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Abstract 

 

Traffic classification is the process of associating network traffic with the application 

or group of applications that generated it. It is an essential part of network management 

at datacentres and network operators due to its importance in traffic shaping, bandwidth 

allocation, and cybersecurity. Several techniques were investigated by researchers to 

classify traffic accurately with methods based on machine learning achieving 

encouraging results. In this work, we conduct several experiments using naïve Bayes, 

support vector machine, k-nearest neighbour, and random forest trees on two traffic 

datasets which are both publicly available. While the first dataset was collected in an 

uncontrolled environment that resembles real network behavior, the second was 

captured using a highly controlled environment. In the experiments conducted in this 

work, we look at the classifiers’ performance and their effect on the classification 

accuracy and F-score. We also assess the suitability of extracted features using feature 

selection techniques. Moreover, we determine the optimal percentage of packets within 

a flow that need to be considered while extracting flow-level features. It is observed 

that when a larger number of packets is considered, the classification performance 

improves, but the required processing delay increases. Thus, we argue that 60% of 

packets in a flow would be a good compromise that ensures high performance in the 

least possible time. Several graphs are generated during each experiment to investigate 

the effect of varying each parameter on the classification performance. The results of 

our experiments indicate that random forest outperforms all other algorithms achieving 

a maximum accuracy of 98.5% and an F-score of 0.932. Finally, since software-based 

classifiers are usually slow and hence incapable of coping with the increasing amount 

of traffic within congested networks, we implement a highly pipelined random forest 

classifier on a Field-Programmable Gate Array (FPGA). The implementation makes 

use of the parallel architecture of the FPGA in accelerating such a time-consuming task. 

The implemented design is capable of achieving an average throughput of 163.24 Gbps 

which is more than twice the maximum throughput compared to reported work. This 

enables datacentres to achieve efficient online traffic classification given the dynamic 

nature of modern networks. 

Keywords: Traffic classification, machine learning, random forest, feature 

extraction, FPGA. 



7 

 

 

Table of Contents 

Abstract.......................................................................................................................... 6 

List of Figures................................................................................................................ 9 

List of Tables................................................................................................................ 12 

List of Abbreviations.................................................................................................... 13 

Chapter 1. Introduction................................................................................................ 14 

1.1. Traffic Classification................................................................................. 14 

1.2. Machine Learning......................................................................................16 

 1.2.1. Naïve Bayes..........................................................................................18 

 1.2.2. Support vector machine........................................................................19 

 1.2.3. K-nearest neighbour.............................................................................20 

 1.2.4. Random forest......................................................................................23 

1.3. Field-Programmable Gate Array............................................................... 25 

Chapter 2. Background and Literature Review............................................................ 28 

2.1. Port-Based Classification.......................................................................... 28 

2.2. DPI-Based Classification .......................................................................... 28 

2.3. Heuristic-Based Classification .................................................................. 29 

2.4. Machine Learning-Based Classification ................................................... 31 

          2.5. Hardware-Based Traffic Classifiers .......................................................... 35 

 2.5.1. C4.5 implementation............................................................................35 

 2.5.2. SVM implementation...........................................................................37 

 2.5.3. Other implementations.........................................................................39 

Chapter 3. Problem Statement......................................................................................41 

Chapter 4. Datasets ...................................................................................................... 43 

4.1. The MAWI Dataset ................................................................................... 43 

4.2. The UNIBS Dataset .................................................................................. 44 

4.3. The UNB Dataset ...................................................................................... 46 

Chapter 5. Methodology .............................................................................................. 48 

5.1. Pre-processing Step ................................................................................... 48 

5.2. Feature Histograms ................................................................................... 52 

5.3. Feature Selection ....................................................................................... 58 

 5.3.1. Stepwise regression (SWR)..................................................................58 

 5.3.2. Random forest......................................................................................60 

5.4. Discretization ............................................................................................ 61 

5.5. Conducted Experiments ............................................................................ 63 

 5.5.1. Cross-validation...................................................................................65 

 5.5.2. Various packet percentage within a flow.............................................66 

 5.5.3. Various training set sizes......................................................................66 

 5.5.4. Random forest parameter tuning..........................................................67 

Chapter 6. Random Forest Hardware Design .............................................................. 74 

    6.1.         Data Memory.............................................................................................75 

    6.2.         Random Forest Overview..........................................................................75 

    6.3.         Tree Level..................................................................................................78 

    6.4.         Tree Memory.............................................................................................80 

    6.5.         Class Tally (Majority-Based)....................................................................82 

    6.6.         Class k Counter (Majority-Based).............................................................82 



8 

 

 

    6.7.         Voter (Majority-Based).............................................................................83 

    6.8.         Class Tally (Probability-Based)................................................................84 

    6.9.         Voter (Probability-Based).........................................................................85 

    6.10.       Hardware Platform....................................................................................85 

Chapter 7. Experimental Results .................................................................................. 88 

7.1. Performance Measures .............................................................................. 88 

 7.1.1. Accuracy...............................................................................................88 

 7.1.2. Precision...............................................................................................89 

 7.1.3. Recall....................................................................................................90 

 7.1.4. F-score..................................................................................................90 

7.2. Software-Based Classifier Performance ................................................... 91 

 7.2.1. Discretization.......................................................................................91 

 7.2.2. Cross-validation...................................................................................99 

  7.2.2.1. UNIBS results..............................................................99 

  7.2.2.2. UNB results................................................................103 

 7.2.3. Various packet percentage within a flow...........................................105 

  7.2.3.1. UNIBS results............................................................105 

  7.2.3.2. UNB results................................................................110 

 7.2.4. Various training set sizes....................................................................115 

  7.2.4.1. UNIBS results............................................................115 

  7.2.4.2. UNB results................................................................119 

7.3. FPGA Implementation and Results ......................................................... 121 

 7.3.1. Random forest training.......................................................................122 

 7.3.2. Variable trees and levels.....................................................................124 

 7.3.3. The FPGA model...............................................................................125 

 7.3.4. Timing analysis..................................................................................130 

 7.3.5. Simulation results...............................................................................132 

 7.3.6. The final prototype.............................................................................134 

    7.4.        Discussion of Results..............................................................................137 

Chapter 8. Conclusion and Future Work ................................................................... 140 

References.................................................................................................................. 142 

Appendix A – Feature Glossary ................................................................................. 145 

Appendix B – Feature Histograms ............................................................................. 146 

Appendix C – Various Packet Percentage Within a Flow ......................................... 168 

Appendix D – Various Training Set Sizes ................................................................. 174 

Vita............................................................................................................................. 183 

 

 

 

 

 

 

  



9 

 

 

List of Figures 

Figure 1.1: Linear SVM...............................................................................................21 

Figure 1.2: Non-linear SVM........................................................................................22 

Figure 1.3: Random Forest...........................................................................................24 

Figure 1.4: FPGA Architecture....................................................................................26 

Figure 1.5: Configurable Logic block Architecture.....................................................27 

Figure 2.1: SVM Classifier Using CoMo Infrastructure..............................................34 

Figure 2.2: C4.5 Classifier on FPGA. (a) ODT Algorithm. (b) DQ Algorithm...........37 

Figure 2.3: SVM Classifier on FPGA..........................................................................38 

Figure 5.1: Skype PCAP File.......................................................................................49 

Figure 5.2: Export PCAP as JSON...............................................................................50 

Figure 5.3: Export Properties.......................................................................................50 

Figure 5.4: UNIBS Source Port Histogram..................................................................52 

Figure 5.5: UNIBS Destination Port Histogram..........................................................53 

Figure 5.6: UNIBS Maximum Capture Length Histogram..........................................54 

Figure 5.7: UNIBS Entropy Capture Length Histogram..............................................54 

Figure 5.8: UNIBS Median Inter Arrival Time Histogram..........................................55 

Figure 5.9: UNB Source Port Histogram.....................................................................56 

Figure 5.10: UNB Destination Port Histogram............................................................56 

Figure 5.11: UNB Entropy Inter Arrival Time Histogram...........................................57 

Figure 5.12: UNB Median Frame Length Histogram..................................................57 

Figure 5.13: Binary Classification Example................................................................62 

Figure 5.14: Flowchart of the Cross-Validation Experiment.......................................65 

Figure 5.15: Flowchart of the Various Packet Percentage within a Flow 

Experiment..............................................................................................67 

Figure 5.16: Flowchart of the Various Training Set Sizes Experiment.......................68 

Figure 5.17: UNIBS – Average Out-Of-Bag Error Against Number of 

Trees........................................................................................................69 

Figure 5.18: UNB – Average Out-Of-Bag Error Against Number of 

Trees........................................................................................................70 

Figure 5.19: UNIBS – Average Out-Of-Bag Error Against Number of 

Features...................................................................................................72 

Figure 5.20: UNB – Average Out-Of-Bag Error Against Number of 

Features...................................................................................................72 

Figure 5.21: UNIBS – Average Out-Of-Bag Error Against Minimum Leaf 

Size..........................................................................................................73 

Figure 5.22: UNB – Average Out-Of-Bag Error Against Minimum Leaf 

Size..........................................................................................................73 

Figure 6.1: Data Memory Arrangement.......................................................................75 

Figure 6.2: Hardware-Based Random Forest Design Overview..................................77 

Figure 6.3: Decision Tree Structure.............................................................................78 

Figure 6.4: Tree Level Architecture.............................................................................80 

Figure 6.5: Tree Memory Design.................................................................................81 

Figure 6.6: Class Tally Module Design (Majority-Based)...........................................82 

Figure 6.7: Class k Counter Architecture.....................................................................83 

Figure 6.8: Voter Module Architecture (Majority-Based)...........................................84 



10 

 

 

Figure 6.9: Class Tally Module Design (Probability-Based).......................................85 

Figure 6.10: Voter Module Architecture (Probability-Based).....................................86 

Figure 6.11: DE2-115 Development Board.................................................................87 

Figure 7.1: UNIBS Training Time...............................................................................92 

Figure 7.2: UNB Training Time...................................................................................93 

Figure 7.3: UNIBS Testing time..................................................................................94 

Figure 7.4: UNB Testing time......................................................................................95 

Figure 7.5: UNIBS Classification Accuracy with Discretization.................................96 

Figure 7.6: UNB Classification Accuracy with Discretization....................................97 

Figure 7.7: UNIBS F-score with Discretization...........................................................98 

Figure 7.8: UNB F-score with Discretization..............................................................98 

Figure 7.9: UNIBS Classification Accuracy..............................................................101 

Figure 7.10: UNIBS F-score..................................................................................... 102 

Figure 7.11: UNB Classification Accuracy................................................................104 

Figure 7.12: UNB F-score..........................................................................................104 

Figure 7.13: UNIBS All Features – Accuracy vs. Flow Packets (%)........................106 

Figure 7.14: UNIBS All Features – F-score vs. Flow Packets (%)............................107 

Figure 7.15: UNIBS All Features (No Ports) – Accuracy vs. Flow Packets (%).......108 

Figure 7.16: UNIBS All Features (No Ports) – F-score vs. Flow Packets (%)..........109 

Figure 7.17: UNIBS RF (No Ports) – Accuracy vs. Flow Packets (%).....................109 

Figure 7.18: UNIBS RF (No Ports) – F-score vs. Flow Packets (%).........................110 

Figure 7.19: UNB All Features – Accuracy vs. Flow Packets (%)............................110 

Figure 7.20: UNB All Features – F-score vs. Flow Packets (%)...............................111 

Figure 7.21: UNB All Features (No Ports) – Accuracy vs. Flow Packets (%)..........111 

Figure 7.22: UNB All Features (No Ports) – F-score vs. Flow Packets (%)..............112 

Figure 7.23: UNB SWR (No Ports) – Accuracy vs. Flow Packets (%).....................113 

Figure 7.24: UNB SWR (No Ports) – F-score vs. Flow Packets (%)........................113 

Figure 7.25: Average Flow Duration vs. Flow Packets (%)......................................114 

Figure 7.26: UNIBS All Features – Accuracy vs. Training Set (%)..........................115 

Figure 7.27: UNIBS All Features – F-score vs. Training Set (%).............................116 

Figure 7.28: UNIBS All Features (No Ports) – Accuracy vs. Training Set (%)........117 

Figure 7.29: UNIBS All Features (No Ports) – F-score vs. Training Set (%)............117 

Figure 7.30: UNIBS RF (No Ports) – Accuracy vs. Training Set (%).......................118 

Figure 7.31: UNIBS RF (No Ports) – F-score vs. Training Set (%)..........................118 

Figure 7.32: UNB All Features – Accuracy vs. Training Set (%)..............................119 

Figure 7.33: UNB All Features – F-score vs. Training Set (%).................................120 

Figure 7.34: UNB All Features (No Ports) – Accuracy vs. Training Set (%)............120 

Figure 7.35: UNB All Features (No Ports) – F-score vs. Training Set (%)...............121 

Figure 7.36: Hardware Design Process......................................................................122 

Figure 7.37: First Three Levels of the First Tree in the Random Forest....................123 

Figure 7.38: Memory Initialization File for Level 2 of Tree 1...................................123 

Figure 7.39: UNIBS Accuracy - Variable Trees and Levels......................................126 

Figure 7.40: UNIBS F-score - Variable Trees and Levels.........................................126 

Figure 7.41: UNB Accuracy - Variable Trees and Levels.........................................127 

Figure 7.42: UNB F-score - Variable Trees and Levels.............................................127 

Figure 7.43: Timing Analyzer Report........................................................................131 



11 

 

 

Figure 7.44: Pipelined Tree Simulation.....................................................................133 

Figure 7.45: Top-Level Module Simulation..............................................................133 

Figure 7.46: Logic Analyzer’s Setup.........................................................................134 

Figure 7.47: Logic Analyzer’s Waveform.................................................................134 

Figure 7.48: Class 1 on the DE2-115 Board..............................................................135 

Figure 7.49: Class 2 on the DE2-115 Board..............................................................135 

Figure 7.50: Class 3 on the DE2-115 Board..............................................................136 

Figure 7.51: Class 4 on the DE2-115 Board..............................................................136 

Figure 7.52: Class 5 on the DE2-115 Board..............................................................137 

  



12 

 

 

List of Tables 

Table 1.1: FPGA VS. CPU Comparison......................................................................26 

Table 2.1: Algorithms’ Performance............................................................................39 

Table 5.1: Complete List of Extracted Features...........................................................52 

Table 5.2: UNIBS Features Selected by Stepwise Regression....................................60 

Table 5.3: UNB Features Selected by Stepwise Regression........................................60 

Table 5.4: UNIBS Features Selected by Random Forest.............................................61 

Table 5.5: UNB Features Selected by Random Forest.................................................61 

Table 7.1: Confusion Matrix Template........................................................................88 

Table 7.2: Classification Example................................................................................88 

Table 7.3: Percentage Change in Training Time Using UNIBS Dataset.....................93 

Table 7.4: Percentage Change in Training Time Using UNB Dataset.........................93 

Table 7.5: Percentage Change in Testing Time Using UNIBS Dataset.......................95 

Table 7.6: Percentage Change in Testing Time Using UNB Dataset..........................95 

Table 7.7: Percentage Change in Classification Accuracy Using UNIBS Dataset......97 

Table 7.8: Percentage Change in Classification Accuracy Using UNB Dataset..........97 

Table 7.9: Percentage Change in F-score Using UNIBS Dataset................................99 

Table 7.10: Percentage Change in F-score Using UNB Dataset..................................99 

Table 7.11: Model Parameters....................................................................................128 

Table 7.12: FPGA Model vs. Software Optimal Model for the UNIBS Dataset.......129 

Table 7.13: FPGA Model vs. Software Optimal Model for the UNB Dataset...........129 

Table 7.14: FPGA Model vs. Pruned Software Model vs. Fully-Grown Software  

Model for the UNIBS Dataset.................................................................130 

Table 7.15: FPGA Model vs. Pruned Software Model vs. Fully-Grown Software  

Model for the UNB Dataset.....................................................................130 

Table 7.16: FPGA Resource Utilization....................................................................137 

Table 7.17: Summary of Accuracies and F-scores in the Literature vs. Proposed 

Design......................................................................................................139 

Table 7.18: Summary of Throughputs in the Literature vs. Proposed Design...........139 

 

  



13 

 

 

List of Abbreviations 

 

ASIC Application Specific Integrated Circuit 

CBFS Consistency-Based Feature Selection 

CLB Configurable Logic Block 

CPU Central Procession Unit 

DM Data Mining 

DPI Deep Packet Inspection 

FPGA Field-Programmable Gate Array 

GT Ground Truth 

HDL Hardware Description Language 

IANA Internet Assigned Numbers Authority 

IDS Intrusion Detection System 

IGFS Information Gain Feature Selection 

ISP  Internet Service Provider 

KNN k-Nearest Neighbor 

LUT Look-up Tables 

MAWI Measurement and Analysis on the WIDE Internet 

MCPS Millions of Classifications per Second 

ML Machine Learning 

NB Naïve Bayes 

OSI Open System Interconnection 

QoS Quality of Service 

RAM Random-Access Memory 

RBF Radial Basis Kernel 

RF Random Forest 

ROM Read-Only Memory 

SLA Service Level Agreement 

SPSM Static Power Save Mode 

SVM Support Vector Machine 

SWR Stepwise Regression 

UNB University of New Brunswick 

WNIC Wireless Network Interface Card 

  



14 

 

 

Chapter 1. Introduction 

 

 Internet has been one of the most important inventions of the twentieth century. 

It went through major developments and evolvements since its inception. It was 

initiated as an attempt to devise a means of communication between computer systems 

across the globe that is not restricted by any borders. According to Statista, the number 

of active internet users has grown tremendously from 1.5 billion to around 3.9 billion 

in just ten years from 2008 to 2018 [1]. This means that more than half the population 

on the planet are now active users of the internet. To cope with the increasing number 

of internet users, companies are constantly working on enhancing their internet speeds. 

According to Cable, a company specialized in broadband analysis, some countries are 

now enjoying fast internet speeds up to 60 Mbps on average, which is an enormous 

amount of traffic [2]. This shows that internet has matured to be the fastest and easiest 

way of communication between mankind in our modern world. Nevertheless, internet 

is not just a method of communication, but it also involves other services like file and 

resource sharing, browsing the World Wide Web, and many more. The prosperity of 

the internet and its growing speeds has allowed more traffic to flow in and out of the 

average computing device. As a result, the openness to such a new paradigm has 

allowed us to explore new innovations that were not previously possible. However, it 

also opens doors for potential threats and malicious attacks that did not exist before the 

birth of the internet to infect everyday users of the network due to the numerous cyber 

threats and attacks that are conducted daily on the web. Therefore, researchers have 

realized the need for proposing several traffic classification techniques that help 

manage and control the flow of network traffic in order to alleviate the risks involved 

with the potential threats. 

1.1. Traffic Classification 

Traffic classification is the association of network traffic with the application or 

category of applications that generated them (for example, Skype, HTTP, SMTP, video 

streaming, and so on). Traffic classification is significantly important in our highly 

dynamic digital world for several reasons [3]. These reasons include ensuring the 

Quality of Service (QoS) and Service Level Agreement (SLA). It is also essential for 

troubleshooting abnormal network behaviour during unexpected downtimes whereby 

network administrators could potentially use it to pinpoint points of failure within the 
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network. Moreover, it is also used for traffic shaping and bandwidth allocation which 

regulate the flow of network packets to ensure the compliance with a specific traffic 

profile. In simple terms, service providers and datacentres implement traffic shaping to 

limit the traffic rate to a specific level in case it exceeds a pre-specified threshold. 

Moreover, one of the main motives behind the popularity of traffic classification and 

perhaps the most important one is cyber-security. The ease of access to internet 

resources has enabled hackers to craft new mechanisms by which they can exploit the 

numerous vulnerabilities that help them break into any system that is connected to the 

internet. Therefore, there is absolutely no system that is 100% safe once it gets 

connected to the internet. As a result, traffic classification is very important for security 

purposes since it helps recognize malicious classes of traffic that include viruses, 

trojans, spyware and many others. Once a specific flow of traffic has been labelled as 

malicious, an intrusion detection system (IDS) can then block out the malicious classes 

before they reach the user. 

Traffic classification techniques are divided into four main mechanisms that are 

extensively used to categorize incoming traffic. These mechanisms are port-based, deep 

packet inspection (DPI) based, heuristic-based, and Machine Learning (ML) based 

techniques [4]. Port-based classification techniques are largely reliant on the port 

numbers of the transport layer of the open system interconnection (OSI). This 

mechanism was very beneficial and accurate since network applications used to have 

fixed port numbers as assigned to them by the Internet Assigned Numbers Authority 

(IANA). It was then easy to classify the traffic types based on their port numbers. Take 

browsers for example, since they usually use port 80 for HTTP connections, therefore, 

upon coming across a packet with port 80 as its source or destination ports we can 

immediately classify it as a browser packet. However, as communication protocols 

evolve, applications started varying their port numbers dynamically in order to 

obfuscate any means of classifying their traffic. This renders classifiers incompetent to 

accurately categorize the network’s traffic. To overcome this pressing challenge, 

researchers started investigating various alternatives to port-based classification until 

deep packet inspection has emerged as a potentially powerful option.  

DPI focuses on invasively checking the payload of the traffic looking for known 

signatures that relate to specific applications in order to categorize it. DPI proved to be 

one of the most accurate mechanisms of traffic classification since it looks right into 
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the contents of the packets, however, it is also one of the most time and resource 

consuming techniques. This is because pattern matching on application signatures 

requires lots of computing power besides the time required to compare a signature to a 

database of pre-saved signatures for classification purposes. In addition, some people 

are worried about the privacy of their communicated data since they do not wish to give 

permission to authorities in order to monitor their messages. Consequently, applications 

started overcoming this classification mechanism through encrypting the payloads of 

their packets to protect their contents. Accordingly, encryption renders DPI completely 

impractical since we can no longer comprehend the payload’s meaning. In order to 

overcome DPI’s hunger for resources, researchers have looked into the use of heuristic 

techniques for classification which tend to consume lesser resources, produce the output 

in shorter time at the expense of sacrificing the quality of the classification results. As 

a result, according to several research works, heuristics resulted in very low accuracies 

compared to other techniques. Finally, the research community has spotted the power 

of machine learning (ML) and data mining (DM) techniques in extracting essential 

information from traffic packets that can help a computer learn and categorize several 

applications with extraordinary accuracies. 

1.2. Machine Learning 

Machine learning is the study of algorithms, statistical models and 

methodologies which are applied to datasets in order to investigate interesting 

relationships among them that help computers take actions based on experience without 

the need to explicitly program them to do so. Machine learning is divided into two types 

of learning, supervised and unsupervised. Supervised learning involves algorithms that 

are informed about the expected output of some training instances in advance. It will 

then try to find relationships between inputs and their expected outputs such that a 

generalized model can be built that could potentially be applied to test samples that are 

not known to the trained model. On the other hand, unsupervised learning does not 

know about the expected output of the instances available for training, therefore, it tries 

to group instances based on some similarity measures among themselves. Supervised 

learning consists of classification, regression, and association, whereas unsupervised 

learning consists of clustering. Classification is the process of assigning instances into 

discrete classes or categories (for example, low, medium, and high). Regression is 

similar to classification since it attempts to predict a specific output value for an 
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instance, however, it is still different from classification since the output belongs to a 

continuous scale and not a discrete set of classes (for example, predicting a student’s 

CGPA). Clustering is a set of algorithms that tries to group instances together based on 

some similarity measures discovering useful relationships between the different 

instances within the same cluster (for example, citizens belonging to the same socio-

economic levels). Association is the process of uncovering interesting knowledge from 

an existing dataset that was not previously known (for example, if the weather was 

windy then the temperature is not high).  

This work focuses on applying several supervised machine learning algorithms 

including naïve Bayes (NB), linear support vector machine (SVM), 2nd order SVM, k-

nearest neighbour (KNN), and random forest (RF) to two different datasets with five 

distinct classes each in order to classify their traffic traces using MATLAB and Python. 

The performance of each algorithm is then assessed using its classification accuracy 

and average F-score. Several histograms were plotted in order to perform some pre-

processing and analysis which helped us uncover interesting information about the 

datasets in hand. Two algorithms are used for feature selection to find out the most 

influential features that affect the classification performance, stepwise regression and 

random forest feature selection. Several experiments are then conducted using the 

different feature combinations resulting from the feature selection, as well as, the full 

set of extracted features. Other experiments were also performed in order to investigate 

the effect of varying training set sizes (10% to 90% of the datasets) in addition to the 

effect of using varying number of packets (10% to 100% of the packets in each flow) 

in a traffic flow in order to extract flow-level features. The ultimate goal is to study the 

effect of varying these parameters on the five ML algorithms mentioned above and then 

selecting the best classifier that could potentially classify network traffic with the 

highest accuracy and F-Score. However, several studies have shown that implementing 

traffic classifiers in software is causing a bottleneck in congested networks due to the 

enormous amount of traffic flowing through an average network nowadays. As a result, 

in order to mitigate the bottleneck caused by software, this research work attempts to 

implement the best classifier on a field-programmable gate array (FPGA) to exploit its 

parallel computing capabilities such that we can support high throughputs to enable 

real-time classification of traffic traces in congested networks. 
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1.2.1. Naïve Bayes. Naïve Bayes is a very simple probabilistic classification 

technique that was introduced in the early 1960s that focuses mainly on applying Bayes 

theorem. This classifier makes two assumptions, firstly, it assumes that all attributes 

are equally important and hence uses all attributes without inherent feature selection. 

