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Abstract

Fractional calculus is a novel and highly active area of research in the literature as

it has a wide spectrum of applications in the physical sciences and engineering.

In this thesis, we study the numerical solution of fractional differential equations subject

to initial or boundary conditions. We employ two iterative methods for the solution of

such equations. First, we implement a Laplace decomposition method (LDM) which is

a combination of two methods: Laplace transform and a decomposition scheme. The

nonlinear term is decomposed and a recursive algorithm is composed for the determination

of the proposed infinite series solution. Second, we present another iterative technique

that is based on the incorporation of Green’s functions into well-established fixed-point

iterations, including Krasnoselskii-Mann’s and Picard’s schemes. Numerical experiments

are conducted to demonstrate the efficiency, accuracy and applicability of the proposed

methods, and then, to compare them with other schemes. In addition, we present graphs to

understand the behavior of the numerical solutions. A patching strategy, based on domain

decomposition, is suggested to overcome a deficiency of the LDM. Fractional differential

equations are widely investigated by several researchers.

Search Terms Fractional derivatives, fractional integration, Caputo fractional deriva-

tive, Liouville fractional derivative, Green’s function, fixed-point iteration schemes, Laplace

transform.

6



Table of Contents

Abstract 6

List of Figures 8

List of Tables 10

Chapter 1: Introduction 12

1.1 Historical Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Physical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Main Objectives of this Thesis . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Applications of Fractional Calculus . . . . . . . . . . . . . . . . . . . . . 14

1.5 Overview of the Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Chapter 2: Basic Definitions Review 16

2.1 Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Mittag–Leffler Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Error Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Laplace transform of the Mittag–leffler function . . . . . . . . . . 27

2.4.2 On the solution of differential equation problems . . . . . . . . . 28

2.4.3 Laplace Transform of Fractional Differential Operators . . . . . . 29

Chapter 3: Fractional Calculus 33

3.1 Fractional Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 The Caputo Fractional Differential Operator . . . . . . . . . . . . 37

3.1.2 The Riemann-Liouville Fractional Differential Operator . . . . . 40

3.1.3 Properties for the Caputo and Riemann-Liouville Fraction Differ-

ential Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Fractional Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 4: Laplace Decomposition Method (LDM) 46

4.1 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Patching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7



4.3.1 Bratu’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Lienard’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.3 Boundary Value Problems . . . . . . . . . . . . . . . . . . . . . 64

4.3.4 Ray Tracing Equation . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 5: Green’s Function - Fixed Point Iterative Scheme 85

5.1 Important Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Properties of Green’s Function . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Construction of the Green’s Function . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Initial Value Problem for Second Order Equations . . . . . . . . . 88

5.3.2 Boundary Value Problems for Second Order Equations . . . . . . 89

5.3.3 Solution of Fractional Order Differential Equations . . . . . . . . 91

5.4 Picard’s Green’s Method (PGM) . . . . . . . . . . . . . . . . . . . . . . 92

5.5 Mann’s Green’s Method (MGM) . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Chapter 6: Conclusions and Future Work 95

References 97

Vita 104

8



List of Figures

Figure 2.1: The Gamma function for real argument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.2: The one-parameter Mittag-Leffler function for various integer values

of α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.3: The Two-parameter Mittag-Leffler function for various fractional val-

ues of α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.4: The Error function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2.5: The complementary Error function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.1: The fractional derivative of sine and cosine functions. . . . . . . . . . . . . . . . . 37

Figure 3.2: Integration of order n = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 4.1: The numerical solution of Example 4.1 for different values of α rang-

ing between 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.2: The numerical solution of Example 4.3 case 2 for α = 2. . . . . . . . . . . . . . . 58

Figure 4.3: The numerical solution of Example 4.4 case 1 for α = 2. . . . . . . . . . . . . . . 60

Figure 4.4: The numerical solution of Example 4.4 case 2 for various values of α. . . 63

Figure 4.5: The numerical solution of Example 4.5 for values of α ranging be-

tween 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.6: The numerical solution of Example 4.6 for α = 1.5. . . . . . . . . . . . . . . . . . . 68

Figure 4.7: The numerical solution of Example 4.7 for α ranging between 1 and 2. . 70

Figure 4.8: The numerical solution of Example 4.10 case 1, for α = 2 . . . . . . . . . . . . 77

9



List of Tables

Table 4.1: Approximate solution and residual error for Example 4.1 obtained by LDM with

λ = 1 and α = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 4.2: Comparison between the approximate solution for Example 4.2 obtained by LDM and

that of BCM and RKM with λ = −1 and α = 1.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 4.3: Comparison between the approximate solution for Example 4.3 case 1 obtained by

LDM and that of BCM and RKM with λ = −2 and α = 1.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Table 4.4: Comparison between the absolute error resulting from the LDM before and after ap-

plying the patching approach for Example 4.3 case 2 with λ = −2 and α = 2. . . . . . . . . . . . . . . . . . . 57

Table 4.5: Comparison between the LDM and the FHATM for Example 4.4 case 1 with λ =

−1, µ = 4, ν = −3, and α = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 4.6: Comparison between the proposed LDM and that of Hybrid Genetic Algorithm (HGA)

for Example 4.4 case 1 with λ = −1, µ = 4, ν = −3, and α = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 4.7: Comparison between the absolute errors resulting from the LDM before and after

applying the patching approach for Example 4.4 case 1 with λ = −1, µ = 4, ν = −3, and α = 2. . . . . 62

Table 4.8: Approximate solution for Example 4.4 case 2 obtained by LDM and its residual error

with λ = −1, µ = 4, ν = −3, and α = 1.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 4.9: Approximate solution for Example 4.4 case 2 obtained by LDM [58] and its residual

error with λ = −1, µ = 4, ν = −3, and α = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 4.10: Comparison between the approximate solution obtained by LDM and HWM for

Example 4.5, with c = 3
57 and α = 1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Table 4.11: Comparison between the absolute errors for Example 4.6 determined by LDM and

HWM for α = 3
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 4.12: Approximate solution for Example 4.7 and comparison in absolute error between

LDM and HWM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table 4.13: Comparison of the absolute error between LDM and HWM for Example 4.8 with

α = 3
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10



Table 4.14: Comparison of the approximate solution of the LDM, HWM and Fourth order HPM

for Example 4.9 case 1, with α = 2 and β = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 4.15: The approximate solution and the residual error obtained by LDM for Example 4.9

case 2, with β = 1 and α = 1.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 4.16: The approximate solution obtained by the LDM with a comparison with that attained

by MsDTM for Example 4.10 case 1, with β = 0.91,Λ1 = −0.0254072,Λ2 = −0.000091 and

α = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 4.17: The approximate solution and the residual error obtained by LDM for Example 4.10

case 2, with β = 0.91,Λ1 = −0.0254072,Λ2 = −0.000091 and α = 1.8. . . . . . . . . . . . . . . . . . . . . . 78

Table 4.18: Approximate solution for Example 4.10 case 2, using LDM with α = 1.25 and

α = 1.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 5.1: The approximate solution obtained by the proposed Green’s function scheme with a

comparison with that obtained by MsDTM for Example 5.4 case 1, with β = 0.91,Λ1 = −0.0254072,Λ2 =

−0.000091 and α = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Table 5.2: The approximate solution obtained by the presented Green’s function strategy with a

comparison with the residual error for Example 5.4 case 2, with β = 0.91,Λ1 = −0.0254072,Λ2 =

−0.000091 and α = 1.95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

11



Chapter 1: Introduction

While Fractional Calculus (FC) is an ancient subject, it continues to be a

novel one. It is an ancient subject because it has been gradually developed up to now,

starting from some speculations. It can also be considered a novel topic as well. FC is

a field of study in mathematics that raised out of the classical definitions of the calcu-

lus derivative and integral operators, likewise, fractional exponents are the outgrowth of

integer-value exponents. The concepts of fractional operators have been introduced al-

most concurrently with the development of the classical ones. FC has been used to model

procedures in physics and engineering that are best characterized by fractional differential

equations. The major reason for the success of FC applications is that these new fractional-

order models are usually more accurate than integer-order ones. It is worth nothing that in

many cases the standard mathematical models of integer-order derivatives, including non-

linear models, do not work sufficiently [1, 2, 3]. Two criteria are developed; to be needed

by a fractional operator. Two criteria, needed by a fractional operator, were developed.

Riemann-Liouville and Caputo fractional derivatives are accessed in the light of the pro-

posed criteria [4]. It is a topic that has acquired considerable popularity and significance in

various fields of science and engineering over the previous few decades. Various efficient

analytical and numerical methods have been introduced and presented, but there is still a

need for more investigations and research [5].

1.1 Historical Development

Fractional calculus (FC) is an extension, with more than 300 years of history,

of ordinary calculus. Isaac Newton and Gottfried Leibniz invented the differential calcu-

lus independently and it was understood that the notion of the nth order derivative, that

is applying the differentiation operation n times in succession, was meaningful. FC was

launched by Leibniz and L’Hospital as a result of a correspondence that lasted several

months in 1695. That date is considered as the exact birthday of the fractional calcu-

lus. The problem raised by Leibniz for a fractional derivative was an ongoing subject in

decades to come [6]. In applied mathematics and mathematical analysis, fractional deriva-

tive is a derivative of any arbitrary order α real or complex. In 1695, Leibniz described

in his letter to L’Hospital, the derivative of α = 1
2

[7, 8, 9]. However, Lacroix found a

12



formula for the derivative of arbitrary order of monomials in 1819. The nth integer order

derivative is [10]:
dn

dxn
xp =

p!

(p− n)!
xp−n. (1.1)

After that, Lacroix extended Eq.(1.1) from the derivative of integer order to the

derivative of arbitrary order α ∈ R. He replaced the factorial by the Gamma function to

get:

Dαxp =
Γ(p+ 1)

Γ(p− α + 1)
xp−α. (1.2)

Many others have been contributing throughout the history of fractional calculus,

see [4, 11, 12, 13]. Understanding definitions with fractional calculus subject will be more

clear by discussing rapidly some needed but comparatively easy mathematical definitions

to understand these concepts. These functions are: The Gamma function, the Laplace

transform, the Error function and the Mittag-Leffler function. They will be discussed in

Chapter 2.

1.2 Physical Interpretation

It is usually recognized that integer-order derivatives and integrals have clear ge-

ometric and physical interpretations that greatly simplify their use to solve applied prob-

lems in widely fields of sciences. For more than 300 years, the presence of the idea of

integration and differentiation of arbitrary order was not an appropriate mathematical and

physical interpretation of these operations.

In 1974 in New Haven (USA), at the first international conference on the fractional

calculus, the lack of these interpretations was recognized by including it in the list of open

problems. The problem was unanswered, and it has been repeated in 1984 at the subse-

quent at the University of Strathclyde (UK) and in 1989 at the Nihon University (Tokyo,

Japan). Later, in 1996 in Varna, the round-table discussion at the conference on transform

methods and special functions showed that the problems were still unsolved, and in real-

ity, the situation has not changed since that time. However, in 2002, Podlubny provided

a physical interpretation of the fractional integration on two distinct time scales, namely,

the inhomogeneous time scale and the homogeneous one, equably flowing scale [14].

Some authors presented the analysis of the fractional time constant and the tran-

sitory response (rise, delay, and settling times) of a resistor capacitor (RC) circuit as a

physical interpretation of fractional calculus in observables terms [15]. Other physical

13



interpretations can be found in [16] and [17].

1.3 Main Objectives of this Thesis

The overall aim of this study is as follows:

1. Develop the theory of fractional calculus including the fractional ordinary differential

equation which has physical significance in sciences, fluid flow, and many other areas

of engineering.

2. Solve fractional differential equations numerically. The definition of fractional deriva-

tive forms convolution integral, thus, the easiest way to handle this integral is to use

Laplace transforms.

3. Study fractional calculus by new strategy and adjustments which are Laplace decom-

position method and Green’s functions including some popular fixed point iterative

algorithms.

4. Study analytical and approximate solution of fractional physical problems, which are

of significance in different fields, such as the fractional Ray tracing model, Bratu’s

problem, Lienard’s equation and some other fractional boundary value problems.

5. Study the analytical and approximate solution’s graphical behavior for an arbitrary

fractional order derivatives.

1.4 Applications of Fractional Calculus

Euler and Fourier mentioned arbitrary order derivatives, but they did not provide

examples or applications. In 1832, Niels Henrik Abel had the honor of making the first

application [18]. This application of fractional calculus is related to the integral equation

solution for the tautochrone problem. The problem deals with determining the curve shape

so that the time of descent of a frictionless point mass sliding down the curve under the

gravity action is independent of the starting point.

In many applications, FC provides more accurate physical system models than

ordinary calculus does. Since its achievement in describing anomalous diffusion [19] non-

integer order calculus both in one and multidimensional space, FC has become a significant

tool in many areas of mechanics, engineering, physics, chemistry and finances. In recent

decades, fractional calculus provided an excellent instrument for the description of new

and recent applications in control theory, generalized voltage divider, electrical circuits

with fractance and viscoelasticity [8]. Machado et al. investigated the use of FC in the

14



fields of legged robots, digital circuit synthesis, controller tuning and many others [20].

However, various applications of FC have been developed and described. See [21, 22, 23].

1.5 Overview of the Structure

This Master’s thesis is organized as follows. Chapter 2 involves the review of

important basic definitions and significant mathematical preliminaries. In chapter 3, the

Laplace transform decomposition method will be presented and applied to various dif-

ferential equation problems of non-integer order, including comparisons of our numerical

results with other techniques. In addition, a domain decomposition strategy for improv-

ing the accuracy of the approach will be presented. In chapter 4, we give an overview of

the construction of the Green’s function and some common fixed point iterations strate-

gies, such as Mann’s and Picard’s; then, we describe and introduce a Green’s function

fixed point iterative scheme for the number solution of fractional differential equations.

Some numerical experiments will be included to confirm and illustrate the convergence of

the method. In chapter 5, we show the convergence of the proposed iterative algorithms.

In the last chapter, we will summarize our findings with suggestions for future research

work.
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Chapter 2: Basic Definitions Review

2.1 Gamma Function

History of the Gamma Function

In the early 16th century, Leonhard Euler and others attempted to expand the do-

main of the factorial to the real numbers. This cannot be done with elementary functions;

however, with notions of limits and integrals from calculus, there were few expressions

developed. Euler [Leonhard Euler 1707–1783] came up with mathematical objects known

to us as Gamma. One is a function and the other is a constant. The function, Gamma(x),

generalizes the sequence of factorial numbers. A nice history of the Gamma function is

found in a 1959 article by Philip Davis.

Gamma function is a generalization of the factorial function to nonintegral values,

introduced by the Swiss mathematician Leonhard Euler in the 18th century. For a positive

whole number n, the factorial (written as n!) is defined by n! = 1.2.3......(n − 1).n. For

example, 5! = 1.2.3.4.5 = 120. But, this formula is meaningless if n is not an integer. To

extend the factorial to any real number, the Gamma function should be used.

In 1922, Bohr and Mollerup confronted the issue of whether the expressions of the

Gamma function were equivalent, and, relatedly, whether the Gamma function as defined

is unique. See (Figure 2.1).

Figure 2.1: The Gamma function for real argument.
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Definition of the Gamma Function

For any nonnegative integer n, we can denote factorial integrable function as n!, but we

used to call the non-integrable n by Gamma (Γ) function.

Definition 2.1.1. Gamma function

Γ(P ) =

∫ ∞
0

xP−1e−x dx, P > 0, (2.1)

where P is not necessarily an integer.

From (2.1) we have,

Γ(n) =

∫ ∞
0

xn−1e−x dx = (n− 1)! (2.2)

Γ(n+ 1) =

∫ ∞
0

xne−x dx = n! (2.3)

Now, we prove the above results (using induction) by expanding out Γ(n) as follows:

Proof. For n > 1,

Γ(n) = (n− 1) Γ(n− 1)

Γ(n) = (n− 1) (n− 2) Γ(n− 2)

Γ(n) = (n− 1) (n− 2) (n− 3) Γ(n− 3)

But we know that (n− 1)(n− 2)(n− 3)......(1) = (n− 1)!

Γ(n) = (n− 1) (n− 2) (n− 3) .....(1) Γ(1)

Γ(n) = (n− 1)! Γ(1)

Its remaining to show that Γ(1) = 1

From (2.1),

Γ(1) =

∫ ∞
0

x1−1e−x dx

Γ(1) =

∫ ∞
0

e−x dx

Γ(1) =
1

e−∞
− (e)−0 = 0− (−1) = 1

We complete the proof by substituting Γ(1) into the Γ(n) formula.

Γ(n) = (n− 1)! Γ(1)

Γ(n) = (n− 1)! (1)

Γ(n) = (n− 1)!
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The Recursion Property for the Gamma Function

If we replace P by P + 1 in (2.1), we get

Γ(P + 1) =

∫ ∞
0

xP e−x dx = P !, P > −1, (2.4)

where P is an integer.

Let’s integrate (2.4) by using integration by parts, calling

u = xP , dv = e−xdx;

du = PxPdx, v = −e−x,

then we get,

Γ(P + 1) = uv|∞0 −
∫ ∞

0

v du

= −xP e−x|∞0 −
∫ ∞

0

(−e−x)P xP−1 dx

xP

ex
is indeterminate form as x→∞, using L’Hospital’s rule P times, we get,

P !

ex
→ 0 as

x→∞, thus,

= 0 + P

∫ ∞
0

e−xxP−1 dx = P Γ(P ).

Therefore, we have

Γ(P + 1) = P Γ(P ). (2.5)

This is called recursion relation for the Gamma function.

The Gamma function of negative numbers

For P ≤ 0, Γ(P ) is not defined. We have to define it by using the recursion relation (2.5)

Γ(P ) =
1

P
Γ(P + 1). (2.6)

Example 2.1.
Γ(−0.4) =

1

(−0.4)
Γ(0.6),

Γ(−1.4) =
1

(−0.4)(−1.4)
Γ(0.6),
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and so on.

