝑏 = [] since no additional constraints are 

introduced to the optimization problem. 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎0 is the initial guess of the control 

parameter. The choice of is critical to speed up the search of the local optimizer of the 

optimal tuning frequency. With this brief overview of the optimizer deployed in the 

present study, the optimization results are presented and discussed in the next section.  

5.2. Optimization Results 

We consider a simple configuration based on a host structure equipped with 

only one absorber and being excited near its primary resonance. By intuition, since the 

target is to maximize the vibration suppression near the primary resonance, this single 

absorber would be tuned at exactly the first natural frequency; that is, 330.825 Hz as 

shown in Table 3.1. We run the optimizer while taking an initial guess of 100 Hz. Of 
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interest, the optimizer identified a tuning frequency of 327.5 Hz. This indicates that if 

the only absorber is tuned to this frequency, the area underneath the frequency-response 

curve within the considered frequency bandwidth is minimized. We plot in Figure 5.1 

the frequency response obtained without absorbers (baseline case) and with one 

absorber while setting its tuning frequency at the first natural frequency (Case 1) and at 

the optimal one (Case 2). The objective function (area beneath the curve within the 

frequency bandwidth) calculated without embedding any absorbers is found equal to 

8.8446 × 10−3. When the absorber is tuned to the first mode frequency 330.825 𝐻𝐻𝐻𝐻, 

the area is significantly decreased to reach  2.4479 × 10−3. More interestingly, when 

the absorber is tuned to the optimal frequency 327.5 𝐻𝐻𝐻𝐻, the area beneath decreased to 

around 2.3442 × 10−3. This constitutes an overall decrease in the objective function 

to about 73.4%.  

 

Figure 5.1: Frequency response of metamaterial beam optimized for 1 mode + 1 
absorber 

 

In practical terms, this decrease in area is mostly influenced by the decrease of 

the response peak. Without absorbers, the midspan of the host vibrates with an 

amplitude of 0.025 m. By adding one absorber with 𝑓𝑓1 = 330.825 Hz, the highest peak 

is 0.007 m. On the other hand, by modulating the absorber to 𝑓𝑓1𝑜𝑜𝑜𝑜𝑜𝑜 = 327.5 𝐻𝐻𝐻𝐻, the 

highest peak does not exceed 0.005m. For a simple case, the further reduction of area 

(i.e., from Case 1 to Case 2), may not be very pronounced. Nevertheless, by increasing 
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the number of absorbers, the results can become even more interesting. The number of 

modes and absorbers are now increased.  

 

Figure 5.2: Frequency response of metamaterial beam optimized for 3 modes + 3 
absorbers 

 

The second optimization case is conducted using three modes while equipping 

the host structure with three absorbers. The same aforementioned procedure is 

followed. Figure 5.2 shows the frequency response curves of host structure with and 

without absorbers. The area under the curve within the considered frequency bandwidth 

is the same as the single mode response for the baseline case which is 8.8446 × 10−3. 

Next, the three absorbers are all tuned to the first natural frequency; that is, 𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠1 =

𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠2 = 𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠3 = 𝑓𝑓1 = 330.825 𝐻𝐻𝐻𝐻. The area decreases to 2.0285 × 10−3 as shown in 

Figure 5.2. Nevertheless, as shown in the previous case (single mode), the optimal 

frequencies will be slightly higher or lower than the exact natural frequency due to the 

inherent system’s nonlinearities. The optimizer identified a set of frequencies leading 

to a further decrease in the objective function. The area reaches 1.5002. This represents 

an area reduction of 73.7% of the original unmitigated beam. Moreover, this is a further 

25% decrease of the intuitive case (Case 1). The obtained optimal frequencies are 

𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠1 = 314.3 𝐻𝐻𝐻𝐻,𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠2 = 359.6 𝐻𝐻𝐻𝐻, 𝑓𝑓𝑎𝑎𝑎𝑎𝑠𝑠3 = 335.1 𝐻𝐻𝐻𝐻 . 



56 
 

 

Figure 5.3:  Frequency response of metamaterial beam optimized for varying 
number of absorbers 

 

It is clear that the optimization study gives promising results and by modulating 

the absorbers slightly higher or lower than the natural frequency leads to higher 

mitigation levels. The preceding two cases show that optimization enables better 

selection of the tuning frequencies even for the straightforward cases. Henceforth, we 

investigate the number of absorbers needed to achieve a notable mitigation of the 

vibration of the absorbers.  

The final analysis presented here is the effect of the number of absorbers on the 

mitigation of the host in the vicinity of the first natural frequency. As apparent from the 

previous discussion, optimization yields promising mitigation levels. Henceforth, from 

this point onwards, whatever the number of absorbers is, they are all tuned to the 

optimal frequency identified by the optimizer and not the first natural frequency 𝑓𝑓1 =

330.825 𝐻𝐻𝐻𝐻. Figure 5.3 shows the frequency response curves obtained for the optimal 

cases for varying number of absorbers. The number of absorbers is increased from one 

to four. The optimal frequencies of each mode along with their objective function (area 

under the frequency response curve) are presented in Table 5.1. A significant reduction 

in the objective function is obtained even using only one absorber tuned at slightly 

lower than the first natural frequency of the host structure. About 83% reduction in the 
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objective function is achieved when deploying four absorbers. This indicates the 

usefulness of the local absorbers to suppress the vibrations of the host structure.  