The second assumption of naïve Bayes is that all attributes are statistically independent 

which is what makes this classifier naïve in the first place. This is because this 

assumption is almost never actually true since some attributes will always be related to 

one another. However, naïve Bayes tends to work really well in different applications, 

so we decided to use it as a start to raise our baseline classifier from the random 

classification which leads to an accuracy of around 20% (because five classes are used) 

to a higher accuracy. According to the Bayes rule the probability of event H given 

evidence E is given by Equation (1): 

𝑃(𝐻|𝐸) = 𝑃(𝐸|𝐻) × 	𝑃(𝐻)
𝑃(𝐸)  

(1) 

where 𝑃(𝐻) is a priori probability of H (probability of event before evidence is seen), 

and 𝑃(𝐻|𝐸) is a posteriori probability of H (probability of event after evidence is seen). 

When adopting this theorem into the naïve Bayes classifier, event is our traffic class 

and evidence is the value of each attribute used to build the classifier. Since we have 

many features to consider while building this classifier the general form of Equation 

(1) can be extended as shown in Equation (2): 

𝑃(𝐻|𝐸) = 𝑃(𝐸*|𝐻) × 𝑃(𝐸+|𝐻) × …× 𝑃(𝐸-|𝐻) × 	𝑃(𝐻)𝑃(𝐸)  
(2) 

where E1, E2, …, En represent the different attribute-value pairs. 

 The way this works is by computing the probability of each class of the five 

classes occurring given the attribute-value pairs. Eventually, the instance is then 

classified as the class with the highest conditional probability of all classes. This 

explains why this classifier typically works even though the independence assumption 

is strongly violated. It is due to the fact that classification using naïve Bayes does not 

require precise probability predictions but rather it assigns the instance to the class with 

the highest prediction. 

The way this classifier handles data is through performing a frequency count on 

the categorical attributes, whereas numeric attributes are usually handled by trying to 

fit a probability distribution like Gaussian distribution to the numeric values. 
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Nevertheless, Gaussian is not the only distribution used by naïve Bayes, in fact it uses 

kernel density estimation which is a weighting function used to estimate random 

variables' density functions. Kernel density estimation usually tends to be less overfitted 

than other distributions while usually yielding more accurate results. Therefore, in our 

work we will be using kernel density estimation with all the numeric attributes. One of 

the major advantages of naïve Bayes is its ability to handle missing values as it simply 

does not consider them when computing the required probabilities. However, naïve 

Bayes suffers from a huge drawback when having several redundant attributes since 

they worsen the independence assumption even further. 

1.2.2. Support vector machine. Support vector machine is another popular 

ML algorithm that, in its very basic configuration, tries to find a separating hyperplane 

between the instances of different classes such that any new instance would be 

classified according to where they fall around the plane. Therefore, unlike naïve Bayes, 

SVM is not a probabilistic classification technique as it does not compute any 

probabilities but rather assigns an instance to a class based on the separating 

hyperplane. In its default settings, SVM usually works as a binary classifier that handles 

only two classes. It also works as a linear classifier that attempts to find a linear 

hyperplane that separates the two classes. SVM finds the optimal separating hyperplane 

through maximizing the distance between the separating hyperplane and the critical 

points at the decision boundary which are known as support vectors. Therefore, SVM’s 

task is to try to maximize the distance between the dotted line and the two solid lines in 

Figure 1.1. This results in a quadratic programming problem. However, SVM gained 

popularity since it is presumed to be one of the best text classifiers. This classifier works 

by computing the resulting outcome from running the test instance through the 

hyperplane equation. In case of a two-dimensional plane, the outcome is computed 

using a straight line and in case the value fell above the line then the instance is labelled 

as the class that resides above the line and vice versa. 

There are two main problems with SVM in its basic setup, the first being its 

inability to separate non-linearly separable datasets. In this case, SVM will fail to find 

a plane that separates the two classes. Therefore, one of the configurations of SVM is 

to use a kernel-based classifier that tries to map the dataset into a higher-dimensional 

space in an attempt to find a hyperplane that could potentially separate the two classes 

in that space. Figure 1.2 depicts the issue of non-linear datasets. This issue is very 
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important to us because the nature of network traffic is usually non-linear, and hence 

we are required to use the more sophisticated kernel-based classifier in order to help us 

find the separating hyperplane. Therefore, in our experiments we try both the linear and 

the 2nd order polynomial kernel to assess the performance of non-linear SVM classifiers 

on the traffic dataset. The second problem with SVM is its inability to handle more than 

two classes since it is a binary classifier by definition. There are two main solutions to 

this challenge. One can use a one vs-one scheme which tries to build a classifier for 

each pair of output classes in the dataset. This usually leads to creating 
-(-.*)

+  classifiers 

where 𝑛 is the number of classes in the dataset. Therefore, if we consider a dataset that 

has five classes each, we will end up with 10 one-vs-one classifiers. For example, 

Skype-browser classifier, Skype-Mail classifier, and so on. Testing is then performed 

through running the test instance through all 10 classifiers and then assigning the 

instance to the class that yields the highest count. The advantage of this approach is that 

it usually yields better accuracies since it depends on a majority vote mechanism. 

However, the drawback of the one-vs-one approach is the fact that it is very time and 

resource consuming to build such a high number of classifiers, in addition to the need 

to run the test instance through so many classifiers before classifying it. The second 

approach is the one-vs-all scheme which tries to build one classifier per output class 

whereby the target class is treated as the positive class and all other classes are treated 

as the negative class. This results in n classifiers where n is the total number of classes 

in the dataset. For example, Skype-others, Spotify-others, and so on. Therefore, each 

dataset in hand would require building only 5 classifiers which is half the number 

required for the one-vs-one approach. We can already tell the major advantage of one-

vs-all compared to one-vs-one since we would need lesser number of binary classifiers 

and hence lesser computation resources and lesser time. However, this approach usually 

tends to result in less accurate classifications when compared to the one-vs-one 

approach. In this work, we decided to use the kernel-based one-vs-one approach to build 

the best classifiers in terms of classification accuracy since our network traffic dataset 

is considered a multi-class non-linearly separable dataset. 

1.2.3. K-nearest neighbour. KNN is perhaps one of the simplest yet most 

effective ML algorithms when it comes to classification problems. It is considered as a 

non-parametric classification method that is not based on the parametric method of 

probability distributions. It is also known as instance-based learning or lazy learning 
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because the generated model from the training data is not a mathematical formula, 

neither a tree-based structure but it is actually the training instances themselves stored 

in the memory of the computer system. After that, when a test instance is to be 

classified, the classifier simply looks at the closest k neighbours and conducts a 

majority vote of the output class. The majority class is then assigned to the test instance 

as the classification output. In its very basic setup KNN computes the distance of the 

test instances from all the training instances. The distance between two instances can 

be defined using several distance measures like the Euclidean or the Manhattan distance 

depending on the problem in hand, however, Euclidean remains the most popular 

distance measure for KNN. Euclidean distance is very intuitive for numerical attributes 

since it is defined as shown in Equation (3): 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 	:(𝑥+ − 𝑥*)+ +	(𝑦+ − 𝑦*)+ (3) 

However, for categorical attributes distance can be computed as 0 if the two 

instances have the same attribute value, and 1 if the two instances have different 

attribute values. The main configuration of KNN is to choose a value for K. The smaller 

the K, the more sensitive the classification is to noisy data. The higher the K the more 

smoothing happens, and we might end up underfitting the data instead of overfitting. In 

this work, we used the default configuration for K in MATLAB which is 1.  

 

 

Figure 1.1: Linear SVM 
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Figure 1.2: Non-linear SVM 

 

 KNN is a very powerful algorithm since it is very simple to implement and use. 

In addition, it is somehow easily comprehendible and logical to classify instances 

according to their closest lookalike. Therefore, it is easy to justify a decision to the 

customer in case this was used in a bank loan application, for example. Another major 

strength is the fact that it is usually very good at handling noisy datasets since it can 

take into account more than one nearest neighbour. On the contrary, it usually requires 

lots of memory to store all the training instances such that they can be used when 

classifying new instances. This is not the case with other classifiers that usually find a 

model that generalizes the behaviour of all training instances without consuming as 

much memory. Besides, it might also be computationally intensive since the classifier 

needs to compare a new instance to all the training instances in order to decide on the 

nearest neighbours. Therefore, the complexity could be in the order of O(n) where n is 

the number of training instances. Nevertheless, new algorithms have been devised to 

reduce the complexity to the order of O(log2(n)). These enhancements include the use 

of kD-trees and ball trees that break down the sample space into different non-

overlapping regions that include the different training instances. Therefore, we can 

investigate only the regions close to the test instance instead of the entire sample space. 

This reduces the complexity significantly and hence simplifies the complexity of KNN 

classification. 
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1.2.4. Random forest. Random forest is an ensemble learning method that 

works by constructing multiple decision trees instead of just one tree in an attempt to 

enhance the classification performance. Random forests can be used for both 

classification problems and regression problems, therefore, if it was a classification 

problem, they output the resulting class based on a majority vote that picks the class 

that occurs the most from all decision trees. Another implementation of a random forest 

uses probabilities to choose the class with the highest probability across all trees in the 

forest. On the other hand, if we use it for regression then the output is simply the average 

of all the values generated by all the regression trees. Decision trees are very popular 

in the field of machine learning because they perform really well on non-linearly 

separable datasets. Keeping in mind that our traffic datasets are usually non-linear, this 

might indicate that decision trees are the best option to go about this problem. Besides, 

they are usually resilient to feature transformations and scaling, are really good at 

ignoring irrelevant attributes, and usually result in models that are easy to comprehend 

and inspect. Therefore, decision trees are usually preferred in applications like loan 

banking as one can easily explain their decision to a customer through the generated 

model. However, decision trees suffer from a great deficiency since they tend to overfit 

if grown too deep, which means that they could suffer from a very high variance in their 

predictions. This is because they can learn very rare and irregular behaviours in the 

datasets and hence might not generalize well on other datasets if they were not pruned 

properly. Nevertheless, random forests are always a great solution to the overfitting 

problem of decision trees. The mechanics of random forests allow the majority vote, 

probability calculation, or the average computation which are usually good ways of 

cancelling the effect of overfitting.  

The main driver behind fighting overfitting is the bagging or bootstrapping 

method. Bootstrapping involves randomly sampling with replacement from the original 

training dataset in order to create several “bags”. Bagging is essential because it ensures 

that the variance is reduced and hence overfitting is resolved to some extent. After that, 

a decision tree can be fit to each bag and the output of the decision trees can be 

combined thereafter. In case we had to fit several decision trees to the original dataset 

we might end up with highly correlated trees since the dominating attributes would be 

the same in almost all trees. An even worse situation could happen if we end up with 

exactly the same tree multiple times. Therefore, bootstrapping is the mechanism by 
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which we create several datasets of the same size as the original dataset while 

decorrelating them. This will ultimately result in decorrelated decision trees and hence 

a more effective forest. Building decision trees usually depends on a purity measure of 

attributes at each split whereby we choose the purest attribute and split the training 

instances according to it. One of the most popular purity measures is the entropy which 

indicates the number of bits required to represent specific information. However, this 

is the only place where random forest differs from normal decision trees. Random 

forests usually choose a random subset of features at each split in the learning process 

in what is known as feature bagging. This step is also essential to avoid the correlation 

of the different trees since a purity measure has a very high chance of picking the same 

attributes at corresponding splits of different trees. The most important parameter in 

random forests is probably the number of trees used to build the forest. The following 

are the steps taken by a random forest classifier in building a generalized model that 

resembles any dataset: 

Given the number of trees (N) and the number of training instances (m) 

for n = 1:N 

1. Sample, with replacement, m training instances from the training set 

2. Train a decision tree fn 

a. At every split pick a random subset of the features (default is the 

square root of the number of variables for classification)  

b. choose one or more features to split on based on some purity 

measure like entropy or Gini index that give the locally optimal 

condition for splitting 

The previous algorithm will result in a random forest that looks like Figure 1.3. 

 

 

Figure 1.3: Random Forest 
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Finally, if we were to use a simple majority vote, when a test instance is run 

through the forest, each of the decision trees will result in an output class. The random 

forest classifier will then choose the most occurring class and declare the test instance 

as one of this class’s instances. On the other hand, if we were to use a probability-based 

random forest algorithm, each tree in the forest will eventually output the probability 

of a test instance belonging to each class. For example, a tree’s output would indicate 

that the test instance belongs to class Skype with a probability of 20%, belongs to class 

Browser with a probability of 30%, and so on. After that, the probabilities resulting 

from all trees will be aggregated and the class with the highest probability will be 

assigned to the test instance. In most cases, probability-based random forests perform 

slightly better than the simple majority vote ones. Therefore, in our work we examine 

both algorithms using MATLAB’s majority-based library and Python’s sklearn library 

which makes use of a probability-based random forest algorithm. 

1.3. Field-Programmable Gate Array 

Field-programmable gate arrays are semiconductor chips that consist of 

configurable logic blocks (CLBs) that are wired together using programmable 

interconnects [5]. The overall structure of an FPGA is shown in Figure 1.4. This enables 

CLBs to be reprogrammed in the field to perform different functionalities even after 

the chip has been already manufactured. This is the major advantage of FPGAs over 

application specific integrated circuits (ASICs), since ASICs are burnt on silicon to 

perform a single operation. Central processing units (CPUs) are considered one form 

of ASICs since their architecture restricts them to perform specific operations as 

entailed by the instruction set supported by their design. Therefore, digital circuit 

designers exploit the re-programmability feature of FPGAs to implement and 

extensively test their designs before manufacturing the actual ASICs. This helps cut 

down the huge cost of manufacturing the chip and then testing it before introducing it 

to the market, which in turn lowers the development cost and shortens the time required 

to market an FPGA-based product. Moreover, FPGAs offer a great feature compared 

to any CPU or ASIC in general, which is their ability to execute instructions in parallel 

powered by the independence of all of the CLBs. This means that each CLB can operate 

on a specific task regardless of the activity of other CLBs. This enables true parallel 

execution as opposed to the sequential execution of instructions on a normal CPU. 

Consequently, FPGAs gained popularity in emerging fields that include machine 
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learning, cloud computing, aerospace and defence and many more. Table 1.1 

summarizes the main differences between FPGAs and normal CPUs. 

 

Table 1.1: FPGA VS. CPU Comparison 

Criteria FPGA CPU 

Instruction Set Customizable Fixed 

Architecture Complexity Low High 

Programming Language Verilog, VHDL, System Verilog C C, C++, Python, Java 

Power Consumption Relatively Lower Relatively Higher 

Use Reconfigurable General-Purpose 

Marketing Time Short Long 

Execution Parallel Sequential 

Price Expensive Relatively Cheaper 

 

CLBs consist of basic hardware components that include memory, look-up 

tables (LUT), logic and multiplier units. CLBs can be interfaced to external sensors and 

actuators using the wide range of programmable Input/output (I/O) ports. LUTs are 

arrays that replace complex and time-consuming operations by a quicker array indexing 

operation. They usually store the expected outcomes of a specific operation that 

correspond to particular inputs. In addition, each CLB has a devoted register file which 

is a storage component that performs a similar operation to Random-Access Memory 

(RAM). This enhances the speed of the FPGA even further. Besides, each CLB contains 

flip flops that help in implementing sequential digital designs. Moreover, CLBs usually 

contain multiplexers to route different inputs to the CLB’s output. Figure 1.5 depicts a 

simple representation of the internal architecture of a CLB. 

 

 

Figure 1.4: FPGA Architecture [6] 
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Figure 1.5: Configurable Logic block Architecture [6]  
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Chapter 2. Background and Literature Review 

 

Traffic classification has recently drawn people’s attention due to its importance 

in the networking field. Researchers have realized the need to devise new traffic 

classification techniques that could cope with the increasing speeds of modern 

computer networks. Traffic classification can be categorized into four different classes; 

namely port-based, DPI-based, heuristics-based, and ML-based. In this chapter, we 

review different mechanisms of traffic classification with emphasis on machine 

learning. 

2.1. Port-Based Classification 

Three major improvements in the networking field have affected the accuracy 

of port-based classification technique [7]. The creation of brand-new applications that 

have no IANA registered port numbers has forced these new applications to use ports 

that were registered to other applications. In addition, application developers started 

deliberately using port numbers that are known to be registered for other applications 

to disguise their traffic and bypass specific traffic filters. Moreover, the IPv4 address 

depletion problem causes many servers to be using the same public IP address while 

offering their services through different port numbers. All of these factors have 

rendered port-based classification incapable of correctly classifying network traffic. 

According to [8], port-based techniques are capable of identifying only 30-70% of the 

total network traffic. 

2.2. DPI-Based Classification 

It was 1998 when engineers discovered the power of DPI-based traffic 

classification [7]. DPI uses pattern matching to look for known application signatures 

in the payload of the network packets. Upon identifying a known signature, the packet 

is then classified as the traffic of the known application. Many attempts have been 

devised to implement DPI tools that can look into matching packets with their known 

signatures. One of the most popular tools of DPI-based classification is the L7-filter 

which is a Linux-based classifier that identifies packets based on their application layer 

data [9]. The DPI-based technique tends to offer a very high accuracy in classifying 

network packets regardless of their disguised port numbers, nevertheless, this method 

suffers from critical drawbacks that weaken the possibility of making use of such 

technique in real life systems. One of the major technical deficiencies of DPI is its 
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hunger for a very high memory consumption and processing time. Huge amounts of 

memory are required in order to store the different signatures of the applications under 

supervision, while a strong processing power is required because of the computationally 

intensive process of comparing a packet’s signature to a huge database of known 

signatures.  

Researchers realized DPI’s need for a huge processing power and memory 

requirements. As a result, they started their search for optimized DPI-based algorithms 

which would reduce its resource consumption. In [10], the authors worked on designing 

a fast and memory-efficient system that leverages the capabilities of a multi-core 

architecture. They devised a new compression algorithm known as CSCA to perform 

regular pattern matching that reduces 95% of the memory consumption. Moreover, by 

introducing some optimization algorithms they were able to accelerate the matching 

speed such that the total throughput achieved was in the order of Gbps in 4-cores 

Servers. Besides solving the processing and memory requirements issue, this paper 

neglects another major drawback of DPI which resides in its offensive violation to 

privacy terms and conditions. By definition, DPI invasively looks into the content of 

the network packets in order to find known signatures. This puts the privacy of the 

communicating parties at risk because their information become vulnerable to potential 

threats and eavesdropping by the monitoring applications. To counter this issue, various 

network applications started encrypting the payloads of their packets in an attempt to 

deny DPI its advantage of getting to know the content of the transferred message [11]. 

A similar issue is using a proprietary protocol to transfer packets of a specific 

application. These protocols are usually not known to most filters and firewalls which 

also means that they will not be recognized and hence the packets will not be classified 

correctly. Therefore, with the wide use of encryption and proprietary software and 

protocols in modern networks, DPI does not stand a chance of being used in real life 

applications anymore. 

2.3. Heuristic-Based Classification 

 DPI-based techniques usually tend to result in very high classification 

accuracies provided the traffic traces are not encrypted and use standard protocols. 

However, they are very demanding in terms of resource utilization and time required to 

classify the traffic traces. As a result, researchers turned their attention towards heuristic 

techniques that can perform a similar functionality to that of DPI. Heuristic techniques 
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are experience-based techniques that are used to cut down the time required to perform 

a computationally intensive task at the expense of sacrificing the quality of the result. 

They do not always guarantee a correct solution, but they tend to provide a good 

approximation of the actual solution. Besides solving the time and resource 

requirements issue of DPI, heuristics also resolve its privacy problem. This is because 

heuristic techniques are usually more concerned with the nature of the traffic flow rather 

than invasively looking at the payload of the actual traffic traces. 

 Several research works have investigated the importance and the power of 

heuristic techniques. One of the most interesting writings on the use of heuristics in 

traffic classification proposes a novel multilevel mechanism that looks at traffic flows 

at different levels of rising details [12]. The three levels used in their work are the social, 

the functional, and the application levels. At the social level, the authors capture the 

number of hosts with which the host under supervision communicates. This is called as 

the popularity of that host. At the functional level, they capture the role of a host within 

a network including whether that host is offering a particular service or consuming 

services offered by other hosts. For example, if a host uses a specific port number for 

most of its operations then it is most likely to be a provider host. At the application 

level, they look at the exchange of information at the transport layer in an attempt to 

identify the source application. 

 This approach comprises numerous advantages since it does not look at the 

packet payloads, as well as, having no knowledge of information apart from what is 

available to all flow collectors. However, the accuracy of heuristic techniques in this 

domain is usually not so promising since heuristics are prone to many errors in 

classification. This is shown by the accuracy of the proposed model in [12] which is 

about 95% accuracy on only 80 to 90% of the traces. This accuracy might be sufficient 

in some applications, however with the increasing number of threats on the internet 

nowadays, we would like to push the limits of traffic classification even further. This 

is because network administrators would not tolerate such a high level of inaccuracy 

which might compromise the security of their systems. 

Therefore, the first three methods of traffic classification proved incapable of 

correctly classifying different types of traffic for reasons that were explained earlier. 

As a result, researchers have directed their attention towards devising new machine 

learning techniques or enhancing already existing ones in an attempt to enrich the 
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classification process. In Section 2.4, we discuss existing ML techniques that were 

proposed in the literature. 

2.4. Machine Learning-Based Classification 

 The numerous challenges that come with the previously mentioned traffic 

classification techniques have encouraged researchers to look into an alternative that 

could potentially overcome those difficulties. People realized the power of machine 

learning in correctly classifying traffic traces since it relies mainly on flow statistics 

that are independent of port numbers or payload. Therefore, machine learning offered 

a greater flexibility in terms of the different features required to classify network 

packets. As a result, a classifier does not need to know the content of a packet in order 

to be able to classify it, but rather, the classifier will now be capable of classifying 

traffic traces by simply observing the behaviour of the network generated by the 

applications under supervision. This flexibility is also augmented with the speed 

required to construct an online classifier which can classify packets on the fly unlike 

the DPI-based technique that consumes a great amount of time trying to find a matching 

signature for the application. Moreover, machine learning techniques tend to offer a 

greater deal of quality results when compared to heuristic techniques. This is why the 

literature is rich with all sorts of machine learning algorithms that were adopted in the 

traffic classification domain. In this section we investigate the different machine 

learning approaches taken by researchers to implement a traffic classifier. 

 Machine learning algorithms are key players in classifying encrypted traffic by 

making use of their important statistical information. The statistical information 

consists mainly of flow-level features like packet inter-arrival times, average size, 

maximum size, and many more [13]. A flow is defined as a series of packets that share 

the same source and destination IP addresses, source and destination port numbers, and 

protocol. In addition, features can also be extracted at the packet-level whereby we 

obtain information like protocol, source and destination port numbers [14].  

A published study examines the very common issue of huge power consumption 

caused by wireless Network Interface Cards (WNICs) in order to facilitate wireless 

communication between a mobile device and an access point [15]. Existing solutions 

include the Static Power Save Mode (SPSM) implemented by the 802.11 standard. 

SPSM allows WNICs to sleep in order to save energy and wake up periodically at every 

other beacon frame to receive any buffered packets. However, SPSM suffers from a 
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huge overhead due to sending a PS-poll frame from the mobile device to the access 

point requesting for its buffered frames. In addition, the huge delay between every other 

beacon frame causes SPSM to have a long waiting time in order to receive its buffered 

frames. In order to overcome the issues of SPSM, researchers proposed Adaptive SPSM 

which allows the WNIC to switch from sleep to awake mode based on a specific 

threshold of network activity regardless of the network type. This means that a low 

priority flow could wake up the WNIC which again does not optimize the power 

consumption. The authors suggest a context-aware listen interval algorithm that makes 

use of machine learning algorithms in order to classify traffic into four different priority 

levels. Based on the priority level the system will then decide whether to switch on or 

off the WNIC in order to minimize the power consumption while keeping the waiting 

time to a minimum in order not to suffer from long delays before receiving the buffered 

packers. For example, if the traffic was of the highest priority then the WNIC will 

always remain in the awake mode, whereas if the traffic was of the least priority the 

WNIC will have a very long sleep time before it periodically wakes up to check for the 

buffered packets. The sleep time will then vary according to the priority of the traffic 

flow. 