Since Γ(1) = 1, we can see that,

Γ(P ) =
1

P
Γ(P + 1)→∞ as P → 0.

From this result and the successive use of (2.6) we conclude that Γ(P ) becomes infinite

not only at zero but also for all negative integers. The poles of the Gamma functions are

the negative integers.

Convergence of the Gamma Function

We will write up the proof of the convergence of the Gamma function as follows, where

we show why the exponential function grows faster than any polynomial.

Proof. Converges for P > 0. The integral (2.1) is improper of Type I and Type II, so, we

need to divide the integral as a sum of two terms

Γ(P ) =

∫ 1

0

xP−1e−x dx+

∫ ∞
1

xP−1e−x dx.

For the first term, since the function e−x is decreasing, it attains its maximum on the

interval [0, 1] at t = 0, so

Γ(P ) =

∫ 1

0

xP−1e−x dx <

∫ 1

0

xP−1 dx

=
xP

p
|10

=
1

P
.

Since P > 0, by Direct Comparison Test (DCT) we conclude that
∫ 1

0

xP−1e−x dx con-

verges. For the second term, since the exponential grows faster than any polynomial, for
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every P we can find N ∈ N, big enough so that e
x
2 ≥ xP−1, for x ∈ [N,+∞). Thus∫ ∞

1

xP−1e−x dx =

∫ N

1

xP−1e−x dx +

∫ ∞
N

xP−1e−x dx

≤
∫ N

1

xP−1e−x dx +

∫ ∞
N

e
x
2 e−x dx

=

∫ N

1

xP−1e−x dx +

∫ ∞
N

e
−x
2 dx

The first term
∫ N

1

xP−1e−x dx is finite real number because the function xP−1ex is contin-

uous on [1, N ],

∫ ∞
N

e
−x
2 dx = −1

2
e
−x
2 |∞N =

1

2
e
−N
2 is convergent. Hence,

∫ ∞
1

xP−1e−x dx <∞.

Some Special Values of the Gamma Function

1.

Γ

(
1

2

)
=
√
π. (2.7)

Proof. By definition,

Γ

(
1

2

)
=

∫ ∞
0

t
1
2
−1e−t dt,

Γ

(
1

2

)
=

∫ ∞
0

1√
t
e−t dt.

(2.8)

Set t = y2 in (2.8); then dt = 2y dy. Now (2.8) becomes

Γ

(
1

2

)
=

∫ ∞
0

1

y
e−y

2

2y dy = 2

∫ ∞
0

e−y
2

dy, (2.9)

or, with x as the spurious integration variable,

Γ

(
1

2

)
= 2

∫ ∞
0

e−x
2

dx. (2.10)

Multiply the above two results (2.9) and (2.10)[
Γ

(
1

2

)]2

= 4

∫ ∞
0

∫ ∞
0

e−(x2+y2) dx dy. (2.11)
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Since this integral in the first quadrant, we can evaluate it by using polar coordinates.

To do so, we need to remember the following conversion formula

r2 = x2 + y2. (2.12)

We are now ready to write down a formula for the double integral in terms of polar

coordinates

[
Γ

(
1

2

)]2

= 4

∫ π
2

0

∫ ∞
0

e−r
2

r dr dθ = 4. θ|
π
2
0 .

e−r
2

−2

∣∣∣∣∣
∞

0

= 4.
π

2
.

1

2
= π.

Therefore,

Γ

(
1

2

)
=
√
π.

2.

Γ(P ) Γ(1− P ) =
π

sin(πP )
. (2.13)

For the proof, see [24].

2.2 Mittag–Leffler Function

Brief History

The Mittag-Leffler functions appear naturally when solving linear fractional dif-

ferential equations. Recently, it has been used to study different models. The exponential

function, ex, plays a very important role in the theory of integer–order differential equa-

tions. Its one-parameter generalization (see Figure 2.2), which is defined as

Eα(z) =
∞∑
n=0

zn

Γ(αn + 1)
, α > 0, z ∈ C, (2.14)
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Figure 2.2: The one-parameter Mittag-Leffler function for various integer values of α.

was introduced by Mittag-Leffler, G.M. and studied also by Wiman, A. The two-

parameter function of the Mittag-Leffler type, which plays a very significant role in the

fractional calculus, was in fact introduced by Agarwal. This function could have been

called the ”Agarwal function”. However, Humbert and Agarwal generously left the same

notation as for the one-parameter Mittag-Leffler function; that is the reason that now the

two-parameter function is called the ”Mittag-Leffler function”.

Definition 2.2.1. A two-parameter function of the Mittag-Leffler type (see Figure 2.3) is

defined by the series expansion

Eα ,β(z) =
∞∑
n=0

zn

Γ(αn + 1)
, α, β > 0, and z ∈ C. (2.15)

Figure 2.3: The Two-parameter Mittag-Leffler function for various fractional values of α.
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Special Cases

1. For β = 1, we have

Eα ,1(z) =
∞∑
n=0

zn

Γ(αn + 1)
= Eα(z). (2.16)

2. From (2.15), we obtain

E1,1(z) =
∞∑
n=0

zn

Γ(n + 1)
=

∞∑
n=0

zn

n!
= ez,

E1,2(z) =
∞∑
n=0

zn

Γ(n + 2)
=

∞∑
n=0

zn

(n+ 1)!
=

1

z

∞∑
n=0

zn+1

(n+ 1)!
=

1

z
(ez − 1),

E1,3(z) =
∞∑
n=0

zn

Γ(n + 3)
=

∞∑
n=0

zn

(n+ 2)!
=

1

z2

∞∑
n=0

zn+2

(n+ 2)!

=
1

z2
(ez − 1− z),

In general,

E1,m(z) =
∞∑
n=0

zn

Γ(n + m)
=

1

zm−1

{
ez −

m−2∑
n=0

zn

n!

}
.

(2.17)

3. The hyperbolic sine and cosine are also particular cases of the Mittag-Leffler function

E2,1(z2) =
∞∑
n=0

z2n

Γ(2n + 1)
=

∞∑
n=0

z2n

(2n)!
= cosh z. (2.18)

E2,1(z2) =
∞∑
n=0

z2n

Γ(2n + 2)
=

1

z

∞∑
n=0

z2n+1

(2n+ 1)!
=

sinh z

z
. (2.19)

Definition 2.2.2. Hyperbolic function of order k, which is a generalization of the hyper-

bolic sine and cosine, are expressed in terms of the Mittag-Leffler function as follows

hr(z, k) =
∞∑
n=0

znk+ r− 1

(nk + r − 1)!
= zr−1Ek,r(z

k), where r = 1, 2, ..., k. (2.20)

Definition 2.2.3. Trigonometric functions of order n, which are generalizations of the sine

and cosine functions:

kr(z, n) =
∞∑
n=0

(−1)i zni+ r− 1

(ni + r − 1)!
= zr−1En,r(−zn), where r = 1, 2, ..., n. (2.21)
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2.3 Error Function

The error function, which is also called (the Gauss error function), is a special

non-elementary function of sigmoid shape that takes place in statistics, probability and in

partial differential equations for describing diffusion.

Definition 2.3.1. The error function is defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt, for x ≥ 0. (2.22)

Figure 2.4: The Error function.

Definition 2.3.2. The complementary error function is defined as:

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt, for x ≥ 0. (2.23)

Figure 2.5: The complementary Error function.
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Special Values

1. erf(0) = 0

2. erf(∞) = 1

3. erf(−x) = −erf(x)

4. erf(x) = 1− erfc(x)

2.4 Laplace Transform

Brief History

The theory of Laplace transform was further developed in the 19th and early

20th centuries by Lerch, Heaviside, and Bromwich. The current widespread use of the

transform (mainly in engineering) came about during and soon after World War II replac-

ing the earlier Heaviside operational calculus. The advantages of the Laplace transform

had been emphasized by Doetsch to whom the name Laplace Transform is apparently due.

The early history of methods having some similarity to Laplace transform is as follows.

From 1744, Leonhard Euler investigated integrals of the form

L =

∫
f(x) eax dx, (2.24)

as solutions of differential equations but did not pursue the matter very far.

Joseph Louis Lagrange was an admirer of Euler and, in his work on integrating probability

density functions, investigated expressions of the form

L =

∫
f(x) e−axaxdx, (2.25)

which some modern historians have interpreted within modern Laplace transform theory.

These types of integrals seem first to have attracted Laplace’s attention in 1782

when he was following in the spirit of Euler in the use of the integrals as solutions of

equations. However, in 1785, Laplace took the critical step forward and rather than just

looking for a solution in the form of an integral, he started to apply the transforms in the

sense that was later to become popular.

Laplace also recognized that Joseph Fourier’s method of Fourier series for solving

the diffusion equation could only apply to a limited region of space because those solu-

tions were periodic. In 1809, Laplace applied his transform to find solutions that diffused
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indefinitely in space.

The Laplace Transform turns a differential equation in time t into an algebraic equation in

complex variables. The process of applying Laplace transforms is pretty much the same.

We apply the transform to a differential equation, and then, turn it into an algebraic equa-

tion, thus making it significantly easier to handle. Then, we carry out the simplification of

the algebraic expression to the required extent. Finally, the Inverse Laplace Transform is

applied to obtain the answer in our actual given domain.

Definition 2.4.1. Let f(t) be defined for t ≥ 0. The Laplace transform of f(t), denoted

by F (s) or L{f(t)}, is an integral transform given by the Laplace integral:

F (s) = L{f(t)} =

∫ ∞
0

e−stf(t) dt. (2.26)

Example 2.2. Let f(x) = t.

Then,

L{f(t)} =

∫ ∞
0

e−stf(t) dt =

∫ ∞
0

e−stt dt.

In fact, integration by parts calling,

u = t, dv = e−st,

du = dt, v = −1
s
e−st,

= u v −
∫ ∞

0

v du = −1

s
t e−st

∣∣∣∣∞
0

+
1

s

∫ ∞
0

e−st dt.

The integral is divergent whenever s ≤ 0. However, when s > 0, it converges to

−1

s

t

e−st

∣∣∣∣∞
0

− 1

s2

t

e−st

∣∣∣∣∞
0

.

By using L’Hospital’s rule and after simplification, we obtain,

L{f(t)} =

∫ ∞
0

e−st dt =
1

s2
.

Properties

• L{0} = 0

• Linearity: L{f(t)± g(t)} = L{f(t)} ± L{g(t)}.

26



• Constant Multiple: L{af(t)} = a.L{f(t)}.

• Change of Scale: L{f(t)} = F (s) then L{f(at)} =
1

a
F
(s
a

)
.

• Shifting: L{eatf(t)} = F (s− a).

• Conjugation: L{f ∗(t)} = F ∗(s∗), where f ∗ means the complex conjugate.

• Convolution: L{f(t) ∗ g(t)} = F (s)G(s).

• Differentiation in s-domain: L{tn f(t)} = (−1)nF (n)(s).

• Differentiation in Time domain: L{f ′(t)} = s F (s).

• Integration: L{
∫ t
−∞ f(x) dx} =

1

s
F (s).

Warning: The Laplace transform, while a linear operator, is not multiplicative. That is, in

general

L{f(t) g(t)} 6= L{f(t)}L{g(t)}. (2.27)

2.4.1 Laplace transform of the Mittag–leffler function

The Laplace transform of the Mittage–Leffler function is given by the following theo-

rem.

Theorem 2.4.1.

L−1

[
s−(β−α)

sα − x

]
= tβ− 1Eα,β(x tα), |sα − x| < 1 (2.28)

Proof. Using the definition of the Laplace transform, we have

L[tβ− 1Eα,β(x tα)] =

∫ ∞
0

e−s t tβ− 1Eα,β(x tα) dt (2.29)

=
∞∑
n=0

xn

Γ(αn + β)

∫ ∞
n=0

e−s t tαn+β− 1 dt

=
∞∑
n=0

xn

Γ(αn + β)
L(tαn+β− 1)

=
∞∑
n=0

xn

Γ(αn + β)

Γ(αn + β)

sαn+β

=
1

sβ

∞∑
n=0

( x
sα

)n
The series above converges for

∣∣∣ x
sα

∣∣∣ < 1.Hence,

L[tβ− 1Eα,β(x tα)] =
s−β

1− x
sα

=

[
s−(β−α)

sα − x

]
.
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2.4.2 On the solution of differential equation problems

In general, exact solutions for differential equations that arise in various fields in sci-

ences and engineering can not be obtained. So, researchers seek approximate solutions

by various numerical methods. Most widely used analytical and collocation methods

include but are not limited to the variational iteration method (VIM) [25, 26, 27, 28],

Homotopy perturbation method [29], homotopy analysis method [30], Taylor collocation

method [31], Chebyshev collocation method [32], spline collocation methods [33, 34],

wavelet-based methods [35] and Laplace and Adomian decomposition methods [36].

Most of the numerical methods applied to ordinary differential equations have been

modified to provide approximate solutions to fractional differential equations. In this the-

sis, the Laplace decomposition method and Green’s function based methods are modified

to solve Fractional differential equations.

We begin by reviewing Laplace transforms for a system of linear differential equations.

Theorem 2.4.2. Laplace transform of derivatives for integer order

Suppose f is of integer order, and that f is continuous and f ′ is piecewise continuous on

any interval 0 ≤ t ≤ A. Then

L{f ′(t)} = sL{f(t)} − f(0). (2.30)

Applying the theorem multiple times yields

L{f ′′(t)} = s2L{f(t)} − sf(0)− f ′(0),

L{f ′′′(t)} = s3L{f(t)} − s2f(0)− f ′(0)− f ′′(0),

.

.

.

L{f (n)(t)} = snL{f(t)} − sn−1f(0)− sn−2f ′(0)

− ...− s2f (n−3)(0)− sf (n−2)(0)− f (n−1)(0).

(2.31)

Equally importantly, it says that the Laplace transform, when applied to a differential

equation, would change derivatives into algebraic expressions in terms of s and dependent

variable t. Thus, it can transform a differential equation into an algebraic equation.
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2.4.3 Laplace Transform of Fractional Differential Operators
Definition 2.4.2. [Caputo Fractional Derivative]

Let f ∈ Cn[a, b], a ≥ 0, and n− 1 < a ≤ n. Then

Dαf(t) =
1

Γ(n− α)

∫ t

a

(t− x)n−α−1 dnf(x)

dxn
dx, a ≤ t < b,

=
1

Γ(n− α)

∫ t

0

fn(x)

(t− x)α+1−n dx.

(2.32)

Definition 2.4.3. [Riemann-Liouville Fractional Derivative]

Let f ∈ Cn[a, b], a ≥ 0, and n− 1 < a ≤ n. Then

Dα
Lf(t) =

1

Γ(n− α)

∫ t

0

(t− x)n−α−1 f(x) dx, a ≤ t < b,

=
1

Γ(n− α)

dn

dtn

∫ t

0

f(x)

(t− x)α+n−1
dx.

(2.33)

Lemma 2.4.1. The Laplace transform of Riemann-Liouville fractional integral operator

of order α > 0 can be obtained in the form of:

L[Jαf(t)] =
F (s)

sα
,where Jα is the α integral. (2.34)

Proof. The Laplace transform of Riemann-Liouville fractional integral operator of order

α > 0 is

L[Jαf(t)] = L
[

1

Γ(α)

∫ t

0

(t− x)α−1f(x) dx

]
=

1

Γ(α)
F (s)G(s),

where,

G(s) = L[tα−1] =
Γ(α)

sα
.

Hence

L[Jαf(t)] =
1

Γ(α)

Γ(α)

sα
F (s) =

F (s)

sα
.

Lemma 2.4.2. The Laplace transform of Caputo fractional derivative for m − 1 < α ≤

m,m ∈ N, can be obtained in the form of (see [37, 38]):

L[Dαf(t)] =
smf(s)− sm−1f(0)− sm−2f

′
(0)− ...− f (m−1)(0)

sm−α
. (2.35)
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Proof. The Laplace transform of Caputo fractional derivative of order α > 0 is

L[Dαf(t)] = L[Jm−αfm(t)] =
L[fm(t)]

sm−α
. (2.36)

We are now ready to see how the Laplace transform can be is used differentiation equa-

tions.

Solving differential equation problems using the method of Laplace transform:

To solve a linear differential equation using Laplace transforms, there are only 3 basic

steps:

1. Take the Laplace transforms of both sides of an equation.

2. Simplify algebraically the result to solve for L{f(t)} = F (s) in terms of s.

3. Find the inverse transform of F (s). This inverse transform, f(t), is the solution of the

given differential equation.

The method will also solve a nonhomogeneous linear differential equation directly, using

the exact same three basic steps, without having to separately solve for the complementary

and particular solutions.

Example 2.3. Consider the following differential equation:

y′ + 2y = 4t e−2t,

with

y(0) = −3.

Transform both sides

L{y′}+ L{2y} = L{4te−2t},

sL{y} − y(0) + 2L{y} =
4

(s+ 2)2
.

Simplify to find F (s) = L{y}

(sL{y} − (−3)) + 2L{y} =
4

(s+ 2)2
,

L{y}(s+ 2) + 3 =
4

(s+ 2)2
,
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L{y}(s+ 2) =
4

(s+ 2)2
− 3,

L{y} =
4

(s+ 2)3
− 3

(s+ 2)
=

4− 3(s+ 2)2

(s+ 2)3
=
−3s2 − 12s− 8

(s+ 2)3
,

By partial fractions

L{y} =
−3s2 − 12s− 8

(s+ 2)3
=

a

(s+ 2)3
+

b

(s+ 2)2
+

c

(s+ 2)

=
−3s2 − 12s− 8

(s+ 2)3
=

a

(s+ 2)3
+
b(s+ 2)

(s+ 2)2
+
c(s+ 2)2

(s+ 2)

=
−3s2 − 12s− 8

(s+ 2)3
=

a+ bs+ 2b+ cs2 + 4cs+ 4c

(s+ 2)3

=
−3s2 − 12s− 8

(s+ 2)3
=

cs2 + (b+ 4c)s+ (a+ 2b+ 4c)

(s+ 2)3
.

