
This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

1

Predicting Split Decisions in MPEG-2 to HEVC Video Transcoding

Tamer Shanableh*1 and Mahitab Hassan 2

1 *Department of Computer Science and Engineering, American University of Sharjah, UAE
*tshanableh@aus.edu

2 IBM Cloud, Dubai, UAE

Abstract: This paper proposes learning-based approaches for transcoding MPEG-2 video into HEVC. In the training mode of
the transcoder, mappings between extracted features and split decisions are calculated. While in the transcoding mode, the
split decisions of coding units of the HEVC video are predicted. Two formulations are proposed for the prediction of split
decisions based on multi model and multi-tier solutions. In the former solution, multi models are generated based on the total
number of split flags in a coding unit. While in the latter solution, split decisions are modelled at three different coding depths.
The proposed solutions are evaluated in terms of excessive bitrate, drop in PSNR, classification accuracy, model generation
time and transcoding speedup. It is shown that the multi-tier solution maintains the rate-distortion behaviour of full re-
encoding at the expense of lower gain in transcoding speedup. In comparison to existing work, it is shown that the proposed
solutions offer a significant enhancement in terms of rate-distortion performance and classification accuracy.
Keywords: Video coding, video transcoding, HEVC, machine learning

1. Introduction
One of the main objectives of the High Efficiency Video

Coding (HEVC) is to provide a significant rate-distortion
improvement in comparison to H.264/AVC. Such an
improvement paves the way for new applications requiring
ultra-high definition resolutions [1].

Heterogeneous video transcoding can be applied to
convert existing videos compressed with popular standards
such as MPEG-2 and H.264/AVC into HEVC. The term
heterogeneous is used to indicate facilitating interoperability
between different video coding standards. One of the earliest
work on heterogeneous video transcoding was reported by the
author in [2,3] for transcoding between different video formats.

To date, not much work has been reported for HEVC
heterogeneous video transcoding. Nonetheless, a number of
video transcoders are reported for transcoding between MPEG-
2 and H.264/AVC on one side and HEVC on the other side.
Noteworthy are the heterogeneous HEVC transcoding solutions
that are based on content modelling for predicting the coding
depth of HEVC Coding Units (CU).

For example, in [4] it was proposed to extract features
from the incoming H.264/AVC coded blocks and compare their
values against adaptive thresholds to decide on the outgoing
HEVC CU partitioning. These incoming features are based on
Motion Vector (MV) statistics, number of DCT coefficients and
energy of DCT coefficients. The adaptive thresholds are
computed from the first K H.264/AVC frames and
corresponding outgoing HEVC CUs, where K is typically set to
25 frames.

Another approach for H.264/AVC to HEVC transcoding
is based on Linear Discriminant Functions (LDFs). Features are
extracted from the incoming H.264/AVC video and mapped to
split or no split decisions of the outgoing HEVC CUs. Again,
the weights of the LDFs are computed from the first K incoming

frames as in the previous approach. Once computed, LDFs are
used to classify outgoing CUs between split or no split [5]. One
exception applies to incoming blocks with a high MV variance,
such blocks are automatically classified as split [4].

Parallel processing has been used to speedup the
H.264/AVC to HEVC transcoding processing. The transcoder
made use of incoming coding information for further speedup
as well. It was reported that 720p resolution video can be
transcoded in real time [6].

Other transcoding solutions exist, for instance, in [7] it
was proposed to segment incoming H.264/AVC frames into
three regions based on coding complexity. After that, the coding
structure of an outgoing CU is determined based on the
incoming region type and motion vectors. A MV clustering
techniques of incoming MVs is also proposed for reducing the
complexity of H.264/AVC to HEVC video transcoding [8].

On the other hand, since the MPEG-2 video content is
widely available, a MPEG-2 to HEVC transcoder is proposed
in [9]. The transcoding results are attractive in terms of
excessive bitrate and computational complexity. However, the
learning approach used is limited in that it predicts the coding
depth of the first sub CU in a 64x64 coding unit. The predicted
depth is replicated to the rest of the sub CUs in the same CU.