 In their work, they used the traffic generated by nine different applications 

which were then grouped into the four priority levels that form a dataset of 1350 

instances [15]. VoIP applications constitute applications of the highest level, while 

offline gaming applications that only fetch advertisements when connected to the 

internet are considered of least priority. They also used some applications that represent 

a buffering stream as the second highest level of priority. Finally, a varied level of 

priority consists of applications that generate traffic levels which vary between the 

buffering stream and the low priority. The varying priority consists mainly of mailing 

applications or any sort of social media traffic that could potentially be generated at a 

very high rate at times of breaking news or at a low rate at steady times. In their work, 

the authors used two algorithms for feature selection; consistency-based feature 

selection (CBFS) and information gain feature selection (IGFS) this resulted in three 

different sets of features including the original set of features. The authors experimented 

with eight different machine learning algorithms including Naïve Bayes, C4.5, Random 

Forest, KNN and others. They assess the performance of the different algorithms 

mainly using accuracy and F-score. In general, KNN and Random Forest secured the 



33 

 

 

highest classification accuracies of 99.62 and 99.48 respectively. Their F-scores were 

also the highest compared to others with KNN scoring 0.996 and Random Forest 

scoring 0.995. On the other hand, Naïve Bayes was one of the worst classifiers scoring 

an accuracy of 93.25 and an F-score of 0.933. 

 Other research studies have looked into classifying traffic traces into more fine-

grained categories. This means that the classification would assign packets to the 

applications that generated them as in [16]. In this work, the authors used two datasets; 

one of them is publicly available by the University of New Brunswick (UNB) which 

consists of 14 different classes including Skype, Filezilla, Facebook, Torrent, Twitter 

and many more. In their work the authors were able to extract an initial set of 111 

features. After that, they used two feature selection algorithms from the WEKA tool to 

find out the reduced set of features that simplifies the complexity of the learnt model 

without compromising the quality and accuracy of classification. The CfsSubsetEval 

feature selection method resulted in a set of only three features, while the 

ChiSquaredAttributeEval method resulted in a set of twelve features. WEKA was then 

used to test four different algorithms, namely J48, Random Forest, KNN, and Bayes 

Net. The results of their experiments show that KNN (k=1) and Random Forest have 

the best performances with accuracies of 93.94% and 93.74% respectively. 

Another study proposed an online Support Vector Machine (SVM) traffic 

classifier that was implemented using the CoMo project infrastructure which is an open 

source software for passive tracking of network traffic [17]. The authors chose SVM as 

a classification algorithm since it proved to be one of the best classification techniques, 

yet one of the most computationally expensive algorithms. They select eight different 

classes to work with which are web browsing, peer-to-peer, DNS, email, network 

operation, encrypted traffic, chat, and attacks. Each class is modelled as a test function 

that is used to determine the probability of an instance belonging to this class. CoMo 

consists mainly of five modules that include capture, export, store, query and supervise 

incoming traffic traces. Therefore, the paper attempts to build a feature extraction 

module on top of the CoMo infrastructure, as shown in Figure 2.1, that helps extract 

the necessary features required by the SVM classifiers. 

One of the main objectives of their work is to optimize the code used for the 

SVM classification to reduce the time it takes to classify traffic [17]. As a result, they 

try to parallelize the operation of their SVM algorithm by off-loading the assessment 
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of each test function to a different thread. In testing the implemented system, they used 

a dual Xeon PC augmented with 24 cores running at a clock speed of 2.6 GHz and 

supported with 48 GB of RAM. They attempt to capture a 60-second trace of traffic 

and measure the time it takes to classify its packets into their respective application 

types. The results obtained from their experiments prove that the classification of the 

60-second trace is completed within 21.5 seconds on average. In addition, results show 

that the system can work at speeds reaching up to 600 Mbps.  

 

 

Figure 2.1: SVM Classifier Using CoMo Infrastructure [17] 

 

This piece of work offers numerous advantages to the networking community 

[17]. One of the main strengths of this paper is their novel approach to classification 

whereby they demonstrate a hyperthreading mechanism that speeds up the execution of 

a computationally intensive ML algorithm like SVM. Besides, it also lays down the 

foundations of a software-defined classification approach that could support the 

increasing growth in network link rates. On the contrary, a great drawback of software 

systems is their deficiency when it comes to handling extremely high throughputs due 

to their limitation in terms of supported network speeds. This becomes a serious 

problem at datacentres and Internet Service Providers (ISPs) operating at 10s and 100s 

of Gbps. This limitation paves the way for the introduction of hardware accelerators 

like Field Programmable Gate Array (FPGA) that can be used to perform the 

computationally intensive ML operations at speeds of 100s of Gbps. The enormous 

speeds supported by FPGA accelerators allow the research in the traffic classification 
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field to prosper due to the huge capabilities offered. Therefore, more complicated ML 

algorithms can now be run directly on hardware eliminating the software bottleneck. 

Section 2.5 discusses innovations within this field that makes use of the power of 

FPGAs in traffic classification applications. 

2.5. Hardware-Based Traffic Classifiers 

FPGA accelerators are becoming very useful in speeding up computationally 

intensive operations which drew a lot of attention to its usefulness to overcome the 

software bottleneck of traffic classifiers. As a result, many researchers in this field 

started implementing their DM algorithms on FPGAs with the aim of improving the 

classification throughput. In this section, we look at some FPGA traffic classifiers, 

examine their strengths and weaknesses, and compare their performances. 

2.5.1. C4.5 implementation. The first challenge in building a classifier is 

usually selecting the most appropriate features that will result in the highest 

classification accuracy. The system proposed in [18] suggests using eight candidate 

features, similar to the ones mentioned earlier in Section 2.4, that describe traffic traces. 

Next, they consider different combinations formed by these features such that they end 

up having six different feature sets. After that, they evaluate the performance of each 

feature set using the C4.5 decision tree algorithm which is shown to result in the best 

performance in their literature review. In order to evaluate those feature sets, the authors 

use the WEKA tool along with the very famous 10-fold cross-validation technique for 

offline training. Finally, the feature set that results in the highest overall accuracy 

(around 97%) was used in the final implementation of the classifier. 

According to the methods reviewed by the authors in their literature review, a 

pre-processing discretization step helps improve classification accuracy significantly 

since it helps reduce the noise of the dataset [18]. For example, packet size could range 

from 0 bytes to +infinity bytes in theory and hence if packet size was discretized using 

fixed intervals of packet sizes this could help build a better classifier. However, the 

paper suggests that such a discretization step would consume a very high number of 

comparisons and hence they propose an Optimized Decision Tree (ODT) algorithm that 

integrates the discretization phase within the classification phase such that each non-

leaf node in the binary tree will now compare the feature in hand to both the upper and 

lower boundaries of the discretization interval instead of actually discretizing then 
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comparing to only the discretized values. This cuts down the discretization overhead 

while still filtering the unwanted noise. 

The ODT algorithm performs well as long as the tree is balanced, however, the 

complexity of imbalanced trees grows linearly with the number of tree levels [18]. This 

encouraged the authors to come up with a parallel data structure that makes use of 

balanced binary trees. Another technique suggested by the paper is the Divide and 

Conquer (DQ) algorithm which looks at creating multiple trees called as range trees 

that test for only one feature each. Each leaf node in a range tree stores a Bit Vector 

(BV) where each bit in that BV corresponds to an application type. Therefore, the 

output of each range tree will be a BV that consists of 0s and 1s to indicate whether an 

input matches the corresponding application type. Of course, the BV might show 1s for 

more than one application type and hence the BV is only considered as a partial result 

for this feature. The final classification result will then be obtained through performing 

a bitwise AND operation on all the resulting BVs of all range trees. The speedup with 

DQ is obtained through the fact that each binary range tree can be executed in parallel. 

In order to optimize the previously mentioned algorithms for FPGA 

implementation, the authors decide to use pipelined architectures for both ODT and DQ 

whereby at each clock cycle one input is consumed and one output is generated [18]. 

ODT is implemented on an FPGA by mapping each tree level to a pipeline stage as 

shown in Figure 2.2 (a). Each tree node is stored in the Distributed RAM of the FPGA 

such that at each pipeline stage a Processing Element (PE) retrieves the tree node from 

the RAM and performs the necessary comparisons and then determines the node to be 

visited next. The input instance is fed to the next stage along with the address of the 

next node. On the other hand, each range tree is run simultaneously in parallel using 

the DQ algorithm, merging the resulting BVs eventually using a bitwise AND. Each 

level in a range tree is mapped to a different pipeline stage as shown in Figure 2.2 (b). 

The results of the two implementations prove that DQ uses fewer FPGA 

resources when compared to ODT [18]. More importantly, DQ accomplishes a higher 

throughput when compared to ODT. This paper suggests a novel idea in mapping an 

ML algorithm onto a pure hardware implementation, especially with the DQ algorithm 

that parallelizes all operations by nature in addition to the use of a pipelined architecture 

that boosts the throughput. This technique offers a great advantage to datacentres and 

ISPs that handle enormous amounts of traffic every second since with such a high 
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FPGA throughput ISPs can quickly classify each traffic trace and take corrective 

actions when needed. Perhaps one of the drawbacks of such a paper is that it does not 

discuss the remedies if the bitwise AND results in a BV of only 0s which means failing 

to classify a traffic trace. Moreover, the paper starts by pointing out the need for an 

FPGA implementation which lies in the very low throughput of software 

implementations, however, the authors fail to compare their achieved throughput to that 

of software. Hence, towards the end of the paper the reader feels that a very crucial 

piece of information was left out.  

 

 

Figure 2.2: C4.5 Classifier on FPGA. (a) ODT Algorithm. (b) DQ Algorithm. [18] 

 

2.5.2. SVM implementation. The study in [19] suggests a different approach 

to traffic classification which uses SVM on an FPGA accelerator. In contrast to the 

previous paper, the authors demonstrate both a software and a hardware implementation 

of their algorithm using NetFPGA 10 G FPGAs that incorporate four network interfaces 

at 10 Gbps each. Initially, the authors train their system offline using the LIBSVM 

library. The ground truth, which are the actual class labels of data instances, of the 

obtained traffic traces is usually determined using tools like L7-filter, GT tool, and 

inspection of system logs. There are two main stages in the classification process. 

Firstly, flow reconstruction which looks at the individual packets and tries to extract 

the flow-level features, and secondly, using the support vectors to classify those 

features. They used a computer that has two 6-core Xeon X5650 processors running at 

2.66 GHz and 12 GB RAM. The results of their software SVM implementation shows 

that they were able to achieve a maximum throughput of 8.1 Gbps which can still cause 

a bottleneck at heavily occupied networks. 
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Figure 2.3 shows the hardware architecture used to implement the SVM 

algorithm on the FPGA. It consists mainly of the flow builder that performs flow 

reconstruction and then passes the flow-level features to the many computation units 

that perform classification. These computation units are duplicated such that they can 

exploit the highly parallel nature of the FPGA in order to make the classification 

process faster. Moreover, as an additional way of improving the throughput, the 

operations of the computation units are pipelined such that at each pipeline stage a new 

support vector is processed by each operation at every clock cycle. The result of each 

operation is fed into the next operation of the computation unit.  

 

 

Figure 2.3: SVM Classifier on FPGA [19] 

 

The collected traffic traces do not look linearly separable and hence the 

implementation initially uses Radial Basis Functions (RBF) kernel for the SVM 

classification. The results obtained with such a kernel show an accuracy of 95.8% on 

average. However, the authors suggest a different kernel that can be easily computed 

using the CORDIC algorithm as an alternative to RBF since it is more suitable for 

hardware as it does not include the computationally expensive exponent calculation. 

Upon implementing such a kernel, the accuracy of classification increased to almost 

96.9%.  

One of the weaknesses of their work is the fact that the generated SVM model 

was stored inside a Read-Only Memory (ROM) instead of the faster RAM. This entails 

incurring a very long time in the process of reconfiguring the FPGA in case the SVM 
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model needed to be retrained when new application types started showing up in the 

network. 

2.5.3. Other implementations. C4.5 and SVM are not the only algorithms 

used for traffic classification. In fact, one of the very interesting papers to look at is [20] 

since it uses another well-known decision tree-based algorithm which is simple 

Classification and Regression Trees (CART). This paper follows a very similar 

approach to that used by the C4.5 implementation discussed earlier whereby they 

construct multiple range trees for each feature and then combine the resulting BVs 

towards the end. This FPGA implementation was able to achieve an accuracy of 96.8%. 

However, the most interesting finding of this paper is the fact that they tried most of 

the well-known ML algorithms on their dataset and summarized their results in Table 

2.1. The Kappa measure usually indicates how well an algorithm performs compared 

to a random classifier, while the F-score incorporates both precision and recall in a 

single measure. 

Table 2.1: Algorithms’ Performance [20] 

Algorithm Accuracy (%) Kappa F-Score 

C4.5 97.2 0.968 0.972 

Simple CART 96.8 0.964 0.968 

Simple CART (No Discretization) 93.9 0.931 0.939 

KNN 96.1 0.955 0.961 

Naïve Bayes 94.7 0.939 0.947 

 

By carefully inspecting these results we can tell that decision tree-based 

algorithms usually perform better than others. This could be explained by the fact that 

the dataset in hand requires a non-linear classifier to discriminate between its classes 

and hence a decision tree is more effective in non-linearly separating the distinct 

classes. We can also notice that C4.5 usually performs better than Simple CART, which 

might be the result of having unstable trees generated by CART as opposed to the 

slightly more stable C4.5 trees. A very interesting observation is the fact that 

discretization helps significantly improve classification performance as shown by the 

discrepancy between the discretized CART and the non-discretized CART. This 

supports the idea mentioned earlier that discretization reduces noise in the dataset and 

hence results in a better classifier. KNN algorithm tends to show decent performance 

as a traffic classifier, however, it still falls behind decision trees. As the dimensionality 

of traffic instances increases, the distance between data points becomes less 

representative. Therefore, having many flow-level features might actually backfire 
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when KNN is used which is known as the curse of dimensionality. KNN is more 

susceptible to the curse of dimensionality than decision trees and hence this explains 

why decision trees are superior to KNN. Finally, naïve Bayes is proved to have the 

worst results in this domain. This could happen due to two reasons, firstly, the attribute 

independence assumption of naïve Bayes could be extremely violated and secondly, if 

the only way that separates applications is the way in which traffic features are 

correlated (for example, minimum, maximum and variance of packet sizes) then naïve 

Bayes will not result in an accurate classifier. Nevertheless, one of the main deficiencies 

of all the reviewed papers is overlooking the need to mention their sample size or the 

confidence level of their accuracies. As a result, this makes their results unreliable and 

their reporting process incomplete since we cannot really tell how good their classifiers 

are when it comes to a real dataset with an enormous number of packets. 
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Chapter 3. Problem Statement 

 

 After studying the reported results in the published literature that attempted to 

tackle the problem of traffic classification, we have identified a few shortcomings in 

their approaches. First of all, the reviewed work did not consider a systematic approach 

towards choosing the optimal number of packets to be considered within a flow in order 

to extract flow-level features. Most papers simply speak of the first n packets within a 

flow without defining a methodology to quantify n. The problem is that the more the 

considered packets, the better is the classifier’s performance but also the more the time 

delay incurred when performing the classification. This entails the need to find out the 

most optimal number of packets that guarantees a reasonable classification performance 

while minimizing the incurred delay. In addition, the reviewed work did not consider 

some flow-level features when extracting the required features for classification. As a 

result, we propose new flow-level features that were not discussed earlier in the 

literature and we intend to study their effect on the classification performance. 

Moreover, another pressing issue is the fact that most of the literature in this field 

attempts to build classifiers that make use of the port numbers. At first sight, this might 

sound reasonable since it leads to a very high accuracy in most of the existing literature, 

nevertheless, these results are not too accurate. Researchers agree that port numbers are 

becoming an obsolete way of classifying traffic since applications try to dynamically 

disguise their used port numbers in order to obfuscate any means of traffic 

classification. Therefore, in the worst-case scenario, applications will be able to 

randomly choose port numbers in order to completely mislead the traffic classifiers. In 

such situations, port numbers become useless in the classification process as they might 

not carry any information related to the target application. Therefore, our aim is to build 

an efficient classifier that does not depend on port numbers in an attempt to make it 

ready for future enhancements in network applications. 

 Traffic classification is usually a time and resource consuming operation due to 

the need to extract several flow-level features that aid in correctly categorizing traffic 

traces. Therefore, the implementation and performance of a software-based traffic 

classifier has not proven to cope well with the enormous amount of traffic flowing in 

and out of several networks nowadays. As mentioned in the literature, software 

classifiers tend to form bottlenecks at congested networks, which hastened the need for 

hardware-accelerated traffic classifiers. Hence, another interesting shortfall in the 
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literature is the fact that almost all papers did not study and analyse hardware-

implemented random forest network traffic classifiers. Even though the majority of 

papers agree that decision trees are the best algorithms used in the traffic classification 

domain, no one has ever looked into the implementation of a random forest traffic 

classifier on FPGAs. One of the main features of the random forest algorithm is its 

ability to generalize well and avoid overfitting to the training set when compared to 

single decision trees like C4.5. Therefore, in this research, we intend to study the 

properties and performance of random forests on some traffic traces compared to other 

popular machine learning algorithms like naïve Bayes, SVM, and KNN. In addition, 

we assess the overfitting properties of random forests through conducting several cross-

validation experiments. If proven that random forest outperforms the other algorithms, 

we would then focus on fine-tuning the parameters of the generated random forest, like 

the number of trees, the number of features considered at each split, and the minimum 

leaf size, and study their effect on the classification performance. 

In order to tackle the problem of bottlenecks introduced by software-based 

network traffic classifiers, we assess the performance of the hardware implementation 

of random forests on an FPGA in comparison to their software counterpart. 

Consequently, we compare the performance of the software model to that of the 

hardware implementation in terms of accuracy, F-score, and throughput to find out the 

obtained speedup using the hardware accelerator over the software implementation. 

This is carried out in order to find out the effect of a hardware-accelerated random forest 

network traffic classifier. In doing so, we intend to design a fast, efficient, and accurate 

random forest traffic classifier on an FPGA. As a result, we shall look into design 

techniques that make use of the parallel execution capabilities of FPGAs using 

pipelined architectures. This in turn would be a very important addition to existing 

traffic classification technologies and cybersecurity measures at datacentres and 

internet service providers. 
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Chapter 4. Datasets 

 

 In order to perform the experiments of this research work, we needed traffic 

traces to be able to build classifiers that can uncover relationships between the different 

instances. We had two options to collect traffic traces. The first option is to capture 

traffic traces using a special setup that will listen to a specific network channel to collect 

packets going through a particular access point. To do so, we might need to use packet 

capture software like Wireshark [21] or tcpdump [22]. This option would have been an 

easy one since we can build our own dataset at our convenience without the need to 

look up another dataset that was used in the literature. However, this option does not 

allow us to compare the obtained results to those of existing implementations of traffic 

classifiers since it will be the first work on such a dataset. Therefore, we chose another 

option which is to find out existing datasets that have been extensively used in the 

literature in order to be able to assess the performance of our classifiers against other 

researchers’ work. In this chapter, we discuss three different datasets that were 

previously used in the literature and we discuss the feasibility of using each of them in 

the work presented here. 

4.1. The MAWI Dataset 

The Measurement and Analysis on the WIDE Internet (MAWI) group is a 

research group that has conducted several internet traffic experiments including 

analysis, evaluation and verification of several captured traffic traces since the 

inception of the WIDE Project [23]. The WIDE project focuses on evaluating the 

conditions of several real-world networks. They simply assess whether a network 

behaves in a similar manner to its design specifications, learn from abnormal network 

behaviour, and act accordingly. To support the continuity of research in the traffic 

analysis field the MAWI group has created and maintained a traffic data repository 

which contains several traffic traces that are collected with specific goals in mind. Some 

traffic traces resulted from a weekly capture experiment from the main IX link of WIDE 

to DIX-IE. MAWI call these traffic traces as samplepoint-G. Other traffic traces were 

captured on a daily basis since the 1st of June 2006 until today at the transit link of 

WIDE to the upstream link of the ISP. These traffic traces are called as samplepoint-F. 

To protect the privacy of the traffic owners, MAWI has made sure that all of their 

datasets are anonymized through scrambling the IP addresses in the packet headers. 
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At first sight, MAWI datasets look like a very precious treasure for any traffic 

classification project. Therefore, we had to dive deep into one of their capture files in 

order to assess whether they could be of any help to this research. We looked at the 

traffic traces in the PCAP file captured on the 31st of December 2016. The capturing 

process ran for almost 15 minutes and resulted in a PCAP file of almost 4 GB of data 

and around 65 million packets. The major strength of this dataset is the fact that MAWI 

has provided detailed statistics about each of the protocols included in the capture file. 

Therefore, according to MAWI, around 98.17% of the packets belong to the IPv4 

protocol while 1.83% belong to the newly introduced IPv6. They also demonstrate 

similar statistics about other protocols like ICMP and IPSec. Moreover, they look deep 

into the transport layer protocols like TCP and UDP showing that their packets 

represent 53.81% and 6.92% of the total number of packets in the capture file 

respectively. Despite the abundance of information about the traffic traces collected by 

MAWI, they still lack one crucial piece of information that renders MAWI completely 

useless for our research. This work focuses on classifying traffic as per the application 

that generated such traffic. The problem with the MAWI dataset is the absence of any 

form of ground truth that could tell us the application that generated individual packets. 

For example, both Chrome and Skype use TCP, however, this dataset will only tell us 

that a packet uses the TCP protocol. Therefore, we still cannot differentiate between 

specific applications that use the same protocol. Hence, this dataset was finally 

discarded from our research work due to the absence of its ground truth.  

4.2. The UNIBS Dataset 

 The telecommunication networks group at the University of Brescia in Italy is 

a research group that specializes in the field of computer and telecommunication 

networks [24]. The group is involved with several national and international research 

projects which resulted in several publications [25, 26]. Their most recent project 

revolves around a platform that combines software and hardware to accelerate the 

process of developing and testing wireless solutions. This project is sponsored by the 

EU Horizon 2020 program. They have also produced lots of useful software tools that 

are used in the networking field including Ground Truth (GT) which is a very efficient 

tool that captures and analyses traffic traces with their corresponding ground truth 

information [27]. To facilitate the continuity of the research in the networking field, 

this group has captured several traffic traces along with their associated ground truth 
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information collected using the GT tool. The traffic traces were captured at the edge 

router of the university’s campus network on three consecutive days starting 30th of 

September 2009 until 2nd of October 2009. They used twenty workstations running the 

GT tool to collect the traces. As a result, the UNIBS dataset was captured in a non-

controlled environment whereby all types of traffic were allowed to flow into the 

system with almost no restrictions, and then GT was used to obtain the ground truth of 

the captured packets. Therefore, the UNIBS dataset is more representative of real 

network traffic. Similar to MAWI, this group has also made sure that all of the captured 

packets are anonymized, as well as, payload-stripped in order to ensure the privacy of 

their owners. The anonymization process was conducted using a software known as 

Crypto-Pan. This dataset overcomes MAWI’s greatest drawback since it includes its 

ground truth information which enables us to determine the application that generated 

almost every packet. The ground truth file was in the form of a text file that determines 

the application of each packet using the combination of source IP, destination IP, source 

port, destination port, and protocol. 

The UNIBS dataset resulted in traffic traces of around 27 GB of data which 

resemble about 79000 traffic flows. After anonymizing the dataset and removing any 

payload related information, the traffic traces reached 2.7 GB. This dataset consists of 

both TCP and UDP traffic only with the majority of traffic belonging to TCP. Some of 

the provided statistics regarding this dataset show that almost 61.2% of the flows belong 

to browser applications which consists of both HTTP and HTTPS traffic, 5.7% are mail 

traffic (POP#, IMAP4, SMTP), 27.7% are torrent traffic, and 5.2% belong to Skype. 

These tend to be the most dominating applications in the UNIBS dataset and hence they 

will be our first choice of applications later on when we start the practical work. Upon 

inspecting the ground truth file of the UNIBS dataset, we found out a minor issue within 

the way the output classes are represented. We found lots of entries with different 

variations of the same application, for example, Skype appeared in the ground truth file 

Skype, Skype.exe, skype, skypePM.exe. This was also repeated with other classes like 

the browser class having variations like Safari, Safari Webpage, firefox-bin, 

firefox.exe. Therefore, before using the ground truth file we had to clean it up in such 

a way that these variations are replaced with a single class name for consistency 

purposes. Eventually, the resulting ground truth consisted of five main classes that were 

used in our work, namely, Browser, Skype, Mail, BitTorrent, and RSS feed. There were 
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also other classes that rarely appeared in the ground truth file and hence they were 

completely discarded when we filtered the UNIBS dataset. So far, UNIBS appears to 

be a very good start to our research work, and indeed it was. However, the main issue 

with the UNIBS dataset is the fact that it dates back to 2009, almost 10 years ago. 

