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Abstract: This paper proposes learning-based approaches for transcoding MPEG-2 video into HEVC. In the training mode of 
the transcoder, mappings between extracted features and split decisions are calculated. While in the transcoding mode, the 
split decisions of coding units of the HEVC video are predicted. Two formulations are proposed for the prediction of split 
decisions based on multi model and multi-tier solutions. In the former solution, multi models are generated based on the total 
number of split flags in a coding unit. While in the latter solution, split decisions are modelled at three different coding depths. 
The proposed solutions are evaluated in terms of excessive bitrate, drop in PSNR, classification accuracy, model generation 
time and transcoding speedup. It is shown that the multi-tier solution maintains the rate-distortion behaviour of full re-
encoding at the expense of lower gain in transcoding speedup. In comparison to existing work, it is shown that the proposed 
solutions offer a significant enhancement in terms of rate-distortion performance and classification accuracy. 
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1. Introduction 
One of the main objectives of the High Efficiency Video 

Coding (HEVC) is to provide a significant rate-distortion 
improvement in comparison to H.264/AVC. Such an 
improvement paves the way for new applications requiring 
ultra-high definition resolutions [1]. 

Heterogeneous video transcoding can be applied to 
convert existing videos compressed with popular standards 
such as MPEG-2 and H.264/AVC into HEVC. The term 
heterogeneous is used to indicate facilitating interoperability 
between different video coding standards. One of the earliest 
work on heterogeneous video transcoding was reported by the 
author in [2,3] for transcoding between different video formats. 

To date, not much work has been reported for HEVC 
heterogeneous video transcoding. Nonetheless, a number of 
video transcoders are reported for transcoding between MPEG-
2 and H.264/AVC on one side and HEVC on the other side. 
Noteworthy are the heterogeneous HEVC transcoding solutions 
that are based on content modelling for predicting the coding 
depth of HEVC Coding Units (CU).  

For example, in [4] it was proposed to extract features 
from the incoming H.264/AVC coded blocks and compare their 
values against adaptive thresholds to decide on the outgoing 
HEVC CU partitioning. These incoming features are based on 
Motion Vector (MV) statistics, number of DCT coefficients and 
energy of DCT coefficients. The adaptive thresholds are 
computed from the first K H.264/AVC frames and 
corresponding outgoing HEVC CUs, where K is typically set to 
25 frames. 

Another approach for H.264/AVC to HEVC transcoding 
is based on Linear Discriminant Functions (LDFs). Features are 
extracted from the incoming H.264/AVC video and mapped to 
split or no split decisions of the outgoing HEVC CUs. Again, 
the weights of the LDFs are computed from the first K incoming 

frames as in the previous approach. Once computed, LDFs are 
used to classify outgoing CUs between split or no split [5]. One 
exception applies to incoming blocks with a high MV variance, 
such blocks are automatically classified as split [4].   

Parallel processing has been used to speedup the 
H.264/AVC to HEVC transcoding processing. The transcoder 
made use of incoming coding information for further speedup 
as well. It was reported that 720p resolution video can be 
transcoded in real time [6]. 

Other transcoding solutions exist, for instance, in [7] it 
was proposed to segment incoming H.264/AVC frames into 
three regions based on coding complexity. After that, the coding 
structure of an outgoing CU is determined based on the 
incoming region type and motion vectors. A MV clustering 
techniques of incoming MVs is also proposed for reducing the 
complexity of H.264/AVC to HEVC video transcoding [8]. 

On the other hand, since the MPEG-2 video content is 
widely available, a MPEG-2 to HEVC transcoder is proposed 
in [9]. The transcoding results are attractive in terms of 
excessive bitrate and computational complexity. However, the 
learning approach used is limited in that it predicts the coding 
depth of the first sub CU in a 64x64 coding unit. The predicted 
depth is replicated to the rest of the sub CUs in the same CU. 

With the co-existence of many video coding standards, 
codec interoperability tools like video transcoders are becoming 
important. With the latest ITU-T-ISO/IEC HEVC codec, a need 
has emerged for transcoding legacy formats into HEVC. In 
particular, the MPEG-2 video content, which is used in TV 
services, digital broadcast and DVDs is plentiful. It is well-
known that the MPEG-2 compression efficiency is not as good 
as that offered by HEVC. One approach to make use of existing 
MPEG-2 content whilst reducing its bitrate and file size is to 
transcode such videos into the efficient HEVC video codec. 

The main object of this work is to propose a MPEG-2 to 
HEVC transcoder with an efficient learning approach to predict 
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all split decisions of an outgoing HEVC CU. The proposed 
solutions are based on generating multi split decision models 
and three tier classification models. For that purpose, we 
represent the split decisions of a 64x64 CU using 21 binary 
digits. Each of the split decisions of a CU are classified 
separately using the multi model classification approach. 
Whereas in the three tier model, the split decisions are grouped 
according to one of the three coding depths and consequently, 
only three classification models are generated. 

Both classification approaches are integrated in a 
transcoding system that uses the first K input and output frames 
for model generation. Therefore, the main contribution of this 
manuscript is to predict the outgoing split decisions by 
modelling the relationship between the incoming MPEG-2 
coding parameters and the outgoing split decisions of CUs. The 
proposed transcoding system shall maintain the video quality in 
comparison to the case of full HEVC re-encoding, yet at the 
same time, speedup the video conversion processes.  

Such a transcoding approach is needed since existing 
video content coded with MPEG-2 format is abundant as it is 
used in high definition and standard format TV and 
transmission systems. By transcoding from MPEG-2 to HEVC, 
existing MPEG-2 content can be made use of with HEVC 
decoders, thus, achieving compatibility with older formats. 
Additionally, by transcoding into HEVC format, the MPEG-2 
video files can be greatly reduced in size without sacrificing its 
quality as shown in this paper. 

The rest of the paper is organized as follows. Section 2 
present a literature review on HEVC transcoding. Section 3, 
introduces the overall transcoding architecture, Section 4 
introduces the proposed multi model and three-tier 
classification solutions, Section 5 presents the experimental 
results and Section 6 concludes the paper. 