By equating the nominator of both fractions, we obtain

c = −3

(b+ 4c) = −12

(a+ 2b+ 4c) = −8

Solving the above system, we obtain

c = −3, a = 4, b = 0.

Now, by substituting the values in the expression of L{y}, we obtain

L{y} =
−3s2 − 12s− 8

(s+ 2)3
=

4

(s+ 2)3
− 3

(s+ 2)
.

Hence

y(t) = 4L−1

(
1

(s+ 2)3

)
− 3L−1

(
1

(s+ 2)

)
= 2t2e−2t − 3e−2t.

Example 2.4. Consider the following differential equation:

Dαy = 2x,

with

y(0) = 0,

and

α = 0.5.
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Using equation (2.35), we have

sL[y]− y(0)

s1−α = 2L[x].

After simplifications, we have

L[y] =
2

sα+2
.

Apply the laplace inverse on both sides to find y, we obtain

y = 1.504505556x
3
2 .

We will discuss later how we solve differential equation problems of nonlinear fractional

(non-integer) order.
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Chapter 3: Fractional Calculus

Standard calculus involves differentiation and integration of integer order, while

fractional calculus involves differentiation and integration of arbitrary real numbers and

complex numbers. Fractional calculus is a branch of mathematical analysis that studies

the several different possibilities of defining real number powers or complex number pow-

ers of the differentiation operator D

Df(x) =
d

dx
f(x), (3.1)

and of the integration operator J

J f(x) =

∫ x

0

f(s) ds. (3.2)

Moreover, one can look at the question of defining a linear functionalDα, for every

real-number α. Fractional differential equations, also known as extraordinary differential

equations, which are a generalization of differential equations through the application of

fractional calculus.

3.1 Fractional Derivative

Definition 3.1.1. For any function f(x) consider the following strategy:

The first derivative is:

f ′(x) =
d

dx
f(x) = Df(x).

The second derivative is:

f ′′(x) =
d2

dx2
f(x) = D2f(x).

Continuing in this fashion gives more general result that,

f (n)(x) =
dn

dxn
f(x) = Dnf(x).

(3.3)

Note that, n can be integer or any real number. To be more specific, we will go through

each one of them independently.
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1. Fractional derivative of basic power function

Let

f(x) = xn,

f ′(x) = Df(x) = nxn−1,

f ′′(x) = D2f(x) = n(n− 1)xn−2 =
n!

(n− 2)!
xn−2,

f ′′′(x) = D3f(x) = n(n− 1)(n− 2)xn−3 =
n!

(n− 3)!
xn−3,

Essentially, it could be generalized as follows:

f (α)(x) = Dαf(x) =
n!

(n− α)!
xn−α. (3.4)

The above formula true for any integer n. Here, we extend the factorial to any real

number by using the fact that Γ(n + 1) = n!, Eq.(3.1) can be written in its general

form as follows

f (α)(x) = Dαf(x) =
Γ(n+ 1)

Γ(n− α + 1)
xn−α. (3.5)

In general, if f(x) = xβ then Dαf(x) =
Γ(β + 1)

Γ(β − α + 1)
xβ−α.

Example 3.1. Find the quarter derivative of f(x) = x2.

From Eq.(3.5), for n = 2 and α = 1
4
, we obtain

f ( 1
4

)(x) = D
1
4f(x) =

Γ(2 + 1)

Γ(2− 1
4

+ 1)
x2− 1

4 =
2

Γ(11
4

)
x

7
4 ,

From the following special identity that was mentioned in the section on Gamma

function

Γ(p) Γ(p− 1) =
π

sin(πp)
,

and by computing Γ(11
4

) using (3.5), we obtain

p =
11

4

Γ(11
4

)Γ(−7
4
) = sin

(
11π

4

)
Γ(11

4
) =

π

sin
(

11π
4

)
Γ
(
−7

4

)
=

π
1√
2
Γ(−7

4
)

=

π√
2

Γ(−7
4

)
.
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Thus,

D
1
4 (x2) =

2
π√
2

Γ(− 7
4)

x
7
4 =

√
2Γ
(
−7

4

)
π

4
√
x7.

2. Fractional derivative of exponential function

Let

f(x) = eax.

The first derivative is:

f ′(x) =
d

dx
f(x) = Df(x) = aeax.

The second derivative is:

f ′′(x) =
d2

dx2
f(x) = D2f(x) = a2eax,

. . .

The nth order derivative of f(x) = eax is given as:

fn(x) =
dn

dxn
f(x) = Dnf(x) = aneax.

In other words,

Dαeax = aαeax. (3.6)

Note that, the above result is true for any real number n. This clarifies the general-

ization of nth derivative of the exponential to fractional orders.

Example 3.2. Find the half derivative of:

[i] f(x) = eax.

From (3.6),

D
1
2f(x) = a

1
2 eax,

=
√
a eax.

[ii]

D
1
2 (D

1
2f(x)) = D

1
2 (
√
a eax),

= a
1
2
√
a eax,

=
√
a
√
a eax,

= aeax = Deax,
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which is the first derivative of eax.

Example 3.3. Calculate the ith derivative of eix.

Recall Euler’s formula:

eiθ = cos θ + i sin θ. (3.7)

By using Eq.(3.6), for α = i and a = i, we have

Dieix = (i)ieix

= (e
π
2
i)ieix

= e
π
2
i2eix

= e−
π
2 eix

= e−
π
2 (cosx− i sinx).

3. Fractional derivative of trigonometric functions sinx and cosx

We know that

cosx =
eix + e−ix

2
and sinx =

eix − e−ix

2
. (3.8)

As a result, by using both Eqs.(3.6) and (3.7), for a = i we define the following

formulas:
Dαeix = (i)αeix

= (e
π
2
i)αeix

= e
π
2
αieix

= ei(x+π
2
α).

(3.9)

Dαe−ix = (−i)αe−ix

= (e−
π
2
i)αe−ix

= e−
π
2
αie−ix

= e−i(x+π
2
α).

(3.10)

Now, from the previous formulas we can define

Dα cosx =
ei(x+π

2
α) + e−i(x+π

2
α)

2
= cos

(
x+

π

2
α
)

(3.11)
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and

Dα sinx =
ei(x+π

2
α) − e−i(x+π

2
α)

2!
= sin

(
x+

π

2
α
)
. (3.12)

We know that:

D cosx = − sinx. (3.13)

Proof. To prove Eq.(3.13), we use (3.11) with α = 1

D cosx = cos
(
x+

π

2
α
)

= cos(x) cos
(π

2

)
− sin(x) sin

(π
2

)
.

= − sin(x).

Figure 3.1: The fractional derivative of sine and cosine functions.

Similarily,

Example 3.4. D
1
2 cosx = cos

(
x+

π

2
· 1

2

)
= cos

(
x+

π

4

)
.

3.1.1 The Caputo Fractional Differential Operator

Definition 3.1.2. (Caputo Fractional Derivative)

Let f ∈ Cn[a, b], a ≥ 0, and, n− 1 < α ≤ n, then,
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Dαf(t) =
1

Γ(n− α)

∫ t

a

(t− x)n−α−1 dnf(x)

dxn
dx, a ≤ t < b,

=
1

Γ(n− α)

∫ t

a

fn(x)

(t− x)α+1−n dx.

(3.14)

The benefit of using the Caputo definition is that it does not only allow for the consid-

eration of easily interpreted initial conditions, but it is also bounded, meaning that the

derivative of a constant is equal to 0.

Differentiability

Consider the following well-known theorem:

Theorem 3.1.1. Fundamental Theorem of Calculus (FTC)

[Part 1]

Let f(x) be a continuous real-valued function defined on a closed interval [a, b], and

F (x) =

∫ x

a

f(x) dx, for all x ∈ [a, b]. (3.15)

Then, F (x) is uniformly continuous on [a, b], differentiable on the open interval (a, b), and

F ′(x) = f(x), for all x ∈ (a, b). (3.16)

[Part 2]

Let f be a real-valued function on a closed interval [a, b] and F an antiderivative of f in

[a, b], i.e.,

F ′(x) = f(x). (3.17)

If f is Riemann integrable on [a, b] then∫ b

a

f(x) dx = F (b)− F (a). (3.18)

f(x) is nth differentiable on [a, b], then it is continuous since f ∈ Cn[a, b] and (t−x)n−α−1

is continuous on the interval [0, t). Since

f (n)(x) is bounded on [a, b], and− 1 < n− α− 1 ≤ 0, then

f (n)(x)

(t− x)α+1−n

is integrable over [0, t], where a ≤ t ≤ b. Thus, by FTC,
f (n)(x)

(t− x)α+1−n is differentiable

and then it is continuous.
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Example 3.5. Find the second derivative of f(x) = x3 using Caputo definition.

From (3.14), we have

Dαf(t) =
1

Γ(n− α)

∫ t

0

(t− x)n−α−1 dnf(x)

dxn
dx, 0 ≤ t < b

for n = 3 and α = 2

D2f(t) =
1

Γ(3− 2)

∫ t

0

(t− x)3−2−1 d3f(x)

dx3
dx

for f(x) = x3, f ′(x) = 3x2, f ′′(x) = 6x, and f ′′′(x) = 6.

Thus

D2f(t) =
1

Γ(1)

∫ t

0

(t− x)0 6 dx

=

∫ t

0

(6) dx = 6t.

Note that Γ(1) = 1.

Example 3.6. Find the half derivative of f(x) = x3 using Caputo definition.

For n = 3 and α = 1
2
,

D
1
2f(t) =

1

Γ(3− 1
2
)

∫ t

0

(t− x)3− 1
2
−1 d3f(x)

dx3
dx.

From the previous example, we have f (3)(x) = f ′′′(x) = 6. Then, we have

D
1
2f(t) =

1

Γ
(

5
2

) ∫ t

0

(t− x)
3
2 6 dx

=
6

Γ
(

5
2

) ∫ t

0

(t− x)
3
2 dx.
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Using the properties of the Gamma function, the latter integral becomes

D
1
2f(t) =

6 · 2
5 Γ
(
2 + 1

2

) (t− x)
3
2

+1
∣∣∣t
0

=
12

5 · 3
4

Γ
(

1
2

)(−t)
5
2 =

8

15
√
π

(−t)
5
2 .

3.1.2 The Riemann-Liouville Fractional Differential Operator

Definition 3.1.3. Riemann-Liouville Fractional Derivative

Let f ∈ Cn[a, b], a ≥ 0, and, n− 1 < a ≤ n, then,

Dα
Lf(t) =

1

Γ(n− α)

∫ t

0

(t− x)n−α−1 f(x) dx a < t < b,

=
1

Γ(n− α)

dn

dtn

∫ t

0

f(x)

(t− x)α+n−1
dx.

(3.19)

Example 3.7. Find the half derivative of f(x) = x using the Riemann-Liouville definition.

From (3.19), we have

Dα
Lf(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− x)n−α−1 f(x) dx,

for n = 1 and α = 1
2
.

D
1
2
Lf(t) =

1

Γ(1− 1
2
)

d

dt

∫ t

0

(t− x)1− 1
2
−1 x dx.

Using simple substitution, we obtain

D
1
2
Lf(t) =

1

Γ(1
2
)

d

dt

(
4t

3
2

3

)

=
2
√
t√
π
.
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3.1.3 Properties for the Caputo and Riemann-Liouville Fraction

Differential Operators

Proposition: In general, the two operators, Riemann-Liouville and Caputo, do not coin-

cide, i.e.

Dαf(t) 6= Dα
Lf(t). (3.20)

1. Interpolation

Lemma 3.1.1. Let n − 1 < α ≤ n, n ∈ N, α ∈ R and f(t) be such that Dαf(t)

exists. Then, the following properties for the Caputo operator hold

lim
α→n

Dαf(t) = f (n)(t),

lim
α→n−1

Dαf(t) = f (n−1)(t)− f (n−1)(0).
(3.21)

Proof. In this proof, we use integration by parts.

Dαf(t) =
1

Γ(n− α)

∫ t

0

(t− x)n−α−1 d
nf(x)

dxn
dx

=
1

Γ(n− α)

∫ t

0

f (n)(x)

(t− x)α+1−n dx

=
1

Γ(n− α)

(
−f (n)(x)

(t− x)n−α

(n− α)

∣∣∣∣t
0

−
∫ t

0

−f (n+1)(x)
(t− x)n−α

(n− α)
dx

)

=
1

Γ(n− α + 1)

(
f (n)(0) tn−α +

∫ t

0

f (n+1)(x)(t− x)n−α dx

)
.

Now, by taking the limit as α→ n and α→ n− 1, respectively, it follows that,

lim
α→n

Dαf(t) = f (n)(0) + f (n)(x)
∣∣t
0

= f (n)(t), and

lim
α→n−1

Dαf(t) = f (n)(0) + f (n)(x)(t− x)
∣∣t
0
−
∫ t

0

(
−f (n)(x)

)
dx

= f (n−1)(x)
∣∣t
0

= fn(0)− fn(0) t+ f (n−1)(t)− f (n−1)(0).

Similarly, the Riemann-Liouville fractional differential operator has the following
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correspondence interpolation property:

limα→nD
α
Lf(t) = f (n)(t), and

limα→n−1D
α
Lf(t) = f (n−1)(t).

(3.22)

2. Linearity

Lemma 3.1.2. Let n− 1 < α ≤ n, n ∈ N, α, λ ∈ C and the functions f(t) and g(t)

be such that Dαf(t) and Dαg(t) exist. The Caputo fractional derivative is a linear

operator, i.e.

Dα(λ f(t) + g(t)) = λ Dαf(t) +Dαg(t). (3.23)

Proof. The linearity of these operators follow from the linearity of the integer order

derivatives by which they are defined.

The Riemann-Liouville operator also satisfies the following linearity property:

Dα
L(λ f(t) + g(t)) = λ Dα

Lf(t) +Dαg(t). (3.24)

3. Non-commutation

Lemma 3.1.3. Let n − 1 < α ≤ n,m, n ∈ N, α ∈ R and the function f(t) is such

that Dαf(t) exists. Then, in general,

DαDmf(t) = Dα+mf(t) 6= DmDαf(t). (3.25)

THE RIEMANN-LIOUVILLE OPERATOR IS ALSO NON-COMMUTATIVE AND STATIS-

TICS.

DαDmf(t) = Dα+mf(t) 6= DαDmf(t). (3.26)

3.2 Fractional Integration

In this section, we introduce the fractional integral, which is a generalization

of the n-tuple iterated integral to any real order. We start by expressing any nth iterated

integral as a single integral, using Cauchy’s formula for repeated integration.
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Theorem 3.2.1. (Cauchy formula for repeated integration)

Let f be some continuous function on the interval [a, b]. The nth repeated integral of f

based at a,

Jf(x) =

∫ x

a

f(t) dt, (3.27)

Jnf(x) =

∫ x

a

∫ t1

a

∫ t2

a

∫ t3

a

. . .

∫ tn−1

a

f(tn) dtn dtn−1 . . . dt1,

which is given by single integration

Jnf(x) = D−nf(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1 f(t) dt, t > 0, and n ∈ R. (3.28)

Proof. The proof is using induction argument. Considering the case n = 1, we have

(x− t)n−1 = (x− t)1−1 = (x− t)0 = 1.

Then ∫ x

a

f(t1) dt1 =
1

0!

∫ x

a

(x− t)0f(t) dt =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t) dt.

Thus, the statement holds for n = 1.

For n = 2, we have ∫ x

a

∫ t1

a

f(t2) dt2 dt1.

By switching the order of integration as follows, we obtain

Figure 3.2: Integration of order n = 2.
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∫ x

a

∫ x

t2

f(t2) dt1 dt2 =

∫ x

a

f(t2) (x− t2) dt2.

Since t2 is a dummy variable, the above integral can be written as follows∫ x

a

f(t)(x− t) dt =
1

(2− 1)!

∫ x

a

(x− t)2−1f(t) dt =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t) dt.

Thus, the statement also holds for n = 2.

Now suppose the statement holds for some arbitrary n. We will prove it for n + 1 by

switching the order of integration as follows:

Jn+1f(x) =

∫ x

a

∫ t1

a

∫ t2

a

∫ t3

a

. . .

∫ tn

a

f(tn+1) dtn+1 dtn . . . dt1

=
1

(n− 1)!

∫ x

a

∫ tn

a

(x− t)n−1 f(t) dt dtn

=
1

(n− 1)!

∫ x

a

∫ x

t

(x− t)n−1 f(t) dtn dt

=
1

n(n− 1)!

∫ x

a

(x− t)n f(t) dt

=
1

n!

∫ x

a

(x− t)n f(t) dt.

The result follows by induction.

In a natural way, one is led to extend the above formula from positive integer values of

the index to any positive real values by using the Gamma function. Indeed, noting that

(n − 1)! = Γ(n), and introducing the arbitrary positive real number α, one defines the

fractional Integral of order α > 0 as follows

Definition 3.2.1. Riemann-Liouville operator

Let f be a continuous function, 0 < α ≤ 1, and t, x ∈ R+. The fractional integral of order

α is defined as:

Jαf(x) = D−αf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t) dt. (3.29)

Example 3.8. Given f(x) = (x− a)β−1, f ind the value of Jαf(x).

By definition, we have,

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1(t− a)β−1 dt.
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Substituting t = a+ y(x− a) in the above integral, it reduces to

Jαf(x) =
Γ(β)

Γ(α + β)
(x− a)α+β−1, where β ∈ R+.

Thus,

Jαf(x) =
Γ(β)

Γ(α + β)
(x− a)α+β−1.

Basic properties of Fractional Integration

1. The zero rule

J0 f(t) = f(t), (3.30)

i.e., J0 = I , which is called the identity operator.