Therefore, in the last 10 years different applications might have changed their protocols 

or their communication mechanisms. As a result, we do use UNIBS in our research, but 

we also tried looking for more recent datasets in order to cope with the recent 

advancements in the networking field. 

4.3. The UNB Dataset 

 The Canadian institute for cybersecurity (CIC) is a broad multidisciplinary 

research and development institute that focuses on multiple research topics including 

social sciences, computer science, engineering, and many others [28]. The institute is 

based at the University of New Brunswick (UNB) in Canada where they harness all of 

their effort, energy and manpower to come up with new innovative research that could 

potentially benefit our dynamic world. Their aim is to become one of the pioneers in 

teaching and research methodologies in Canada by the year 2021 in the field of 

cybersecurity. As a result, they try to offer a competitive and well-organized 

environment for the best researchers to come together and devise new research 

methodologies in the field. Therefore, in order to aid the research in the cybersecurity 

field, the CIC has worked on collecting several network traffic traces such that they can 

be inspected and analysed for potential cybersecurity threats. Some traffic traces were 

collected to study the effect of intrusion detection and prevention systems. Others were 

obtained to investigate the impact of denial of service attacks and other malware on 

Android devices. However, the dataset of the most importance to us in this research is 

the VPN-nonVPN traffic dataset since it contains numerous interesting network 

applications like Skype, YouTube, Spotify, Torrent, and many others which serve the 

purpose of our research. The ground truth of the UNB dataset is also provided which 

makes this dataset very useful to our work. However, in order to record the ground 

truth, the collectors of this dataset used a much smarter way compared to the GT tool 

of the UNIBS dataset. While capturing the anticipated traffic all unnecessary 

applications and services were shut down in order to ensure that the generated traffic 

belongs only to the target application. Only then the capturing process was started. 

Therefore, the UNB dataset consists of several PCAP files where each file belongs to a 
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single application. The collection of the UNB traces was rather conducted in a very 

controlled environment that ensured that all services except the target service were shut 

down before the collection process started. Even though this might not be as 

representative of the real-life networks as the UNIBS dataset, it is still worth 

experimenting on such a dataset as it is more recent compared to UNIBS. 

 In capturing the traffic traces, the researchers used packet analysers like 

Wireshark and tcmpdump which resulted in a total traffic of 28 GB of data. Unlike the 

UNIBS dataset, the UNB dataset was not payload-stripped which means that the 

application layer data was present in all the capture files. Some statistics from this 

dataset show that VoIP applications including Skype represent the majority of around 

20% of the captured packets. It was also interesting to find out that very popular 

applications like YouTube and Spotify appear in the UNB dataset since we believe that 

these modern-day services would add a great value to our research work as they help 

us cope with the advancing nature of internet traffic nowadays. Therefore, when picking 

traffic classes from this dataset we ensured that we choose the most trending and 

popular applications in order to add value to the traffic classification research 

community while maintaining some of the classes used from the UNIBS dataset for 

performance comparability purposes. We have selected five different classes from the 

UNB dataset, namely, Skype, Netflix, Torrent, YouTube, and Spotify.  

In 2014, Microsoft has announced the use of a proprietary telephony protocol 

to replace the old protocol used in Skype. This means that datasets before 2014 

including UNIBS would include skype traffic that uses the old protocol, which might 

render modern day traffic classifiers incapable of correctly categorizing Skype traffic. 

This issue might also be true for other applications. Therefore, the major advantage of 

the UNB dataset compared to UNIBS is the fact that this dataset was captured in 2016 

which makes it quite recent compared to the 2009 UNIBS dataset. As a result, UNB 

represents a major player in our traffic classification research. However, one of the 

greatest drawbacks of UNB dataset is the presence of some impurities in the dataset. 

Even though the owners mention that they turn off all other services before capturing 

the target service, we were still able to find out lots of packets that did not belong to 

Skype, for example, in the Skype PCAP file. In order to verify this, we had to contact 

the owners of the UNB dataset, who said that they tried their best to remove all 

impurities, but they do not guarantee that it is 100% pure. 
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Chapter 5. Methodology 

 

As mentioned earlier, this work focuses on traffic classification using machine 

learning which involves supervised learning methods including naïve Bayes, SVM, 

KNN, and random forest. In this chapter, we look into some of the pre-processing steps 

performed before running the datasets through the mentioned classifiers. In addition, 

we describe the detailed approach taken towards extracting useful features from the 

UNIBS and the UNB datasets. Moreover, we discuss the feature reduction algorithms 

used in order to choose the features that best represent the datasets in hand. We also 

provide a detailed flowchart that describes the entire process starting from the pre-

processing, going through the training phase and finally terminating with the testing 

and evaluation phase. After that, we describe the mechanics of the four ML algorithms 

employed in this work. 

5.1. Pre-processing Step 

In this work, the MATLAB environment and the Python language are used 

throughout the different phases to implement the ML algorithms mentioned in Section 

1.2. The UNIBS and UNB datasets come in the form of different PCAP files. Therefore, 

we needed a way of converting the PCAP files into a readable format to MATLAB and 

Python. This is because PCAPs were not directly supported by MATLAB and Python 

at the time this research was conducted. After that several pre-processing steps were 

used in order to filter the noisy instances, inspect the distribution of the resulting 

instances, and so on. Next, we describe a detailed step-by-step guide of the 

implemented procedure: 

1. The PCAP file is launched using the Wireshark software to inspect the several 

frames contained within the file. Figure 5.1 shows the Skype file from the UNB dataset. 

As mentioned earlier, the UNIBS PCAP contained traffic capture of three consecutive 

days, resulting in a total of over 20 million packets. This was more than the required 

number of packets to perform our machine learning analysis. Therefore, we have 

decided to use a subset of around 100000 packets. There are two ways to filter such a 

subset, either by randomly sampling 100000 packets from the whole file or by selecting 

consecutive 100000 packets from one of the three files. While the first option would 

result in a more representative sample of the original traffic traces, it suffers from a 

very dangerous threat which is the fact that by randomly sampling the packets we might 
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end up losing the flow-level information which requires the packets to be consecutive 

in nature to avoid any interruption to the flow of traffic. Therefore, we decided to go 

with the second option and choose 100000 consecutive packets from the capture file. 

 

 

Figure 5.1: Skype PCAP File 

 

Similarly, this was also done with the UNB datasets, except that UNB has 

different PCAP files for different classes of traffic. Therefore, in order to create a 

balanced dataset. The five files skype_file3, netflix3, spotify4, Torrent01, and youtube5 

were chosen from the set of files of the UNB dataset and the first 20000 consecutive 

packets were chosen from each file resulting in a total of 100000 packets as well. 

2. Wireshark was used to export the first 100000 packets in the UNIBS trace of 

the 30th of September 2009 into JSON format which is supported by MATLAB. Also, 

20000 packets from each of the UNB dataset files were exported into JSON resulting 

in the UNB dataset that consists of a total of 100000 packets. Figure 5.2 and Figure 5.3 

show the steps to export the packets into JSON. 

3. JSON files are read into MATLAB where each packet is represented as a struct 

containing its header information. 

4. UNIBS packets are labelled by looping through its ground truth file and locating 

source and destination IP addresses, source and destination port numbers, and protocol. 

If a match is found, then the packet is labelled using the class associated to the 

combination of the five attributes mentioned above. 
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On the other hand, UNB was very easy to label since packets come in different 

files already, therefore, upon reading each of the five files into MATLAB the label was 

associated to the read packet according to the file name. 

 

 

Figure 5.2: Export PCAP as JSON 

 

 

Figure 5.3: Export Properties 
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5. Packets are then labelled according to their flow number based on the definition 

of a flow mentioned in Section 2.4. Therefore, after this step each packet will have its 

own flow number in the struct. 

6. Packets are filtered to remove any non-labelled packets or any packet with no 

transport layer header like ARP, ICMP, and IGMP packets since it will not be possible 

to extract useful features for these protocols. 

 

This step resulted in the following packet count in the UNIBS dataset: 

Skype:  20776 

Browser: 22249 

BitTorrent: 946 

Mail:  1291 

RSS:   279 

 

The packet count of the UNB dataset looks as follows: 

Skype:  19951 

Netflix: 20000 

Torrent: 19986 

Spotify: 19885 

YouTube: 19996 

 

As we can see, the UNIBS dataset is unbalanced, whereas the UNB dataset is 

almost equally balanced. We took this as an opportunity to investigate the performance 

of the different traffic classifiers on different datasets that are both balanced and 

unbalanced. This will allow us to assess the impact of unbalanced training data on the 

accuracy of such classifiers.  

7. A set of 26 packet-level and flow-level features was then extracted from both 

the datasets. A summary of all the extracted features is shown in Table 5.1. Appendix 

A contains a glossary of feature definitions. Note that, the flow-level features that use 

entropy were not previously discussed in the literature, therefore, one of the 

contributions of this work is proposing the use of entropy-based flow-level features.  
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Table 5.1: Complete List of Extracted Features 

Packet-Level 

Features 
Flow-Level Features 

Source Port 
Minimum Frame Length Maximum Frame Length Mean Frame Length 

Median Frame Length Variance Frame Length Entropy Frame Length 

Destination Port 
Flow Size Frame Length Minimum Capture Length Maximum Capture Length 

Mean Capture Length Median Capture Length Variance Capture Length 

Protocol 
Entropy Capture Length Flow Size Capture Length Minimum Interarrival Time 

Maximum Interarrival Time Mean Interarrival Time Median Interarrival Time 

Time to Live 
Variance Interarrival Time Entropy Interarrival Time Number of Packets in Flow 

Flow Duration 

 

5.2. Feature Histograms 

 In order to inspect and investigate the UNIBS and UNB datasets at a much lower 

and fine-grained level we had to plot histograms for each of the 26 extracted features. 

To study the impact of each feature on the output class, we split the histogram of each 

feature into five histograms representing the values of the extracted feature belonging 

to every class. In this section, and for brevity, we comment on the most interesting 

histograms and then we simply include the remaining histograms in Appendix B. The 

next few plots represent the histograms of all features for every output class. As we can 

see in Figure 5.4 source port could be a very effective attribute in separating Skype 

traffic from the rest of the classes since Skype tends to have only one source port value. 

On the other hand, RSS tends to have a very small range of source ports while browser 

tends to be spread over a wide range of source ports. 

 

 

Figure 5.4: UNIBS Source Port Histogram 
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Figure 5.5 shows the destination port histograms for the UNIBS dataset. If we 

inspect the destination port histograms shown in Figure 5.5, we would find out that 

destination port could be a very effective feature in pointing out BitTorrent traffic since 

this is the only application that tends to use higher port numbers unlike the other four 

applications. It is also worth mentioning that the combination of source port and 

destination port could be a very good indicator of Browser traffic, since Browser is the 

only application that tends to have a fixed destination port number (port 80) while 

having a spread distribution of source port numbers. The case with mail is similar since 

they have a spread source port distribution, but their destination port is concentrated 

towards the lower end of the port numbers. Therefore, our initial observation from these 

histograms is that if we use a combination of source, as well as, destination ports we 

could very easily classify almost all classes in the UNIBS dataset. This observation will 

either be confirmed or denied later on using the results of running the UNIBS dataset 

through the five classifiers mentioned earlier. 

 

 

Figure 5.5: UNIBS Destination Port Histogram 

 

Figure 5.6 shows the histograms for maximum capture length, which also shows 

a good potential to differentiate some traffic classes from one another. As we can see 

the variance of the maximum capture length for Skype tends to be very large, whereas 
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that of mail is significantly smaller, therefore, this feature might be a very interesting 

feature for the classification algorithms. 

 

 

Figure 5.6: UNIBS Maximum Capture Length Histogram 

 

On the other hand, the histograms of other features prove that they might not be 

very useful in differentiating the different classes due to the overlap between their 

values. Figure 5.7 shows the histogram of entropy capture length. As we can see from 

the plots, all the histograms tend to have almost exactly the same distribution. 

Therefore, the first intuition says that entropy capture length might be discarded when 

performing feature selection later on. 

 

 

Figure 5.7: UNIBS Entropy Capture Length Histogram 
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The same argument also applies to the median of the inter-arrival time shown 

in Figure 5.8.  

 

 

Figure 5.8: UNIBS Median Inter Arrival Time Histogram 

 

When it comes to the UNB dataset the source and destination ports become even 

more decisive as shown in Figure 5.9 and Figure 5.10, respectively. We can see that the 

five classes have distinct source and destination ports, and hence by simply looking at 

the port numbers we would expect the classifiers to obtain really high accuracies and 

F-scores. This might indicate that using port numbers alone can be enough to obtain the 

correct traffic class. However, this could raise a potential problem since as mentioned 

earlier in the literature review, modern applications tend to dynamically change their 

port numbers in order to obfuscate any means of traffic classification. Therefore, if we 

run into a more sophisticated situation where applications change their port numbers 

dynamically, our classifiers might fail to identify them. This problem will be 

investigated later in this work. 

If we inspect the entropy inter-arrival time of the UNB dataset shown in Figure 

5.11 we can clearly tell that it could be very useful in recognizing the Skype traffic as 

its entropy inter-arrival tends to have a distribution that looks very different from the 

other classes. On the contrary, median frame length might be used to differentiate 
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between Torrent and Skype on one hand, and the other three classes on the other hand. 

Unfortunately, it cannot really distinguish by itself between individual classes due to 

the very similar distributions shown in Figure 5.12. 

 

 

Figure 5.9: UNB Source Port Histogram 

 

 

Figure 5.10: UNB Destination Port Histogram 
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Figure 5.11: UNB Entropy Inter Arrival Time Histogram 

 

 

Figure 5.12: UNB Median Frame Length Histogram 
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5.3. Feature Selection 

 As mentioned in Section 5.1, we were able to extract 26 features from the two 

datasets. These features were chosen based on an exhaustive list of features gathered 

from all the previous research works discussed within the literature review, besides 

additional features that we thought might enhance the classification performance. This 

means that choosing these 26 features might not be based on a scientific approach or 

might not take into account the knowledge of the networking domain. This might cause 

some issues since we might have some redundant attributes that could potentially 

misguide the classification algorithms used, especially the naïve Bayes algorithm that 

is quite sensitive to redundancies. In addition to redundant attributes, we might also 

have completely irrelevant attributes that might not just degrade the performance of our 

classifiers in terms of classification accuracy or F-score, but it also slows down the 

process of training and testing our classifiers. Therefore, feature selection is very 

important since it helps streamline the interpretability of the model, avoids overfitting 

by eliminating irrelevant attributes through reducing the variance of the model, and 

reduces the time and resources required to build the model.  

In this section we discuss two feature selection algorithms, namely stepwise 

regression and random forest feature selection, that were used in our research to select 

the most optimal features that describe the two datasets in hand. The feature selection 

algorithms were integrated into the five traffic classifiers that were built in this research. 

The way we do this is by applying feature selection to the training phase only. 

Therefore, before training any of the classifiers we run one of the two feature selection 

algorithms to obtain the indices of the most influential attributes to the classification 

process. The training phase will then build the classifiers based on the selected features 

only. Next, the indices of the selected features are then be passed on to the testing phase 

such that only those features will be used to classify any new instance. 

5.3.1. Stepwise regression (SWR). Stepwise regression is a popular regressor 

feature selection mechanism by which a regression model is iteratively built by adding 

or deleting features at every step [29]. Assume that we have n potential features (in our 

case n = 26) and a single class attribute which is the traffic class. Regression models 

usually have an additional intercept term b0 and hence the number of features is n+1 

(in our case 27). At the beginning, stepwise regression attempts to build a regression 

model that consists of only one feature which is the feature with the highest correlation 
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to the output class. By definition, this feature will result in the largest partial F-statistic. 

After that, stepwise regression investigates the other n-1 features to find out the one 

that generates the highest partial F-statistic. The second feature is then added to the 

model given that its partial F-statistic is larger than the value of the F-random variable 

for adding a feature to the model. This F-random variable is known as fin. The partial 

F-statistic for the second feature is calculated using Equation (4): 

𝑓+ =	𝑆𝑆A(𝛽+|𝛽*, 𝛽D)𝑀𝑆F(𝑥+, 𝑥*)  
(4) 

where 𝑀𝑆F represents the mean square error for the model generated using the two 

features 𝑥+ and 𝑥*, and 𝑆𝑆A(𝛽+|𝛽*, 𝛽D) represents the regression sum of square due to 

𝛽+ given 𝛽*, 	𝛽D.  

 Once we have added the second feature to the regression model, it is now time 

to decide whether the first feature needs to be eliminated. We do so by calculating the 

F-statistic represented by Equation (5): 

𝑓* =	𝑆𝑆A(𝛽+|𝛽*, 𝛽D)𝑀𝑆F(𝑥+, 𝑥+)  
(5) 

In case 𝑓* is smaller than the F-random variable to remove variables from the 

regression model, we call it fout. In MATLAB, the minimum p value for a term to be 

removed is called ‘premove’. The value of premove in our experiments was set to 0.025.  

 Stepwise regression will keep on performing this systematic method to 

investigate the remaining potential candidate features, with the stopping condition 

being the inability to add or eliminate any more features. Even though stepwise 

regression tends to perform feature selection in a very scientific and systematic manner 

which reduces the complexity significantly compared to performing a brute force 

feature selection, it also suffers from some drawbacks. Stepwise regression is not 

always guaranteed to select the most influential features that best describe the output 

class since it selects the attributes based on sample estimates of the actual model 

weights. Therefore, this could potentially lead to a small room for error when selecting 

the important attributes. In addition, this is also a computationally intensive algorithm 

since the complexity of stepwise regression is in the order of O(n2). Nevertheless, the 

fact that we only use feature selection during training does not affect the real-time 

classification of traffic. Table 5.2 and Table 5.3 show the selected features using 

stepwise regression from the UNIBS and UNB datasets, respectively. 
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Table 5.2: UNIBS Features Selected by Stepwise Regression 

Packet-Level 

Features 
Flow-Level Features 

Source Port 
Minimum Frame Length Maximum Frame Length Mean Frame Length 

Median Frame Length Variance Frame Length Entropy Frame Length 

Destination Port 
Minimum Capture Length Maximum Capture Length Mean Capture Length 

Median Capture Length Variance Capture Length Entropy Capture Length 

Protocol Minimum Interarrival Time Maximum Interarrival Time Variance Interarrival Time 

Time to Live Entropy Interarrival Time 

 

Table 5.3: UNB Features Selected by Stepwise Regression 

Packet-Level 

Features 
Flow-Level Features 

Source Port Minimum Frame Length Maximum Frame Length Mean Frame Length 

Destination Port Median Frame Length Variance Frame Length Entropy Frame Length 

Protocol 
Minimum Interarrival Time Entropy Interarrival Time 

Time to Live 

 

5.3.2. Random forest. As discussed earlier, random forest is an ensemble 

method for classification that combines several trees together in order to reduce 

overfitting and enhance the classification accuracy. By definition, random forest selects 

a random subset of features at every step and assesses the purity of the instances 

according to the chosen subset of features. A very popular purity measure that is widely 

used with decision trees is entropy. Therefore, at every node in each tree, random forest 

picks the feature or set of features that best split the training instances according to the 

purity measure. The structure of random forest defines, by default, the most important 

features in the dataset, since we can always find the most important attribute at the very 

first node of a decision tree followed by the second most important feature and so on. 

Therefore, the random forest ranks the different features by importance on its own. 

 Random forests offer two simple methods for feature selection, namely, mean 

decrease impurity and mean decrease accuracy. When performing feature selection 

using the mean decrease impurity method, the algorithm usually computes to what 

extent each feature reduces the weighted impurity in every single tree in the forest. The 

overall importance of that feature can then be computed as the average decrease in the 

weighted impurity resulting from this feature across all the trees within the forest. After 

that, features are then ranked based on this measure. On the other hand, mean decrease 

accuracy focuses on measuring the direct effect of each feature on the overall accuracy 

of the model. This is done through permuting the values of each feature and computing 

how much the permutation reduces the accuracy of the random forest model. Therefore, 

the result could be thought of as permuting important features would highly reduce the 
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accuracy of the model, whereas permuting insignificant features would have almost no 

impact on its accuracy.   

Table 5.4 and Table 5.5 show the selected features using random forest from the 

UNIBS and UNB datasets, respectively. 

 

Table 5.4: UNIBS Features Selected by Random Forest 

Packet-Level 

Features 
Flow-Level Features 

Source Port 
Maximum Frame Length Mean Frame Length Median Frame Length 

Variance Frame Length Entropy Frame Length Minimum Capture Length 

Destination Port 
Maximum Capture Length Mean Capture Length Median Capture Length 

Flow Size Capture Length Minimum Interarrival Time Maximum Interarrival Time 

Protocol Mean Interarrival Time Median Interarrival Time Variance Interarrival Time 

Time to Live Entropy Interarrival Time 

 

Table 5.5: UNB Features Selected by Random Forest 

Packet-Level 

Features 
Flow-Level Features 

Source Port Minimum Frame Length Maximum Frame Length Mean Frame Length 

Destination Port 
Median Frame Length Variance Frame Length Entropy Frame Length 

Flow Size Frame Length Minimum Capture Length Maximum Capture Length 

Protocol Mean Capture Length Median Capture Length Variance Capture Length 

Time to Live Flow Size Capture Length Median Interarrival Time Entropy Interarrival Time 

 

5.4. Discretization 

Discretization is the process of converting a continuous variable into a discrete 

counterpart such that they can be more suitable for numerical analysis and digital 

representations. Discretization is very important in improving the performance of 

classification algorithms since it usually yields better results and sometimes speeds up 

the execution of the machine learning algorithm used [18]. The network features 

extracted from the UNIBS and the UNB dataset are all numeric except for the port 

numbers and the protocol. Hence, discretization could clearly help in improving the 

classification performance if the numeric attributes of the UNIBS and the UNB dataset 

were discretized before being presented to the classification algorithms. Discretization 

could be divided into two main categories; unsupervised and supervised discretization. 

In this section, we discuss the two types of discretization, highlight the differences 

between the two and eventually point out the more suitable technique for our traffic 

classification problem. 

Unsupervised discretization is the process of quantizing the feature values in the 

absence of any knowledge about the classes of the different instances in the training set 

[30]. Therefore, it is very helpful in clustering problems where the class attribute is 
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unknown in the first place. Unsupervised discretization can be divided into equal-width 

and equal-frequency discretization. Equal-width discretization focuses on splitting the 

range of attribute values into a number of equal intervals regardless of the distribution 

of the attributes’ values. Unfortunately, this discretization technique causes uneven 

distribution of the training instances among the different intervals which could 

eventually burden the ability of this feature to contribute to a more representative 

model. Equal-frequency discretization divides the training instances into a number of 

predefined bins based on the distribution of the feature values. Therefore, equal-

frequency discretization results in bins containing the same number of instances. This 

technique is also known as histogram equalization since it will result in a uniform 

feature histogram [30].  

Supervised discretization is the process of quantizing the feature values while 

respecting the knowledge of class labels of all instances in the training set [30]. As a 

result, it is mainly used with supervised learning techniques like classification and 

regression. Traffic classification is a supervised learning process since we know in 

advance the class label of each training instance, hence we are going to use supervised 

discretization on our two datasets. As mentioned in [31], the most commonly used 

supervised discretization mechanism is the entropy-based discretization, where we sort 

the instances by the feature’s value and look for potential splitting points such that the 

subintervals are as pure as possible. Consequently, we place our splitting boundaries at 

the points where the information or entropy required to represent the individual class 

values is the least. To further illustrate the process of entropy-based discretization, 

consider the binary classification example given in Figure 5.13 where the numeric 

values represent the packet sizes and the labels are either “Skype” (S) or “Non-Skype” 

(N). 

 

 

Figure 5.13: Binary Classification Example 

 

We would then use Equation (6) to calculate the entropy or the information 

required to represent class values as follows: 
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 	−J𝑝K 	 log+ 𝑝K
K

 
(6) 

where 𝑝K is the probability of class i to occur in the particular interval. 