2. Literature review  
In the literature, most of the HEVC transcoding work is 

reported for H.264 into HEVC transcoding and HEVC 
transrating. Nonetheless, a number of interesting transcoding 
solutions are reported for HEVC into none ISO standardized 
coder are reported. For instance, in [10] a HEVC to AVS2 
transcoder is proposed which decodes the incoming video in 
multi-stages to make use of HEVC information in the 
transcoding process. The authors reported speedup in the range 
of 11x to 17x over AVS2 reference software. Likewise, [11] 
reported a HEVC into VP9 transcoder with a 60% reduction in 
complexity at the expense of acceptable R-D penalties. On the 
other hand, HEVC translating is reported in [12] and [13]. The 
fastest solution in [12] achieved a complexity reduction of 82% 
with a bitrate penalty up to 3%. The transcoder in [13] is based 
on the decoder-encoder cascade with statistical analysis to 
leverage CU and PU structures from the incoming HEVC video. 

It is worth mentioning that the majority of reported 
HEVC transcoders is related to H.264 to HEVC transcoding for 
both intra only and intra/inter modes. For instance, [14] 
proposed fast intra H.264 to HEVC transcoder by leveraging 
the incoming DCT coefficients and intra predictions to predict 

the coding depth in HEVC CUs. The transcoder is 1.7-2.5 times 
faster than ordinary HEVC encoding with a bitrate penalty up 
to 3%. The work in [15] proposed a similar transcoder that 
utilizes Bayesian classifiers to speedup the transcoding process.  

Additionally, inter-frame H.264 to HEVC transcoder are 
reported. In [16] a low complexity transcoder is proposed which 
makes use of machine learning and parallel processing. A 
parallel algorithm is proposed to makes use of a multi-core CPU 
and GPU. In [17] a transcoding algorithm is proposed that 
makes use of intra and inter coding information and MVs in 
H.264 to accelerate the re-encoding in HEVC. In [18], 
incoming H.264 blocks are fused according to a motion 
similarity criterion. The map is used to help in constructing the 
quadtree of HEVC coded frames. H.264 MVs are used as a 
starting point for motion estimation in HEVC as well. Time 
savings of 63 % are reported with bitrate penalty of 1.4 %. 

In this work we complement the existing literature by 
proposing a MPEG-2 to HEVC transcoding solution. 

3. Transcoding Architecture  
A HEVC video frame contains equal size coding units 

referred to as CUs. A typical size of a CU is 64x64 pixels in the 
luma part. A CU can be divided into smaller blocks referred to 
as sub-CUs. The sizes of such sub-CUs can be 32x32, 16x16 or 
8x8. Sub-CUs can be recursively divided resulting in a quatree 
structure. An example of which is shown in Figure 3. The 
quadtree can have a maximum depth of three, which 
corresponds to a sub-CU size of 8x8 pixels. The final quadtree 
structure of a CU is computed using a brute-force method that 
considers all possible splitting arrangements using R-D 
optimization. The optimization takes into account motion 
estimation and compensation which makes it the most complex 
task of the encoder. Once the quadtree is structure is computed, 
Prediction Units (PUs) are decided upon for each sub-CU.  

 
Figure 1. Overall MPEG-2 to HEVC block diagram. 

 
A sub-CU can remain as is or be further divided into 2 

or 4 PUs with symmetric shapes for intra coding and 
symmetric/asymmetric shapes for inter coding. For the 
transformation and quantization of prediction residuals, each 
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sub-CU is recursively partitioned into what is known as 
Transform Units (TUs). 

Since the computation of the CU’s quadtree is the most 
complex, the proposed transcoding system focuses on 
predicting the CU splits that result in the final quadtree. 
The overall block diagram of the proposed transcoder is shown 
in Figure 1. The first part of the decoded video is used for model 
generation. Once generated, the model parameters are used in 
the HEVC re-encoder to predict the quadtree structure of coding 
units. More specifically; to predict HEVC split decisions, the 
transcoding system needs to operates in two modes; a training 
mode and a transcoding mode as illustrated in Figure 2. In the 
training mode, which contains an MPEG-2 decoder followed by 
a full HEVC encoder, the first K frames of the incoming MPEG-
2 and the corresponding outgoing HEVC videos are used for 
model generation. During this mode, feature vectors are 
extracted from the incoming bit stream and the decoded video 
is re-encoded using HEVC. During the re-encoding, the split 
decisions of each CU are stored. Having collected the feature 
vectors and corresponding split decisions, the training mode 
computes a mapping between the two and generates model 
weights that can be used in the transcoding mode.  

On the other hand, in the transcoding mode, the feature 
vectors of the incoming MBs together with the previously 
generated model weights are used to predict the split decisions 
of the outgoing CUs; hence, greatly simplifying the operations 
of the HEVC coder. 

The feature vectors extracted from the MPEG-2 video 
are based on motion vectors, coding information and texture 
variance. The exact features are listed in Table 1. 

 
Table 1. Description of MPEG-2 feature variables 

Feature variables Num. of 
variables 

Incoming MBs are arranged in 4x4 blocks 
corresponding to the size of a CU. The 
variance of the MVs is computed. 

2 

Raw MVs values (x,y) of 4x4 MBs 32 
Incoming MBs are arranged in 2x2 blocks 
corresponding to the size of a CU at depth 1. 
The variance of the MVs of each 2x2 block 
is computed. 

8 

MB types in the 4x4 block of MBs 16 
MB Coded Block Patterns (CBP) in the 4x4 
block of MBs 

16 

Number of coding bits per MB of 4x4 MBs 16 
Texture variances in the 4x4 block of MBs 16 

 
 

 
(a) 

 
(b) 

Figure 2. MPEG-2 to HEVC transcoding architecture (a) 
Training phase (b) Transcoding phase 

 
In a 4x4 square of MBs, which corresponds to a 64x64 CU, 

the following feature variables are used: the variance of the 16 
MVs in both the x and y directions, raw MV values, 16 MB 
types, 16 coded block patterns for each MB, texture variance of 
each of the 16 MBs. In addition to that, MBs are arranged into 
2x2 squares pertaining to 32x32 sub-CUs and the 
corresponding MV variances are computed and added to the 
feature vector. 