With the co-existence of many video coding standards,
codec interoperability tools like video transcoders are becoming
important. With the latest ITU-T-ISO/IEC HEVC codec, a need
has emerged for transcoding legacy formats into HEVC. In
particular, the MPEG-2 video content, which is used in TV
services, digital broadcast and DVDs is plentiful. It is well-
known that the MPEG-2 compression efficiency is not as good
as that offered by HEVC. One approach to make use of existing
MPEG-2 content whilst reducing its bitrate and file size is to
transcode such videos into the efficient HEVC video codec.

The main object of this work is to propose a MPEG-2 to
HEVC transcoder with an efficient learning approach to predict

https://www.springer.com/journal/42452
mailto:tshanableh@aus.edu

This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

2

all split decisions of an outgoing HEVC CU. The proposed
solutions are based on generating multi split decision models
and three tier classification models. For that purpose, we
represent the split decisions of a 64x64 CU using 21 binary
digits. Each of the split decisions of a CU are classified
separately using the multi model classification approach.
Whereas in the three tier model, the split decisions are grouped
according to one of the three coding depths and consequently,
only three classification models are generated.

Both classification approaches are integrated in a
transcoding system that uses the first K input and output frames
for model generation. Therefore, the main contribution of this
manuscript is to predict the outgoing split decisions by
modelling the relationship between the incoming MPEG-2
coding parameters and the outgoing split decisions of CUs. The
proposed transcoding system shall maintain the video quality in
comparison to the case of full HEVC re-encoding, yet at the
same time, speedup the video conversion processes.

Such a transcoding approach is needed since existing
video content coded with MPEG-2 format is abundant as it is
used in high definition and standard format TV and
transmission systems. By transcoding from MPEG-2 to HEVC,
existing MPEG-2 content can be made use of with HEVC
decoders, thus, achieving compatibility with older formats.
Additionally, by transcoding into HEVC format, the MPEG-2
video files can be greatly reduced in size without sacrificing its
quality as shown in this paper.

The rest of the paper is organized as follows. Section 2
present a literature review on HEVC transcoding. Section 3,
introduces the overall transcoding architecture, Section 4
introduces the proposed multi model and three-tier
classification solutions, Section 5 presents the experimental
results and Section 6 concludes the paper.

2. Literature review
In the literature, most of the HEVC transcoding work is

reported for H.264 into HEVC transcoding and HEVC
transrating. Nonetheless, a number of interesting transcoding
solutions are reported for HEVC into none ISO standardized
coder are reported. For instance, in [10] a HEVC to AVS2
transcoder is proposed which decodes the incoming video in
multi-stages to make use of HEVC information in the
transcoding process. The authors reported speedup in the range
of 11x to 17x over AVS2 reference software. Likewise, [11]
reported a HEVC into VP9 transcoder with a 60% reduction in
complexity at the expense of acceptable R-D penalties. On the
other hand, HEVC translating is reported in [12] and [13]. The
fastest solution in [12] achieved a complexity reduction of 82%
with a bitrate penalty up to 3%. The transcoder in [13] is based
on the decoder-encoder cascade with statistical analysis to
leverage CU and PU structures from the incoming HEVC video.

It is worth mentioning that the majority of reported
HEVC transcoders is related to H.264 to HEVC transcoding for
both intra only and intra/inter modes. For instance, [14]
proposed fast intra H.264 to HEVC transcoder by leveraging
the incoming DCT coefficients and intra predictions to predict

the coding depth in HEVC CUs. The transcoder is 1.7-2.5 times
faster than ordinary HEVC encoding with a bitrate penalty up
to 3%. The work in [15] proposed a similar transcoder that
utilizes Bayesian classifiers to speedup the transcoding process.

Additionally, inter-frame H.264 to HEVC transcoder are
reported. In [16] a low complexity transcoder is proposed which
makes use of machine learning and parallel processing. A
parallel algorithm is proposed to makes use of a multi-core CPU
and GPU. In [17] a transcoding algorithm is proposed that
makes use of intra and inter coding information and MVs in
H.264 to accelerate the re-encoding in HEVC. In [18],
incoming H.264 blocks are fused according to a motion
similarity criterion. The map is used to help in constructing the
quadtree of HEVC coded frames. H.264 MVs are used as a
starting point for motion estimation in HEVC as well. Time
savings of 63 % are reported with bitrate penalty of 1.4 %.