The entropy is calculated for each of the 11 possible candidates for boundary 

placement in the previous example, and then the boundary that results in the least 

entropy is then picked for discretization. To demonstrate the working of such an 

algorithm, let us compute the entropy of “packet size < 71.5” which splits the feature 

values into two regions where the first runs from 64 to 71 resulting in four Skype 

packets and two Non-Skype packets, while the second region runs from 72 to 85 

resulting in five Skype packets and three Non-Skype packets. The Entropy is calculated 

using Equation (7) and it is equal to 0.939 bits. This process is repeated recursively 

until some stopping criterion is met. One of the popular stopping criterions is called the 

MDL principle [31]. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦	([4,2], [5,3]) = 6
14 	𝐸𝑛𝑡𝑟𝑜𝑝𝑦([4,2]) +

8
14 	𝐸𝑛𝑡𝑟𝑜𝑝𝑦([5,3]) 

(7) 

 The supervised discretization described in [32] is very similar to that of [31] 

with the exception of using a Gini index-based measure instead of the entropy measure 

used by Fayyad and Irani. Therefore, in this work we will try the two algorithms 

described in [31, 32] since they are readily available in the WEKA tool. We conduct a 

cross-validation experiment whereby we train five different classifiers namely naïve 

Bayes, KNN, linear SVM, 2nd order SVM, and random forest on the two datasets, 

UNIBS and UNB. Meanwhile, we shall be recording the training time, testing time, 

classification accuracy and F-score on the original dataset, as well as, the discretized 

datasets using both discretization algorithms mentioned above. We then conduct a 

comparison between the results of the discretized and the non-discretized datasets based 

on the criteria mentioned earlier (training time, testing time, classification accuracy and 

F-score). By doing so, we study the effect of discretization on the classification 

performance, and hence, we decide whether or not it is necessary to discretize our 

datasets before applying any machine learning algorithm. 

5.5. Conducted Experiments 

 Now that feature selection has been performed and we have identified the most 

important features, we start training and testing our traffic classifiers. We have 

conducted three different sets of experiments, whereby each one tries to look at a 
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specific parameter and tries to investigate the impact of varying such a parameter. We 

wanted to address the issue of overfitting models, which means that the generated 

model would not generalize well to new instances that were never seen by the classifier. 

In addition, through our literature review we have noticed that the research community 

has not investigated the impact of varying the training set size on the classification 

performance. Furthermore, a very important aspect that was missing from the literature 

is the most optimal number of packets used to extract flow-level features. We perform 

those experiments on seven different subsets of features to investigate the effect of 

using each combination of features on the performance of the classifiers. The seven 

feature subsets are: 

1. All Features – This includes all the 26 extracted features 

2. All Features without port numbers – This is very similar to combination 1 but 

after removing source and destination ports 

3. Port numbers only – This includes only source and destination ports to check 

whether ports are truly the most decisive features behind classification 

4. Stepwise regression (SWR) features – This includes the features selected by the 

SWR algorithm 

5. Stepwise regression (SWR) features without port numbers – This is very similar 

to combination 4 but after removing source and destination ports 

6. Random forest (RF) features – This includes the features selected by the RF 

algorithm 

7. Random forest (RF) features without port numbers – This is very similar to 

combination 6 but after removing source and destination ports 

The reason why we try the same combination without the port numbers is 

because of our initial claim that ports are the most decisive features, and hence we 

wanted to investigate the performance of our classifiers in the absence of port numbers. 

The port-less experiments are very important since in case port numbers were 

dynamically changed by the different applications, we assume that port numbers, in the 

worst-case scenario, will not influence the classification process. Therefore, we aim to 

build classifiers that could counteract the port obfuscation process and still be able to 

classify traffic without the need to have fixed port numbers per application. In this 

section we look at the different experiments performed within the course of this 

research. 
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5.5.1. Cross-validation. Overfitting is a very serious issue that affects the 

performance of classification models because building a model with 100% accuracy on 

the training set that cannot generalize well to new unseen instances could be disastrous 

if implemented in real life. Therefore, cross-validation is one of the best ways to assess 

overfitting. Cross-validation is the process of dividing the complete dataset into k 

different folds with approximately equal number of instances that do not overlap. After 

that, we use k-1 folds as training data and the remaining fold as a test data to test the 

generated model. The process is repeated until all k folds have been used as testing data 

exactly once. This results in k different models with k different classification accuracies 

and F-scores. The overall classification accuracy and F-score are then found out to be 

the average of the k accuracies and F-scores. By doing this, we try to eliminate the luck 

factor that might be caused by simply taking a fixed training set and test set without 

repetition. A better measure of overfitting would be repeating cross-validation several 

times which is usually referred to as repeated cross-validation or Monte Carlo. In this 

work, we used 10-fold cross-validation. Figure 5.14 shows a flow chart of the cross-

validation experiment. 

 

Figure 5.14: Flowchart of the Cross-Validation Experiment 



66 

 

 

5.5.2. Various packet percentage within a flow. As mentioned earlier, a flow 

is a series of packets sharing the same source and destination IP addresses, source and 

destination port numbers and protocol. Therefore, if we were to implement a real-time 

traffic classifier, we would need to wait for a number of packets within a flow to arrive 

in order to extract their flow-level features. One can immediately spot a trade-off in this 

scenario, since considering 100% of the packets within a flow would logically yield the 

best performance, nevertheless, it would also mean slowing down the classification 

process as we would need to wait for a longer period of time before starting to classify 

the flow. Therefore, in this experiment we vary the percentage of packets used to extract 

flow-level features in every flow such that the packet percentage varies from 10% to 

100% of the packets in a flow using the 10-fold cross-validation method. After that, we 

generate two plots for each subset of the seven feature subsets mentioned earlier. The 

two plots represent the classification accuracy against the packet percentage and the F-

score against the packet percentage. Moreover, we also plot the average wait time to 

receive the required packets against the packet percentage. This was computed as the 

arrival time of the last packet to be considered within the flow minus the arrival time 

of the first packet within the flow. We only consider arrival times as this is the major 

contribution of delay within real-time systems since classification time is usually 

negligible compared to the packet arrival time. Of course, we would expect the 

classification accuracy and F-score to go up as we increase the percentage of used 

packets. However, our intention from this experiment was to find out the most optimal 

packet percentage required to give us the best performance given the wait time. Figure 

5.15 shows a flow chart of the various packet percentage within a flow experiment. 

5.5.3. Various training set sizes. In order to inspect the impact of different 

training sizes on the performance of the different classifiers, we will also vary the 

training set sizes from 10% to 90% of the whole dataset while fixing the packet 

percentage at 100%. We will then compute the classification accuracies and F-scores 

for each of the seven feature subsets mentioned earlier. We will then plot both the 

classification accuracy and F-score against the training set size. In doing this, we use 

the holdout method that simply allocates n% of the instances to the training set and the 

remaining (100-n) % instances are held out as the test set. Figure 5.16 shows a flow 

chart of this experiment. 
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Figure 5.15: Flowchart of the Various Packet Percentage within a Flow Experiment 

 

5.5.4. Random forest parameter tuning. Before running our experiments, we 

wanted to fine-tune the key parameters of the random forest algorithm in order to be 

able to build the model that yields the best classification. The three main parameters of 

the random forest algorithm are number of trees in the forest, number of features to 

select at random for each decision split, and the minimum number of training instances 

reaching the leaf nodes of the tree. 

In order to find out the optimal number of trees within the random forest that 

would lead to the best classification performance, we study what is known as the out-

of-bag error against the number of trees. As mentioned earlier, the random forest 

algorithm randomly samples m instances with replacement from the training set in 
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order to build each tree. This sampling technique is known as bootstrapping where a 

particular instance has a probability of 1 − *
X of not being picked in the training set. 

Therefore, the probability of an instance being placed in the test set is Y1 − *
XZ

X 	≈
𝑒.* 	≈ 0.368. Therefore, the test set would consist of approximately 36.8% of the 

instances for each tree within the forest. These 36.8% of instances are what is known 

as out-of-bag instances for each tree. Therefore, in order to investigate the effect of 

increasing the number of trees within the forest, we plot the average out-of-bag error 

against the number of trees within the forest. We do this by varying the number of 

trees from 1 to 500. Figure 5.17 and Figure 5.18 show the average out-of-bag error 

against the number of trees for the UNIBS and the UNB datasets, respectively. 

 

 

Figure 5.16: Flowchart of the Various Training Set Sizes Experiment 



69 

 

 

By inspecting the average out-of-bag error for both datasets, we can tell that the 

results are self-explanatory to a great extent. As the number of trees within the forest 

increases, we would expect the classification accuracy to increase and the error to 

reduce. On the other hand, once the number of trees exceeds a specific threshold, the 

gain in classification performance becomes insignificant. Keeping in mind that the 

more the number of trees in the forest, the more the time it takes to build the forest and 

potentially the more the time it takes to classify a test instance as it has to be routed 

down a greater number of trees. Even though the different trees can operate in parallel 

during the testing phase, unbalanced trees within the forest might lead to a slightly 

longer testing time as we would have to wait for all trees to finish before performing a 

majority vote or a probability-based decision. Therefore, it is important to pick the 

optimal number of trees in the forest such that nearly the best classification performance 

is obtained while maintaining a reasonably small number of trees. With such graphs it 

is apparent that the optimal number of trees usually resides at the elbow of the graph 

which translates to approximately 50 trees using both datasets. Therefore, in all 

upcoming experiments we use 50 trees in all of our random forest models. 

 

 

Figure 5.17: UNIBS – Average Out-Of-Bag Error Against Number of Trees 
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Figure 5.18: UNB – Average Out-Of-Bag Error Against Number of Trees 

 

 The next parameter to be tuned in our work is the number of features to select 

at random for each decision split. As mentioned earlier, while detailing the steps of 

training a random forest, the algorithm usually picks a random subset of features at 

every decision node to split the training set on. The default number of features chosen 

randomly is usually the square root of the total number of features in the dataset for 

classification problems. In our case, we were able to extract 26 features from the 

datasets under investigation. Hence, the default number of randomly picked features at 

each split is √26 	≈ 5	features. This is what we would like to verify through plotting 

the out-of-bag error against the number of considered features at each split. We vary 

the number of features from 1 all the way to the full feature vector (26). Figure 5.19 

and Figure 5.20 show the average out-of-bag error against the number of features for 

the UNIBS and the UNB datasets, respectively. 

Similar to the “number of trees” parameter, we expect that considering a greater 

number of features at each decision split would reduce the out-of-bag error. This is 

evident from the shape of Figure 5.19 and Figure 5.20. The same analogy applies here, 

the more the number of considered features the more time it takes to build the model. 
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However, the elbow of the graphs will usually give us the best number of features 

beyond which increasing the number of features leads to no significant improvement in 

the out-of-bag classification error. By inspecting the two figures we can conclude that 

the elbows of the two graphs lie around 5 features. This result proves that the default 

value of √26 yields the best out-of-bag performance while keeping the number of 

features to a minimum. Therefore, the default number of features will be used in 

building all of our models in this work. 

Next, we attempt to tune the minimum leaf size parameter of the random forest 

algorithm. Minimum leaf size is simply the minimum number of training instances that 

reach a leaf node within the tree. If more instances are allowed to reach the leaf nodes, 

then we make sure we are not overfitting the model since noisy instances will not have 

a great impact on the structure of the trees as noisy instances can result in further 

decision splits that are not necessary. On the contrary, the drawback is that not much 

details are extracted from the large number of instances as we might learn more 

differences among the leaf node instances if we allowed the algorithm to keep on 

splitting. Therefore, we are faced by a tradeoff scenario where we would like to find 

out the minimum number of instances reaching the leaf nodes without overfitting the 

model to the training set. Keeping in mind that the default minimum leaf size is usually 

1, we decided to plot the out-of-bag error against the minimum leaf size. We vary the 

minimum leaf size from 1 all the way to 1000 instances. Figure 5.21 and Figure 5.22 

show the average out-of-bag error against the minimum leaf size for the UNIBS and 

the UNB datasets, respectively. Figure 5.21 and Figure 5.22 clearly reflect what we 

anticipated earlier. The lesser the minimum leaf size, the lower is the out-of-bag-error. 

As we increase the minimum leaf size, we incur more classification errors. Therefore, 

we decided to stick to the default value of the minimum leaf size (1) as it yields the 

least out-of-bag error. As for the overfitting problem, the cross-validation technique 

mentioned earlier shall give a better idea about whether the generated random forest 

overfits to the training set when a minimum leaf size of 1 is used. 
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Figure 5.19: UNIBS – Average Out-Of-Bag Error Against Number of Features 

 

 

Figure 5.20: UNB – Average Out-Of-Bag Error Against Number of Features 
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 Figure 5.21: UNIBS – Average Out-Of-Bag Error Against Minimum Leaf Size 

 

 

Figure 5.22: UNB – Average Out-Of-Bag Error Against Minimum Leaf Size 
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Chapter 6. Random Forest Hardware Design 

 

In the experimental results demonstrated in Chapter 7, we show that the random 

forest algorithm tends to outperform all other algorithms in terms of classification 

accuracy and F-score. Therefore, we choose to proceed with designing a hardware 

accelerator that is based on a random forest classifier in order to speed up the 

classification process through the use of hardware. This is true since hardware usually 

executes an algorithm much faster compared to the same algorithm in software due to 

the fact that dedicated hardware components perform the repetitive classification steps 

without incurring the cost of any overhead processes introduced by software. In doing 

so, we try to exploit the highly parallel architecture of FPGAs to accelerate the design 

even further.  

Authors in [33] suggest that there are two possible architectures for a random 

forest implementation on hardware. The first implementation is a memory-centric 

implementation whereby the comparison attributes and values of all nodes of the forest 

are stored in memory. Since a data instance will only traverse one node at each level, 

therefore, only the node information of that one node that needs to be traversed will be 

loaded from the tree level memory into the tree level comparator. Hence, only one 

comparator is used at each tree level. This enables a very quick context switching from 

one random forest model to another through simply loading new node information into 

the tree level memory. In addition, it also helps reduce the FPGA resource consumption 

in terms of the number of required comparators since only one comparator is used per 

tree level. On the other hand, due to the heavy reliance of a memory-centric architecture 

on the memory of an FPGA, this architecture requires a significant amount of on-chip 

memory. The second architecture is a comparator-centric architecture which is very 

similar in design to that of the memory-centric architecture except that it uses one 

comparator per node in the tree. This results in a very high consumption of FPGA 

comparators, while requiring no memory elements to store the node information. This 

is because each comparator will now hold the static value of the comparison attribute 

at that node. This means that context switching now takes a significant amount of time 

when we want to load a new random forest model onto the FPGA due to the need to 

change all static values of all comparators within the forest.  

Keeping in mind that we have two datasets, this means that we will require the 

context switching feature of the memory-centric architecture. Otherwise, using the 
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comparator-centric architecture will mean that we will have to design two models to 

embed the static comparison values into their comparators. This is an infeasible 

approach that will consume a considerably high amount of time. Therefore, in this 

work, and with noticeable modifications to the implementation suggested in [33], our 

implementation will follow the memory-centric approach. In this chapter, we discuss 

the hardware design of our random forest classifier in detail. 

6.1. Data Memory  

In order to perform traffic classification on digital hardware, the features 

extracted from each network packet must first be encoded in a way that can be 

understood by the random forest accelerator. Recall that we were able to extract 26 

features earlier from the UNIBS and the UNB datasets. Therefore, we opted for 

encoding the 26 features using binary numbers where each feature is encoded as a 58-

bit fixed-point number. Fixed-point was chosen instead of floating-point since it usually 

results in a much simpler hardware design which tends to be faster than a floating-point 

architecture. After inspecting the maximum and minimum values of the features in the 

two datasets, we realized that the integer part of the 58-bit fixed-point number shall not 

exceed 30 bits. Therefore, each of the 26 features is encoded such that 30 bits resemble 

the integer part and 28 bits are used to describe the fractional part of the number. This 

results in an encoding scheme that requires 1508 bits to describe the features of one 

network packet. Consequently, the packets are stored in the data memory according to 

the format shown in Figure 6.1. It shows that features were arranged one after the other 

starting from feature 0 all the way to feature 25. The numbers shown above each feature 

are the start and end bits of each feature. For example, the MSB of feature 0 is at bit 

1507 and the LSB is at bit 1450. 

 

 

Figure 6.1: Data Memory Arrangement 

 

6.2. Random Forest Overview 

As mentioned earlier, FPGAs are semiconductor devices that can be used to 
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design digital circuits while decomposing the design into smaller modules that can run 

in parallel. This is perhaps one of the major advantages of FPGAs since it enables a 

hardware designer to breakdown their complex designs into smaller pieces that can 

execute instructions simultaneously unlike the sequential execution of normal CPUs. 

Therefore, our main objective while designing the random forest classifier in hardware 

is to identify independent components that can work simultaneously without affecting 

the operation of one another. The most obvious independent components are the 

individual trees within the forest since a test instance is simply passed down each tree 

regardless of the output of the other trees. The structure of the independent trees is 

shown in Figure 6.2 which offers an overview of our hardware-based random forest 

design.  

In Figure 6.2, we can see that individual trees are being instantiated starting 

from Tree 1 all the way to Tree n, where n is the number of trees in the forest. It is clear 

that the network packets consisting of 1508 bits are routed down all trees at the same 

time. Before doing so, the test packet is registered at an input register which introduces 

a one-cycle delay. This input register is very important since it helps us have more 

control over the flow of signals in the random forest as it keeps the whole design well-

behaved using a master clock. Once the test instance reaches the trees it goes into the 

different levels of the trees. Each tree level will simply pass on the packet to the next 

level within the tree for more checks, along with the address of the next node in the 

tree. The execution of each level within the tree is also one more aspect that requires 

attention. Each tree level examines only one packet at a time, therefore, instead of 

treating the entire tree as one bulky component, we can simply make use of the fact that 

a tree level checks one packet at a time and hence we can insert pipeline stages between 

the different tree levels. This is yet another aspect where we exploit the parallel 

execution capabilities of FPGAs, since now tree levels can operate simultaneously and 

independently with respect to all other levels within the tree. The pipelined architecture 

of the trees within the forest imply the need for another design constraint. For the design 

to be well-synchronized, all trees must have the same number of levels such that a test 

instance can spend the exact number of clock cycles in the pipeline and hence the 

outputs of all trees can be ready at the same instant in time. That is why Figure 6.2 

shows all trees consisting of m+1 levels where level m is the last level in all trees. The 

output of level m is either the class label in case of a majority-based random forest or 
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class probabilities in case of a probability-based random forest. After that, the outputs 

of all trees are fed into a module known as “Class Tally”. In simple words, the Class 

Tally module will simply aggregate the results of all trees and will then pass the results 

to the “Voter” module. The Voter module will eventually choose the most occurring 

class (majority-based) or the class with the highest probability (probability-based) to be 

the class label of the data instance. The Class Tally and the Voter modules are discussed 

further in later sections. Lastly, to further add on to our highly pipelined architecture, 

an output register is used to simply register the output class such that it can be displayed 

to the user in a timely manner. Notice that the input and output pipeline registers are 

triggered on the positive edge of the clock. 

 

 

Figure 6.2: Hardware-Based Random Forest Design Overview 
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6.3. Tree Level 

To understand the hardware design of a tree level, consider the graphical 

representation of a decision tree shown in Figure 6.3. 

 

 

Figure 6.3: Decision Tree Structure 

 

There are many design aspects we can pick out from Figure 6.3. First of all, a 

tree level m consists of 2m nodes. Let’s call the root node (0th node of level 0) node 0. 

If we consider a binary decision tree where each node has only two children, the storage 

address in memory of the first child and the second child can be calculated using 

Equation (8) and Equation (9), respectively: 

𝐿𝑒𝑓𝑡	𝐶ℎ𝑖𝑙𝑑	𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = 2 ∗ 𝑃𝑎𝑟𝑒𝑛𝑡	𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 1 (8) 

𝑅𝑖𝑔ℎ𝑡	𝐶ℎ𝑖𝑙𝑑	𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = 2 ∗ 𝑃𝑎𝑟𝑒𝑛𝑡	𝐴𝑑𝑑𝑟𝑒𝑠𝑠 + 2 (9) 

This means that in each tree level we would have to store the information of all 

the nodes within that level. Nevertheless, in this case we will be faced by a slight design 

obstacle when we store the node information in memory. Let us take level 2 as an 

example to illustrate the design problem. If we were to store the information of nodes 

3, 4, 5, and 6 in memory, they would be stored as the 0th, 1st, 2nd, and 3rd nodes, 

respectively, within level 2. Therefore, Equations (8) and (9) will no longer provide us 

with the right node addresses. We noticed that the published literature that implemented 

a hardware-based random forest did not tackle such a problem. In the worst-case 

scenario the design would fail as Equations (8) and (9) will not work properly, but in 

the best-case scenario this might result in a waste of memory resources as we would 

need to duplicate the entire tree contents at each level in the tree. As a result, one of the 

contributions of this work is the introduction of the concept of effective address within 

our design, whereby the effective address of a node within the tree level can be 
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calculated using Equation (10). Effective address helps eliminate the previously 

mentioned problem as we would no longer need to duplicate tree contents at each level 

in the tree. 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝐴𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝐴𝑑𝑑𝑟𝑒𝑠𝑠 −	2X + 1 (10) 

If we were to work out the effective address of nodes 3, 4, 5, and 5 using m = 2 

since m stands for the level number, they will turn out to be 0, 1, 2, and 3 respectively. 

This design necessitates the use of complete trees in order for the previous equations to 

work properly. As a result, if we were to zoom into one of the levels of a tree, we would 

see the hardware structure shown in Figure 6.4. First of all, we can see the effective 

address being computed using a subtractor and an adder. The effective address is then 

used to index the tree memory which holds the information about all nodes within the 

particular tree level (more on this in Section 6.4). Notice that the tree memory is 

triggered on the negative edge of the clock since all pipeline registers are triggered on 

the positive edge of the clock. This allows signals to stabilize before we can request for 

node information from memory. The tree memory will fetch the feature index which is 

simply the index of the feature being checked within this node. As mentioned earlier, 

26 features have been extracted, so feature index is a number between 0 and 25. The 

feature index is then used as selection lines to a multiplexer that will enable the value 

of only the feature under inspection to pass through for comparison. 

In addition to the feature index, the tree memory will also provide us with the 

feature threshold which is the value against which the feature is compared. For example, 

if the node was checking if “packet size > 5” then the feature threshold will be 5. Next, 

both the selected feature and its threshold are passed to a comparator that checks 

whether the selected feature is greater than the feature threshold. The result of the 

comparison is then used in the calculation of the next address. The way we calculate 

the next address is by first shifting the parent address one bit to the left, which is mainly 

the part where we multiply the parent address by 2 in Equations (8) and (9). After that, 

depending on the result of the comparison we either add a 1 or a 2 to the shifted address. 

This results in calculating the child address. Lastly, in order to design a highly pipelined 

architecture, a state register is used at the end of each tree level in order to store the 

outcomes of that level. In the tree level register, we simply register the network packet 

and the child address such that they can be passed on to the next tree level. In the last 

level of the tree, we also register either the class number (majority-based) or the class 
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probabilities (probability-based) which are also fetched from the tree level memory. In 

the intermediate tree levels, we can simply leave the class signal unconnected, whereas 

in the last tree level we can leave next address and data unconnected resulting in a more 

general design for tree levels. 

 

 

Figure 6.4: Tree Level Architecture 

 

6.4. Tree Memory 

Figure 6.5 gives a better insight into the design of the tree memory and shows 

how the different fields of a node in the tree are stored in the memory. The tree memory 

is a 64-bit memory where the MSB is a flag that indicates whether a node is a leaf node. 
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If a node was not a leaf node, it means that bit 63 is a 0 indicating that what follows is 

the feature index of that particular node. Twenty-six features would require 5 bits to 

index each of them and hence the feature index is usually stored at bits 62-58. The 58-

bit feature threshold comes immediately after the feature index taking up the space from 

bit 57 to bit 0. The structure of a non-leaf node is fixed for both the majority-based and 

the probability-based algorithms. 

The situation is slightly different when it comes to leaf nodes. This is because 

in leaf nodes we usually want to store either the class label (majority-based) or class 

probabilities (probability-based). In both cases, and since this is a leaf node, the 63rd bit 

is always set to 1. In case of a majority-based random forest algorithm, the class label 

is stored from bits 62 to 60. Only three bits are used for the class label since we are 

dealing with only five classes in our problem. The rest of the bits in a majority-based 

model are don’t cares (bits 61-0). On the other hand, if we were dealing with a 

probability-based model, we simply store the probability of each class as a 12-bit fixed-

point number, where 1 bit is used for the integer part and 11 bits are used for the 

fractional part. Finally, the size of the tree memory at level m is usually 64 bits (per 

node) * 2m words since level m usually has 2m nodes. 

 

 

Figure 6.5: Tree Memory Design 

 

To exploit the parallel capabilities of the FPGAs, we use the on-chip memory 

to act as the tree memory and store all the node information. This is due to the ability 

of an FPGA to restructure its on-chip memory on-demand such that each tree level can 
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have simultaneous access to its tree level memory without creating a memory access 

bottleneck at the other levels of the same tree or even other trees in the forest. By doing 

so, all levels in all trees can fetch their node information at the same time. 