We propose a solution for predicting the whole coding tree 
unit of a given 64x64 CU, therefore, the coding depth of each 
sub CU is predicted by the transcoder. In the next section, we 
formulate the solution as a multi model classification problem. 

4. Proposed classification solutions 
In the following sub sections, we propose two solutions 

for the classification of split decisions. The first solution uses 
feature variables from MPEG-2 for the prediction of all split 
decisions of the corresponding HEVC CUs. The total number 
of split decisions is 21 as explained in the next section. 
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Therefore, 21 models are generated in this classification 
solution. The rational behind this approach is that the feature 
variables pertaining to 4x4 MPEG-2 MBs correspond to one 
HEVC CU, hence the quadtree structure of the later can be 
predicted based on the extracted feature variables. We will refer 
to this solution as multi-model classification.  

Additionally, we propose another classification solution 
that takes into account the three levels of splitting a CU. 
Considering that a typical CU has a size of 64x64 pixels, three 
split levels can be applied to generate sub-CUs with sizes of 
32x32, 16x16 and 8x8. As such, the feature variables extracted 
for this task are applied to different numbers of MPEG-2 MBs 
pertaining to the sizes of the largest CU and sub-CUs. More 
specifically, three models are generated pertaining to the three 
split levels, where each model has it is own feature matrix. We 
will refer to his solution as three tier classification solution. 

 
 
4.1. Multi model classification solution 
 
In this proposed solution, we predict all the split 

decisions of a CU. To achieve this task, the split decisions of a 
CU in this work are represented using a sequence of 1s and 0s 
as illustrated in Figure 3.  

 
Figure 3. Representation of split decisions. 
 
For instance, the top left 32x32 CU of the 64x64 CU in 

the figure is represented as [0 0 0 1 1]. The last digit indicates 
whether or not the 32x32 CU is split.  In this example, it has 
been split, so the last digit is 1. The first 4 digits correspond to 
the four 16x16 partitions in raster scan order. Here, the first 
three 0s indicate that there is no further split in the first 16x16 
CUs. The fourth digit in this example is; 1 hence the last 16x16 
CU is split into four 8x8 sub-CUs. And so forth for the rest of 
the partitions. The total digits needed for a CU are 20. An extra 
digit is needed to indicate whether the whole CU is split or not. 
Thus, 21 digits are used to represent the partitioning of a CU. 
This splitting approach is chosen due to its simplicity, it is also 
consistent with the recursive function calls needed to compress 
a CU in the HM reference software [19].  

In this work, modelling the relation between the feature 
vectors and split decision is performed using C4.5 decision 
trees and linear classification. The reason for choosing these 

two classifiers is that decision trees have been used successfully 
in optimizing HEVC encoders as reported in [20] and linear 
classifiers have been used successfully in MPEG-2 to HEVC 
transcoding as reported in [9]. 

The training of the decision trees uses Kullback–Leibler 
Divergence (KLD) to choose the best feature variable for each 
decision branch. The leaves of decision trees represent the CU’s 
split / no split decision. The trained decision trees are then used 
for predicting the CUs’ split decisions. In the multi model 
solution, all 21 split decisions are predicted individually. 
Whereas in the three tier solution, the split decision at 64x64 
level is predicted and if it is a split then the 32x32 split decision 
is predicted and so forth. The classification accuracy is reported 
by calculating the percentage of correct split decisions to the 
total number of instances used for testing. 

The multi model linear classifier is used in the same 
approach, however training is performed using a closed-form 
formula that results in model weights. Split prediction is 
performed by means of applying the model weights, using dot 
product, to the feature variables as explained in details in 
Section 4.1.  

In the following, we provide a formulation for the multi 
model classification problem using linear classification. 

Denote by 𝐗𝐗 = [𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑛𝑛]𝑇𝑇  is the sequence of 
MPEG-2 feature vectors where X∈ℜnxm, where m is the 
dimensionality of the feature vector, and n is the total number 
of feature vectors. The corresponding CU split decisions are 
denoted by 𝐒𝐒 = [𝐬𝐬1, 𝐬𝐬2, … , 𝐬𝐬𝑛𝑛]𝑇𝑇   where S∈nxL, L is the 
dimensionality of the split decisions, which is 21, and n is the 
total number of CUs which is the same as the total number of 
feature vectors.  

In this formalization, the mapping between the feature 
vectors and the split decisions is performed using a linear 
classification approach [21]. However, this is not a 
straightforward process as 21 split decisions need to be 
classified. As a result, the prediction of split units is formulated 
as a multi model classification problem. 

The training procedure is repeated L times, where L=21, 
to compute L optimum weight vectors {𝐰𝐰𝑖𝑖

𝑙𝑙}𝑙𝑙=1..𝐿𝐿 , where 
w∈ℜmx21. Each set of weight vectors corresponds to one split 
decision out of 21. Recall from Figure 3 that 21 decisions are 
required to identify the split structure for a given CU. Since a 
split decision is binary, two weight vectors are needed for each 
split decision, l; 𝐰𝐰0

𝑙𝑙  and 𝐰𝐰1
𝑙𝑙 . Each vector is computed by 

minimizing the second norm between a linear combination of 
MPEG-2 train feature vectors ( iwX ) and a HEVC split decision 
at index l represented by the column vector 𝐲𝐲𝑖𝑖𝑙𝑙 , argmin

𝑤𝑤𝑖𝑖
�𝐗𝐗𝐗𝐗𝑖𝑖 −

𝐲𝐲𝑖𝑖𝑙𝑙�2, such that  
𝐰𝐰𝑖𝑖
𝑙𝑙 = (𝐗𝐗𝑇𝑇𝐗𝐗)−1𝐗𝐗𝑇𝑇𝐲𝐲𝑖𝑖𝑙𝑙  (1) 

The subscript i is either 0 or 1 corresponding to the 2 
classes of split and no split. The 𝐲𝐲0𝑙𝑙  is a column vector from the 
S matrix at split index l, and 𝐲𝐲1𝑙𝑙  is the ones’ complement  of 𝐲𝐲0𝑙𝑙 . 