In this work we complement the existing literature by
proposing a MPEG-2 to HEVC transcoding solution.

3. Transcoding Architecture
A HEVC video frame contains equal size coding units

referred to as CUs. A typical size of a CU is 64x64 pixels in the
luma part. A CU can be divided into smaller blocks referred to
as sub-CUs. The sizes of such sub-CUs can be 32x32, 16x16 or
8x8. Sub-CUs can be recursively divided resulting in a quatree
structure. An example of which is shown in Figure 3. The
quadtree can have a maximum depth of three, which
corresponds to a sub-CU size of 8x8 pixels. The final quadtree
structure of a CU is computed using a brute-force method that
considers all possible splitting arrangements using R-D
optimization. The optimization takes into account motion
estimation and compensation which makes it the most complex
task of the encoder. Once the quadtree is structure is computed,
Prediction Units (PUs) are decided upon for each sub-CU.

Figure 1. Overall MPEG-2 to HEVC block diagram.

A sub-CU can remain as is or be further divided into 2

or 4 PUs with symmetric shapes for intra coding and
symmetric/asymmetric shapes for inter coding. For the
transformation and quantization of prediction residuals, each

MPEG-2 video

MPEG-2
decoder

HEVC re-encoder
First part of the video

used for training
Split prediction applies
to the rest of the video

<Feature vectors> <Feature vectors>
<CU split decisions>

Model generation

HEVC
video

Model
parameters

Train on first part of the video

https://www.springer.com/journal/42452

This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

3

sub-CU is recursively partitioned into what is known as
Transform Units (TUs).

Since the computation of the CU’s quadtree is the most
complex, the proposed transcoding system focuses on
predicting the CU splits that result in the final quadtree.
The overall block diagram of the proposed transcoder is shown
in Figure 1. The first part of the decoded video is used for model
generation. Once generated, the model parameters are used in
the HEVC re-encoder to predict the quadtree structure of coding
units. More specifically; to predict HEVC split decisions, the
transcoding system needs to operates in two modes; a training
mode and a transcoding mode as illustrated in Figure 2. In the
training mode, which contains an MPEG-2 decoder followed by
a full HEVC encoder, the first K frames of the incoming MPEG-
2 and the corresponding outgoing HEVC videos are used for
model generation. During this mode, feature vectors are
extracted from the incoming bit stream and the decoded video
is re-encoded using HEVC. During the re-encoding, the split
decisions of each CU are stored. Having collected the feature
vectors and corresponding split decisions, the training mode
computes a mapping between the two and generates model
weights that can be used in the transcoding mode.

On the other hand, in the transcoding mode, the feature
vectors of the incoming MBs together with the previously
generated model weights are used to predict the split decisions
of the outgoing CUs; hence, greatly simplifying the operations
of the HEVC coder.

The feature vectors extracted from the MPEG-2 video
are based on motion vectors, coding information and texture
variance. The exact features are listed in Table 1.

Table 1. Description of MPEG-2 feature variables

Feature variables Num. of
variables

Incoming MBs are arranged in 4x4 blocks
corresponding to the size of a CU. The
variance of the MVs is computed.

2

Raw MVs values (x,y) of 4x4 MBs 32
Incoming MBs are arranged in 2x2 blocks
corresponding to the size of a CU at depth 1.
The variance of the MVs of each 2x2 block
is computed.

8

MB types in the 4x4 block of MBs 16
MB Coded Block Patterns (CBP) in the 4x4
block of MBs

16

Number of coding bits per MB of 4x4 MBs 16
Texture variances in the 4x4 block of MBs 16

(a)

(b)

Figure 2. MPEG-2 to HEVC transcoding architecture (a)
Training phase (b) Transcoding phase

In a 4x4 square of MBs, which corresponds to a 64x64 CU,

the following feature variables are used: the variance of the 16
MVs in both the x and y directions, raw MV values, 16 MB
types, 16 coded block patterns for each MB, texture variance of
each of the 16 MBs. In addition to that, MBs are arranged into
2x2 squares pertaining to 32x32 sub-CUs and the
corresponding MV variances are computed and added to the
feature vector.