6.5. Class Tally (Majority-Based) 

In a majority-based model, after each tree casts its vote what we need to do is 

to find out how many trees voted for each class. This is exactly the task of the Class 

Tally module in the majority-based design. We simply have a counter module for each 

of the five classes, where the input to each module is the votes by all the decision trees 

in the forest. The output of each counter is the number of times class k was selected by 

the decision trees of the random forest, where in our problem k = 5 since we have five 

classes. Figure 6.6 shows the general design of the Class Tally module for a majority-

based algorithm. 

 

 

Figure 6.6: Class Tally Module Design (Majority-Based) 

 

6.6. Class k Counter (Majority-Based) 

If we zoom into one of the class counters in the Class Tally Module, we would 

find a number of comparators that is equal to the number of trees in the random forest, 

n. Each comparator will simply check whether the output class of each tree is equal to 

k, the class number the module is concerned with. If they are equal, a 1 is output 

otherwise a 0 is output. Eventually, an adder adds up the number of ones resulting from 

the different comparators. By doing so, we calculate the number of times a class k was 

chosen by the decision trees in the random forest. Figure 6.7 shows the hardware design 

of the Class k Counter module. 
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Figure 6.7: Class k Counter Architecture 

 

6.7. Voter (Majority-Based) 

Upon receiving the total count of each of the k classes, we are now only left with 

selecting the most occurring class. The way we do this is by simply comparing the k 

counts and choosing the class with the highest count. Figure 6.8 shows the design of 

the Voter module in a majority-based algorithm. We compare the values of class 1 count 

and class 2 count using a comparator. The result of the comparison is used as a selection 

line to a multiplexer. If the comparison turns out to be in favour of class 1, we would 

simply route class 1 count through the first multiplexer, and vice versa. In order to keep 

track of which class count was routed through the multiplexer, we concatenate the 

CLASS_LABEL, which is a number from 1 to k that represents the class, and the class 

count corresponding to it. After that, the routed class count will go into the next 



84 

 

 

comparator to be compared against class 3 count. This process repeats until the last 

multiplexer routes the CLASS_LABEL with the highest count declaring it as the 

majority class. Notice that in case of a tie between two class counts, this architecture 

gives more priority to class 1, then class 2, followed by class 3, 4, and lastly class 5 

with the least priority. 

 

 

Figure 6.8: Voter Module Architecture (Majority-Based) 

 

6.8. Class Tally (Probability-Based) 

The Class Tally module of a probability-based algorithm, unlike that of the 

majority-based one, is more concerned with finding the average probability of each 

class resulting from the probabilities obtained from each decision tree. To do so, we 
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need to simply add up the corresponding probabilities of each class and then divide by 

the number of trees in the forest. However, division is a very expensive hardware 

operation that requires lots of hardware and time to execute. Therefore, we simplify our 

design by avoiding the division operation since it is not required anyway as calculating 

the sum of all probabilities would suffice as we would eventually pick the highest sum. 

Hence, we can see in Figure 6.9 that we have an adder for each class, resulting in five 

adders in total, and each adder is concerned with class probabilities that correspond to 

one class. For example, the first adder adds up class probabilities from bit 59 to bit 48 

which correspond to the probability of class 1of all decision trees. The result of the 

Class Tally module is the sum of all probabilities for each class. 

 

 

Figure 6.9: Class Tally Module Design (Probability-Based) 

 

6.9. Voter (Probability-Based) 

The Voter module of the probability-based algorithm is very similar in concept 

to that of the majority-based algorithm. This is because we would like to select the class 

with the highest sum of probabilities as opposed to the most occurring class. The only 

difference in the Voter module of the probability-based model is the fact that we pass 

class probabilities instead of class counts to the comparators and the multiplexers. 

Consequently, the Count k inputs to the multiplexers represent the concatenation of 

CLASS_LABEL and the class k probability instead of class k count. Figure 6.10 shows 

the architecture of the Voter module of a probability-based model. 

6.10. Hardware Platform 

Now that we have detailed the hardware design of a random forest classifier, it 

is time to start implementing it on a real hardware platform. In this work, we have used 

the DE2-115 development board manufactured by Terasic Inc [34]. The DE2-115 board 

features a Cyclone IV E FPGA chip designed and manufactured by Altera (now Intel). 



86 

 

 

It is a well-known educational board used for testing and prototyping academic and 

research projects. It is considered one of the most appealing FPGA boards due to its low 

cost, low power and an enormous supply of logic, memory and DSP capabilities. The 

FPGA chip on the DE2-115 board offers 114,480 configurable logic blocks (CLBs), up 

to 3.9 Mbits of on-chip RAM, 266 multipliers and 529 GPIO pins [34]. Besides, the 

DE2-115 board offers a wide range of on-board memory including 2 MB SRAM, 128 

MB SDRAM, 8 MB flash memory, and 32 kb EEPROM. Moreover, the DE2-115 board 

features several I/O devices including a 16x2 LCD display, 26 LEDs, 4 pushbuttons 

and 18 switches. Furthermore, the DE2-115 allows connections to numerous external 

I/O devices, like keyboard, mouse, VGA monitor, camera, microphone, speaker, 

Ethernet, RS-232 communication port, Secure Digital card and infrared. Figure 6.11 

shows the DE2-115 board with all of its peripherals. 

 

 

Figure 6.10: Voter Module Architecture (Probability-Based) 
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Figure 6.11: DE2-115 Development Board [34]  
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Chapter 7. Experimental Results 

 

 In this chapter, we discuss the results obtained using the various experiments 

described in Chapter 5. Before discussing the obtained results, we introduce the 

performance metrics used to assess the performance of the several classifiers built 

during the experiments. Therefore, in Section 7.1 we discuss our performance 

measures. 

7.1. Performance Measures 

In order to define the performance measures used, consider the simple confusion 

matrix and example shown in Table 7.1 and Table 7.2, respectively. We use Table 7.1 

and Table 7.2 as basis for our discussion. 

 

Table 7.1: Confusion Matrix Template 

Actual\Predicted Yes No 

Yes True Positive (TP) False Negative (FN) 

No False Positive (FP) True Negative (TN) 

 

Table 7.2: Classification Example 

Actual\Predicted Yes No 

Yes 20000 0 

No 1000 1 

  

 One can notice that the classifier of Table 7.2 is biased towards class ‘Yes’ since 

it classifies almost all data instances to that class. To assess the performance of such a 

classifier, we discuss important performance measures like accuracy, precision, recall, 

and F-score. 

7.1.1. Accuracy. The classification accuracy is defined as the percentage of 

instances classified as their true class labels. It is also known as the recognition rate 

since it resembles the percentage of test set instances that are correctly classified. 

Therefore, we can compute the accuracy of a classifier using Equation (11): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 ∗ 100% 

(11) 

Therefore, using the values of Table 7.2 the accuracy can be calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 20000 + 1
20000 + 1 + 1000 + 0 ∗ 100% = 	95.2383% 

where 20000 is the true positive, 1 is the true negative, 1000 is the false positive, and 0 

is the true negative. 
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Hence, by simply looking at the classification accuracy one might think that this 

is a very good classifier. Indeed, it looks good at first sight, however, such a high 

classification accuracy might be misleading in several situations. By closely inspecting 

the confusion matrix, we realize that this classifier almost classifies every instance as 

‘Yes’ regardless of whether it actually is a ‘Yes’ or a ‘No’. Therefore, it is somehow 

biased towards class ‘Yes’. This problem arises significantly when the dataset in hand 

is unbalanced since we have 20000 instances that are actually ‘Yes’ and only 1001 that 

are ‘No’. Of course, this type of classifier is not a really good classifier since it blindly 

classifies instances into the majority class. This might create some issues in specific 

applications including our traffic classification application. Consider the case where 

‘Yes’ means safe traffic and ‘No’ means malicious traffic. If we were using such a 

classifier that blindly assigns all traffic traces to the majority class which is safe, then 

we might incur a huge cost of allowing malicious traffic that is very dangerous to enter 

our system. Although classification accuracy tends to give us a good feel for the 

classifier’s performance, unfortunately, it does not capture this problem. Therefore, we 

needed better performance measures that capture the goodness of classification. 

Nevertheless, we would still use accuracy as it serves as a good initial indicator in 

assessing the classifiers. 

7.1.2. Precision. Precision is defined as the percentage of instances that were 

classified as X and are actually X. Therefore, precision is sometimes referred to as the 

exactness of the classifier. Precision is usually computed using Equation (12): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 

(12) 

Therefore, using the values of Table 7.2 the precision of class ‘Yes’ can be calculated 

as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 20000
20000 + 1000 = 	0.9524 

Whereas, the precision of class ‘No’ can be calculated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1
1 + 0 = 	1 

where 20000 is the true positive, 1 is the true negative, 1000 is the false positive, and 0 

is the true negative. 

Upon inspecting the precision for both classes, we can tell that the classifier is 

good at assigning instances to the actual classes that they come from. So, this 



90 

 

 

performance measure on its own does not solve the issue of accuracy mentioned earlier, 

therefore, we look into using a complementary performance measure that, along with 

precision, tackles the accuracy’s issue. 

7.1.3. Recall. Recall is defined as the percentage of instances that are actually 

X and were labelled as X by the classifier. It is also known as the completeness or the 

sensitivity of the classifier. Recall is computed using Equation (13): 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 

(13) 

Therefore, using the values of Table 7.2 the recall of class ‘Yes’ can be calculated as: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 20000
20000 + 0 = 1 

Whereas, the recall of class ‘No’ can be calculated as: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 1
1 + 1000 = 	0.000999 

where 20000 is the true positive, 1 is the true negative, 1000 is the false positive, and 0 

is the true negative. 

When we consider the recall values for both classes, it becomes apparent that 

the classifier is performing well with the ‘Yes’ class, however, it fails noticeably with 

the ‘No’ class. Therefore, this measure tackles the issue of unbalanced data as 

mentioned earlier. Now that we know about precision and recall pointing out specific 

problems within the performance of the classifier, we can combine them in one single 

measure that captures the properties of both precision and recall. 

7.1.4. F-score. F-score is the harmonic mean of precision and recall; therefore, 

it incorporates both the precision and recall in a single value. Hence, F-score is 

maximum at the value of 1 and minimum at the value of 0. F-score is also known as F-

measure or F1 score and can be computed using Equation (14): 

𝐹𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 	 

(14) 

Therefore, using the values of Table 7.2 the F-score of class ‘Yes’ can be calculated as: 

𝐹𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 0.9524 ∗ 1
0.9524 + 1 = 	0.9756 

Whereas, the F-score of class ‘No’ can be calculated as: 

𝐹𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 1 ∗ 0.000999
1 + 0.000999 = 	0.0020 

Finally, the average F-score of this classifier is computed as: 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐹𝑆𝑐𝑜𝑟𝑒 = 0.9756 + 0.0020
2 = 0.4888 

This value is a perfect depiction of the problem shown earlier when using the 

accuracy. Therefore, F-score is considered more reliable in capturing the performance 

of classification algorithms, and hence, F-score will be our basis for assessing the 

performance of our classifiers. The only issue with F-score is that it can only be 

calculated for binary classification problems that include only two classes, which is not 

the case with our traffic classification problem that has five classes in each dataset. 

Nevertheless, there is a very simple turnaround to overcome this limitation. The idea is 

to transform an n*n confusion matrix where n > 2 into several 2*2 confusion matrices 

in a similar fashion to the one-vs-one or the one-vs-all approach discussed earlier in 

Section 1.2 when detailing the SVM algorithm. In our case we transform the 5*5 

confusion matrix into five 2*2 confusion matrices representing the true positive, true 

negative, false positive, and false negative of each class using the one-vs-all approach. 

The F-score is then calculated for each class and the average F-score is then computed 

as the overall F-score of this classifier.  

7.2. Software-Based Classifier Performance 

 In this section, we look into the results obtained from running the different 

machine learning experiments, discussed in detail in Chapter 5, on the UNIBS and UNB 

datasets. We highlight the main findings of these experiments and try to analyse the 

reasons that led to those findings. 

7.2.1. Discretization. In this experiment, we ran the original datasets, as well 

as, the discretized versions of the two datasets based on the two discretization 

algorithms described in [31, 32] through five different classifiers, namely naïve Bayes, 

linear SVM, 2nd order polynomial SVM, KNN, and random forest. In doing so, we used 

a 10-fold cross-validation technique. For each classifier, we recorded four main 

parameters, namely, training time, testing time, classification accuracy and F-score. 

The objective of this experiment is to study the effect of discretization on the UNIBS 

and the UNB datasets and discover whether discretization improves the classification 

performance. 

Figure 7.1 and Figure 7.2 show the time spent while training the five different 

classifiers on the UNIBS and the UNB datasets, respectively. It is evident from the 

figures that SVM, whether linear or polynomial, takes a considerably huge amount of 
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time to be trained on a network traffic dataset. This could be explained by the difficulty 

in obtaining a separator that distinguishes the different classes due to the highly non-

linear nature of the traffic datasets. On the contrary, naïve Bayes, KNN, and random 

forest tend to show a reasonable amount of training time with random forest being 

slightly higher than the other two. Another interesting observation from the two graphs 

is the fact that discretization reduces the training time of the SVM classifiers using the 

UNIBS dataset while it increases the training time using the UNB dataset. This is 

justified by the artificial nature of the UNB dataset which in turn makes it more difficult 

for the SVM classifiers to find the separating plane unlike the real-life UNIBS dataset. 

We can also notice that discretization usually increases the time it takes to build a 

random forest classifier using both datasets. This could be a drawback of discretization 

while using the random forest algorithm, since the time to obtain the model increases 

with the usage of discretization. The cases of naïve Bayes and KNN look trivial as the 

change in training time looks slightly insignificant when comparing the training time 

before and after discretization. 

 

Figure 7.1: UNIBS Training Time 

 

To summarize the change in training time between the non-discretized dataset 

and the discretized datasets using the two discretization algorithms, we calculate the 

percentage change using Equation (15): 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝐶ℎ𝑎𝑛𝑔𝑒 = 𝑁𝑒𝑤	𝑣𝑎𝑙𝑢𝑒 − 𝑂𝑙𝑑	𝑣𝑎𝑙𝑢𝑒
𝑂𝑙𝑑	𝑣𝑎𝑙𝑢𝑒 ∗ 100% 

(15) 
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Figure 7.2: UNB Training Time 

 

where new value represents the training time of the discretized dataset, while old value 

represents the training time of the non-discretized dataset. Table 7.3 and Table 7.4 

summarize the percentage change of training time between the non-discretized and the 

discretized datasets using UNIBS and UNB datasets, respectively. A positive 

percentage change indicates an increase in training time after using the respective 

discretization algorithm compared to the non-discretized dataset, and vice-versa. 

 

Table 7.3: Percentage Change in Training Time Using UNIBS Dataset 

Algorithm Entropy-Based Discretization Gini Index-Based Discretization 

Naïve Bayes -45.2 % -54.4 % 

Linear SVM -44.3 % -53.5 % 

2nd Order SVM -49.1 % -59.3 % 

KNN 0 % 0 % 

Random Forest 175.9 % 153.5 % 

 

Table 7.4: Percentage Change in Training Time Using UNB Dataset 

Algorithm Entropy-Based Discretization Gini Index-Based Discretization 

Naïve Bayes -59.1 % -58.3 % 

Linear SVM 252.0 % 283.9 % 

2nd Order SVM 29.7 % 41.9 % 

KNN 43. 6 % 25.6 % 

Random Forest 175.1 % 191.7 % 

 

Keeping in mind the ultimate objective of this work, which is to use an FPGA 

in order to achieve online traffic classification, usually training is done offline with the 
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use of a hardware accelerator. Therefore, despite the fact that percentage changes 

shown earlier look disappointing at first sight, we can tolerate an increase in training 

time as long as offline training is adopted. Therefore, in the case of an online traffic 

classifier we would be more concerned with the testing time rather than the training 

time. As a result, we decided to record the testing time using the same setup as before, 

while recording the difference in testing time between the non-discretized and the 

discretized datasets. Figure 7.3 and Figure 7.4 show the time spent on testing using the 

five different classifiers on the UNIBS and the UNB datasets, respectively.  

The testing time plots demonstrate the difficulty in finding a simple naïve Bayes 

model using the non-discretized datasets. However, upon discretizing the UNIBS and 

the UNB datasets, the naïve Bayes model was able to classify the data instances in a 

much shorter time. Unlike naïve Bayes, the polynomial SVM classifier shows a 

significant increase in testing time when operating on the discretized datasets. This 

behaviour is also observed when using the random forest algorithm to classify the test 

instances even though the increase in testing time is not as huge as the polynomial 

SVM. This could be a serious drawback that stands in the way of using discretization 

on the network traffic datasets, since an increase in testing time defeats the purpose of 

having an online traffic classifier. Especially, if the increase in testing time mainly 

affects polynomial SVM and random forest which, as will be seen later, are the 

classifiers with the best performance in classifying network packets.  

 

 

Figure 7.3: UNIBS Testing time 
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Figure 7.4: UNB Testing time 

 

Table 7.5 and Table 7.6 summarize the percentage change of testing time 

between the non-discretized and the discretized datasets using UNIBS and UNB 

datasets, respectively. 

 

Table 7.5: Percentage Change in Testing Time Using UNIBS Dataset 

Algorithm Entropy-Based Discretization Gini Index-Based Discretization 

Naïve Bayes -99.8 % -99.8 % 

Linear SVM 660.6 % 568.1 % 

2nd Order SVM 13308.0 % 10407.4 % 

KNN -2.5 % 6.8 % 

Random Forest 218.9 % 209.7 % 

 

Table 7.6: Percentage Change in Testing Time Using UNB Dataset 

Algorithm Entropy-Based Discretization Gini Index-Based Discretization 

Naïve Bayes -100.0 % -100.0 % 

Linear SVM 827.0 % 914.2 % 

2nd Order SVM 13672.5 % 15049.7 % 

KNN 41.9 % 23.6 % 

Random Forest 183.9 % 189.6 % 

 

 Now that we had a look at the time it takes to build and test the five machine 

learning algorithms using the UNIBS and UNB datasets, we shift our attention to the 

performance of those classifiers in terms of classification accuracy and F-score. This is 

very important in order to obtain a preliminary look on how well each of the five 

classifiers generalize to the datasets under investigation. Therefore, we use the 10-fold 
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cross-validation technique in order to have a rough idea on whether the five classifiers 

overfit to the datasets before diving into deeper analysis of the performance of each 

algorithm.  

Figure 7.5 and Figure 7.6 show the classification accuracy of the five different 

classifiers on the UNIBS and the UNB datasets, respectively. As we can see in the 

accuracy results, random forest tends to outperform all other algorithms on the non-

discretized datasets. The use of discretization only helps other algorithms like SVM, 

and naïve Bayes get closer to random forest but never surpass it. On the other hand, 

random forest seems unaffected by the use of discretization. This could be explained 

by the fact that the random forest algorithm itself discretizes the dataset on the go while 

building the trees that constitute the forest. Therefore, external discretization does not 

seem to help much in the classification accuracy of random forest. Another interesting 

observation is the fact that discretization does not seem to affect the KNN algorithm at 

all. We give credit here to the ability of KNN to handle numeric attributes really well 

while calculating the distance between two instances. Hence, KNN does not seem to 

require the help of discretization to improve its performance.  

Table 7.7 and Table 7.8 summarize the percentage change of classification 

accuracy between the non-discretized and the discretized datasets using UNIBS and 

UNB datasets, respectively. 

 

 

Figure 7.5: UNIBS Classification Accuracy with Discretization 
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Figure 7.6: UNB Classification Accuracy with Discretization 

 

Table 7.7: Percentage Change in Classification Accuracy Using UNIBS Dataset 

Algorithm Entropy-Based Discretization Gini Index-Based Discretization 

Naïve Bayes 19.5 % 19.2 % 

Linear SVM 6.6 % 6.5 % 

2nd Order SVM 4.0 % 4.0 % 

KNN -0.1 % -0.2 % 

Random Forest 0.06 % 0.01 % 

 

Table 7.8: Percentage Change in Classification Accuracy Using UNB Dataset 

Algorithm Entropy-Based Discretization Gini Index-Based Discretization 

Naïve Bayes 49.8 % 49.8 % 

Linear SVM 25.0 % 24.9 % 

2nd Order SVM 5.4 % 5.3 % 

KNN -0.1 % -0.1 % 

Random Forest 0.08 % 0.07 % 

 

We also inspect the performance of the five classifiers on the two datasets using 

another important performance metric which is the F-score. Therefore, while 

conducting the pervious experiment we also record the F-scores of all models while 

recording the accuracy. Figure 7.7 and Figure 7.8 show the F-score of the five different 

classifiers on the UNIBS and the UNB datasets, respectively. The F-score bar plots 

further solidify the conclusions drawn from the accuracy bar plots. We notice that 

random forest outperforms all other algorithms on the non-discretized dataset. We also 

notice that discretization does not help in improving the performance of the random 

forest algorithm due to its built-in discretization. Nevertheless, discretization helps 



98 

 

 

SVM and naïve Bayes get closer to the random forest but never exceed its F-score. 

Finally, KNN proves once more its resilience to discretization.  

 

 

Figure 7.7: UNIBS F-score with Discretization 

 

 

Figure 7.8: UNB F-score with Discretization 

 

Table 7.9 and Table 7.10 summarize the percentage change of F-score between 

the non-discretized and the discretized datasets using UNIBS and UNB datasets, 

respectively. 
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Table 7.9: Percentage Change in F-score Using UNIBS Dataset 

Algorithm Entropy-Based Discretization Gini Index-Based Discretization 

Naïve Bayes 13.1 % 12.2 % 

Linear SVM 41.3 % 41.4 % 

2nd Order SVM 13.9 % 13.8 % 

KNN -0.3 % -0.5 % 

Random Forest 0.4 % 0.2 % 

 

Table 7.10: Percentage Change in F-score Using UNB Dataset 

Algorithm Entropy-Based Discretization Gini Index-Based Discretization 

Naïve Bayes 73.8 % 73.8 % 

Linear SVM 27.0 % 27.0 % 

2nd Order SVM 5.9 % 5.9 % 

KNN -0.1 % -0.1 % 

Random Forest 0.08 % 0.07 % 

  

Looking at the results obtained from the discretization experiment, we can 

conclude that random forest is usually not affected by discretization due to its built-in 

discretization mechanism that discretizes numeric attributes at each decision node. This 

is implicitly done by the decision node as it usually checks whether the attribute is 

above or below a specific threshold. We can also conclude that even though 

discretization helps SVM and naïve Bayes close in the performance gap with random 

forest, they never surpass the performance of the random forest. Keeping in mind that 

discretization usually increased the training and testing time of random forest 

significantly, whereby the increase in time incurred to test new instances is not justified 

by the very small increase in random forest performance, we can safely discard the idea 

of discretization and hence we can move on to perform the remaining experiments on 

the non-discretized dataset. 

7.2.2. Cross-validation. In this experiment, we ran the two datasets through 

five different classifiers, namely naïve Bayes, linear SVM, 2nd order polynomial SVM, 

KNN, and random forest. We used the typical 10-fold cross-validation mechanism for 

testing in order to assess their overfitting performance. Below are the results obtained 

for each dataset. 

7.2.2.1. UNIBS results. Figure 7.9 shows the classification accuracy obtained 

using the UNIBS dataset. First of all, by simply observing the all features performance 

we can notice that most classifiers perform nearly the same with their accuracies 

reaching around 99% except for the naïve Bayes classifier that falls behind at almost 

90%. The discrepancy in the naïve Bayes classifier could be explained by its naïve 

assumption of feature independence. Therefore, it might be the case that features are 
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not independent and hence the classification accuracy deteriorates when using naïve 

Bayes. Another reason could be the fact that it treats all features equally and considers 

them having the same importance, hence feature selection is not performed by naïve 

Bayes and therefore, the usage of irrelevant features in classification might be another 

reason for its bad performance. Moreover, the fact that we do not use discretization in 

this experiment could be another reason for the poor performance of naïve Bayes. The 

second set of results that belongs to ports only might be a good justification for the all 

features case since using port numbers only has boosted the accuracy of naïve Bayes in 

a way that enables it to catch up with the other classifiers. This might also suggest that 

port numbers are the most dominant features that tremendously affect the classification 

performance. This confirms our initial concerns that were discussed earlier when 

plotting histograms of the different features. Also, it suggests that if applications were 

to dynamically change their port numbers in order to deceive traffic classifiers, we 

might fall into a serious problem of not having reliable port numbers that can facilitate 

the classification process.  

As a result, we have also tried different sets of experiments that rely on the 

original features except that port numbers were removed before training the different 

classifiers. This was done on purpose to mimic the worst-case scenario where port 

numbers might be completely random and add no value to the classification process. 