Table 5.1 Summary of optimal frequency of each absorber along with the area under 
the graph 

Number of 

absorbers 

𝝎𝝎𝒗𝒗𝒂𝒂𝟏𝟏 𝝎𝝎𝒗𝒗𝒂𝒂𝟐𝟐 𝝎𝝎𝒗𝒗𝒂𝒂𝟑𝟑 𝝎𝝎𝒗𝒗𝒂𝒂𝟒𝟒 Objective 

function  

× 𝟏𝟏𝟎𝟎−𝟑𝟑 

0 - - - - 8.8446 

1 327.5 - - - 1.9131 

2 315.5 343.2 - - 1.6007 

3 314.3 359.6 335.1 - 1.5002 

4 310.2 333.3 321.3 334.6 1.447 

 

As shown in Figure 5.3, the addition of each absorber leads to further 

suppression of the oscillations amplitude. Increasing the number of absorbers from 1 

(Case 1) to 4 (Case 4) results in reduction in the area under the frequency-response 

curve within the frequency bandwidth of almost 24%. The area drops from 8.8446 ×

10−3 to an astonishing 1.447 × 10−3. This is a very intriguing result since the 

amplification of the first mode is almost flattened as much as the second and third 

modes with only four absorbers. The highest peaks in Case 1 reaches 0.004 which is a 

good decrease in the amplification by itself. Nevertheless, increasing the number of 

absorbers to two, the area was further reduced. Three absorbers gave better results than 

two absorbers. Finally, the four absorbers seem to be flat and the highest peak is less 

than half of the first case. The investigation was halted at four absorbers because further 

addition of absorbers yields minor improvement in the vibration suppression.  

It is worthy to note that if we investigate the results presented in Figure 5.3 more 

closely and we calculate the area underneath the frequency-response curve within 

± 5 % the first natural frequency, the use of a low number of resonators, ideally, a 

single absorber, leads to the optimal control. However, it suffers from practical 

drawbacks due to the mass concentration (i.e point forces) in a few cross sections of the 

beam. It may not be possible to install the absorber masses because of geometric 
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limitations as well as huge masses can lead to failure of the retaining devices due to 

high stress concentrations in these regions. Figure 5.3. shows the response of one 

absorber compared to the response of four absorbers. That is why a higher number of 

resonators and a uniform mass distribution is preferable. The convergence and number 

of iterations of the optimizer based on the pattern search algorithm is shown in Figure 

5.4 The convergence plot demonstrates the capability of the optimizer to find the 

optimal value of the tuning frequency with less than 40 iterations.  

 

Figure 5.4: Convergence of the objective function based on the pattern search 
optimization algorithm. 
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Chapter 6. Conclusion and Future Work 
 

6.1. Conclusion 
 

In this  thesis, metastructures are considered to reduce vibration of the host 

structure (beam) within a desired frequency. Metamaterials present a new class of semi-

active composites. The aim of this work is to suppress the vibration of a host structure 

subject to external loading by utilizing metamaterial beam and yet, keeping the entire 

mass of the system. This means that the suppression of vibration should not come in 

the expense of added mass. To do so, the concept of a metamaterial beam, the 

mechanical metamaterial, embedded with local resonators (absorbers) has been 

investigated while accounting for the inherent geometric nonlinearities.  

A coupled mathematical model was developed to simulate the nonlinear 

dynamic behavior of a simply-supported beam attached to an array of mass-spring 

systems acting as local absorbers. The present work aimed at analyzing how the tuning 

of local resonators can protect a beam-like structure from large vibrations due to 

external forcing. The effect of the absorbers on the nonlinear response of the beam in 

the vicinity of the first three natural frequencies were proved to be beneficial in terms 

of vibration suppression. The numerical results demonstrate that tuning more absorbers 

to the first mode in caparison to the subsequent modes is helpful to maintain acceptable 

vibration suppression levels and frequency bandwidth when operating near any of the 

first three natural frequencies.  

Optimization results showed that further mitigation is possible. Tuning the 

absorber to the optimized values of frequency which are slightly less or more than the 

natural frequency showed pronounced results. The area underneath the frequency-

response curve in the neighborhood of the first natural frequency was almost flattened. 

This demonstrates the usefulness of the absorbers to suppress the vibrations of the host 

structure. 

6.2.  Future Work 
 

As future research work, nonlinearity will be added to the local absorbers and 

explore its impact on the level of vibration suppression. We will also perform multi-

mode optimization analysis with the goal to select the tuning frequencies of the 
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absorbers while securing vibration suppression over wider frequency range including 

the first three natural frequencies. The multimode optimization will include the spatial 

position of each absorber as well. Since the damping ratios used in this study was 

relatively low, the effect of very high damping ratios will be studied. Moreover, the 

effectiveness of the absorbers will be tested under random excitation frequencies. This 

will be useful in case of large variation in the excitation frequency of the external 

loading such as seismic waves.  
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