2. Linearity

Lemma 3.2.1. Let n − 1 < α ≤ n, C, K ∈ R , and let f and g be functions such

that their fractional derivatives and integrals exist. Then,

Jα(Cf(t) +Kg(t)) = CJαf(t) +KJαg(t). (3.31)

Proof. The linearity of these operators follows from the linearity of the integer order

derivatives and integrals by which they are defined.

Example 3.9. We know that

∫ x

0

(x− t)α−1dt =
tα

α
, when f(t) = 1.

Thus the fractional integral of order α of 1 is given by:

Jα 1 =
1

Γ(α)

∫ x

0

(x− t)α−1dt =
tα

αΓ(α)
=

tα

Γ(α + 1)
.

Hence, the nth fractional integral of order α of 1 is then given by:

Jαn 1 =
tαn

Γ(αn+ 1)
.
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Chapter 4: Laplace Decomposition Method (LDM)

4.1 Method Description

The Laplace Decomposition Method is a semi-analytical method, that is a combina-

tion of two strategies, Laplace transform and decomposition method. This method was

introduced by Khuri [39] and implemented by many others to solve differential equation

problems of different types (see for example [40, 41, 42, 43, 44, 45, 46, 47]). To describe

the method, consider the following general nonlinear equation:

Dα y + f(y) = g(x), where 1 < α ≤ 2, (4.1)

supplemented with the initial conditions

y(0) = a, y′(0) = b, (4.2)

or the boundary conditions

y(0) = c, y(1) = d, (4.3)

where a, b, c, d are real numbers and α lies between two consecutive integer numbers. The

strategy consists first of applying the Laplace transform integral operator (which is denoted

by L) on both of equation (4.1)

L[Dα y] + L[f(y)] = L[g(x)]. (4.4)

Applying lemma (2.4.2) for the Laplace transform of the fractional derivative, based on

the Caputo fractional derivative, we obtain

s2L[y]− sy(0)− y′(0)

s2−α + L[f(y)] = L[g(x)]. (4.5)

By substituting the initial conditions, given in (4.2), into (4.5), it follows that

s2L[y]− as− b
s2−α + L[f(y)] = L[g(x)]. (4.6)

Likewise, using the first boundary condition given in (4.3), while setting y′(0) = k, it

follows that
s2L[y]− cs− k

s2−α + L[f(y)] = L[g(x)]. (4.7)
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Eqs. (4.6) & (4.7) can be rearranged respectively as follows

L[y] =
a

s
+

b

s2
− 1

sα
L[f(y)] +

1

sα
L[g(x)], (4.8)

and

L[y] =
c

s
+

k

s2
− 1

sα
L[f(y)] +

1

sα
L[g(x)]. (4.9)

The decomposition iterative technique consists of seeking a solution as an infinite series

of the form

y =
∞∑
n=0

yn, (4.10)

or equivalently

y = y0 + y1 + y2 + y3 + y4 + ...., (4.11)

where the components yn will be computed recursively. More precisely, the decomposition

method assumes that the nonlinear term f(y) can be decomposed by an infinite series of

polynomials

f(y) =
∞∑
n=0

An, (4.12)

where An = An(y0, y1, y2, y3, .., yn) are the so-called Adomian polynomials and are de-

termined by the formula

An =
1

n!

dn

dλn

[
N

(
∞∑
i=0

λiyi

)]
λ=0

, n = 0, 1, 2, .... (4.13)

Without loss of generality, we will construct the iterative scheme for the nonlinear equation

(4.1) subject to the BCs (4.3). Substituting Eqs. (4.10) and (4.12) into equation (4.9)

results

L

[
∞∑
n=0

yn

]
=
c

s
+
k

s2
− 1

sα
L

[
∞∑
n=0

An

]
+

1

sα
L[g(x)]. (4.14)

Using the linearity of Laplace transform, we obtain
∞∑
n=0

L [yn] =
c

s
+
k

s2
− 1

sα

∞∑
n=0

L [An] +
1

sα
L[g(x)]. (4.15)

Therefore, the formal recurrence scheme is defined by

L[y0] =
k

s2
+

1

sα
L[g(x)],

L[y1] = − 1

sα
L [A0],

...

L[yn+1] = − 1

sα
L [An].

(4.16)
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In order to find the first iterate y0, the inverse Laplace transform was applied to the first

term in the algorithm (4.16):

y0 = L−1

[
k

s2
+

1

sα
L[g(x)]

]
,

y1 = L−1

[
− 1

sα
L [A0]

]
,

...

(4.17)

The higher iterates are found iteratively in a similar fashion. However, the approximate

solution has yet to satisfy the second boundary condition in (4.3), which was not used to

obtain the approximate solution. Applying this condition, namely setting y(0) = d, and

by solving the approximate results for the unknown constant k, we eventually obtain the

numerical solution.

Now, consider the nonlinear function f(y). Then, the infinite series produced by applying

the Taylor’s series expansion of f about the initial function y0 is given by

f(y) = f(y0) + f ′(y0)(y − y0) +
1

2!
f ′′(y0)(y − y0)2 +

1

3!
f ′′′(y0)(y − y0)3 + ... (4.18)

By substituting equation (4.11) into equation (4.18), we obtain

f(y) = f(y0) + f ′(y0)(y1 + y2 + ...) + 1
2!
f ′′(y0)(y1 + y2 + ...)2

+ 1
3!
f ′′′(y0)(y1 + y2 + ...)3 + ...

(4.19)

Now, we expand equation (4.19). In order to obtain Adomian polynomials, we need first

to reorder and rearrange the terms in such a way so that the sum of the subscripts of yi

terms add up to same numbers. Indeed, it is necessary to determine the order of each

term in (4.19), which in fact depends on both the subscripts and the y′ns exponents. For

example, y1 is of order 1; y2 is of order 2; y1
2 is of order 2; y2

2 is of order 4; y1
3 is of

order 3; y2
3 is of order 6; and so on. In general, it could be defined as ynk is of order kn.

In case a particular term includes the multiplication of y′ns components, then its order is

determined by computing the sum of the terms of the y′ns in each component. For instance,

y1
5y2

3 is of order 11 because (1)(5) + (2)(3) = 11.

As an outcome, of reordering the terms in the expansion (4.19) based on their order, we
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have

f(y) = f(y0) + f ′(y0)y1 + f ′(y0)y2 + 1
2!
f ′′(y0)y2

1 + f ′(y0)y3

+ 2
2!
f ′′(y0)y1y2 + 1

3!
f ′′′(y0)y1

3 + f ′(y0)y4 + 1
2!
f ′′(y0)y2

2

+ 2
2!
f ′′(y0)y1y3 + 3

3!
f ′′′(y0)y2

1y2 + 1
4!
f ′′′′(y0)y4

1 + f ′(y0)y4

+ 2
2!
f ′′(y0)y2y3 + 2

2!
f ′′(y0)y1y4 + 3

3!
f ′′′(y0)y1y

2
2

+ 3
3!
f ′′′(y0)y2

1y3 + 4
4!
f ′′′′(y0)y3

1y2 + 1
5!
f ′(y0)y5

1 + ...

(4.20)

The Adomain polynomial are constructed in a certain manner, so thatA1 involves all terms

of order 1 in the expansion (4.20); A2 involves all terms of order 2 in the expansion (4.20);

A3 involves all terms of order 3 in the expansion (4.20), and so on. Generally, An involves

all terms of order n in the expansion (4.20). Subsequently, the first eight terms of Adomian

polynomials are listed below:

A0 = f(y0),

A1 = y1 f
(1)(y0),

A2 = y2 f
(1)(y0) + 1

2!
y2

1 f
(2)(y0),

A3 = y3 f
(1)(y0) + y1y2 f

(2)(y0) + 1
3!
y3

1 f
(3)(y0),

A4 = y4 f
(1)(y0) + 1

2!
y2

2 f
(2)(y0) + y1y3 f

(2)(y0) + 1
2!
y2

1y2 f
(3)(y0) + 1

4!
y4

1 f
(4)(y0),

A5 = y5 f
(1)(y0) + y2y3 f

(2)(y0) + y1y4 f
(2)(y0) + 1

2!
y1y

2
2 f

(3)(y0)

+ 1
2!
y2

1y3 f
(3)(y0) + 1

3!
y3

1y2 f
(4)(y0) + 1

5!
y5

1 f
(5)(y0),

A6 = y6 f
(1)(y0) + y1y5 f

(2)(y0) + y2y4 f
(2)(y0) + 1

3!
y3

1y3 f
(4)(y0) + 1

4!
y4

1y2 f
(5)(y0)

+ 1
2!
y2

1y4 f
(3)(y0) + 1

3!
y3

2 f
(3)(y0) + 1

6!
y6

1 f
(6)(y0),

A7 = y7 f
(1)(y0)+y3y4 f

(2)(y0)+y2y5 f
(2)(y0)+y1y6 f

(2)(y0)+1
2
y2

2y3 f
(3)(y0)+1

2
y1y

2
3 f

(3)(y0)

+ 1
2
y2

1y2y3 f
(4)(y0) + 1

6
y4y

3
1 f

(4)(y0) + y1y2y4 f
(3)(y0) + 1

2
y2

1y5 f
(3)(y0) + 1

6
y3

2y1 f
(4)(y0)

+ 1
12
y3

1y
2
2 f

(5)(y0) + 1
24
y4

1y3 f
(5)(y0) + 1

6!
y5

1y2 f
(6)(y0) + 1

7!
y7

1 f
(7)(y0).

In the subsequent sections, the Laplace decomposition method will be used to approximate

the solution of several interesting linear and nonlinear well-known problems with integer

and fractional order derivatives.
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4.2 Patching Algorithm

In this section, we present a patching approach which is based on a domain decompo-

sition method (DDM) scheme. The proposed strategy aims to minimize and/or overcome

the setback resulting from the application of the Laplace decomposition method. Usually,

the LDM results in a numerical series solution that is highly accurate locally, in our case,

in the neighborhood of the left endpoint of the interval. The only disadvantage of this

approach is that the error deteriorates when we move away from the left endpoint towards

the right endpoint of the interval. This drawback can be prevented by splitting the interval

into a union of smaller subintervals and then applying the LDM to each of them [48].

The idea of this domain decomposition is to partition the large universal computational

domain [0, 1] into two or more non-overlapping sub-domains. In this study, we split the

domain [0, 1] into two non-overlapping sub-domains [0, k]∪ [k, 1]. The LDM is applied on

the first sub-domain [0, k] while the decomposition strategy is performed on the outer sub-

domain [k, 1], making use of the LDM solution to assess the initial conditions needed at

x = k, namely y(k) and/or y′(k). More precisely, the LDM gives a series solution defined

on [0, 1], that is anticipated to converge to the exact solution. However, this approximate

solution is used to estimate the value(s) of y(k) and/or y′(k) which will be used as repre-

senting the new initial condition(s) on the interval [k, 1]. With these initial conditions, the

decomposition method is applied in order to obtain an approximate solution on [k, 1].

The major aim is to control the accuracy of the numerical solution that is acquired by

Adomian decomposition method. Therefore, the break point k is selected in a way to

guarantee that the computational value of the boundary/or initial condition(s) at x = k

stabilizes. More particularly, the turning point x = k is to be chosen in a way to satisfy

the condition:

|yn(k)− yn−1(k)| < Tolerance, (4.21)

where yn is the nth iterate obtained by LDM.

The solution to problem (4.1)-(4.2) on [k, 1] is constructed as follows. Without loss of

generality we will show the solution when α = 2. Operating with the integral operator

L−1 defined by

L−1[.] =

∫ x

k

∫ x

k

[.] dz dz (4.22)
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to both side of equation (4.1) we obtain

y(x)− y(k)− y′(k)(x− k) = −L−1[f(y)] + L−1[g(x)]. (4.23)

By expanding the nonlinear term f(y) in terms of Adomian polynomial we have:

y(x) =
∞∑
n=0

yn(s) = y(k) + y′(k)(x− k) + L−1[g(x)]− L−1

[
∞∑
n=0

An

]
. (4.24)

This produces the following iterative scheme:

y0 = y(k) + y′(k)(x− k) + L−1[g(x)],

y1 = −L−1[A0],

...

yn = −L−1[An−1].

(4.25)

The solution for problem (4.1)-(4.3) is constructed in a similar fashion.

4.3 Numerical Results

In this section, we apply the Laplace decomposition method to well-known differential

equation problems and obtain the numerical solution in order to illustrate the efficiency and

applicability of the iterative LDM. Moreover, we implement the proposed method for the

fractional-order nonlinear /and linear initial-value problems (IVPs) and boundary-value

problems (BVPs). The solution for the integer-order will be also included.

4.3.1 Bratu’s Problem
The classical and fractional Bratu’s problem have gained the attention of researchers

due to its simplicity and its appearance in variety physical and engineering models. Several

methods for approximating the solution of Bratu’s problem are realized. For instance,

Reproducing Kernel Hilbert space Method (RKM) [49, 50], Bezier curve method (BCM)

[51], homotopy perturbation method [52] and many others. Here, we use the LDM to

approximate the solution of the fractional-order nonlinear initial-value problems (IVPs)

and boundary-value problems (BVPs) for Bratu equation.

Example 4.1. Consider the BVP:

−Dαy = λey, for 1 < α ≤ 2, (4.26)

and subject to

y(0) = 0, y(1) = 0. (4.27)

51



Applying the Laplace transform integral operator to both sides of equation (4.26) and using

the formula of Laplace transform of Caputo fractional derivative gives

s2L[y]− sy(0)− y′(0)

s2−α = −λL[ey]. (4.28)

Using the first boundary condition in (4.27), while setting y′(0) = k, implies

L[y] =
k

s2
− λ

sα
L[ey]. (4.29)

It is worth nothing that the solution has yet to satisfy the second boundary condition in

(4.27), namely y(1) = 0. Using Adomian polynomial representation for the nonlinear

term ey, gives
∞∑
n=0

L [yn] =
k

s2
− λ

sα

∞∑
n=0

L [An] . (4.30)

This, in turn, gives the first few polynomials as follows:

L[y0] =
k

s2
,

L[y1] = − λ

sα
L
[
ey0
]
,

L[y2] = − λ

sα
L
[
y1 e

y0
]
,

L[y3] = − λ

sα
L
[(
y2 +

1

2
y2

1

)
ey0

]
,

L[y4] = − λ

sα
L
[(
y3 + y1y2 +

1

3!
y3

1

)
ey0

]
,

...

(4.31)

Next, we apply the Laplace inverse to both sides of equation (4.31) in order to obtain

y0, y1, y2, ...

This problem has been solved, with n = 10 and λ = 1, α = 1.5, to obtain the approximate

value of the solution yapprox(x) =
10∑
n=0

yn. The initial iterate is set first to be y0 = kx, then

the second condition in (4.27), which is y(1) = 0, is used to estimate the value of k using

yapprox. This yields

y0 = 0.78420149988749964837x.
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Table 4.1: Approximate solution and residual error for Example 4.1 obtained by LDM with λ = 1 and

α = 1.5.

X LDM LDM Residual error

0.1 0.054045402441250074909948640076 1.342504612969271373019592397729(−12)

0.2 0.086627434257815044103627691913 2.918390298286447479829168873545(−9)

0.3 0.104448147599214043657045972420 2.804210905569436814239292113004(−7)

0.4 0.110158588199913254607022754743 6.241959162779448972411585474371(−6)

0.5 0.105562671299589656476907597702 6.668787164915876596239057649025(−5)

0.6 0.092113360128763033088628181148 4.544539728380399488829563127091(−4)

0.7 0.071077576093815492486804716186 2.282507129632693750574386788130(−3)

0.8 0.043638793285588149720232670651 9.190490983189129666434538770463(−3)

0.9 0.011096054918988845652523532176 3.129403202804738538774775806976(−2)

1.0 0.024488479799988564520678527558 9.342081180929936198172430954584(−2)

Figure 4.1: The numerical solution of Example 4.1 for different values of α ranging between

1 and 2.

Table 4.1 presents the numerical solution along with the residual error. It can be seen

that the LDM is highly accurate close to x = 0, but the error deteriorates as we approach

x = 1. Figure 4.1 depicts the numerical solution for different values of α ranging between

1 and 2. As noticed from the graph that as the value of α increases to 2, the corresponding
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approximate solution of fractional order starts decaying, while for α = 1, the graph attains

the greatest approximate solution.

Example 4.2. Consider the IVP:

Dαy − e2y = 0, for 1 < α ≤ 2, (4.32)

y(0) = 0, y′(0) = 0. (4.33)

By applying the formulas of fractional derivative, operating with Laplace transform to both

sides of equation (4.32), and substituting the initial conditions given in (4.33), we obtain

L[y] = − λ

sα
L[e2y]. (4.34)

Using Adomian polynomial representation to decompose the nonlinear term, we have the

first few polynomials are listed below

L[y0] = 0,

L[y1] = − λ

sα
L
[
e2y0
]
,

L[y2] = − λ

sα
L
[
2y1e

2y0
]
,

L[y3] = − λ

sα
L
[
(2y2 + 2y3

1) e2y0
]
,

L[y4] = − λ

sα
L
[(

2y3 + 4y1y2 +
4

3
y3

1

)
e2y0

]
,

....

(4.35)

In this problem, we set n = 12 and λ = −1, α = 1.9 to obtain yapprox(x). The first few

iterates are found to be:

y0 = 0,

y1 = 0.54723901807770337612x
19
10 ,

y2 = 0.11212106036245137092x
19
5 ,

y3 = 0.035519016535716603638x
57
10 .

(4.36)

The numerical results for LDM along with a comparison with the (RKM) [49] and Bezier

Curve Method (BCM) [51] are reported in Table 4.2 for various values of x ranging be-

tween 0 and 1. From the obtained results, we can observe that the LDM provides better
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results than the approximate solution obtained by BCM and RKM. In addition, the resid-

ual error resulting from the LDM is included. However, the numerical experiment demon-

strates that the LDM is highly accurate locally but worsens as we move close to x = 1.