The new set of results also shown in Figure 7.9 show that the accuracy drops when port 

numbers are removed which totally makes sense as we would expect classifiers to find 

more difficulties in classifying traffic traces when port numbers are missing or 

randomized. Nevertheless, we notice that random forest, which is by far the best 

performer on the UNIBS dataset, does not drop significantly as it saturates at almost 

97% with a drop of only 2% in accuracy from the experiments that included port 

numbers. This is a very promising finding as we can be sure that even if port numbers 

were completely randomized, we can still be able to classify traffic with a very high 

accuracy. Another observation shows that feature selection using stepwise regression 

or random forest feature selection does not greatly impact the performance of the 

classifiers when compared to the all features results. This is true for both the no ports 

and the port results. This indicates that despite the fact that less features were used to 

classify traffic with stepwise regression or random forest feature selection, we were still 

able to obtain the same performance. Therefore, feature selection has enabled us to 
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reduce the dimensionality of our problem without sacrificing the classification 

performance. Another important observation is the performance difference between 

linear SVM and 2nd order polynomial SVM. Even though the performance is not so 

different when including the port numbers, the difference becomes apparent in the no 

ports case. Polynomial SVM tends to always perform better than linear SVM regardless 

of whether feature selection has been used. This also confirms our initial doubts that 

traffic traces are usually not linearly separable in nature. However, the performance 

was not so different as it was almost always about 2.5% different. 

 

 

Figure 7.9: UNIBS Classification Accuracy 

 

 Figure 7.10 shows the F-scores of the different classifiers in the same 

experiments on the UNIBS dataset. We can see from the bar plot that they look very 

similar to the classification accuracies, which indicates that those classification 

accuracies were actually a good descriptor of the performance. However, The F-score 

results tend to highlight the difference in performance between random forest and all 

other classifiers. This is fairly obvious in the no ports cases where random forest is 

always above 0.9 whereas other classifiers are almost always below 0.8. We can 

conclude from this bar plot that random forest is a clear winner when it comes to 

classifying the UNIBS traffic traces. In addition, such a high F-score using the cross-

validation method suggests that random forests are indeed not overfitting to the training 
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data as we explained earlier. Therefore, random forest becomes a very good option to 

avoid overfitting. Another observation that can be extracted from the F-score bar plot 

is that the features selected by the random forest feature selection algorithm yields a 

higher F-score than the all features (no ports) case when building a random forest 

classifier. This is one case where feature selection can in fact boost the classification 

performance after removing irrelevant features. Also, RF features tend to provide 

slightly better results when compared to the SWR features. 

 

 

Figure 7.10: UNIBS F-score 

 

If we were to compare our results to existing works that were done on the 

UNIBS dataset, we would notice that the maximum accuracy obtained by [35] and [36] 

is 90.6% and 91.28%, respectively, whereas the minimum accuracy that we obtained 

using random forest regardless of which feature set was used is about 98%. Similarly, 

the highest F-score recorded in [35] is around 0.964 when performing the testing on the 

training set itself, however, when they used a different test set their highest F-score was 

around 0.70. Similarly, the work published in [36] was able to achieve an average F-

score of 0.9162. On the other hand, we were able to successfully achieve a minimum 

F-score of approximately 0.93. 
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If were to rate the performance of the five classifiers on the UNIBS dataset using 

cross-validation, naïve Bayes would come last due to its very poor performance, 

followed by the linear SVM classifier. After that comes the intense competition 

between KNN and polynomial SVM which almost always favours polynomial SVM in 

the no ports results except for the one case of F-score results of SWR (no ports). 

However, KNN F-scores also surpass polynomial SVM in the port results. 

Nevertheless, since no port results are of more importance to us in this research, we 

would also favour polynomial SVM over KNN. Finally, the best classifier by far goes 

to random forest which outshines all other classifiers. 

7.2.2.2. UNB results. By inspecting the UNB dataset accuracy results shown in 

Figure 7.11, we can see a very similar behaviour to the results of the UNIBS dataset in 

case port numbers were included in the experiments. One important feature of the bar 

plot is the deterioration of naïve Bayes in all the port cases compared to the UNIBS 

dataset. This further illustrates the failure of naïve Bayes to classify traffic traces 

accurately. Therefore, from this plot we can conclude that naïve Bayes is definitely not 

a good traffic classifier. The ports only result also shows that all classifiers can classify 

traffic traces with accuracies reaching almost 100% using only port numbers. However, 

this is rather a drawback and not an advantage because dynamically changing port 

numbers might collapse such classifiers. We would also expect the no port results to 

drop compared to the port results as what happened with the UNIBS dataset. However, 

the accuracy drop in the UNB dataset is way larger than that of the UNIBS dataset as 

the accuracies barely reach around 84%. This significant drop could be explained by 

the fact that the UNB dataset is, as we mentioned earlier during our initial analysis of 

the datasets, not 100% pure. Therefore, the presence of impurities in the UNB dataset 

might have resulted in the significant accuracy drop when port numbers were removed. 

We also notice that the no port results are almost identical whether feature selection 

was used or not, which indicates the ability of feature selection to reduce the 

dimensionality of our problem without impacting the performance of the classifiers. 

Figure 7.12 shows the F-scores obtained using the UNB datasets. The results 

are fairly good with random forest reaching almost 0.84 F-score across the no port 

experiments. Again, the UNB dataset raises the question of whether polynomial SVM 

is better than KNN as a traffic classifier. The UNB dataset disagrees with the UNIBS 

dataset, since KNN usually shows higher accuracies and F-scores compared to 
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polynomial SVM. Nevertheless, polynomial SVM still performs better than linear SVM 

which further solidifies our claim that network traffic is not linearly separable. We can 

then generalize this claim since it seems to be the case with two different datasets. 

 

 

Figure 7.11: UNB Classification Accuracy 

 

 

Figure 7.12: UNB F-score 

 

 If we were to rate the performance of the different classifiers on the UNB 

dataset, we would obviously rank them, in ascending order, as naïve Bayes, linear 

SVM, polynomial SVM, KNN, and random forest. 



105 

 

 

 After performing the cross-validation experiment on two different datasets, we 

can conclude that the best classifier that can point out different traffic classes accurately 

while avoiding overfitting is the random forest algorithm. We can also conclude that 

stepwise regression and random forest feature selection tend to have very similar 

performance in dimensionality reduction while maintaining the classification accuracy 

and F-scores very close to the all features results. Moreover, we can also say that even 

if applications disguise port numbers completely to obfuscate the traffic classification 

process, we can still build classifiers that can classify traffic with very high accuracies 

and F-scores. 

7.2.3. Various packet percentage within a flow. In the reviewed literature, 

the authors have always overlooked a very important parameter in the field of traffic 

classification which is the number of packets considered within a flow to extract flow-

level features. It logically makes sense that the more the number of packets considered, 

the better is the classifier at classifying traffic. Nevertheless, this also means that we 

would have to wait for a longer period of time in order to receive the required packets 

before the classification process can be started, which in turn impacts the real-time 

classification requirement entailed by the quick and dynamic modern networks. 

Therefore, we needed to find the most optimal number of packets that would yield a 

reasonable performance. However, traffic flows can vary significantly in total number 

of packets. One might find a flow with only two packets, but we can also find flows 

with thousands of packets. Therefore, it is unfair to quantify them in terms of number 

of packets per flow, rather we use the percentage of packets in a flow. We conduct an 

experiment that plots the classification accuracy and F-score against the percentage of 

packets in a flow using four classifiers, naïve Bayes, linear SVM, KNN, and random 

forest. The reason why we do not use polynomial SVM in this experiment is because it 

requires a huge amount of time to build the classifier while not adding a great value to 

the accuracies since it generates results that are very close to KNN. After that we try to 

deduce some important features from the most important plots. To have a look at the 

remaining plots of this experiment refer to Appendix C. 

7.2.3.1. UNIBS results. Figure 7.13 shows the classification accuracy of the four 

classifiers using the UNIBS dataset and all features including port numbers. As we can 

see from the plot naïve Bayes performs the worst starting at almost 50% accuracy when 

the packet percentage is only 10%, then it rises gradually in an abrupt manner. We can 
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also see that all the other classifiers have a consistent accuracy which is very close to 

100% regardless of the packet percentage. This plot matches with the results of the 

previous experiment since it shows that if port numbers are present there is almost no 

need to use flow-level features. However, as we mentioned before this might not always 

be the case since port numbers might be dynamically changed by the different 

applications and therefore, we should treat them as if port numbers did not exist in the 

first place. 

 

 

Figure 7.13: UNIBS All Features – Accuracy vs. Flow Packets (%) 

 

Figure 7.14 shows F-score results for all features including port numbers. It can 

be seen that it has a very similar shape to that of the accuracy which confirms our 

previous speculations.  

In order to investigate the effect of not having port numbers, we display the 

accuracy results of all features with no ports in Figure 7.15. In general, this figure shows 

clearly that as we increase the percentage of packets considered for flow-level feature 

extraction the accuracy of the classification increases. This is exactly what we expected 

to happen in the first place. We can also observe that naïve Bayes is very unpredictable 
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with its sharp spikes at times, however, SVM, KNN, and random forest show the same 

overall trend. This plot also shows that random forest is consistently favorable over 

both SVM and KNN, which also confirms the findings of the cross-validation 

experiment. 

 

 

Figure 7.14: UNIBS All Features – F-score vs. Flow Packets (%) 

 

If we look at the F-score of the all features no ports experiment shown in Figure 

7.16 we would also observe a very similar outline to that of the accuracy. However, the 

F-scores tend to show the significant rise in the performance of random forest unlike 

the accuracy. We can see that random forest starts with an F-score of almost 0.74 at 

10% of flow packets, but it eventually reaches around 0.93 at 100% of packets. This 

plot also shows the wide gap of performance between random forest and its next 

competitor, KNN, which has its maximum F-score of around 0.76 at 100% of packets, 

which is very close to the worst performance of random forest of 0.74 at only 10% of 

packets. This shocking result further shows that random forest is by far the best traffic 

classifier when applied to the UNIBS dataset. Perhaps the most important finding of 

this plot is the best packet percentage given the trade-off between performance and 

waiting time to receive enough packets to perform the classification. We can notice 

from this plot that the F-scores of the best performers, random forest and KNN, saturate 
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at almost 60% of packets in a flow with KNN reaching an F-score of about 0.75 and 

random forest reaching an F-score of approximately 0.91. Therefore, it seems 

reasonable to pick 60% of the packets within a flow to be able to classify the flow with 

high accuracy and F-scores. 

When we inspect the results obtained using the feature set selected using 

random forest feature selection shown in Figure 7.17, we can observe the similarity 

between them and the all features no ports results. This is depicted in the accuracy 

obtained by random forest which reaches a maximum value of almost 98%. This 

confirms the conclusion reached in our previous experiment that says that feature 

selection was successful at reducing the dimensionality while maintaining the 

performance of the classifiers. Again, a very shy rise in accuracy is observed with both 

random forest and SVM. As usual, naïve Bayes also performs the poorest. 

 

 

Figure 7.15: UNIBS All Features (No Ports) – Accuracy vs. Flow Packets (%) 

 

Finally, upon inspecting the F-scores of this feature set, in Figure 7.18, we can 

also conclude that 60% of packets in a flow is a very reasonable number that yields a 

sound performance level since the F-scores of all classifiers tend to saturate after 60% 

of packets have been investigated. The value of 60% has been obtained using the all 

features (no ports), SWR (no ports), and RF (no ports) feature sets. This looks like a 
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very valid reason to declare 60% of packets as a very logical value for the percentage 

of considered packets within a flow. After that, adding more number of packets does 

not yield the anticipated improvement in classifier performance, but rather tends to slow 

down the the classifier due to the need to wait for more, unhelpful packets. 

 

 

Figure 7.16: UNIBS All Features (No Ports) – F-score vs. Flow Packets (%) 

 

 

Figure 7.17: UNIBS RF (No Ports) – Accuracy vs. Flow Packets (%) 
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Figure 7.18: UNIBS RF (No Ports) – F-score vs. Flow Packets (%) 

 

7.2.3.2. UNB results. Figure 7.19 shows the accuracies of the four classifiers 

when applied to the UNB dataset and using all features for classification. As expected, 

naïve Bayes falls behind while the other three classifiers are very close to 100% 

accuracy due to the presence of port numbers in this feature set. 

 

 

Figure 7.19: UNB All Features – Accuracy vs. Flow Packets (%) 
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Figure 7.20 shows the F-scores of this feature set which has a similar outline to 

that the accuracy. 

 

 

Figure 7.20: UNB All Features – F-score vs. Flow Packets (%) 

 

Upon removing the port numbers from the previous feature set we obtained an 

accuracy plot that looks as shown in Figure 7.21. We observe the significant drop in 

accuracy from the previous results which solidifies the idea of port numbers being the 

most dominant features as we suggested earlier. We also have random forest 

outperforming all other classifiers, and KNN being the closest in terms of accuracy. 

 

 

Figure 7.21: UNB All Features (No Ports) – Accuracy vs. Flow Packets (%) 
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 By inspecting the F-score shown in Figure 7.22 we notice that classifiers like 

SVM and naïve Bayes saturate at 60% of packet percentage just like the case with the 

UNIBS dataset. However, the plots for random forest and KNN look almost invariant 

to the change in packet percentage which suggests that packet percentage does not 

impact the performance of such classifiers on the UNB dataset. 

 

 

Figure 7.22: UNB All Features (No Ports) – F-score vs. Flow Packets (%) 

 

 To investigate the effect of different feature sets on the classification accuracy 

using different packet percentages, we plot the accuracy of the SWR (no ports) feature 

set in Figure 7.23. It shows a very similar behaviour to that of all features no ports with 

very close accuracies, which again shows the ability of SWR to reduce the problem 

dimensionality while maintaining a very high classification accuracy. 

 The F-scores of such a feature set, shown in Figure 7.24, show saturation at 60% 

of packets for both SVM and naïve Bayes, while showing almost no change for random 

forest and KNN classifiers. This bizarre behaviour might be explained by the fact that 

the UNB dataset, unlike UNIBS, was collected in a very controlled environment that 

does not resemble a real network behaviour which should indeed show a relationship 

between the packet percentage and the performance of a classifier. That is why the 

UNIBS dataset shows a clear relationship between the two parameters as it resembles 

a more realistic network behaviour. 
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Figure 7.23: UNB SWR (No Ports) – Accuracy vs. Flow Packets (%) 

 

 

Figure 7.24: UNB SWR (No Ports) – F-score vs. Flow Packets (%) 

 

In order to investigate the effect of packet percentage on the waiting time 

required to obtain the necessary packet percentage before classifying a network flow, 

we plot the average flow duration against the percentage of considered packets within 

a flow. This plot is shown in Figure 7.25. As discussed earlier, 60% of the UNIBS 
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packets within a flow looks like an adequate number to classify traffic flows with a high 

accuracy and F-score. Therefore, we find that the average required time to wait for 60% 

of the flow packets is found out to be around 21ms. This means that with this setup we 

guarantee that the classification will be done within approximately 21ms after receiving 

the first packet of the flow. On the other hand, the strange, compact graph of the UNB 

dataset looks more like two flat straight lines with a very minor jump in between. The 

behaviour of the UNB dataset is further questioned by this plot since a normal network 

would not usually have such a straight line as increasing the number of packets within 

a flow would usually yield a much longer time. Therefore, this endorses our previous 

arguments that with such a controlled and fabricated dataset we cannot usually simulate 

the behaviour of a real network.  

In conclusion, UNIBS tends to behave more like a normal network due to the 

uncontrolled environment that was created while capturing the traces, unlike the 

artificially created UNB dataset. Nevertheless, UNB remains a good dataset to study 

traffic classification. 

 

 

Figure 7.25: Average Flow Duration vs. Flow Packets (%) 
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7.2.4. Various training set sizes. In this experiment, we are concerned with 

the effect of varying training set size on the performance of the different classifiers. As 

a result, we vary the training set size from 10 to 90% while fixing packet percentage at 

100% to eliminate any effect due to packet percentage on the performance of the 

classifiers. In order to facilitate the proceedings of such an experiment, we use the 

holdout method that assigns n% of the instances to the training set and (100-n) % to the 

test set. After that, we plot the accuracies and the F-scores of the different feature sets 

against the training set size. As before, we show the most important plots, however, to 

have a look at the remaining plots of this experiment refer to Appendix D. 

7.2.4.1. UNIBS results. Figure 7.26 shows the accuracies of different training 

set sizes for all features including the port numbers. By closely inspecting the plots we 

observe that SVM, KNN, and random forest are quite resilient to any change in training 

set sizes since the increase in accuracy is very small when comparing the accuracies at 

90% training and 10% training since the highest jump is that of KNN with about 2.5% 

improvement only. Moreover, naïve Bayes proves one more time that it is the worst 

classifier out of all four classifiers.  

 

 

Figure 7.26: UNIBS All Features – Accuracy vs. Training Set (%) 
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 On the other hand, the F-scores shown in Figure 7.27 display a slightly better 

depiction of the performance improvement as the increase in F-score goes from 0.89 to 

around 0.98 for random forest, for example. In addition, SVM seems to be completely 

resilient to the change in training set sizes. Moreover, both random forest and KNN 

tend to also saturate at 60% training set and 40% test set. 

 

 

Figure 7.27: UNIBS All Features – F-score vs. Training Set (%) 

 

 To inspect the effect of disguised port numbers, we now look at all features after 

removing the port numbers shown in Figure 7.28. It is apparent that random forest is 

not highly affected by the removal of port numbers which indicates that random forest 

will be a very good model to classify the UNIBS dataset even in the absence of port 

numbers. However, SVM did drop significantly from before removing the port numbers 

(97.5% to almost 92% accuracy). 

Again, F-score is usually a better performance measure as it depicts the huge 

difference between random forest and any other classifier. This is shown in Figure 7.29 

that displays the F-scores of the four classifiers while varying the training set sizes. It 

is apparent that random forest constantly outperforms its next competitor, KNN, by 

almost 0.15. SVM shows its resiliency to changing the training set size one more time. 



117 

 

 

 

Figure 7.28: UNIBS All Features (No Ports) – Accuracy vs. Training Set (%) 

  

 

Figure 7.29: UNIBS All Features (No Ports) – F-score vs. Training Set (%) 
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 The performance of the classifiers using the RF (no ports) feature set looks quite 

similar to that of all features (no ports) feature sets which proves the excellence of 

random forest in choosing the most relevant attributes for classification. This is shown 

by the accuracy plot and the F-score plot of Figure 7.30 and Figure 7.31, respectively. 

 

 

Figure 7.30: UNIBS RF (No Ports) – Accuracy vs. Training Set (%) 

 

 

Figure 7.31: UNIBS RF (No Ports) – F-score vs. Training Set (%) 
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7.2.4.2. UNB results. Figure 7.32 shows the accuracies of the four classifiers 

using different training set sizes with all features. It is apparent that all classifiers, 

ignoring the sharp drop in naïve Bayes, are almost completely insensitive to variations 

in training set size. This indicates that the nature of the UNB dataset allows classifiers 

to learn the behaviour of the five classes with very minimal training data. This could be 

an advantage since it might indicate that classifiers do not need a huge amount of data 

to learn how to classify such classes. However, this was not the case with the UNIBS 

dataset. Therefore, we can also explain this by the artificial nature of the UNB dataset 

since it was not collected from a real-life network but rather was captured in a very 

controlled environment which does not mimic the actual operation of a congested 

network. 

 

 

Figure 7.32: UNB All Features – Accuracy vs. Training Set (%) 

 

 The concept of insensitivity to variations in training size is further illustrated by 

the F-score plots which also look horizontal as shown in Figure 7.33. 
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Figure 7.33: UNB All Features – F-score vs. Training Set (%) 

 

In order to investigate whether this behaviour showed up just because of the 

inclusion of port numbers, we plot the accuracies of all features (no ports) feature set 

in Figure 7.34. The plot shows no difference compared to the earlier situation, except 

for the expected drop in accuracies, which further proves our point about the UNB 

dataset being artificially captured. 

 

 

Figure 7.34: UNB All Features (No Ports) – Accuracy vs. Training Set (%) 
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Finally, the F-score of the all features (no ports) feature set is shown in Figure 

7.35, which illustrates the same artificial behaviour. 

 

 

Figure 7.35: UNB All Features (No Ports) – F-score vs. Training Set (%) 

 

7.3. FPGA Implementation and Results 

Hardware designers usually need to go through the hardware design process 

which consists of several steps that need to be followed while designing a new digital 

circuit on an FPGA. Figure 7.36 shows the hardware design process. The first step in 

the design process is the design entry step through which the designer needs to express 

their design in a format that can be understood by the machine. There are multiple 

design entry tools including Hardware Description Languages (HDLs), drag-and-drop 

tools and many more. HDLs are perhaps the most sophisticated way to express a 

hardware design as it allows the designer to describe their circuit at a more granular and 

low level hence enabling them to have more control over their design. Therefore, in this 

work we will be using the Verilog HDL as our design entry tool. Verilog is a hardware 

description language used to design digital circuits, verify their functionality through 

simulation, perform timing analysis to ensure all timing constraints are not violated, 

and finally synthesize hardware logic.  
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 Figure 7.36: Hardware Design Process  

 

Upon describing the hardware design in Verilog, the Quartus Prime software 

from Intel is used for the next step in the design process, compiling and synthesis [37]. 

In this step, the Quartus compiler will verify the validity of the Verilog syntax and try 

to synthesize the Verilog code into actual hardware components. In other words, the 

synthesis tool in Quartus translates the code into a low-level specification that can be 

realized on the FPGA chip. The third step is to simulate the design. Simulation is 

divided into functional simulation and timing simulation. Functional simulation is 

usually performed to verify that the designed circuit is functionally correct and that it 

performs according to its specifications. On the other hand, timing simulation takes into 

account the signal propagation time between the logic gates and hence ensures that all 

timing constraints are met. Once the circuit is simulated successfully, the hardware 

designer can now configure the FPGA chip through downloading the bitstream file that 

contains the synthesized logic onto the chip. Finally, the hardware designer can now 

test their design on real hardware and verify whether the design performs as expected. 

7.3.1. Random forest training. Upon completion of the design entry step 

mentioned earlier, whereby we described the random forest algorithm in Chapter 6 

using the Verilog HDL, and before going into the compiling/synthesis step, we load the 

node information onto the FPGA’s on-chip memory. In order to do so, Quartus enables 

the hardware designer to initialize the on-chip memory of an FPGA using a file format 

known as Memory Initialization File (.mif). Since training is done offline in all cases, 

we used the sklearn library in Python to train the random forest classifier offline using 

both a majority-based model and a probability-based model. Unfortunately, the sklearn 

library does not produce complete trees, therefore, some levels in the trees might be 

missing nodes since leaf nodes appear at an earlier level of the tree. This is definitely 

problematic with the hardware design, since as we mentioned earlier, we need all trees 

to have the same number of levels and the levels need to be complete in order to ease 

the hardware design. Therefore, a Python script was developed to train a random forest 

classifier while making sure that the produced tree is a complete tree. This was done 
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through extending the leaf nodes using dummy nodes that will simply replicate their 

parents such that the two children of a previous leaf node will have the same output as 

their parent. By doing so, we ensure that the generated trees are complete. After that, 

we export the generated model into several .mif files where each tree level has its own 

.mif file for its memory initialization. Eventually, the exported .mif files were then 

loaded into Quartus before compiling and synthesizing the Verilog code. By this, our 

design is now ready to be simulated and tested. Figure 7.37 shows the first three levels 

of the first tree in the generated random forest for the UNIBS dataset as an example. 

 

 

Figure 7.37: First Three Levels of the First Tree in the Random Forest 

 

Figure 7.38 depicts the contents of the .mif file for level 2 of the previous tree. 

Note that the numbers before the “:” are the effective addresses of the four nodes within 

level 2 of the tree, whereas the numbers after the “:” are the tree level memory contents 

that follow the structure discussed earlier in Figure 6.5. 

 

WIDTH=64; 

DEPTH=4; 

ADDRESS_RADIX=UNS; 

DATA_RADIX=HEX; 

CONTENT BEGIN 

 0 : 1800000948000000; 

 1 : 3800000400000000; 

 2 : 10000003F0000000; 

 3 : 6000000558000000; 

END; 

 

Figure 7.38: Memory Initialization File for Level 2 of Tree 1 
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 When training the random forest classifier, we must take into account the 

memory requirements of the generated model. Consider the case where we translate the 

best random forest model generated in Section 7.2 using the UNIBS dataset into its 

hardware counterpart. The best random forest model consists of 50 trees, where the 

maximum number of levels per tree is 32 levels and each node requires 64 bits to be 

encoded. Keeping in mind that all trees must be extended to 32 levels since one of the 

design constraints necessitates the need for trees with the same number of levels, in 

addition to the need to ensure that all trees are complete, we are faced by a difficult 

problem. Upon extending all trees to 32 levels, the number of nodes per tree is 232 - 1 

= 4294967296 nodes per tree. Therefore, the required memory to encode one full tree 

is 64 * 4294967296 = 32 GB. Finally, the total required memory is 32 * 50 = 1600 GB. 