To classify the L split decisions of an incoming MPEG-
2 feature vector represented by the row vector xj, the optimum 
weights obtained from (1) are used in (2) 

[0 0 0 1 1]  

  

 [0 1 0 0 1] 

 [0 0 0 0 0]  [0 0 0 0 1] 
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𝑠𝑠𝑗𝑗𝑙𝑙 =  argmax

𝑖𝑖
(𝐱𝐱𝑗𝑗𝐰𝐰𝑖𝑖

𝑙𝑙)    (2) 

This classification process is repeated 21 times (l=1..21) 
for each split decision. The advantage of using this approach for 
the classification of the 21 split decisions is related to the 
computation of its model weights. The weights in this solution 
are calculated using a non-iterative approach as shown in 
Equation (1), consequently affecting the speed of the model 
generation as reported in the experimental results section. 

Additionally, a cleanup post-process is needed to make 
sure that there is no contradiction between the sub-CU and CU-
level split flags. That is, if any of the sub-CU split flags is “1” 
then the CU level split flag will be set to “1” as well. For 
example, if there exists a 32x32 split flag in 64x64 CU then the 
split flag of the later is set to “1”. Likewise, if there is a split 
flag within a sub-CU, then the split flag for that sub-CU is set 
to “1”. For example, if there exists a 16x16 split flag in 32x32 
sub-CU then the split flag of the later is set to “1”. 

 
 

1.2. Three tier classification solution 
 

In this proposed solution, feature variables are extracted 
from both the MPEG-2 decoder and HEVC re-encoder. Such 
feature variables result in higher rate-distortion transcoding 
performance as the HEVC re-encoder features are more 
relevant to the split decisions of the re-encoding part.  

During the training phase, feature variables are collected 
from the MPEG-2 decoder from 4x4 MBs, 2x2 MBs and 1x1 
MBs. Since the size of MPEG-2 MBs are 16x16 pixels, these 
MB arrangements correspond to CU sizes of 64x64, 32x32 and 
16x16 respectively. Additionally, for the HEVC re-encoder part, 
a three tier approach is used for feature extraction as follows. 
For each CU, feature variables are collected at three CU depths; 
64x64, 32x32 and 16x16. This results in three feature matrices 
combining feature variables from both MPEG-2 and HEVC. 
Each matrix has corresponding split decision flags/ground truth 
that are recorded during the training phase. Consequently, three 
classification models are generated at three CU depths. This 
model generation process is illustrated in Figure 4. 

 
(a) Overview of model generation 

 
Having generated the three split classification models, 

the system can start operating in the transcoding mode. During 
which, features are extracted from the MPEG-2 decoder from 
4x4, 2x2 and 1x1 MBs. The HEVC re-encoder starts by 
extracting features at 64x64 level only. At this point, a feature 
vector is formed from the MPEG-2 4x4 MBs and the 64x64 
CU. The 64x64 classification model is then used to classify 
this FV as split or no split. If classified as no split, then early 
CU termination takes place and no further split predictions are 
performed. Otherwise, if the split decision is predicted as split, 
then 4 features vectors are created, one for each of the 32x32 
sub-CUs. The 32x32 classification model is used to predict the 
split decision of each FV. This process is repeated for the 
16x16 sub-CUs where the 16x16 classification model can be 
used to predict their split decisions. This split decision 
arrangement is illustrated in Figure 5. It is worth mentioning 
that early termination algorithms for optimizing HEVC 
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encoders use similar multi-tier arrangements as reported in 
[20] and [22].  

 
(b) Detailed sub process 

Figure 4. Flowchart of the proposed 3-tier model 
generation. 

 
Similar to the multi model solution, we implement the 

3-tier solution using decision trees and linear classifiers. As 
mentioned previously, the 3-tier solution generates 3 models as 
opposed to the multi model solution where 21 models are 
generated. In an attempt to further reduce the model generation 
time, in this solution we use a reduced set of feature vectors as 
listed in Table 2. 

 
Table 2. MPEG-2 and HEVC feature variables for 3-

tier modeling 
Feature 

name Comments 

MPEG-2 MB skip 
flag 

Set to 1 if all 4x4, 2x2 and 1x1 MBs 
are skipped. This corresponds to 
64x64, 32x32 or 16x16 CUs. 

Avg MVs of co-
located CU 

Average value of MVs of the 
temporally collocated CU scaled by 
ref. picture distance. 

PU split mode 

Computed prior to splitting a CU 

Skip RD cost 
2Nx2N RD cost 
2NxN RD cost 
Nx2N RD cost 
NxN RD cost 
2NxuN RD cost 
2NxdN RD cost 
lNx2N RD cost 
MergeFlag Binary variables SkipMergeFlag 

AvgDepth Of surrounding CUs that are 
previously encoded 

 
These features are collected at 3 tiers pertaining to 64x64, 

32x32 and 16x16 CU sizes. The last 12 feature variables are 
proposed by [20] for the optimization of the HEVC encoder. 

 
4.3 Summary of proposed solutions 

 
Conceptually, the proposed solutions are similar in 

terms of using the first part of the video for model generation 
and applying it for the prediction of split decisions for the rest 
of the video. However, training and feature extraction are 
different in both solutions. 

As illustrated in Figure 2, the multi model classification 
solution uses the first part of the video for training the 
parameters of the 21 models. Once the models are generated, 
the transcoder extracts FVs from the incoming MPEG-2 video 
and uses them to predict the 21 split decisions of corresponding 
HEVC CUs. 

As illustrated in Figures 4 and 5, the three tier solution 
uses the first part of the video for training the parameters of 3 
split models for 64x64, 32x32 and 16x16 CUs/sub-CUs. Once 
the models are generated, the transcoder extracts FVs from the 
incoming MPEG-2 video and the HEVC re-encoder and uses 
them to predict the split decisions of corresponding HEVC CUs 
one level at a time (i.e. 64x64, 32x32 and 16x16). 
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Figure 5. Flowchart of the proposed split prediction 

using the 3-tier solution. 

5. Experimental results 
We use a similar experimental setup to the one reported in 

[9]. Six test video sequences are used, namely; BasketballDrill 
(832x480, 50Hz), PartyScene (832x480, 50Hz), BQMall 

(832x480, 60Hz), RaceHorses (832x480, 30Hz), Vidyo1 
(1280x720, 60Hz) and BasketballDrive (1920x1080, 50Hz). 
The sequences are MPEG-2 encoded using an IPPP… structure.  