This problem could be resolved by applying the DDM strategy that is outlined in section

4.2 to overcome this deficiency.

Table 4.2: Comparison between the approximate solution for Example 4.2 obtained by LDM and that of

BCM and RKM with λ = −1 and α = 1.9.

X LDM LDM Residual error RKM BCM

0.1 0.00690717224498257596 7.11180(−14) 6.5411(−3) 0.006541208907

0.2 0.02596315507415622557 1.92733160600(−10) 2.5712(−2) 0.02335095133

0.3 0.05674700322267323603 1.969676647640(−8) 5.6625(−2) 0.04844045146

0.4 0.09961224904499771618 5.266897218715(−7) 9.9615(−2) 0.08222901871

0.5 0.15543544423034500263 6.766283602000(−6) 1.5563(−1) 0.1268340698

0.6 0.22566536573782200661 5.482019082231(−5) 2.2552(−1) 0.1853611509

0.7 0.31250355464795531555 3.249249666093(−4) 3.1162(−1) 0.2611939599

0.8 0.41925490500596343556 1.552559823337(−3) 4.1889(−1) 0.3572843682

0.9 0.55098410042474816513 6.509670720713(−3) 5.5255(−1) 0.4754424432

1.0 0.71580807838463783364 2.666111772373(−2) 7.1494(−1) 0.6156264703

In the following example, we consider two cases for an IVP of Bratu type: The first case

is direct implementation of LDM, while in the second case the patching approach will be

performed to overcome the deterioration of the error as we move away from the origin.

Example 4.3. Consider the following IVP:

Dαy − 2ey = 0, for 1 < α ≤ 2, (4.37)

subject to the initial conditions

y(0) = 0, y′(0) = 0. (4.38)

Case 1.

The iterative LDM has been applied successfully to this latter problem with n = 12 and

λ = −2, α = 1.9 in order to obtain yapprox(x). The first few iterates that were computed
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numerically are given by

y0 = 0,

y1 = 1.094478036x
19
10 ,

y2 = 0.22424212072490274185x
19
5 ,

y3 = 0.071038033071433207284x
57
10 .

(4.39)

The approximate solution acquired by the LDM is compared with that resulting from the

RKM and BCM strategies. Clearly, the outcome of our approach is better and more pre-

cise. The comparisons between the three techniques are reported in Table 4.3. The table

also contains the residual error generated by the LDM.

Table 4.3: Comparison between the approximate solution for Example 4.3 case 1 obtained by LDM and that

of BCM and RKM with λ = −2 and α = 1.9.

X LDM LDM Residual error RKM BCM

0.1 0.0138143444899651521 1.399905(−13) 1.3082(−2) 0.01031561203

0.2 0.0519263101483149530 3.783342520(−10) 5.1424(−2) 0.04026954618

0.3 0.1134940064459998643 3.85011037823(−8) 1.1325(−1) 0.09121393595

0.4 0.1992244981262296286 1.02388590844(−6) 1.9923(−1) 0.1643473163

0.5 0.3108708893132952162 1.30683094490(−5) 3.1127(−1) 0.2611684808

0.6 0.4513307430618472894 1.05102884069(−4) 4.5103(−1) 0.3839303388

0.7 0.6250072167932513407 6.17946383914(−4) 6.2324(−1) 0.5360937724

0.8 0.8385105659972154615 2.927506061653(−3) 8.3787(−1) 0.7228144938

0.9 1.1019725383523112885 1.217824756636(−2) 1.1051 0.9512319022

1.0 1.4316376658611168728 4.973428828397(−2) 1.4299 1.231252941

As noticed from the three tables, the main disadvantage of the LDM is that the error wors-

ens as we move away from the origin towards x = 1. We apply the patching approach

based on domain decomposition method (DDM) to resolve this shortcoming as detailed in

Section 4.2.

Case 2.

First, the LDM was applied to the IVP (4.37) subject to the initial conditions given in(4.38)
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for λ = −2 and α = 2 on [0, 1] using n = 12. The results are recorded in the first column

of Table 4. The exact solution for this IVP is yexact(x) = −2 ln(cosx).

Using the domain decomposition method (DDM), we divide the domain [0, 1] into two

non-overlapping sub-domains [0, 0.5] and [0.5, 1]. Second, the LDM was applied on the

subinterval [0, 0.5] using n = 12. Then, the approximate solution yapprox =
12∑
n=1

yn was

utilized to estimate the values of initial conditions y(0.5) and y′(0.5), which are found to

be
y(0.5) = 0.2611684755465659049,

y′(0.5) = 1.0926048300106996921.
(4.40)

The DD iterative scheme given in (4.25) is applied to (4.37) subject to the initial conditions

(4.38). This leads to the absolute error given in the second column of Table 4.4. It is clear

that the error has been improved as we move to the right end of the interval. Figure 4.2

shows the numerical solution obtained by LDM for α = 2.

Table 4.4: Comparison between the absolute error resulting from the LDM before and after applying the

patching approach for Example 4.3 case 2 with λ = −2 and α = 2.

X Absolute Error using LDM Absolute Error using Patching Strategy

0.1 8.62(−19) 8.62(−19)

0.2 1.428654800(−14) 1.428654800(−14)

0.3 4.173053689(−12) 4.173053689(−12)

0.4 2.3445211341(−10) 2.3445211341(−10)

0.5 5.3408765676(−9) 5.3408791336(−9)

0.6 6.8801690916(−8) 2.0449656739(−8)

0.7 5.9900039160(−7) 3.6173340501(−8)

0.8 3.9262828323(−6) 5.3245979901(−8)

0.9 2.0845224959(−5) 8.0552071270(−8)

1.0 9.5015072808(−5) 4.2287454192(−7)
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Figure 4.2: The numerical solution of Example 4.3 case 2 for α = 2.

4.3.2 Lienard’s Equation
The Lienard equation is a second order differential equation, named after the scientist

French physicist Alfred-Marie Lienard. Various methods are utilized to obtain the solution

of Lienard’s equation, such as differential transform method (DTM) [53], hybrid heuristic

computation [54], residual power series method [55], variational iteration method (VIM)

[56] and many others. Here, we consider the generalized form of Lienard’s equation, given

by:

Dαy + λy + µy3 + νy5 = 0, for 1 < α ≤ 2, (4.41)

to obtain the approximate solution for the standard Lienard’s order as well as the fractional

order, for a specific parameters chosen in the model equation, via the iterative LDM.

Example 4.4.

Case 1. In this case, we consider the standard Lienard’s equation subject to the initial

conditions

y(0) = c1 =

√
−2λ

µ
, and y′(0) = c2 = − λ

√
−λ

µ
√
−2λ
µ

. (4.42)

The exact solution of the Lienard’s equation of order α = 2, is given by:

y(x) =

√
−2λ

µ
(1 + tanh(

√
−λx)). (4.43)

Applying the Laplace transform integral operator with the usage of Caputo fractional
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derivative and substituting the initial conditions given in (4.41), we get

L[y] =

√
−2λ
µ

s(1 + λ
sα

)
+

− λ
√
−λ

µ
√
−2λ
µ

s2(1 + λ
sα

)
− µ L[y3]

sα(1 + λ
sα

)
− ν L[y5]

sα(1 + λ
sα

)
. (4.44)

Employing Adomian polynomial representation for the nonlinear terms y3 and y5 with the

usage of the linearity property of Laplace transform we have

∞∑
n=0

L [yn] =

√
−2λ
µ

s(1 + λ
sα

)
+

− λ
√
−λ

µ
√
−2λ
µ

s2(1 + λ
sα

)
− µ

sα(1 + λ
sα

)

∞∑
n=0

L [An]

− ν

sα(1 + λ
sα

)

∞∑
n=0

L [Bn].

(4.45)

The first few iterates of the iterative algorithm are given by:

L[y0] =

√
−2λ
µ

s(1 + λ
sα

)
+

− λ
√
−λ

µ
√
−2λ
µ

s2(1 + λ
sα

)
,

L[y1] =
µ

sα(1 + λ
sα

)
L
[
y3

0

]
+

µ

sα(1 + λ
sα

)
L
[
y5

0

]
,

L[y1] =
µ

sα(1 + λ
sα

)
L
[
3y2

0y1

]
+

µ

sα(1 + λ
sα

)
L
[
5y5

0y1

]
,

...

(4.46)

In order to find the first iterate y0 the inverse Laplace transform is applied to the first term in

the algorithm (4.46). The higher iterates are found iteratively in similar fashion iteratively.

The LDM has been applied to the standard Lienard’s equation with n = 10, λ = −1, ν =

−3, µ = 4, andα = 2 to obtain yapprox(x). The first few terms are found to be:

y0 = 0.70710678118654752440 cosh(x) + 0.35355339059327376220 sinh(x),

y1 = −0.050150029280930677685 cosh(3x)− 0.046567884332292772147 sinh(3x)

+ 0.0052653214907689696004 cosh(5x) + 0.0052221631178938141152 sinh(5x)

− 2.6041666666666666667× 10−22 cosh(x)(5.8468891969362648419× 1020x

− 1.7235727791422095904× 1020)− 4.3402777777777777778× 10−22 sinh(x)

(7.0162670363235178110× 1020x− 6.1253124920284679299× 1020).

(4.47)

In the following table, we consider the comparison between the numerical solution using

LDM with the fractional homotopy analysis transform method (FHATM) solution [57].
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Table 4.5: Comparison between the LDM and the FHATM for Example 4.4 case 1 with λ = −1, µ = 4, ν =

−3, and α = 2.

X Exact LDM Err LDM FHATM Err FHATM

0.00 0.7071067811 0.70710678118654752436 1.0(-20) 0.7071067810 0

0.02 0.7141419094 0.71414190948295806186 3.0(-20) 0.7141419094 1.8669(-6)

0.04 0.7211028637 0.72110286378267961029 9.0(-20) 0.7211028634 6.2706(-6)

0.06 0.7279862991 0.72798629915993044796 5.0(-20) 0.7279862988 4.94502(-5)

0.08 0.7347890068 0.73478900682819532816 3.5(-19) 0.7347890065 1.161249(-4)

0.10 0.7415079212 0.74150792127426251882 4.90(-18) 0.7415079207 2.24737(-4)

As seen in Table 4.5, the numerical results achieved by the LDM yield better numerical

values that converge relatively faster than the approximate solution obtained by FHATM.

The approximate solutions using the LDM [58] with a comparison with the Hybrid Genetic

Algorithm [54] are given in Table 4.6. Obviously, the absolute errors confirm that our

strategy gives better results and is more accurate. Figure 4.3 depicts the numerical solution

obtained by LDM for α = 2.

Figure 4.3: The numerical solution of Example 4.4 case 1 for α = 2.
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Table 4.6: Comparison between the proposed LDM and that of Hybrid Genetic Algorithm (HGA) for Ex-

ample 4.4 case 1 with λ = −1, µ = 4, ν = −3, and α = 2.

x Exact LDM Err LDM IPA Err IPA

0.1 0.7415079212 0.7415079212 4.936043(−18) 0.74150168 6.24(−6)

0.2 0.7737490937 0.7737490937 8.270675(−14) 0.77374349 5.60(−6)

0.3 0.8035274147 0.8035274147 2.392399(−11) 0.80352226 5.15(−6)

0.4 0.8306470255 0.8306470242 1.334015(−09) 0.83064195 5.08(−6)

0.5 0.8550196364 0.8550196011 3.525332(−08) 0.85501464 5.00(−6)

0.6 0.8766554531 0.8766546785 7.745691(−07) 0.87665085 4.60(−6)

0.7 0.8956471897 0.8956317811 1.540863(−05) 0.89564323 3.96(−6)

0.8 0.9121504180 0.9119205555 2.298624(−04) 0.91214703 3.39(−6)

0.9 0.9263632846 0.9238055088 2.557775(−03) 0.92636013 3.15(−6)

1.0 0.9385078997 0.9073294623 3.117843(−02) 0.93850472 3.18(−6)

Table 4.6 shows that the absolute error resulting from our technique deteriorates as we

move toward x = 1.However, we can apply the patching algorithm outlined in Section 4.2

to overcome this deficiency. First, the LDM was applied to the latter problem (4.41) using

the initial conditions (4.42) with λ = −1, µ = 4, ν = −3, and α = 2 on [0, 1] using n =

10. By using the domain decomposition method (DDM) technique, we split the domain

[0, 1] into two non-overlapping sub-domains [0, 0.5] and [0.5, 1]. Second, the LDM was

applied on the subinterval [0,0.5] using n = 10; the approximate solution yapprox =
10∑
n=1

yn

was used to estimate the values of y(0.5) and y′(0.5) which are used to update the initial

conditions on the subinterval [0.5, 1] and are found to be

y(0.5) = 0.604590158018406373737148910584
√

2,

y′(0.5) = 0.162598565772853188570167490514
√

2.
(4.48)

The DDM iterative method is finally applied successfully to the Lienard’s equation (4.41)

subject to the updated initial conditions given in (4.48). Table 4.7 presents the comparison

between the absolute error before and after applying the patching strategy [58]. It is clear

the error has been improvement as we move to the right end of the interval. By subdividing

the interval to more than two sub-intervals, further improvement can be achieved.
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Table 4.7: Comparison between the absolute errors resulting from the LDM before and after applying the

patching approach for Example 4.4 case 1 with λ = −1, µ = 4, ν = −3, and α = 2.

X Absolute Error using LDM Absolute Error using Patching Strategy

0.0 4.0(−20) 4.0(−20)

0.1 4.936043004823(−18) 4.936043004823(−18)

0.2 8.270675938781(−14) 8.270675938781(−14)

0.3 2.392399608248(−11) 2.392399608248(−11)

0.4 1.334015014125(−09) 1.334015014125(−09)

0.5 3.525332072970(−08) 3.525332072970(−08)

0.6 7.745691949085(−07) 1.453375334519(−07)

0.7 1.540863151286(−05) 2.564200239815(−07)

0.8 2.298624430588(−04) 3.702046024846(−07)

0.9 2.557775812591(−03) 4.892503795428(−07)

1.0 3.117843742068(−02) 6.172185576795(−07)

Case 2.

Here, we consider the Lienard’s equation (4.41) for fractional order with n = 10. The

problem has been solved using LDM for λ = −1, µ = 4, ν = −3, andα = 1.25, with

the initial conditions given in (4.48).

The numerical results are reported in Table 4.8 [58]. Moreover, for this case ( fractional

case ), the analytical solution is unknown. Therefore, we will examine the accuracy by

finding the residual error. The first two iterates using the iterative method are found to be:

y0 = 0.70710678118654752440 + 0.35355339059327376220x,

y1 = 5.9166088222334158263× 10−25x5/4(2.9092393283103669576× 1021x5

+ 3.6365491603879586970× 1022x4 + 1.4000714267493640983× 1023x3

+ 1.0818733752154177123× 1023x2 − 2.9300737245417563039× 1023x

− 2.6370663520875806738× 1023).

(4.49)
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Table 4.8: Approximate solution for Example 4.4 case 2 obtained by LDM and its residual error with

λ = −1, µ = 4, ν = −3, and α = 1.25.

X LDM LDM Residual Error

0.0 0.707106781186547524400844362105 0.0

0.1 0.732958139553049454121768629713 2.62210854546515428362(−10)

0.2 0.753822575338418152757227413567 5.42662333027240839556(−8)

0.3 0.771424594859425817708345576845 1.49640118381205435781(−6)

0.4 0.786421667445439116352391815243 2.22656677145558000110(−5)

0.5 0.799262368176075205362685044168 2.23752615849312568499(−4)

0.6 0.810270324942293925996382426007 1.50301302631548190917(−3)

0.7 0.819595130163062819432724338259 7.98658781229298206948(−3)

0.8 0.826755751633567809111209047446 4.68943082880602411792(−2)

0.9 0.827555254203689356410501366571 2.65540397855468943864(−1)

1.0 0.806516855152622440713257122053 7.41785292637895536757(−1)

Table 4.9 provides an approximate solution for various values of α. Figure 4.4 depicts

the numerical solution obtained by LDM for various values of α.

Figure 4.4: The numerical solution of Example 4.4 case 2 for various values of α.
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Table 4.9: Approximate solution for Example 4.4 case 2 obtained by LDM [58] and its residual error with

λ = −1, µ = 4, ν = −3, and α = 1.5.

X LDM for α = 1.5 LDM for α = 1.75

0.0 0.70710678118654752440 0.70710678118654752440

0.1 0.73788820230199637066 0.74034205018394961825

0.2 0.76401255438945728450 0.77020307329868743576

0.3 0.78648155743991699586 0.79685603341329815005

0.4 0.80574450957846447132 0.82038653995069625368

0.5 0.82216661191334990764 0.84093157196385339128

0.6 0.83607224394895173241 0.85867696610376466621

0.7 0.84774393686739328929 0.87383843552092334391

0.8 0.85739545656770376000 0.88664046808724416370

0.9 0.86506456243103595976 0.89729312886882853304

1.0 0.87017349345503663330 0.90595348328151955880

4.3.3 Boundary Value Problems
In this section, we apply the LDM to approximate the solution for various fractional

boundary value problems (FBVP). In the following, we consider several examples to

demonstrate and illustrate the technique and to confirm its applicability and performance.

Example 4.5. Consider the following inhomogeneous linear fractional differential equa-

tion

Dαy(x) + cy(x) = g(x), x ∈ [0, 1], (4.50)

and subject to the boundary conditions

y(0) = 0, y(1) =
1

Γ(α + 2)
, (4.51)

where 1 < α ≤ 2, c ∈ R and g(x) = x+
cxα+1

Γ(α + 2)
.