This means that if we were to implement the exact tree generated by software 

on an FPGA, we would require 1600 GB of on-chip memory to implement the entire 

tree. This is definitely impractical and impossible to implement on any FPGA chip. 

This brings about the need to compromise some of the capabilities of the tree generated 

in software in order to make it suitable for hardware implementation. As a result, we 

decided to reduce the number of trees in the random forest and the number of levels per 

tree in order to be able to fit the entire random forest on the Cyclone IV E chip used. 

This will probably reduce the accuracy of the random forest model in hardware, but it 

will certainly help us speed up the classification performance on hardware to a great 

extent. This is a compromise we are willing to make since, as will be explained later, 

the reduction in performance due to random forest pruning is very minimal when 

compared to the enormous gain in classification speed using the FPGA implementation. 

7.3.2. Variable trees and levels. As mentioned in the previous subsection, 

fitting the entire random forest on the FPGA-chip will be very difficult due to memory 

limitations, in addition to the limited number of CLBs available on the chip. As a result, 

we wanted to perform an experiment whereby we vary the number of trees in the forest 

from 1 tree all the way to 50 trees (the optimal number of trees according to our 

experiments). Meanwhile, we observe the maximum number of levels per tree that our 

FPGA chip can sustain. After that, we check the classification accuracy and the F-score 

of the generated model in order to find out the combination of trees and levels that yield 

the best classification performance when implemented in hardware. Of course, we carry 
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out this experiment on both datasets as we might get a different optimal combination 

for each dataset.  

Figure 7.39 and Figure 7.40 show the classification accuracy and the F-score 

for the UNIBS dataset, respectively. Upon inspecting the two graphs we can certainly 

confirm our previous assumption that when the number of levels in a tree reduces the 

classification performance drops. Therefore, the two graphs show that if we want to fit 

a greater number of trees on the FPGA chip, we would have to sacrifice the number of 

levels in each tree. Moreover, we would also sacrifice the classification performance to 

a great extent. Therefore, one of our objectives is to find the optimal combination of 

the number of trees and the number of levels that yields the best classification 

performance. The two graphs show that the accuracy and F-score peak at 2 trees each 

tree having 14 tree levels. 

Similarly, we repeated the previous experiment using the UNB dataset to find 

out the optimal combination of the number of trees and levels that yields the best 

performance on the UNB dataset. Figure 7.41 and Figure 7.42 show the classification 

accuracy and the F-score for the UNB dataset, respectively. We can see that the UNB 

graphs show a very similar behaviour to that of the UNIBS graphs, where the 

performance degrades as we increase the number of trees due to the decrease in the 

number of levels per tree. We can also conclude from the graphs that, using the UNB 

dataset, 9 trees each with 12 tree levels lead to the best classification performance in 

terms of both accuracy and F-score. 

7.3.3. The FPGA model. When deciding on the combination of number of 

trees and number of levels in our final FPGA model, we consider a number of factors, 

mainly, we want to improve the utilization of the FPGA resources by fitting as many 

trees and as many levels as the FPGA can handle. Additionally, and most importantly, 

we want to select a combination of trees and levels that would allow context switching 

between the UNIBS and UNB models in a very short time. Therefore, we wanted a 

common combination that would yield a close to optimal performance on both datasets 

while enabling us to quickly switch the models without modifying the hardware design, 

but only loading the node information of the two models onto the on-chip memory. By 

looking at the four graphs shown in Figures 7.39, 7.40, 7.41, 7.42 we predict that a 

combination of 20 trees and 10 levels would be a good option to satisfy both criteria 

discussed above. Such a combination utilizes the maximum possible number of CLBs 
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and on-chip memory blocks, while allowing us to simply load the tree level memory 

contents without modifying the hardware design. 

 

Figure 7.39: UNIBS Accuracy - Variable Trees and Levels 

 

 

Figure 7.40: UNIBS F-score - Variable Trees and Levels 
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Figure 7.41: UNB Accuracy - Variable Trees and Levels 

 

 

Figure 7.42: UNB F-score - Variable Trees and Levels 
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Calculating the memory consumption when using a (20-trees, 10-levels) model, 

would result in 210 - 1 = 1023 nodes per tree. This means that the required memory to 

encode one full tree is 64 * 1023 = 8 kB. Lastly, the total required memory to encode 

the entire Random Forest is 8 * 20 = 160 kB. This is definitely a great saving compared 

to the original required memory of 1600 GB with a (50-trees, 32-levels) model. 

As a conclusion of the above discussion, we decided to implement a (20-trees, 

10-levels) model on the FPGA chip, we compare the performance of our FPGA model 

to that of the most optimal model obtained using our software simulations. To show the 

differences between the majority-based and the probability-based models we also 

record the performances of the two different models both on hardware and in software. 

The hardware-based models were restricted to 20 trees and 10 levels as mentioned 

earlier, whereas the software-based models were based on 50 trees while we had no 

limit on the number of levels per tree. This means that, in software, models were 

allowed to fully grow. This resulted in models with the parameters given in Table 7.11.  

 

Table 7.11: Model Parameters 

Model Number of Trees Number of Levels 

UNIBS Hardware 20 10 

UNB Hardware 20 10 

UNIBS Software (Majority) 50 32 

UNIBS Software (Probability) 50 32 

UNB Software (Majority) 50 27 

UNB Software (Probability) 50 30 

 

Table 7.12 shows the comparison in terms of classification accuracy and F-score 

between the hardware-based models and the software-based models for the UNIBS 

dataset. We can draw several conclusions from this table. First of all, probability-based 

models usually perform better than majority-based ones. This is true when we compare 

the accuracies and F-scores of the software majority-based model to that of the software 

probability-based one. Similarly, the accuracies and F-scores of the hardware 

implementation show that probability-based random forests are usually superior to 

majority-based forests. Another observation is the fact that, even though going from 

software to hardware we reduced the number of trees from 50 to 20 and the number of 

tree levels from 32 to 10, the accuracies dropped by only 2%, while the F-score dropped 

by only 0.1. Indeed, this means more misclassifications on hardware, however, we do 

gain considerably in classification speed as will be discussed later. 

 



129 

 

 

Table 7.12: FPGA Model vs. Software Optimal Model for the UNIBS Dataset 

Measure Hardware Software 

Majority Probability Majority Probability 

Accuracy (%) 96.3 96.5 98.3 98.5 

F-score 0.823 0.834 0.927 0.932 

 

Similarly, Table 7.13 shows the comparison in terms of classification accuracy 

and F-score between the hardware-based models and the software-based models for the 

UNB dataset. The results of the UNB dataset confirm the conclusions obtained from 

the UNIBS dataset. We can see that in all cases the probability-based random forest 

model outperforms the majority-based models. We can also see that even though going 

from software to hardware the number of trees reduced from 50 to 20 and the number 

of levels reduced from 27 (majority-based) and 30 (probability-based) to 10, the change 

in accuracies and F-scores was even smaller than the change obtained using the UNIBS 

dataset.  

 

Table 7.13: FPGA Model vs. Software Optimal Model for the UNB Dataset 

Measure Hardware Software 

Majority Probability Majority Probability 

Accuracy (%) 82.4 83.2 83.6 83.7 

F-score 0.824 0.833 0.837 0.838 

 

 Furthermore, to gain a better understanding of how well hardware competes 

against software, we check the accuracy of the (20-trees, 10-levels) hardware model 

against the (20-trees, 10-levels) software model. The reason behind this is the need to 

compare the performance of hardware and software under the same circumstances. 

Moreover, we also recorded the performance results of a 20 trees-fully grown random 

forest in software to check the effect of pruning the trees to be able to fit them on the 

FPGA chip. Table 7.14 shows the comparison between the hardware model (20-trees, 

10-levels), the pruned software model (20-trees, 10-levels) and the fully-grown 

software model (20 trees-fully grown) using the UNIBS dataset. The results reveal that 

the hardware performance is identical to that of the pruned software model. This is 

because the Python script that exports the trained random forest to .mif files is capable 

of exporting the model with a great precision such that we can map the exact model 

generated in software to hardware. On the other hand, if we compare the hardware 

results to the performance of the fully-grown tree, we can see that the comparison goes 

hand-in-hand with that shown in Table 7.12. The accuracy drops by approximately 2% 
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while the F-score drops by almost 0.1. Again, this will be justified further when we 

discuss the gain in classification speed later. 

 

Table 7.14: FPGA Model vs. Pruned Software Model vs. Fully-Grown Software 

Model for the UNIBS Dataset 

Measure 
Hardware Pruned Software Fully-Grown Software 

Majority Probability Majority Probability Majority Probability 

Accuracy (%) 96.3 96.5 96.3 96.5 98.3 98.4 

F-score 0.823 0.834 0.823 0.834 0.924 0.933 

 

Similarly, Table 7.15 shows the comparison between the hardware model (20-

trees, 10-levels), the pruned software model (20-trees, 10-levels) and the fully-grown 

software model (20 trees-fully grown) using the UNB dataset. Again, the hardware 

results are identical to the pruned software results due to the precision of the Python 

script in converting the trained software model to its hardware counterpart. In addition, 

the comparison between the hardware performance and the fully-grown software 

performance reassures that not much performance is lost when using a pruned tree. 

 

Table 7.15: FPGA Model vs. Pruned Software Model vs. Fully-Grown Software 

Model for the UNB Dataset 

Measure 
Hardware Pruned Software Fully-Grown Software 

Majority Probability Majority Probability Majority Probability 

Accuracy (%) 82.4 83.2 82.4 83.2 83.5 83.6 

F-score 0.824 0.833 0.824 0.833 0.837 0.838 

 

7.3.4. Timing analysis. Upon implementing the random forest algorithm in 

hardware, it is essential that we perform a timing analysis of the synthesized circuit in 

order to ensure that it meets all timing requirements. Timing analysis is performed using 

a tool in Quartus known as Timing Analyzer. Using Timing Analyzer, all input and 

output paths in the random forest design must be constrained and the clock must be 

defined. In our analysis, the minimum delay on both input and output paths was set to 

2 ns, while the maximum delay was set to 3 ns. This helps Timing Analyzer in detecting 

paths which suffer from negative slacks and clock skews. After running Timing 

Analyzer it usually gives the maximum frequency at which the digital circuit can run 

on the specified FPGA. Figure 7.43 shows the result of the timing analysis performed 
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on the (20-trees, 10-levels) model. As we can see, the maximum frequency at which we 

can operate our random forest design is approximately 35 MHz. 

 

 

Figure 7.43: Timing Analyzer Report 

 

Next, we calculate the time required to classify one packet using our random 

forest hardware accelerator. If the maximum frequency is 35 MHz, then the time period 

of the master clock is 28.571 ns. Recall that our hardware design of a random forest is 

highly pipelined, whereby it consisted of 1 input pipeline stage, 1 output pipeline stage, 

and 1 pipeline stage for each tree level regardless of the number of trees in the forest. 

This means that if we were to implement our (20-trees, 10-levels) model on the FPGA, 

the number of pipeline stages in the design would be 12 pipeline stages. Keeping in 

mind that each pipeline stage requires only one cycle to execute, therefore, the delay 

until we obtain the first classification from this design is 12 * 28.571 = 0.3429 µs. 

Nevertheless, the beauty of a pipelined design, is the fact that after we obtain 

the first classification result, we start getting one classification each clock cycle since 

the pipeline is now full. Hence, we are able to classify one packet every 28.571 ns in 

hardware. On the other hand, when we find the average classification time of one packet 

using the same model in software, it turns out that we can classify one UNIBS packet 

in 2.6469 µs and one UNB packet in 1.3624 µs. These numbers reflect the enormous 

speedup obtained using the hardware acceleration of the random forest algorithm. 

Speedup can be defined as the increase in execution speed when using one system in 
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place of another system. Mathematically, speedup can be calculated using Equation 

(16): 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 − 𝐵𝑎𝑠𝑒𝑑	𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒
𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 − 𝐵𝑎𝑠𝑒𝑑	𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒 

(16) 

𝑈𝑁𝐼𝐵𝑆	𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 2.6469	𝜇𝑠
28.571	𝑛𝑠 = 92.64 

𝑈𝑁𝐵	𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 1.3624	𝜇𝑠
28.571	𝑛𝑠 = 47.68 

Therefore, compared to the software implementation of a random forest 

algorithm, the hardware accelerator can be up to 92 times faster when classifying a 

packet in the UNIBS dataset, and 47 times faster when classifying a packet from the 

UNB dataset. This is an encouraging result considering the fact that our objective is to 

deploy such an accelerator at datacentres that handle millions of network packets per 

second. This is the reason why we mentioned earlier that a compromise in the accuracy 

or the F-score of only 2% or 0.1 respectively is justified by the fact that we are gaining 

a huge amount of classification speed that enables datacentres to operate at a much 

higher throughput that enables online traffic classification in congested networks. To 

find out the average throughput achieved by our design, we first find the average packet 

size of the UNIBS and UNB datasets using Wireshark to be 626 Bytes per packet. Using 

a 35 MHz clock we can approximately classify 35 million packets per second. This is 

because we can classify one packet every clock cycle, as mentioned earlier. This results 

in a total throughput of 35000000 (packets classified per second) multiplied by 626 

(average packet size) which translates to a throughput of 163.24 Gbps. Hence, the 

average throughput achieved by our design is 163.24 Gbps. 

7.3.5. Simulation results. Figure 7.44 shows the simulation results of one tree 

in the random forest. In this figure, we can clearly see the progression of the feature 

vector of the packet from one pipeline stage to the other. Moreover, we can also see the 

progression of the next address from one pipeline stage to the other every clock cycle. 

Figure 7.45 shows the simulation of the top-level module. The first line in the 

simulation is the network packet content, the second line is the clock running at 35 

MHz, the third line is a reset signal, and the last line is the class label of each packet. 

Note that, the packets used in this simulation are known to be of classes 1, 2, 3, 4, and 

5, respectively. During the first 12 clock cycles the output class does not reflect any 
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output (don’t care). We can clearly see that we obtain the first classification after a 12 

clock cycles delay, which further confirms our calculations earlier. After that, we 

classify one packet every clock cycle.  

 

 

Figure 7.44: Pipelined Tree Simulation  

 

 

Figure 7.45: Top-Level Module Simulation 

  

 To further verify the operation of the random forest classifier, we use the 

Tektronix LA6401 logic analyzer to inspect the signals of the random forest module 

on the FPGA. This helps test and debug the circuit in case of any misbehaviour. To do 

so, we project the important signals of the forest module onto the GPIO pins of the 

DE2-115 board. Those signals include the master clock, the reset, and the class label 

signals. After that, the logic analyzer’s probes are connected to the GPIO pins in order 

to record the behaviour of those signals. Note that, the packets used are known to be 

of classes 1, 2, 3, 4, and 5, respectively. Figure 7.46 shows the logic analyzer’s setup 

when connected to the FPGA running the random forest classifier. 

Figure 7.47 shows the waveform obtained using the logic analyzer. After we 

hit the reset signal, the first packet is passed to the random forest classifier at the first 

negative edge of the clock. After 12 clock cycles, which is the time it takes the packet 
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to pass through all pipeline stages in our design, we start getting the class label of the 

first packet followed by the successive classes. Notice that, the output during the first 

12 clock cycles is treated as a don’t care. The logic analyzer’s output matches that of 

the simulation results obtained earlier, which confirms the correct operation of our 

random forest design. 

 

 

Figure 7.46: Logic Analyzer’s Setup 

  

 

Figure 7.47: Logic Analyzer’s Waveform 

 

7.3.6. The final prototype. For the final demonstration of the random forest 

accelerator on the DE2-115 board, we used KEY0 as the reset input, and we displayed 

the class label on HEX0. Figures 7.48, 7.49, 7.50, 7.51, 7.52 show the DE2-115 board 

when the class label of the packet is 1, 2, 3, 4, and 5, respectively. 
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Figure 7.48: Class 1 on the DE2-115 Board 

 

 

Figure 7.49: Class 2 on the DE2-115 Board 
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Figure 7.50: Class 3 on the DE2-115 Board 

 

 

Figure 7.51: Class 4 on the DE2-115 Board 
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Figure 7.52: Class 5 on the DE2-115 Board 

 

Table 7.16 shows a summary of the FPGA resource utilization after 

implementing the (20-trees, 10-levels) random forest model. 

 

Table 7.16: FPGA Resource Utilization 

Resource Total Used % Utilization 

Configurable Logic Blocks (CLBs) 114480 79207 69% 

Total Registers N/A 1200 N/A 

Total Pins 529 9 2% 

Total Virtual Pins N/A 0 0% 

Total Memory Bits 3981312 1258260 32% 

Embedded Multiplier 9-bit Elements 532 0 0% 

Total PLLs 4 0 0% 

 

7.4. Discussion of Results 

Having implemented the random forest accelerator on the FPGA, we compare 

our results to existing work in the field of network traffic classification. Two main 

performance measures are of interest; classification accuracy and F-scores. 

Additionally, we compare our hardware packet throughput to that reported in the 

literature.  
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The highest accuracy and F-score obtained on the UNIBS dataset in our 

experiments were 98.5% and 0.932, respectively. By inspecting the previous work 

published on traffic classification using the UNIBS dataset, we found that confidence 

intervals of classification accuracies are not reported. They tend to report only their 

highest accuracy result while ignoring the importance of mentioning the size of the 

training set and the testing set. This is because obtaining a 98% accuracy using a dataset 

which consists of only 100 instances, for example, cannot guarantee that the model 

would achieve the same results on new instances. On the other hand, obtaining a 98% 

accuracy on a dataset that consists of 10000 instances is more reliable due to the fact 

that more instances were used for training and testing. Therefore, we opt to calculate 

the confidence intervals of our reported accuracies and F-scores. The confidence 

interval can be calculated using Equation (17): 

𝑝 =
t𝑓 + 𝑧+2𝑁 ∓ 𝑧	w𝑓𝑁 − 𝑓

+
𝑁 + 𝑧+4𝑁+x

y1 + 𝑧+𝑁z
 

(17) 

where 𝑓 is the obtained accuracy or F-score, 𝑧 is 2.33 which corresponds to a 98% 

confidence level. 𝑁 is the number of test instances in the experiment. In our case, the 

accuracy is 98.5% while the F-score is 0.932. We used a 10-fold cross-validation 

experiment to obtain such results from a dataset of 45541 instances, therefore, N is 4554 

which is approximately the number of test instances in each fold. 

Therefore, the confidence interval for the classification accuracy is found out to 

be: 

𝑝 ∈ [98.0%, 98.9%] 
Whereas, the confidence interval for the F-score is found out to be: 

𝑝 ∈ [0.923, 0.940] 
These results show that we can guarantee that if this experiment was to be 

repeated on the same dataset using different seeds, the accuracy will lie between 98.0% 

and 98.9% with a 98% confidence. Similarly, the F-score will lie between 0.923 and 

0.940 with a 98% confidence. 

As mentioned earlier, publications on traffic classification using the UNIBS 

dataset tend to overlook the need to report the confidence intervals, and hence, we will 

simply compare our mean accuracy and F-score with their reported accuracies and F-

scores. Table 7.17 shows a summary of the obtained accuracies and F-scores from the 



139 

 

 

literature compared to the ones obtained in our experiments. Few observations are 

drawn from the results in Table 7.17. First, some papers did not report the F-score 

results, which made the comparison slightly more difficult as two papers surpassed our 

F-score, while one paper fell behind. On the other hand, we can see that we surpass all 

the papers in terms of classification accuracy. 

 

Table 7.17: Summary of Accuracies and F-scores in the Literature vs. Proposed 

Design 

Design Accuracy F-score 

Proposed 98.5 % 0.932 

[13] 98.0 % 0.980 

[25] 96.3 % N/A 

[26] 95.5 % N/A 

[30] 90.6 % 0.964 

[31] 91.3 % 0.916 

[38] 97.5 % N/A 

 

We also examine the maximum throughput achieved due to implementing the 

random forest algorithm on an FPGA. Although this work, according to the best of our 

knowledge, is the first attempt to accelerate a random forest-based network traffic 

classifier on an FPGA, nonetheless, we compare our achieved throughput to that of 

other implementations including C4.5 decision tree and SVM based classifiers. Table 

7.18 shows a summary of the obtained throughputs from the literature. As mentioned 

in Section 7.3, the maximum throughput achieved by our random forest accelerator is 

163.24 Gbps. This is more than twice as fast as the maximum reported throughput in 

Table 7.18. 

 

Table 7.18: Summary of Throughputs in the Literature vs. Proposed Design 

Design Throughput (Gbps) 

Proposed 163.24 

[39] 8 

[40] 28.6 

[41] 40 

[42] 80 
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Chapter 8. Conclusion and Future Work 

 

 Traffic classification is the process of assigning traffic flows to the applications 

that generated them. Machine learning is the most successful method of traffic 

classification as it makes use of flow-level features that do not affect the privacy of the 

communicating parties and it overcomes the issues of encryption whereby a classifier 

does not decipher the contents of the packets. 

 In this work, we made use of two publicly available datasets known as UNIBS 

and UNB dataset. Five different classes of traffic were used from each dataset, where 

Skype, Browser, BitTorrent, Mail, and RSS were chosen from the UNIBS dataset, while 

Skype, Torrent, Netflix, Spotify, and YouTube were used from the UNB dataset. In this 

research, we started by extracting a list of features which were then reduced using two 

feature selection algorithms; stepwise regression and random forest feature selection. 

We investigated the effect of discretization on the performance of the classification 

algorithms using an entropy-based and a Gini index-based discretization algorithms. 

The improvement in the classifiers’ performance due to the use of discretization was 

negligible compared to the significant increase in the training and testing time of the 

classifiers. As a result, we continued our experiments using the non-discretized datasets 

to allow for a much faster classification process.  

We conducted three main experiments to test multiple parameters. The first 

experiment was to build five different classifiers, namely, naïve Bayes, linear SVM, 

polynomial SVM, KNN, and random forest using the cross-validation testing method. 

This experiment was mainly concerned with the performance of the different classifiers 

in terms of overfitting, classification accuracy and F-scores. In general, random forest 

outperformed every other classifier in almost all aspects reaching a maximum accuracy 

of 98.5% and F-score of 0.932. In the second experiment, we concluded that the most 

optimal percentage of packets within a flow that need to be considered when extracting 

flow-level features is around 60% which required a waiting time of about 21ms. 

Furthermore, the last experiment revealed that the training set size was not of a great 

importance to the different classifiers since they do not significantly boost the 

classification performance. 

In addition to the software implementation, we designed a hardware-based 

random forest traffic classifier using a highly pipelined architecture that makes use of 

the parallel execution capabilities of Field Programmable Gate Arrays (FPGAs). We 
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used the DE2-115 development board in the implementation of a (20-trees, 10-levels) 

classifier. The results obtained using the hardware implementation show that we can 

map a software-trained model precisely to a hardware implementation. In order to fit 

an entire random forest tree on the FPGA chip we needed to reduce the number of trees 

and the number of levels per tree compared to the software models. This resulted in a 

minor reduction in classification accuracy (96.5%) and F-score (0.834) while boosting 

the classification speed significantly resulting in an average throughput of 163.24 Gbps. 

The achieved throughput was more than twice the maximum throughput reported in the 

literature. Moreover, the hardware acceleration of the Random Forest classifier enabled 

us to achieve a speedup of 92.64 and 47.68 using the UNIBS and UNB datasets, 

respectively, when compared to their software-based models. This helps datacentres 

and internet service providers implement an online traffic classifier that can cope with 

the increasing network speeds. 

 In future work, we will port our implementation to a more sophisticated FPGA 

chip that can allow us to fit more trees with more levels on it, as well as, enhancing the 

throughput further. Moreover, we will seek to deploy and test our FPGA accelerator in 

a real-life network that allows the flow of network packets into the FPGA accelerator 

and observe its performance. Finally, we would like to modify our design to enable 

online training of the random forest model in order to allow our design to learn new 

changes in the behaviour of the network on the spot. 
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Appendix A – Feature Glossary 

 

Feature Definition 

Source Port 
16-bit unsigned integer that ranges from 0 to 65535 which represents the transport layer port number of 

the source computer 

Destination Port 
16-bit unsigned integer that ranges from 0 to 65535 which represents the transport layer port number of 

the destination computer 

Frame Length The size of the packet 

Capture Length The size of the packet in addition to all the headers that precede the packet 

Interarrival Time Time between the arrival of two consecutive packets within the same flow 

Flow Duration Total time to receive all packets within a flow 

Minimum Least within the flow of packets 

Maximum Highest within the flow of packets 

Mean Average within the flow of packets 

Median Median within the flow of packets 

Variance Variance calculated using all packets within the flow 

Entropy Entropy calculated using all packets within the flow 
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Appendix B – Feature Histograms 
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Appendix C – Various Packet Percentage Within a Flow 
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Appendix D – Various Training Set Sizes 
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