It is typical in video transcoding to use such a GoP structure 
without intermediate I or B frames such that picture drift, if any, 
is magnified. Variable bitrate coding is used with QPs of 
{12,15,20,23} out of 31. The HEVC coder uses the following 
corresponding set of QPs {25,27,29,30}. The selected QPs are 
set such that the reduction in transcoded bitrate is around 50%.  

The coding structure is IPPP… using 4 reference frames. 
The maximum CU size is set to 64x64. The asymmetric motion 
partitions tool and the adaptive loop filter tool are both enabled. 
HEVC reference software HM13.0 is used [19]. In all cases, the 
HEVC uses the default fast motion estimation (a modified 
EPZS) and fast mode decision. The first 25 frames of each 
sequence are used for model generation. The ground truth, 
which is the true split flags, are computed by encoding the video 
sequences using the HEVC re-encoder with the same coding 
parameters explained above. Additionally, for the purpose of 
comparing the proposed solution against recent state-of-the-art 
solutions, nine other video sequences are used in this section. 

The proposed prediction of split decisions is assessed in the 
context of video transcoding. This is achieved by comparing the 
resultant compression results against the brute-force method of 
full re-encoding. The comparison is performed in terms of 
excessive bitrate and PSNR. The results of integrating the 
proposed solutions with a video transcoder are also compared 
against an existing MPEG-2 to HEVC transcoder of [9].  

Lastly, the proposed solutions are assessed in terms of 
prediction accuracy and computational time.  
In the following, the presentation and discussion of the results 
are divided into 2 subsections, namely; results based on the 
multi model approach and results based on the 3-tier approach.  
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5.1 Multi model approach results 

 
The percentages of transcoding excessive bitrates based 

in this solution are reported in Table 3. The excessive bitrates 
are computed in comparison to performing full HEVC re-
encoding as (transcoding_bitrate – full_re-encoding_bitrate) /  
full_re-encoding_bitrate * 100. Each video sequence is 
transcoded 4 times using the above-mentioned input-output 
quantization pairs. The percentage of excessive bit rate is 
reported for each input-output quantization pair. The overall 
averages are also reported in the table. 

In the table, “Multi model – Trees” and “Multi model – 
linear” refer to the use of decision trees and linear classifiers 
with the proposed multi model solution. The average excessive 
bitrates of the four runs show that the proposed solutions, with 
reference to the reviewed work, are reduced by 36% and 66% 
using decision trees and linear classification respectively. This 
is a clear transcoding advantage which is due to higher accuracy 
of predicting split decisions for all sub CUs of a 64x64 CU. The 
bitrate results also indicate that the proposed multi model 
classification approach based on linear classification, results in 
lower excessive bitrate when compared to multi model 
classification based on decisions trees. This indicates that there 
is a linear mapping between the MPEG-2 features and the 
corresponding split decisions in the HEVC re-encoder.  
Moreover, the average PSNR differences in comparison to the 
re-encoding approach are reported in Table 4.  

As the differences are minor, the results in Table 4 are 
the averages of the four runs per video sequence. The drop in 
PSNR is computed by subtracting the PSNR of the transcoder 
from that of the full re-encoder. The results indicate that in 

comparison to full re-encoding, the PSNR for the proposed 

solutions are similar. Clearly, a 0.05 or 0.06 dB difference in 
PSNR is subjectively negligible. 

Table 3. Excessive bitrate (%) of proposed and reviewed 
    Multi model - Trees Multi model - linear Reviewed[9] 

  Qin→Qout Qin→Qout Qin→Qout 

  12→ 
25 

15→ 
27 

20→ 
29 

23→ 
30 

12→ 
25 

15→ 
27 

20→ 
29 

23→ 
30 

12→ 
25 

15→ 
27 

20→ 
29 

23→ 
30 

Race 
Horses 1.98 2.79 3.35 3.62 1.63 2.14 2.41 2.55 4.2 5.6 6.1 6.5 

Basket 
ball 2.81 3.29 3.46 3.67 2.05 2.23 1.97 1.97 5.4 51 4.7 4.3 
Drill 
Party 
Scene 1.98 2.6 2.8 3.12 1.13 1.58 1.66 1.74 2.2 2.4 2.6 2.7 

BQ-Mall 3.67 4.43 4.97 5.35 2.63 3.11 3.35 3.48 5.5 6.5 6.6 6.8 
Basket 

ball 4.28 4.79 5.01 5.41 2.47 2.61 2.4 2.46 3.8 4.1 3.8 4 
Drive 

Vidyo1 3.32 3.79 4.69 4.48 0.67 0.35 0.47 0.38 0.9 0.2 0.2 0 
Avg. 3.74% 1.98% 5.80% 
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Table 4. Average drop in PSNR in dB of proposed and 
reviewed transcoding solutions 

  Multi model 
Trees 

Multi 
model 
Linear 

Reviewed 
[9] 

RaceHorses -0.04 -0.05 -0.07 
BasketballDrill -0.05 -0.06 -0.07 

PartyScene -0.03 -0.03 -0.04 
BQMall -0.05 -0.06 -0.09 

BasketballDrive -0.05 -0.06 -0.06 
Vidyo1 -0.09 -0.11 -0.11 

Average -0.05 -0.06 -0.08 
 

The prediction accuracy of split decisions plays an 
important role in transcoding as it affects the accuracy of re-
encoding. The prediction accuracy is measured by computing 
the percentage of correctly predicted split decisions in 
comparison to full re-encoding. The accuracy is reported in 
Table 5 for the proposed and reviewed solutions as an average 
of the four transcoding runs. 
 

Table 5. Classification accuracy of CU split decisions. 