Applying the Laplace transform integral operator to both sides of the equation and using

the Caputo fractional derivative gives:

s2L[y]− sy(0)− y′(0)

s2−α = −cL[y] + L[g(x)]. (4.52)
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Using the first BC in (4.51), while setting y′(0) = k, and after simplifying the results we

get

L[y] =
k

s2
− c

sα
L[y] +

1

sα
L[g(x)]. (4.53)

Now, we use the decomposition series to represent the solution y as an infinite series,

namely,

y =
∞∑
n=0

yn = y0 + y1 + y2 + y3 + .... (4.54)

Based on substituting equation (4.54) into (4.53) and using the linearity of Laplace trans-

form, results in:

∞∑
n=0

L [yn] =
k

s2
− c

sα

∞∑
n=0

L [An] +
1

sα
L[g(x)], (4.55)

where the An′s are the Adomian polynomials. Based on matching both sides of the latter

equation, leads to the following recursive relation

y0 = kx +
1

sα
L−1 [L(g(x))],

y1 = − c

sα
L−1 [L(y0)],

...

yn+1 = − c

sα
L−1 [L(yn)] .

(4.56)

The exact solution of this fractional boundary value problem is yexact(x) =
xα+1

Γ(α + 1)
. We

use n = 10, c = 3
57
, and α = 1.2, to obtain the approximate solution yapprox(x) =

10∑
n=0

yn,

where the second boundary condition in (6.46) is used to estimate the value of the parame-

ter k which appears in the numerical solution yapprox. The result of the first iterate is given

by:

y0 = 2.0438238157441767468 × 10−19x+ 0.41254712918876375296 × x11/5

+ 0.0051924871829667351270 × x17/5,

(4.57)

where the value of the parameter k was found to be

k = 2.0438238157441767468 × 10−19.

In the following table, the numerical solution and the absolute error using LDM [59] to-

gether with a comparison with the Haar wavelet method (HWM) [60], are reported.
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Table 4.10: Comparison between the approximate solution obtained by LDM and HWM for Example 4.5,

with c = 3
57 and α = 1.2.

x Exact LDM LDM Abs Err HWM Abs Err

0.1 0.002602996411058695 0.00260299641105869600 2.0(−20) 1.53063(-6)

0.2 0.011960230781785240 0.01196023078178524013 4.1(−20) 1.52699(-7)

0.3 0.029183698484675718 0.02918369848467571860 6.1(−20) 8.07661(-7)

0.4 0.054954789697686429 0.05495478969768642908 8.1(−20) 6.31371(-7)

0.5 0.089785783925369295 0.08978578392536929557 1.0(−19) 5.19845(-7)

0.6 0.134093065768305844 0.13409306576830584463 1.2(−19) 1.82879(-6)

0.7 0.188230179915200837 0.18823017991520083791 1.4(−19) 2.43150(-6)

0.8 0.252505906099761630 0.25250590609976163106 1.6(−19) 3.11752(-6)

0.9 0.327195325212939288 0.32719532521293928837 1.8(−19) 3.96605(-6)

Figure 4.5: The numerical solution of Example 4.5 for values of α ranging between 1 and 2.

Table 4.10 shows the comparison of the approximate solution obtained by our method

(LDM) and that by HWM. Obviously, we can see that our scheme yields better and more

accurate results. In order to approximate the solution using LDM, only 10 iterations were

needed, while 32 iterations were required to estimate the solution using HWM with appro-

priate precision. Figure 4.5 shows the solution for different α values. It is obvious from

the graph that as the value of α increases to 2, the corresponding approximate solution of
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fractional order starts decaying.

Example 4.6. Consider the following fractional boundary value problem:

Dαy(x) + cy(x) = g(x), 1 < α ≤ 2, (4.58)

which complimented with the following boundary conditions

y(0) = 0, y(1) = − 1

40
. (4.59)

By using the formulas on Laplace transform of Caputo fractional derivative and operating

with Laplace transform on both sides of equation (4.58) by using the first BC given in

(4.59), while setting y′(0) = k, we get

L[y] =
k

s2
− c

sα
L[y] +

1

sα
L[g(x)]. (4.60)

The Laplace transform expresses the solution y as an infinite series solution of the form:

y =
∞∑
n=0

yn = y0 + y1 + y2 + y3 + ...., (4.61)

By substituting equation (4.61) into (4.60) and using the linearity of Laplace transform,

we get:
∞∑
n=0

L [yn] =
k

s2
− c

sα

∞∑
n=0

L [An] +
1

sα
L[g(x)], (4.62)

where the An′s are the Adomian polynomials. Matching both sides of the equation (4.62)

the components of y can be elegantly determined by utilizing the iterative relation:

y0 = kx +
1

sα
L−1 [L(g(x))],

y1 = − c

sα
L−1 [L(y0)],

...

yn+1 = − c

sα
L−1 [L(yn)] .

(4.63)

We find the approximate solution yapprox(x) =
7∑

n=0

yn, where n = 7, with c = e−3π
√
π
, α =

3/2, and

g(x) =
−4144x

3
2 + 5120x

7
2 + (280x5 − 518x3 + 231x2)x−3π + 924

√
x

280
√
π

.
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The exact solution for this problem is given by yexact(x) =

(
x3 − 37x

20
+

33

40

)
x2. The

second boundary condition in (4.59) has been used to determine the value of k using

yapprox. This yields

y0 = 3.4998165058029539531 10−46 x+ 6.458559926441033085 10−6 x7/2

− 9.6552209001340696620 10−6 x9/2 + 2.9197417199422626081 10−6 x13/2

+ 0.825x2 − 1.85x3 + x5,

(4.64)

where k are found to be

k = 3.49981650580295395310077190090986 × 10−46.

The numerical results using the LDM [59] and the absolute errors are recorded in Table

4.11 with a comparison with the HWM [60] for various values of x ∈ [0, 1].

Figure 4.6: The numerical solution of Example 4.6 for α = 1.5.
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Table 4.11: Comparison between the absolute errors for Example 4.6 determined by LDM and HWM for

α = 3
2 .

x Exact LDM LDM Abs Err HWM Abs Err

0.1 0.00641000000 0.00641000000 0.0 2.41789(-10)

0.2 0.01852000000 0.01852000000 0.0 3.59522(-10)

0.3 0.02673000000 0.02673000000 0.0 8.06354(-10)

0.4 0.02384000000 0.02384000000 0.0 6.64016(-10)

0.5 0.00625000000 0.00625000000 0.0 6.69882(-10)

0.6 −0.024840000 −0.024840000 0.0 1.41570(-9)

0.7 −0.062230000 −0.062230000 0.0 7.94582(-10)

0.8 −0.091520000 −0.091520000 0.0 8.23084(-10)

0.9 −0.089910000 −0.089910000 0.0 5.19118(-10)

Table 4.11 confirms that the LDM is rapidly convergent using only few iterates. In this

example, we used 7 iterations to achieve a highly accurate solution while for HWM, 256

iterations were used to produce even less accurate results. Figure 4.6 depicts the numerical

solution of Example 4.6 for α = 1.5.

Example 4.7. Consider the following multi–term BVP with variable coefficients:

Dαy(x) + φ(x)Dβy(x) + ψ(x)y(x) = g(x), (4.65)

y(0) = 0, y(1) = 0, (4.66)

where 1 < α ≤ 2, 0 < β ≤ 1.

By applying the Laplace transform integral operator to both sides of equation (4.65) and

using the formulas on Laplace transform of Caputo fractional derivative, we get

s2L[y]− sy(0)− y′(0)

s2−α = −L[φ(x)Dβy] − L[ψ(x)y] + L[g(x)]. (4.67)

Using the first boundary condition given in (4.66) while setting y′(0) = k, results

L[y] =
k

s2
− 1

sα
L[φ(x)Dβy] − 1

sα
L[ψ(x)y] +

1

sα
L[g(x)]. (4.68)

Using the decomposition series for y, gives:

∞∑
n=0

L [yn] =
k

s2
− 1

sα

∞∑
n=0

L
[
φ(x)DβAn

]
− 1

sα

∞∑
n=0

L [ψ(x)Bn] +
1

sα
L[g(x)]. (4.69)
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where theAn′s, Bn
′s are the Adomian polynomials for φ(x), ψ(x), respectively. Matching

both sides of the last equation leads to the iterative relation

y0 =
k

s2
+

1

sα
L−1 [L(g(x))],

y1 = − 1

sα
L−1

[
φ(x)Dβy0

]
− 1

sα
[ψ(x)y0],

...

yn+1 = − 1

sα
L−1

[
φ(x)Dβyn

]
− 1

sα
[ψ(x)yn] .

(4.70)

The LDM is implemented to this problem with n = 10, α = 7
4
, β = 1

4
, φ(x) = − 1√

x
,

ψ(x) =
4x− 3

4

3Γ(3
4
)
, and g(x) = −

4x
1
4

√
2 Γ(3

4
)

π
+

4x
5
4

21 Γ(3
4
)
.We obtain the approximate value

of the solution yapprox(x) =
10∑
n=0

yn. Table 4.12 contains a comparison between the approx-

imate solution along with the absolute error obtained by the [59] with that results from

HWM [60]. The second BC given in (4.66) is utilized to estimate the value of k using

yapprox. The first iterate is found to be

y0 = 0.02935193570623649694752798965999721792140x3 − x2

+ 0.9999999999999999999748773463215118572653x,

(4.71)

where k = 0.9999999999999999997.

Figure 4.7: The numerical solution of Example 4.7 for α ranging between 1 and 2.
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Table 4.12: Approximate solution for Example 4.7 and comparison in absolute error between LDM and

HWM.

x Exact LDM LDM Err HWM Err

0.1 0.09 0.089999999999999999997487734 2.5122653678463020(−21) 2.17578(-5)

0.2 0.16 0.159999999999999999994975469 5.0245307151171506(−21) 1.80519(-5)

0.3 0.21 0.209999999999999999992463207 7.5367920981839847(−21) 1.54805(-5)

0.4 0.24 0.239999999999999999989951107 1.0048892876120354(−20) 1.32721(-5)

0.5 0.25 0.249999999999999999987441739 1.2558260109058709(−20) 1.12113(-5)

0.6 0.24 0.239999999999999999984959219 1.5040780277836418(−20) 9.21482(-6)

0.7 0.21 0.209999999999999999982657553 1.7342446669571050(−20) 7.24277(-6)

0.8 0.16 0.159999999999999999981283009 1.8716990450786153(−20) 5.27084(-6)

0.9 0.09 0.089999999999999999983775453 1.6224546820410042(−20) 3.28365(-6)

The above table assures that the LDM outperforms the HWM strategy. In Table 4.12

we record the estimated solution using 10 LDM iterations and then compare the absolute

error with the results of HWM using 256 iterations. Figure 4.7 depicts the approximate

solution of Example 4.7 for different values of α on the interval [1, 2].

Example 4.8. Consider the following Bagley–Torvik equation [61]:

a1 y
′′ + a2 D

αy(x) + a3 y(x) = g(x), x ∈ [0, 1], (4.72)

with the boundary conditions

y(0) = 0, y(1) = 0, (4.73)

where 1 < α ≤ 2.

The LDM is applied to this latter problem, the formulas on Laplace transform have been

utilized with the decomposition series for y. By using 20 iterations we obtain the approx-

imate value of the solution yapprox(x) =
10∑
n=0

yn, with a1 = 1, a2 = 8
17
, a3 = 13

51
, α = 3

2
,

and
g(x) =

3648

425x
5
2

− 2784

85x
7
2

+
960

17x
9
2

+
520

17x6
− 1508

85x5

+
52976

425x4
− 149369

2125x3
+

38877

2125x2
− 339

125x
− 2712

2125x
3
2

.

The exact solution is given by y(x) = x5 − 29x4

10
+

76x3

25
− 339x2

250
+

27x

125
. The numerical

results with the absolute error obtained by the LDM [59] are reported in Table 4.13, which
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also includes a comparison with the HWM [60] using 256 iterations. The initial iterate is

set first to be

y0 = kx+ L−1

[
1

sα
L(g(x))

]
,

then the second boundary condition in (4.73) is used to estimate the value of k using

yapprox, and is found to be

k = 0.2159999999999998919.

The numerical result for the first iterate is given by

y0 = 0.2159999999999998919x + 0.0764642823820017550x3/2,

− 1.356x2 + 3.0491764705882352941x3 − 2.9288039215686274510x4

− 0.3840206181851645616x5/2 + 1.0387450980392156863x5

− 0.0246405228758169935x6 + 0.7379410109247157189x7/2

+ 0.0060690943043884220x7 − 0.6257394537080922763x9/2

+ 0.1961565685605304941x11/2.

(4.74)

Table 4.13: Comparison of the absolute error between LDM and HWM for Example 4.8 with α = 3
2 .

x Exact LDM LDM Err HWM Err

0.1 0.010800000 0.01079999999999998919138305 1.0808616942760(−17) 3.89916(-6)

0.2 0.008960000 0.00895999999999997840735431 2.1592645682051(−17) 4.17115(-6)

0.3 0.003780000 0.00377999999999996767077893 3.2329221067702(−17) 3.94253(-6)

0.4 0.0 −0.000000000000000042993412 4.2993412053826(−17) 3.37304(-6)

0.5 −0.0010000 −0.001000000000000053527920 5.3527920662387(−17) 2.60917(-6)

0.6 0.0 −0.000000000000000063678143 6.3678143562432(−17) 1.78827(-6)

0.7 0.001260000 0.00125999999999992764713748 7.2352862518744(−17) 1.04097(-6)

0.8 0.001280000 0.00127999999999992433028793 7.5669712060674(−17) 4.92027(-7)

0.9 0.0 −0.000000000000000061908479 6.1908479841833(−17) 2.61094(-7)

Example 4.9. Consider the following FBVP:

Dαy(x) = Dβy(x) − ex−1 − 1, (4.75)
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subject to

y(0) = 0, y(1) = 0, (4.76)

where 1 < α ≤ 2, and 0 < β ≤ 1.

In this example, the exact solution is known for integer order only. However, we will

consider here two special cases for integer and non-integer order, respectively.

Case 1. α = 2 and β = 1.

We implement the LDM for n = 10 iterations with the exact solution yexact(x) = x(1 −

ex−1) to find yapprox(x) =
10∑
n=0

yn. The initial iterate is set to be

y0 = kx− L−1

[
1

sα
L(ex−1 + 1)

]
,

and, the second boundary condition in (4.76) is used to estimate the value of the parameter

k. The first two iterates of the numerical results are given as follows:

y0 = −0.36787944117144232160 ex − 0.50000000000000000000x2

+ 1.0000000006911715380x+ 0.36787944117144232160,

y1 = −0.36787944117144232160 ex + 0.50000000034558576900x2

+ 0.36787944117144232160x+ 0.36787944117144232160

− 0.16666666666666666667x3,

(4.77)

where k was found to be k = 0.63212055951972921640.

Table 4.14: Comparison of the approximate solution of the LDM, HWM and Fourth order HPM for Example

4.9 case 1, with α = 2 and β = 1.

x Exact LDM LDM Abs Err HWM 4th order HPM

0.1 0.05934303402 0.05934303409863 7.26911451(−11) 0.05934300 0.05934820

0.2 0.11013420717 0.11013420732958 1.53027279(−10) 0.11013418 0.11014318

0.3 0.15102440886 0.15102440910438 2.41811768(−10) 0.15102438 0.15103441

0.4 0.18047534556 0.18047534590230 3.39913920(−10) 0.18047531 0.18048329

0.5 0.19673467014 0.19673467059175 4.48070727(−10) 0.19673463 0.19673826

0.6 0.19780797237 0.19780797294413 5.65517292(−10) 0.19780792 0.19780653

0.7 0.18142724552 0.18142724620644 6.83647497(−10) 0.18142718 0.18142196

0.8 0.14501539753 0.14501539830108 7.63467150(−10) 0.14501532 0.14500893

0.9 0.08564632376 0.08564632443693 6.69303200(−10) 0.08564623 0.08564186
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Table 4.14 includes the approximate solution resulting from the LDM [59] with a com-

parison with that resulting from the Haar wavelet method [60] and the Fourth order homo-

topy method (HPM) [62]. Clearly, the LDM achieves better results and is more accurate.

Case 2. α = 1.9, and β = 1.

The LDM is applied to this latter problem, with n = 12 iterations. In Table 4.15 we report

the numerical results obtained by the proposed approach [59]. Since the exact solution is

unknown for this case, we have also included the residual error of the LDM.

The initial iterate is set first to be:

y0 = kx− L−1

[
1

sα
L(ex−1 + 1)

]
,

then the second boundary condition in (4.76) is utilized to estimate the value of the param-

eter k which was found to be:

k = 0.6944325410083102198896669867300680183385.

Table 4.15: The approximate solution and the residual error obtained by LDM for Example 4.9 case 2, with

β = 1 and α = 1.9.

x LDM LDM Residual Error

0.1 0.06447598491054325004046048459 4.8199251476965502559098106542(−3)

0.2 0.11913155933009484768816622660 1.8286149133601573236514678318(−3)

0.3 0.16290420092042056927874008236 1.2114818135358312163195427961(−3)

0.4 0.19429005918243805936814538829 9.1977301151368692048326462271(−4)

0.5 0.21149103445945060509148731641 7.4553289890442130903302246734(−4)

0.6 0.21241894928861222338411740632 6.2898985602842615532665956722(−4)

0.7 0.19467418130753968654451297997 5.4524597706539116260946783313(−4)

0.8 0.15551313733481943646867614837 4.7865506913154598088360346590(−4)

0.9 0.09180807502462913677604721234 3.0219089917886253863122394018(−4)

1.0 0.0 1.7768876044344392510005439550(−3)

4.3.4 Ray Tracing Equation
In this section, we will employ the Laplace decomposition method to obtain the ap-

proximate solution for tracing light rays through the crystalline lens that have the following
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form:
d2r

dt2
= Λ1 e

β r − Λ2 e
−2β r, (4.78)

where β is the exponential coefficient and r is the distance from the optic axis. We will

implement the method on both integer order and fractional order. Here, we generalize

equation (4.78) to an arbitrary order α, which leads to the following IVP:

Example 4.10.