 Multi model 
Trees 

Multi 
model 
Linear 

Reviewed 
[9] 

RaceHorses 85.3% 86.8% 59.0% 
BasketballDrill 88.4% 90.0% 62.0% 

PartyScene 75.1% 79.4% 58.0% 
BQMall 84.3% 87.2% 60.0% 

BasketballDrive 88.7% 90.4% 58.0% 
Vidyo1 94.7% 95.4% 73.0% 

Average 86.1% 88.2% 61.7% 
It is shown in the table that both of the proposed 

solutions have higher prediction accuracy in comparison to 
the reviewed solution. This is a clear indication that the 
proposed training approach is more accurate than the existing 
transcoding solution. The results also indicate that the 
prediction accuracy using the linear classifier resulted in the 
highest classification accuracy. This can have a positive 
influence on reducing the excessive bitrate as reported in 
Table 4 above. 

The classification accuracies of the Vidyo1 sequence 
stands out in all solutions. Further investigations into the 
Vidyo1 transcoding scenario revealed that the percentage of 
non-split CUs in the re-encoded video is around 53%. 
Therefore, it seems that the classification of split decisions in 
such a sequence is more straightforward.  

The performance of the multi-model solution using 
linear classification generated best results. To further verify 
the claim that there is a linear mapping between the MPEG-2 
features and the corresponding split decisions in the HEVC 
re-encoder, we repeated the results using the same linear 
classifier but with second order polynomial expansion of the 
feature vectors prior to classification. Interestingly, we found 
that the average classification accuracy of CU split decisions 
over 4 transcoding runs dropped to 82.7% which is inferior to 

the linear classifier without polynomial expansion. This gives 
further indication that there is a linear mapping between the 
feature variables of Table 1 and the CU split decisions. 
The proposed solutions work for higher video resolutions as 
well. Although the highest supported spatial resolution in 
MPEG-2 is 1920x1080; nonetheless, the proposed solutions 
are tested using the old_town_cross sequence which has 
3840x2160 pixels at 50Hz. In both solutions, the drop in 
PSNR was trivial; around 0.03dB, without any excessive 
bitrate. The prediction accuracy of split decisions was 95.6%.  
In summary, based on the results presented in Tables 3, 4 and 
5, it is shown that the proposed prediction of CU split 
decisions using the proposed training solutions are 
advantageous. The advantage stems from reducing the 
excessive bitrate to 1.98%, which is the result of a rather 
accurate prediction of the CU split decisions.  

In Table 6, we report the model generation time of the 
proposed solutions. The time computations measured for the 
experiments in Tables 6 and 7 are carried out on an Intel® 
Core ™ i7 CPU @ 2.7GHz. The OS is 64-bit Windows 7 
Enterprise N with 16 GB of memory. As mentioned 
previously, 21 models are generated, one for each split 
decision. Each model has a copy of the feature vectors and 
the corresponding split decision; therefore the models can be 
generated in parallel as they are independent of each other. In 
Table 6, the parallel execution time of the models is computed 
by finding the maximum time required to generate each of the 
21 models.  

It is shown in the table that the model generation 
time increases as the spatial resolution of the video increases.  
It is also shown that the model generation time using decision 
trees is higher than that of using linear classifiers. This is an 
expected result as the latter classifiers use a non-iterative, 
closed-form solution for the calculation of the model weights. 
The model generation time of the reviewed work and the 
multi model solution based on linear classification require the 
same time as in both solutions the linear classifiers use the 
same number of feature vectors.  

 
Table 6. Model generation time in seconds averaged over 4 

transcoding runs. 

Sequence 
Multi 
model 
Trees 

Multi 
model 
Linear 

RaceHorses 2.31s 0.97s 
BasketballDrill 2.26s 1.28s 

PartyScene 2.65s 1.25s 
BQMall 2.12s 1.58s 
Vidyo1 6.32s 4.48s 

BasketballDrive 20.6s 4.53s 
Average 6.04s 2.35s 

 
The transcoding speedup factors for the proposed 

and reviewed solution are reported in Table 7. The speedup 
factor is computed by dividing the time required for HEVC 
full re-encoding by the time required for transcoding with 
split decision predictions. The speedup factors per sequence 
are computed for all QP combinations and the average 
speedup values are reported in Table 7.  

https://www.springer.com/journal/42452


This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available 
online at: https://www.springer.com/journal/42452  
 

10 
 

  

  
Table 7. Transcoding speedup factors averaged over 4 runs. 

Sequence Multi model 
Trees 

Multi 
model 
Linear 

Reviewed 
[9] 

RaceHorses 1.4 1.5 2.4 
BasketballDrill 1.7 1.8 2.5 

PartyScene 1.2 1.3 2 
BQMall 1.5 1.5 2.3 

BasketballDrive 2.3 2.3 2.9 
Vidyo1 2.6 3.0 3.1 

Average 1.8 1.9 2.5 
 

Approximately, the speedup factors for the test 
sequences vary depending on the video content. This is so 
because the split decisions and the coding tree units of CUs 
mainly depend on the spatio-temporal content of the video 
sequence. The time required to compress a sequence is 
partially related to the complexity of the coding tree units and 
split decisions. In the transcoding case, coding depths beyond 
the predicted ones are not tested. It is shown in the table that 
the average speedup factor for the reviewed solution is higher 
than that of the proposed solutions. This is expected as the 
excessive bitrate of the reviewed solution as reported in Table 
3 is 5.8%. It is known in video compression that high 
encoding speedups can be easily achieved at the expense of 
the rate-distortion performance.  
In summary, the proposed multi model solutions are superior 
to the reviewed transcoding work in terms of reducing the 
excessive bitrate by up to 66% as shown in Table 3. PSNR 
differences on the other hand, are all on average negligible 
with a slight advantage to the proposed solutions as shown in 
Table 4. In terms of classification accuracy of split decisions, 
the proposed solutions achieved around 86% and 88% 
accuracy in comparison to 62% of the reviewed work as 
reported in Table 5. These results justify the noticeable 
reduction in excessive bitrate that was reported in Table 3. 
With the 5.8% excessive bitrate of the reviewed solution, it is 

no surprise that the transcoding speedup is up to 2.5 in 

comparison to the proposed solutions that achieved up to 1.9 
speedup as reported in Table 7.  
Therefore, the proposed solution is superior to the existing 
work in terms of the prediction accuracy of the CU split 
decisions and in terms of reducing the excessive transcoding 
bitrate.   
 

5.2 Three-tier approach results 
 

In this sub section, we present and discuss the results based 
on the three-tier solution using decision trees. The results are 
compared against the multi model and reviewed work results. 
We start by presenting the excessive bitrate results as reported  
in Table 3 above. The results in Table 8 indicate that the 
proposed 3-tier solution using decision trees is the most 
accurate as on average, there is no excessive bitrate in 
comparison to full re-encoding. Recall that in Table 3, the 
average excessive bitrates for the two multi model solutions 
and the reviewed work are 3.74%, 1.98% and 5.8% 
respectively. This excellent performance of the 3-tier solution 
is due to the use of feature variables from both MPEG-2 
decoder and HEVC re-encoder part. The feature variables of 
the HEVC re-encoder are more relevant to the re-encoding 
part as these variables directly contribute to the split decisions 
of the HEVC re-encoder. It is also shown in the table that the 
three-tier solution with linear classification results in average 
excessive bitrate of 2.37%. As mentioned in the previously, 
the feature variables used  in the 3-tier solution are listed in  
Table 2. These feature variables are different that the ones 
used for the multi-model solution, which are listed in Table 
1. The feature variables in Table 2 are selected based on the 
fact that in the 3-tier solution, features are selected from the 
HEVC video whilst encoding the CUs. These features are 
limited in number and therefore more suitable for decision 
trees. Further investigation revealed that the classification 
accuracy of the split decisions at three depth levels is inferior 
using linear classification in the 3-tier framework.     

In some cases, the excessive bitrates reported in Table 8 
are negative, which indicates that the transcoder generated 
slightly lower bitrate than the full re-encoder. This comes at 

Table 8. Excessive bitrate (%) of proposed 3-tier solution 
 Three-Tier (Trees) Three-Tier (Linear) 

 Qin→Qout Qin→Qout 

 12→25 15→27 20→29 23→30 12→25 15→27 20→29 23→30 
RaceHorses 0.67 0.16 -0.02 0.44 0.9 0.8 2.9 3.1 

BasketballDrill -0.34 0 -0.36 0 2.3 1.5 0.8 0.6 

PartyScene 0.74 0.23 -0.55 -0.82 10.0 7.8 4.9 4.0 
BQMall 0.67 -0.06 -0.26 -0.26 6.7 5.2 2.6 1.7 

Vidyo1 -0.19 -0.29 -0.29 -0.32 8.3 -0.4 -0.5 -0.7 
Basketball -1.43 -1.11 -1.37 -1.59 -1.6 -1.3 -1.6 -1.3 

Drive         

Avg. all runs 0.00% 2.37% 
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the expense of a slight drop in PSNR as reported in Table 9. 
The drop in PSNR is computed by subtracting the 

PSNR of the transcoder from that of the full re-encoder. 
Recall that the corresponding averages of the proposed multi 
model solutions in Table 4 above are -0.05 and -0.06 dB. The 
drop in PSNR is slightly higher when the 3-tier framework 
with linear classifiers is used. Again, this is due to the less 
accurate CU split prediction at the three levels of CU depths 
as elaborated upon next. 

 
Table 9. Average drop in PSNR in dB  

of proposed and reviewed transcoding solutions 

Sequence 
3-Tier 3-Tier Reviewed 
Trees Linear [9] 

RaceHorses -0.03 -0.08 -0.07 
BasketballDrill -0.02 -0.04 -0.07 

PartyScene -0.04 -0.26 -0.04 
BQMall -0.02 -0.13 -0.09 

BasketballDrive -0.01 -0.03 -0.06 
Vidyo1 -0.02 -0.03 -0.11 

Average -0.02 -0.096 -0.08 
 

In terms of classification accuracy, the proposed 3-tier 
solution has a lower classification result in comparison to the 
multi model approach. The average classification accuracy of 
the 3-tier solution using decision trees is 81% in comparison 
to 86.1% and 88.2% of the multi model solutions. This can be 
justified as follows; in the 3-tier solution, the classifier starts 
by predicting the split decision for the whole 64x64 CU, if the 
decision is ‘no split’, then no further split decisions are 
predicted.  

Therefore, if the 64x64 split decision is incorrect then 
all of the subsequent 32x32 and 16x16 split decisions are 
incorrect as well. This is not the case for the multi model 
solutions as the 21 split decisions are predicted separately at 
the same time. This prediction is followed by a clean-up 
process in which the 64x64 split decision can be altered if the 
32x32 or the 16x16 sub CUs are predicted as being split. 
Additionally, the average classification accuracies using the 
3-tier framework for both linear classification and decisions 
trees are reported in Table 10. 

 
Table 10. Classification accuracy of CU split using 3-tiers. 

Sequence 
3-Tier 3-Tier 
Trees Linear 

RaceHorses 81.6% 78.2% 

BasketballDrill 82.4% 77.7% 
PartyScene 74.0% 63.7% 

BQMall 79.9% 74.7% 
BasketballDrive 79.2% 75.1% 

Vidyo1 89.2% 83.9% 
Average 81.0% 75.5% 

It is shown in the table that linear classification with 

the proposed 3-Tier solution that uses the feature variables of 
Table 2 results in less accurate classification results of CU 
splits. This justifies the lower performance in terms on 
excessive transcoding bitrate and drop in PSNR as reported 
in Tables 8 and 9 above. Further investigation revealed that 
the average classification accuracy at the first tier (64x64 CU 
level) was 87.6% using decision trees and 74.3% using linear 
classifiers. The classification accuracy of the latter is 
relatively low. Recall that the 32x32 split decisions are 
examined only if the corresponding 64x64 split decision is 
predicted as true, therefore, inaccurate prediction of the 
64x64 split decision has an adverse effect on rate-distortion 
performance. 

The model generation time and the transcoding 
speedup of the proposed 3-tier solution are reported in Table 
11. 

Table 11. Model generation time in seconds and 
 transcoding speedup averaged over 4 runs. 