Dαr = Λ1 e
−β r − Λ2 e

−2β r, (4.79)

with the initial conditions

r(0) = 0.001, r′(0) = 1.976, (4.80)

where 1 < α ≤ 2.

By applying the formulas on Laplace transform for fractional derivative, and operating

with Laplace transform on both sides of equation (4.79), we get

s2L[r]− sr(0)− r′(0)

s2−α = Λ1 L[e−βr] − Λ2 L[e−2βr]. (4.81)

Using the initial conditions given in (4.80), and simplifying the results, it follows that

L[r] =
0.001

s
+

1.976

s2
+

Λ1

sα
L[e−βr]− Λ2

sα
L[e−2βr]. (4.82)

Utilizing the decomposition series for r and the Adomian polynomial representation for

the nonlinear terms, namely, N(r) = e−βr, and M(r) = e−2βr, gives

∞∑
n=0

L[rn] =
0.001

s
+

1.976

s2
+

Λ1

sα

∞∑
n=0

L[Nn]− Λ2

sα

∞∑
n=0

L[Mn]. (4.83)

Matching both sides of Eq. (4.83) gives the following iterative algorithm:

L[r0] =
a

s
+

b

s2
,

L[r1] =
Λ1

sα
L [N0] − Λ2

sα
L [M0],

...

L[rn+1] =
Λ1

sα
L [Nn] − Λ2

sα
L [Mn].

(4.84)
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The first few Adomain polynomials for the nonlinear terms N(r) &M(r) are given re-

spectively as follows:

N0 = e−β r0

N1 = −β r1 e
−β r0

N2 =
(
−β r2 + β2

2
r2

1

)
e−β r0

N3 =
(
−β r3 + β2 r1r2 − β3

3!
r3

1

)
e−β r0

. . .

(4.85)

and 

M0 = − e−2β r0

M1 = 2β r1 e
−2β r0

M2 = (2β r2 − 2β2r2
1) e−2β r0

M3 =
(

2β r3 − 4β2 r1r2 + 8β3

3!
r3

1

)
e−2β r0

. . .

(4.86)

In order to find the first iterate r0, the inverse Laplace transform is applied to the first term

in the algorithm (4.84). The higher iterates are found in a similar fashion.

Here, we will consider two special cases for integer order and fractional order, respec-

tively.

Case 1. α = 2.

Upon using the described method with n = 7 iterations, β = 0.91, k = 2,Λ1 = −0.0254072,

and Λ2 = −0.000091,we obtain the approximate value of the solution yapprox(x) =
7∑

n=0

yn.

The numerical solution and the residual error together with a comparison with the 5-terms

multi-step differential transform method (MsDTM) [63] are reported in Table 4.16. How-

ever, the numerical result for the first iterate is given by:

y0 = 0.0010000000000000000000000000000000000

+ 1.9760000000000000000000000000000000 x.
(4.87)
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Figure 4.8: The numerical solution of Example 4.10 case 1, for α = 2 .

Table 4.16: The approximate solution obtained by the LDM with a comparison with that attained by MsDTM

for Example 4.10 case 1, with β = 0.91,Λ1 = −0.0254072,Λ2 = −0.000091 and α = 2.

x LDM LDM Err MsDTM Err

1.00 1.969445607645401968521494 5.223135161405920796334275(−12) 2.00000000(−9)

2.00 3.932407650186922573978171 6.510342519760909528712327(−14) 1.00000000(−9)

3.00 5.894450780930431182014999 1.706978904729296811253414(−16) 3.00000000(−9)

4.00 7.856339792503087818005026 2.133308325115731300166462(−16) 1.30000000(−8)

5.00 9.818202951601105848515534 1.087947396050170567143762(−16) 4.20000000(−8)

6.00 11.78006177401202388873132 4.338472918616162900377010(−17) 7.00000000(−8)

7.00 13.74191986895171822599585 3.630705170240612792596598(−17) 6.00000000(−8)

8.00 15.70377784185937901732542 2.962097559870027209776538(−14) 6.00000000(−8)

9.00 17.66563579429623350280118 2.634263832332057541580414(−12) 5.00000000(−8)

10.0 19.62749374329218218418472 8.425031131808244983822462(−11) 5.00000000(−8)

Table 4.16 assures that the LDM is rapidly convergent using only few iterates. Figure

4.8 depicts the numerical solution of Example 4.10 (case 1), for α = 2 for different values

of x ranging between 0 and 1.

Case 2. α = 1.8.

The LDM is applied to this problem, using n = 7 iterates, with β = 0.91, k = 2,Λ1 =

−0.0254072, and Λ2 = −0.000091, we obtain the approximate value of the solution
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yapprox(x) =
7∑

n=0

yn. The numerical results are reported in Table 4.17. In addition, we

have included the residual error of the LDM. The first two iterations are given by

y0 = 0.0010000000000000000000 + 1.9760000000000000000x,

y1 = 1.0303746610008685233 10−16 x
84
5 − 9.6249480137717500882 10−15 x

79
5

+ 4.2704532921599768238 10−13 x
74
5 − 1.1971153232035579395 10−11 x

69
5

+ 2.3791098421694005549 10−10 x
64
5 − 3.565247421123534804 10−9 x

59
5

+ 4.1828190481047235047 10−8 x
54
5 − 3.9365482974472878776 10−7 x

49
5

+ 3.019486133199529947 10−6 x
44
5 − 0.000019059802177651722916x

39
5

+ 0.000099423603622814136752 x
34
5 − 0.00042790745651021344376 x

29
5

+ 0.0015061689529771150911x
24
5 − 0.0042541152457735710560x

19
5

+ 0.0093088016422719769198x
14
5 − 0.014794646828018427988x

9
5 .

(4.88)

Table 4.17: The approximate solution and the residual error obtained by LDM for Example 4.10 case 2,

with β = 0.91,Λ1 = −0.0254072,Λ2 = −0.000091 and α = 1.8.

x LDM LDM Residual Err

1.00 1.9684103159184399840 1.2317041630132388006(−05)

2.00 3.9330164081958655137 1.0918741643232629033(−07)

3.00 5.8984657955899349659 1.4783824522248488330(−10)

4.00 7.8647146429237204960 2.097295664399987000(−15)

5.00 9.8315335808149142152 3.7625641810009000000(−18)

6.00 11.798770630418340720 1.3561652830904754750(−15)

7.00 13.766331665432795294 1.0083360755354191619(−10)

8.00 15.734155135812481314 6.1317035388545998133(−08)

9.00 17.702198562268168252 5.6963717882063610128(−06)

10.0 19.670449965878745316 1.8938454665192535823(−04)

Table 4.17 presents the approximate solution and the residual error for α = 1.8 using

only 7 iterations. It is obvious from the results that the LDM provides highly accurate

solution using only few iterates.
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Table 4.18: Approximate solution for Example 4.10 case 2, using LDM with α = 1.25 and α = 1.5.

x LDM for α = 1.25 LDM for α = 1.5

1.00 1.9658026941316956440 1.9668175572592734768

2.00 3.9365827397956513083 3.9344972156022543925

3.00 5.9098426378039396134 5.9045376266462732242

4.00 7.8840034042573431718 7.8758002070176216909

5.00 9.8585786491700744803 9.8477591265525358587

6.00 11.833392607269193284 11.820171344061794837

7.00 13.808365785708932780 13.792908906514318298

8.00 15.783454785967921864 15.765895416598778743

9.00 17.758633580863748286 17.739081387895577188

10.0 19.733920766431980279 19.712459161260865732

Table 4.18 shows the approximate solution for different values of 1 < α ≤ 2.

4.4 Convergence Analysis

Theorem 4.4.1 (Banach Fixed Point Theorem).

Let (X, d) be a complete metric space and let T : X → X be a contraction mapping.

Then T has a unique fixed point x̄ and for any x ∈ X the sequence (T n(x))∞n=1 converges

to x̄.

This theorem is also called the Contraction Mapping Theorem.

It is clear from (4.13) that the An′s are indeed polynomials and hence the yn+1 term is

obtained from (4.17). In this section, we discuss a new approach for the convergence

of the Adomian Decomposition Method [64]. The sufficient condition that guarantees

existence of a unique solution is inserted in Theorem 4.4.2, convergence of the series

solution y =
∞∑
n=0

yn is proved in Theorem 4.4.3.

Consider the following general equation

Ly + Ry + N y = g, (4.89)

with

y(0) = 0, y′(0) = 0, (4.90)

where N(y) represents the nonlinear term. Assume here that y(t) is bounded for all t ∈

J = [0, K] and the nonlinear term N(y) is Lipschitzian such that |N(y2) − N(y1)| ≤
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L1 |y2 − y1|, where L1 is Lipschitz constant.

The decomposition method assumes an infinite series solution for y which is given by

y =
∞∑
n=0

yn, (4.91)

then, the nonlinear term N(y) decomposed as a sum of the infinite series

N(y) =
∞∑
n=0

An, (4.92)

where An′s are the Adomian polynomials obtained by

An =
1

n!

dn

dλn

[
N

(
∞∑
i=0

λiyi

)]
λ=0

, n = 0, 1, 2, .... (4.93)

Operating both sides of equation (4.89) by the inverse operator we get:

L−1 Ly + L−1Ry + L−1N y = L−1 g, (4.94)

which is equivalent to the following expression:

y = −L−1Ry − L−1N y + L−1 g (4.95)

Substituting equations (4.92) and (4.93) into (4.95), we obtain:

∞∑
n=0

yn = −L−1R
∞∑
n=0

yn − L−1

∞∑
n=0

An + L−1 g. (4.96)

The method consists of the following recursive relation y0 = L−1 g,

yn = −L−1Ryn−1 − L−1An−1.
(4.97)

Theorem 4.4.2 (Uniqueness Theorem).

The equation Ly + Ry + Ny = g has a unique solution when 0 < α < 1, where

α = (L1+L2)tm

m!
.

Proof. Let T = (C[J ], ‖.‖) be the complex Banach space that contains all continuous

functions on the interval J = [0, K] with the norm ‖y(t)‖ = max
t∈J
|y(t)|. Now, define a

mapping X : T → T where, X(y(t)) = −L−1Ry(t) − L−1N y(t) + L−1 g(t). Let
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y, ȳ ∈ T, then, we have:

‖Xy −Xȳ‖ = max
t∈J
|−L−1Ry − L−1Ny + L−1g − (−L−1Rȳ − L−1Nȳ + L−1g)|

= max
t∈J
| − L−1Ry − L−1Ny + L−1g + L−1Rȳ + L−1Nȳ − L−1g)|

= max
t∈J
| − L−1Ry − L−1Ny + L−1Rȳ + L−1Nȳ|

By taking L−1 as a common factor, we get:

= max
t∈J
| − L−1(Ry −Rȳ)− L−1(Ny −Nȳ)|

= max
t∈J
|L−1(Ry −Rȳ) + L−1(Ny −Nȳ)|

≤ max
t∈J

(|L−1(Ry −Rȳ)|+ |L−1(Ny −Nȳ)|)

Now, suppose that Ry is also Lipschitzian with |Ry − Rȳ| ≤ L2|y − ȳ|, where L2 is Lip-

schitz constant. Thus,

‖Xy −Xȳ‖ ≤ max
t∈J

(|L−1(Ry −Rȳ)|+ |L−1(Ny −Nȳ)|)

Since |Ry −Rȳ| ≤ L2|y − ȳ| and |Ny −Nȳ| ≤ L1|y − ȳ|, then,

≤ max
t∈J

(L−1L2|(y − ȳ)|+ L−1L1|(y − ȳ)|)

L1, L2 are constants, so we take them out, then,

= (L1 + L2) max
t∈J

(L−1(|y − ȳ|))

≤ (L1 + L2)L−1 (max
t∈J
|y − ȳ|)

We know that max
t∈J
|yn(t)| = ‖y(t)‖ , thus,

= (L1 + L2) ‖y − ȳ‖ L−1(1)

Since L−1 =
∫ t

0
...
∫ t

0
[.] dt, then,

= (L1 + L2) ‖y − ȳ‖ t
m

m!

= α ‖y − ȳ‖

where, α =
(L1 + L2)tm

m!
.

Therefore, there exists a unique solution for the equation Ly + Ry + Ny = g by Banach

fixed point theorem for contraction.
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Theorem 4.4.3 (Convergence Theorem).

The infinite series solution y =
∞∑
n=0

yn of equation Ly + Ry + Ny = g using Adomian

decomposition method converges if 0 < α < 1 and |y1| <∞.

Proof. Let Bn =
n∑
i=0

yi(t). We need to prove here that the sequence {Bn} is a Cauchy

sequence in Banach space T .

‖Bn+a −Bn‖ = max
t∈J
|Bn+a−Bn| = max

t∈J

∣∣∣∣∣
n+a∑
i=0

yi(t)−
n∑
i=0

yi(t)

∣∣∣∣∣ =

∣∣∣∣∣
n+a∑
i=n+1

yi(t)

∣∣∣∣∣,where,

a = 1, 2, 3, ...

We know that,

N(y0 + y1 + y2 + ...+ yn) =
n∑
i=0

Ai. Therefore, it could be arranged as follows:

A0 = N(y0) = N(B0),

A0 + A1 = N(y0 + y1) = N(B1),

A0 + A1 + A2 = N(y0 + y1 + y2) = N(B2),

. . .

Thus,

An +
n−1∑
i=0

Ai = N(Bn). (4.98)

In a similar way, we have:

Ān +
n−1∑
r=0

Ār = R(Bn). (4.99)

Now, since the two operator Ry and Ny are assumed to be Lipschizian operators, and

using equation (4.97), we have:

‖Bn+a −Bn‖ = max
t∈J

∣∣∣∣∣−L−1

n+a∑
i=n+1

Ryn−1 − L−1

n+a∑
i=n+1

An−1

∣∣∣∣∣
By shifting, we have,

= max
t∈J

∣∣∣∣∣−L−1

n+a−1∑
i=n

Ryn − L−1

n+a−1∑
i=n

An

∣∣∣∣∣
= max

t∈J

∣∣∣∣∣L−1

n+a−1∑
i=n

Ryn + L−1

n+a−1∑
i=n

An

∣∣∣∣∣
= max

t∈J

∣∣∣∣∣L−1

n+a−1∑
i=n

Ryn + L−1

n+a−1∑
i=n

An

∣∣∣∣∣
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= max
t∈J

∣∣L−1(R(Bn+a−1)−R(Bn−1)) + L−1(N(Bn+a−1)−N(Bn−1))
∣∣

≤ max
t∈J

∣∣L−1(R(Bn+a−1)−R(Bn−1))
∣∣+ max

t∈J

∣∣L−1(N(Bn+a−1)−N(Bn−1))
∣∣

≤ max
t∈J

L−1 |(R(Bn+a−1)−R(Bn−1))|+ max
t∈J

L−1 |(N(Bn+a−1)−N(Bn−1))|

≤ L2 max
t∈J

L−1 |Bn+a−1 −Bn−1|+ L1 max
t∈J

L−1 |Bn+a−1 −Bn−1|

L1, L2 are constants, so we take them out, then,

= (L2 + L1)

(
max
t∈J

L−1 |Bn+a−1 −Bn−1|+ max
t∈J

L−1 |Bn+a−1 −Bn−1|
)

= (L2 + L1) ‖Bn+a−1 −Bn−1‖
tm

m!

where, α =
(L1 + L2)tm

m!
.

Therefore, where, α =
(L1 + L2)tm

m!
, we have:

‖Bn+a −Bn‖ ≤ α ‖Bn+a−1 −Bn−1‖

Similarily,

‖Bn+a−1 −Bn−1‖ ≤ α ‖Bn+a−2 −Bn−2‖

‖Bn+a−2 −Bn−2‖ ≤ α ‖Bn+a−3 −Bn−3‖

and so on. Thus,
‖Bn+a −Bn‖ ≤ α2 ‖Bn+a−2 −Bn−2‖

‖Bn+a −Bn‖ ≤ α3 ‖Bn+a−3 −Bn−3‖

and so on. It can be generalized by

‖Bn+a −Bn‖ ≤ αn ‖Bn+a−n −Bn−n‖

≤ αn ‖Ba −B0‖
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Now, if a = 1,

‖Bn+1 −Bn‖ ≤ αn ‖B1 −B0‖ ≤ αn ‖y0 + y1 − y0‖ ≤ ‖y1‖

Now, letn > k,where n, k ∈ N.

‖Bn −Bk‖ ≤ ‖Bk+1 −Bk‖+ ‖Bk+2 −Bk+1‖+ ‖Bk+3 −Bk+2‖+ ... ‖Bn −Bn−1‖

≤
(
αk + αk+1 + αk+2 + ...αn−1

)
‖y1‖

≤ αk
(
1 + α + α2 + ...+ αn−1−k) ‖y1‖

≤ αk
(

1− αn−k

1− α

)
‖y1‖

Since 0 < α < 1, so we have also 1− αn−α < 1,

then, we get,

‖Bn −Bk‖ ≤ 1− αn−k

1− α
‖y1‖

By assumption, we have y(t) is bounded and |y1| < ∞. Thus, as n → ∞, ‖Bn −Bk‖ →

0. Hence, the sequence {Bn} is a Cauchy sequence in T. Therefore, the series solution

y =
∞∑
n=0

yn is convergent.
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Chapter 5: Green’s Function - Fixed Point Iterative Scheme

In the previous chapter, we implemented the Laplace decomposition method to obtain

the numerical solution for various well-known problems. However, we faced deficiencies

in the method. In particular, the accuracy deteriorates as the applicable domain increases.