 
The average time required for model generation for the 

proposed multi model solutions are 6.04s and 2.35s as 
reported in Table 6 above. In the proposed 3-tier solution, the 
corresponding average is 3.08s. Again, the 3-tier solution 
uses decision trees; hence, the modeling time is expected to 
be more than the multi model solution based on linear 
classification. In comparison to the model generation time of 
the multi model solution using decision tress, the present 
solution has lower computational complexity as less feature 
variables are used in this solution. The transcoding speedup 
on the other hand is lower than that of the multi model 
solutions. This indicates that the latter solutions predicted a 
higher percentage of non-splits resulting in faster transcoding 
and lower video quality. 

In summary, the 3-tier solution using decision trees 
resulted in the best rate-distortion behavior. In terms of model 
generation time, the 3-tier approach based on linear 
classification is the fastest, yet this is achieved at the expense 
of rate-distortion performance.  
Additionally, the use of feature variables from both MPEG-2 
and HEVC and the prediction of CU splits at three different 
depths resulted in eliminating the excessive transcoding 
bitrate as shown in Table 8. This is a clear advantage over 
both, the reviewed work and the proposed multi model 
solutions that resulted in minimum excessive bit rate of 1.9% 
as reported in Table 3. This discussion also holds for the 
average drop in PSNR as reported in Table 9. This high 
accuracy in transcoding comes at an expense of lower 
speedup of 1.65 as reported in Table 5. The speedup of the 
proposed multi model solution on the other hand was 1.9 as 
reported in Table 7. 

Sequence Modeling 
time (s) 

Trans. 
Speedup 

RaceHorses 2.13s 1.45 
BasketballDrill 1.42s 1.52 

PartyScene 3.61s 1.31 
BQMall 1.53s 1.44 
Vidyo1 2.79s 2.53 

BasketballDrive 6.97s 1.64 
Average 3.08s 1.65 
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Therefore, the second proposed solution further 
reduced the transcoding excessive bitrate and enhanced the 
video quality at the expense of reducing the transcoding 

speedup. There is a trade-off between transcoding accuracy 
and transcoding speedup as expected. 

Lastly, there are a number of HEVC encoder 
optimization solutions reported in the literature such as [23], 
[24], [25], [26] and [27]. The proposed CU split prediction 
can be applied to the HEVC encoder and compared to existing 
literature. For a fair comparison, we apply our 3-tier CU split 
prediction to the HEVC encoder and assess the accuracy and 
efficiency using BD-rate [22] and time savings. A lower BD-
rate value and a higher time saving are desired. In the 
literature, some researchers use the Computational 
Complexity Reduction (CCR%) which is computed as 
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟⁄ *10
0. Others use ∆Time (%) which is defined as 
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⁄
*100. 

Table 12. List of video sequences used. 

Class ID Video  
sequence Res.  Hz Bit  

depth 

D 
D1 BlowingBubbles 416x240 50 8 
D2 BQSquare 416x240 60 8 
D3 BasketballPass 416x240 50 8 

C 
C1 ParkScene 832x480 50 8 
C2 BQMall 832x480 60 8 
C3 BasketballDrill 832x480 50 8 

B 
B1 PartyScene 1920x1080 24 8 
B2 Cactus 1920x1080 50 8 
B3 BQTerrace 1920x1080 60 8 

A 

A1 Traffic 2560x1600 30 8 
A2 NebutaFestival 2560x1600 60 10 

A3 SteamLocomoti
veTrain 2560x1600 60 10 

Table 12 lists the video sequences and their resolutions 
employed for comparison with [23], [24], [25], [26] and [27] 
all video sequences are encoded with QPs of {22, 27, 32, and 

37}. 
In Table 13, we show the results of predicting the CU 

split decisions of HEVC in comparison to [23], [24], [25], 
[26] and [27]. 

In [23], the average BD-rate penalty is 0.62 with a 
∆Time advantage of 53.6%. The proposed solution is faster 
as the ∆Time is 82.6%. The time difference is achieved with 
an enhanced BD-rate of 0.54 instead of 0.62. In [24], the 
average BD-rate penalty was 2.0 with a CCR of 37.8%. In 
this case, the proposed solution is more accurate as the BD-
rate is noticeably lower. The proposed solution is also faster 
as the CCR is 40% versus 37.8% for the proposed solution.  

In [25], the average BD-rate penalty is 0.79 which is 
inferior to the proposed solution and the CCR% saving is 
lower as well. In [26] and [27], the CCR are 47.6% and 
48.4%, however, the computational savings come at a 
relatively high BD-rate cost of 0.91 and 1.4 respectively.  

Lastly, the work reported in [28] proposed CU split 
prediction based on the motion features and rate-distortion 
cost of the NxN inter mode. A MV reuse scheme is also 
proposed to expedite compression. The CCR% results 
reported range from 55% to 61%. However, this speedup 
comes at the expense of high BD-rate loss of 1.93 to 2.33.  

In conclusion, applying the proposed solution to the 
HEVC encoder results in high  time savings whilst enhancing 
the compression efficiency. Incorporating the proposed 
solution in the MPEG-2 to HEVC transcoder, as described in 
Section 4, resulted in an efficient video transcoder as evident 
in the transcoding results of Sections 5.1 and 5.2 above. 

6. Conclusion 
Two novel solutions for transcoding MPEG-2 video into 

HEVC are proposed where split decisions of HEVC CUs are 
represented as a sequence of 21 binary numbers. 
Consequently, the split decisions of a CU are predicted using 

Table 13. Accuracy and time savings of prediction CU split decisions. 
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21 classification models. Alternatively, the split decisions are 
grouped into 3 depth levels and consequently, 3 classification 
models are generated. The two solutions were referred to as 
multi models and three-tier solutions respectively. In both 
solutions, the transcoder starts by operating in training mode 
in which feature vectors are mapped to split decisions. Once 
the classification models are generated, the system switches 
to transcoding mode. 

It was shown in the experimental results that the 3-tier 
transcoding solution generates rate-distortion results that are 
very close to those of the full re-encoding counterpart. In fact, 
it was shown that the excessive bitrate can on average be 
eliminated in comparison to full re-encoding. Surely, this 
increase in transcoding accuracy comes at the expense of 
speedup when compared to other transcoding solutions. It 
was also shown that, depending on the classifier used, the 
model generation time varies from 2.35s-6.04s and 0.08s-3.1s 
for the multi model and 3-tier solutions respectively. 
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