In this chapter, we suggest an alternate strategy based on applying the Laplace transform

integral operator for fractional derivative and then embedding Green’s functions into fixed

point iterative schemes. The major rationale behind this iterative technique is to surmount

the deterioration of the numerical solution obtained by LDM.

Green’s function is used to solve inhomogeneous linear differential equations defined in a

domain with specified initial conditions or boundary conditions. Green’s functions are

named for George Green, the British mathematician, who first developed the concept

in 1830. The Green’s function methods are studied by many authors to obtain the ap-

proximate solution for ordinary differential equations and partial differential equations

[65, 66, 67]. A Greens function coupled with fixed point iteration method (GFIM) pro-

posed by Abushammala et al. [68] has been applied to solve various differential equations

models that arise in sciences and engineering. Kafri et al. employed the GFIM to solve

Toreschs problem [69], Khuri et al. employed the GFIM to solve boundary value problems

and partial differential equations [70, 71, 72, 73]. Abukhaled et al used the GFIM to find

highly accurate semi-analytical solution for the one dimensional curvature equation [74],

a class of strongly nonlinear oscillators [75], amperometric enzymatic reactions [76], and

a class of BVPs arising in heat transfer [77].

5.1 Important Definitions

Definition 5.1.1. The direct delta function is defined as

δ(t− x) =


0, t 6= x,

∞, t = x.

(5.1)

The delta function satisfies the following properties:
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1.
∫ ∞
−∞

δ(t− x) dx = 1,

2.
∫ ∞
−∞

δ(t− x) f(x) dt = f(t),

(5.2)

where the integral can be taken over any interval that includes t = x.

Definition 5.1.2. The unit step function (or Heaviside function) is defined as

u(t− x) =


0, t < x,

1, t ≥ x.

(5.3)

5.2 Properties of Green’s Function

In this section, we will summarize the properties of Green’s function as an instrument

for quickly constructing it. Here is a list of the properties based upon the integer order and

fractional order derivatives for IVPs and BVPs.

Consider the following third order equation:

K[y] = y′′′(x) + p1(x)y′′(x) + p2(x) y′(x) + p3(x)y(x) = f(x). (5.4)

subject to the initial conditions,

y(a) = α1,

y′(a) = α2,

y′(b) = α3,

(5.5)

or boundary conditions,

B1[y] = a1y(a) + a2y
′(a) + a3y

′′(a) = α,

B2[y] = b1y(b) + b2y
′(b) + b3y

′′(b) = β.
(5.6)

The Green’s function satisfies

G′′′(t|x) + p1(t)G′′(t|x) + p2(t)G′(t|x) + p3(t)G(t|x) = δ(t− x). (5.7)

Green’s function for equation (5.4) has the following properties:

1. G(t|x) satisfies the corresponding homogeneous initial condition

G(a|x) = G′(a|x) = G(b|x) = 0, (5.8)

and the corresponding homogeneous boundary conditions

B1[G(t|x)] = B2[G(t|x)] = 0. (5.9)
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2. G(t|x) is continuous at t = x, that is

G(t|x)|t→x− = G(t|x)|t→x+ ,

where

G(t|x)|t→x− = limt→xG(t|x), t < x,

G(t|x)|t→x+ = limt→xG(t|x), t > x.

(5.10)

3. G′(t|x) is continuous at t = x, that is

G′(t|x)|t→x− = G′(t|x)t→x+ ,

where

G′(t|x)|t→x− = limt→xG
′(t|x), t < x,

G′(t|x)|t→x+ = limt→xG
′(t|x), t > x.

(5.11)

4. G′′(t|x) has a unit jump discontinuity at t = x, that is

G′′(t|x)|t→x+ − G′′(t|x)|t→x− = 1. (5.12)

Let’s now consider the following fractional order equation

Dαy(x) = Λ1 e
−β y(x) − Λ2 e

−2β y(x), (5.13)

where β,Λ1,Λ2, are constants and 1 < α ≤ 2, and subject to the following initial condi-

tions:
y(a) = α1,

y′(a) = α2.
(5.14)

Green’s function for the fractional equation (5.13) has the following properties:

1. G(t|x) satisfies the homogeneous initial condition

G(a|x) = G′(a|x) = 0. (5.15)

2. G(t|x) is continuous at t = x, that is

G(t|x)|t→x− = G(t|x)|t→x+ ,

where

G(t|x)|t→x− = limt→xG(t|x), t < x,

G(t|x)|t→x+ = limt→xG(t|x), t > x.

(5.16)

3. G′(t|x) has a unit jump discontinuity at t = x, that is

G′(t|x)|t→x+ − G′(t|x)|t→x− =
1

x
. (5.17)
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5.3 Construction of the Green’s Function

In this following two subsections, we illustrate how to construct the Green’s function

for both initial and boundary value problems.

5.3.1 Initial Value Problem for Second Order Equations
Example 5.1. Construct a Green’s function for the following IVP

K[u] = y′′(t) = −λ ey(t), (5.18)

subject to

y(0) = y′(0) = 0. (5.19)

We will seek a particular solution yp, where while yp is a particular solution which is the

solution of inhomogeneous equation subject to the initial conditions y(0) = y′(0) = 0.We

represent the particular solution as an integral of the Green’s function G(t|x)

G(t|x) =

∫ a

t

f(x) dx. (5.20)

The general solution to the corresponding homogeneous equation of (5.18) is

yh(t) = at + b. (5.21)

The Green’s function satisfies

G′′(t|x) = δ(t− x), G(0|x) = G′(0|x) = 0. (5.22)

Next, we can construct the Green’s function which is given by

G(t|x) =


a1t + b1, 0 < t < x,

a2t + b2, t > x.

(5.23)

1. Applying the homogeneous initial conditions given in (5.22), we get

G(t|x) =


0, 0 < t < x,

a2t + b2, t > x.

(5.24)

2. G(t|x) is continuous at t = x, then we get

G(t|x)t→x− = G(t|x)t→x+ , (5.25)

thus,

0 = a2x + b2. (5.26)
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3. Integrating equation (5.23), we have∫ x+

x−
[G′′(t|x)] dt =

∫ x+

x−
[δ(t− x)] dt. (5.27)

SinceG(t|x) is continuous andG′′(t|x) has a Dirac delta function type of singularity, thus,

G′(t|x) has a jump discontinuity. Hence,∫ x+
x−

G′′(t|x) ds =
∫ x+
x−

[δ(t− x)] ds

[G′(t|x)]x
+

x− = [u(t− x)]x
+

x−

a2 = 1.

(5.28)

From (5.26) and (5.28), we obtain

a2 = 1, b2 = −x. (5.29)

Therefore,

G(t|x) =


0, 0 < t < x,

t − x, t > x.

(5.30)

Then for λ = 1, we get

up(t) =

∫ t

0

G(t|x)f(x)dx

=

∫ t

0

(t− x)(ex)dx

= (−x+ t+ 1)ex.

(5.31)

5.3.2 Boundary Value Problems for Second Order Equations
Example 5.2. Construct a Green’s function for the following BVP

K[u] = y′′(t) = t3, (5.32)

subject to the BCs

y(0) = y(1) = 0. (5.33)

The solution to the corresponding homogeneous equation of (5.32), y′′ = 0, is

yh(t) = At + B. (5.34)

The Green’s function satisfies

G′′(t|x) = δ(t− x), G(0|x) = G(1|x) = 0. (5.35)
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Then, the Green’s function is given by

G(t|x) =


A1t + B1, 0 < t < x,

A2t + B2, x < t < 1.

(5.36)

The constructs are found as follows:

1. Applying the first boundary condition G(0|x) for the first interval 0 < t < x < 1,

we get B1 = 0, then the second boundary condition G(1|x) for the second interval

0 < x < t < 1, we have

G(1|x) = A2 + B2 = 0. (5.37)

Thus,

G(t|x) =


A1t, 0 < t < x,

A2t + b2, x < t < 1.

(5.38)

2. G(t|x) is continuous at t = x, then we get

G(t|x)t→x− = G(t|x)t→x+ , (5.39)

or equivalently,

A1 x = a2 x + b2. (5.40)

3. By the jump discontinuity condition, we have∫ x+
x−

G′′(t|x) ds =
∫ x+
x−

[δ(t− x)] ds

[G′(t|x)]x
+

x− = [u(t− x)]x
+

x−

A2 − A1 = 1.

(5.41)

From (5.40) and (5.41), we obtain

A2 = x, B2 = −x, A1 = x− 1. (5.42)

Thus,

G(t|x) =


(x− 1) t, 0 < t < x,

x (t− 1), x < t < 1.

(5.43)

Then, the particular solution is found as follows:

up(t) =

∫ 1

0

G(t|x)f(x)dx

=

∫ t

0

(x− 1) t x3 dx+

∫ 1

t

x (t− 1)x3 dx

=

(
−1

20
t5 +

1

5
t − 1

5

)
.

(5.44)
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5.3.3 Solution of Fractional Order Differential Equations
In this subsection, we use the Laplace transform property for fractional derivative to

easily construct the Green’s function.

We consider in the next example the Ray tracing equation with its generalization to order

α.

Example 5.3.

Dαy(t) = Λ1 e
−β y(t) − Λ2 e

−2β y(t), (5.45)

with the initial conditions

y(0) = 0.001, y′(0) = 1.976. (5.46)

where 1 < α ≤ 2.

The Green’s function G(t|x) is defined as the solution to

DαG(t|x) = δ(t− x), (5.47)

where 0 < t < 1, and

G(0|x) = G′(0|x) = 0. (5.48)

Next, we will use the Laplace transform property for fractional derivative to construct the

Green’s function. Applying the Laplace transform on both sides of equation (5.47), results:

s2L[G(t|x)]− sLG(0|x)−G′(0|x)

s2−α = e−sx. (5.49)

We now solve equation (5.49) for L[G(t|x)] and upon using the homogeneous initial con-

ditions given in (5.48), we get

L[G(t|x)] = 1
s2

[s2−α e−sx],

= s−α e−sx.

(5.50)

By operating with the inverse Laplace transform results

G(t|x) =
(t− x)α−1

Γ(α)
u(t− x), (5.51)

or equivalently,

G(t|x) =


0, 0 < t < x,

(t− x)α−1

Γ(α)
, t > x.

(5.52)
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However, the particular solution subject to the initial conditions (5.46) is given by

up =

∫ a

t

G(t|x) f(x, up, u
′
p, u

α
p ) dx, (5.53)

where the value a can be infinite.

5.4 Picard’s Green’s Method (PGM)

In this section, we present the Picard’s fixed point iterative method for finding approx-

imate solutions for fractional Ray tracing problem (5.45) and (5.46) which is given by

yn+1 = yn +

∫ t

0

[
(t− x)α−1

Γ(α)

]
[Dαyn(t) − Λ1 e

−β yn(t) + Λ2 e
−2β yn(t)] dx. (5.54)

The starting approximate solution y0(t) is chosen to be the solution of Dαy(t) = 0, and

subject to the specified initial conditions given in (5.46). It follows that the initial iterate

y0 = 0.001, for any value of α.

5.5 Mann’s Green’s Method (MGM)

There are various iteration strategies for approximating fixed point equations of differ-

ent classes. Some of them are Picard’s Green’s iterative technique, Krasnosel’skii Green’s

iterative technique and Mann’s Green’s iterative technique. In this section, instead of Pi-

card’s, we will apply Mann’s fixed point iteration method, given as

yn+1 = (1− α) yn + δnK[yn], n ≥ 0, (5.55)

where the operator K[yn] is

K[yn] = yn +

∫ t

0

[
(t− x)α−1

Γ(α)

]
[Dαyn(t) − Λ1 e

−β yn(t) + Λ2 e
−2β yn(t)] dx. (5.56)

Here, δn is a sequence between 0 and 1. After a simple manipulation we get the following

iterative procedure which we call (MGM):

yn+1 = yn + δn

∫ t

0

[
(t− x)α−1

Γ(α)

]
[Dαyn(x) − Λ1 e

−β yn(x) + Λ2 e
−2β yn(x)] dx. (5.57)

Note that, in equation (5.57) the sign before the sequence αn could be either plus or mi-

nus, depending on whether the operator K[yn] is self-adjoint or not. However, The main

advantage of Mann’s iterative approach is that it can overcome the divergence of Picard’s

scheme in many cases and, more importantly, speeds the convergence rate if the sequence

δn is selected appropriately. Obviously, for the special case δn = 1, Mann’s reduces to

Picard’s iterative method.
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5.6 Numerical Results

In this section, we present the approximate numerical solution using the proposed

method for the fractional-order nonlinear initial-value problem (IVP) to illustrate the ap-

plicability of the proposed iterative method.

Example 5.4.

Dαy(t) = Λ1 e
−β y(t) − Λ2 e

−2β y(t), (5.58)

subject to the initial conditions

y(0) = 0.001, y′(0) = 1.976, (5.59)

where β,Λ1,Λ2 are constants, t ∈ [0, 10] and 1 < α ≤ 2.

We solve this problem for integer and non-integer orders using the Green’s function strat-

egy with the fixed point iterative schemes.

Case 1. α = 2.

Using n = 7, we obtain the approximate solution of this latter problem. The numerical

solution and the residual error together with a comparison with the 5-terms multi-step dif-

ferential transform method (MsDTM) [45] are reported in Table 5.1.

Table 5.1: The approximate solution obtained by the proposed Green’s function scheme with a comparison

with that obtained by MsDTM for Example 5.4 case 1, with β = 0.91,Λ1 = −0.0254072,Λ2 = −0.000091

and α = 2.

t Present Method Present Method Err MsDTM Err

1.00 2.11297838455333861418453 1.655498444579062279447622(−09) 2.00000000(−9)

2.00 4.41177745758305146668954 5.369536577403211523139911(−10) 1.00000000(−9)

3.00 6.74514053341264095148043 9.683594133499873540858583(−11) 3.00000000(−9)

4.00 9.08284353389544610661418 1.519265421692784113914961(−11) 1.30000000(−8)

5.00 11.4210666779384043864905 2.239707123157328089637831(−12) 4.20000000(−8)

6.00 13.7593518144805831737710 3.178830529009792069351348(−13) 7.00000000(−8)

7.00 16.0976443345855809751308 4.394739783605040672722254(−14) 6.00000000(−8)

8.00 18.4359377340336996393027 5.959047772667003375196744(−15) 6.00000000(−8)

9.00 20.7742312382059253430505 7.960496197398294732923219(−16) 5.00000000(−8)

10.0 23.1125247547545547903954 1.294109600912551070424929(−07) 5.00000000(−8)
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Table 5.1 confirms that the Green’s function method is rapidly convergent using only

few iterates. However, we can see that the proposed method can overcome the deficiency

problem as we move to the right end point of the interval.

Case 2. α = 1.95.

We used only 7 iterations to obtain the approximate solution yapprox(t) with β = 0.91,Λ1 =

−0.0254072,Λ2 = −0.000091. The numerical solution with the residual error are reported

in Table 5.2.

Table 5.2: The approximate solution obtained by the presented Green’s function strategy with a comparison

with the residual error for Example 5.4 case 2, with β = 0.91,Λ1 = −0.0254072,Λ2 = −0.000091 and

α = 1.95.

t Present Method Present Method Err

1.00 2.1194028800254012259025686 1.97067481507557236167817437(−6)

2.00 4.4124052843171405437828668 3.82611246944468075414588628(−7)

3.00 6.7254912499103336681197205 2.73698124947797347646509634(−7)

4.00 9.0345565324819456712500206 3.26334084140363570562794042(−7)

5.00 11.338711991619693077627289 2.84623188457417196155669501(−7)

6.00 13.638944416738094881932817 2.42536747774916750527600879(−7)

7.00 15.936035408573295293236597 2.098915750556587603974304048(−7)

8.00 18.230523803580345930957807 1.848817512137924094583563794(−7)

9.00 20.522793593488948035283581 1.652656020967472081873403123(−7)

10.0 22.813131107031926046849895 7.678830798884127491050760990(−6)
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Chapter 6: Conclusions and Future Work

This thesis was divided into five chapters in which we implemented two numerical

methods to obtain numerical solutions for a wide class of boundary and initial value prob-

lems. In the second chapter, we have discussed some important mathematical definitions

to be used in this work, among them: The Gamma function, the Laplace transforms, the

Error function and the Mittag-Leffler function.

In the third chapter, we introduced fractional derivatives and integrals with their

historical development. We have determined the generalized forms for fractional deriva-

tives and fractional integrals, some basic properties and the important formulas, that have

been stimulated by some examples.

In the fourth chapter, we implemented the Laplace decomposition method for frac-

tional DEs, that is a combination of Laplace transform and the decomposition method.

This is the first time that this approach is applied successfully to tackle fractional differ-

ential equations. This strategy is performed on various well-known differential equation

problems with arbitrary order derivative. On the other hand, we observed that the tech-

nique is highly accurate locally, namely close to the initial point in the domain. However,

the setback is that the error worsens when we move away from the left endpoint towards

the right endpoint. In order to overcome this setback, a domain decomposition strategy

is applied to improve the error away from the left endpoint of the domain. Moreover, we

include the convergence of the method.

Finally, in the fifth chapter, we introduced an efficient iterative algorithm for ob-

taining numerical solutions for fractional linear and nonlinear boundary and initial value

problems by applying well-known fixed point iterative processes, such as Krasnoselskii-

Mann’s and Picard’s, to a customized linear integral operator that is expressed in terms of

the Green’s functions corresponding to the linear differential term of the equation. The

proposed strategy is employed to obtain highly accurate solution for fractional differential

equation problems and to overcome the deterioration of the error as we move away from

the left endpoint of the interval or as the domain becomes large. The convergence of the

proposed technique has been studied.
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In future research, we will explore other iterative methods to achieve faster rate of

convergence. In our approach we used Mann’s and Picard’s fixed point iterative schemes;

therefore, in future work, we will investigate other techniques such as Ishikawa hybrid

iterative method. Moreover, the ultimate aim is to publish all this work in a respected

international journal.
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