We propose a solution for predicting the whole coding tree
unit of a given 64x64 CU, therefore, the coding depth of each
sub CU is predicted by the transcoder. In the next section, we
formulate the solution as a multi model classification problem.

4. Proposed classification solutions
In the following sub sections, we propose two solutions

for the classification of split decisions. The first solution uses
feature variables from MPEG-2 for the prediction of all split
decisions of the corresponding HEVC CUs. The total number
of split decisions is 21 as explained in the next section.

MPEG-2 video
first K-frames

MPEG-2
decoder

Full HEVC
encoder

<Feature vectors>
<CU split decisions>
<Feature vectors>

Training mode

Model generation

HEVC
video

Model
weights

MPEG-2 video
K+1 to N frames

<Feature vectors>

CU split decision
prediction

MPEG-2
decoder

HEVC
transcoder

<Predicted CU split decisions>

Transcoding mode

HEVC
video

Model
weights

https://www.springer.com/journal/42452

This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

4

Therefore, 21 models are generated in this classification
solution. The rational behind this approach is that the feature
variables pertaining to 4x4 MPEG-2 MBs correspond to one
HEVC CU, hence the quadtree structure of the later can be
predicted based on the extracted feature variables. We will refer
to this solution as multi-model classification.

Additionally, we propose another classification solution
that takes into account the three levels of splitting a CU.
Considering that a typical CU has a size of 64x64 pixels, three
split levels can be applied to generate sub-CUs with sizes of
32x32, 16x16 and 8x8. As such, the feature variables extracted
for this task are applied to different numbers of MPEG-2 MBs
pertaining to the sizes of the largest CU and sub-CUs. More
specifically, three models are generated pertaining to the three
split levels, where each model has it is own feature matrix. We
will refer to his solution as three tier classification solution.

4.1. Multi model classification solution

In this proposed solution, we predict all the split

decisions of a CU. To achieve this task, the split decisions of a
CU in this work are represented using a sequence of 1s and 0s
as illustrated in Figure 3.

Figure 3. Representation of split decisions.

For instance, the top left 32x32 CU of the 64x64 CU in

the figure is represented as [0 0 0 1 1]. The last digit indicates
whether or not the 32x32 CU is split. In this example, it has
been split, so the last digit is 1. The first 4 digits correspond to
the four 16x16 partitions in raster scan order. Here, the first
three 0s indicate that there is no further split in the first 16x16
CUs. The fourth digit in this example is; 1 hence the last 16x16
CU is split into four 8x8 sub-CUs. And so forth for the rest of
the partitions. The total digits needed for a CU are 20. An extra
digit is needed to indicate whether the whole CU is split or not.
Thus, 21 digits are used to represent the partitioning of a CU.
This splitting approach is chosen due to its simplicity, it is also
consistent with the recursive function calls needed to compress
a CU in the HM reference software [19].

In this work, modelling the relation between the feature
vectors and split decision is performed using C4.5 decision
trees and linear classification. The reason for choosing these

two classifiers is that decision trees have been used successfully
in optimizing HEVC encoders as reported in [20] and linear
classifiers have been used successfully in MPEG-2 to HEVC
transcoding as reported in [9].

The training of the decision trees uses Kullback–Leibler
Divergence (KLD) to choose the best feature variable for each
decision branch. The leaves of decision trees represent the CU’s
split / no split decision. The trained decision trees are then used
for predicting the CUs’ split decisions. In the multi model
solution, all 21 split decisions are predicted individually.
Whereas in the three tier solution, the split decision at 64x64
level is predicted and if it is a split then the 32x32 split decision
is predicted and so forth. The classification accuracy is reported
by calculating the percentage of correct split decisions to the
total number of instances used for testing.

The multi model linear classifier is used in the same
approach, however training is performed using a closed-form
formula that results in model weights. Split prediction is
performed by means of applying the model weights, using dot
product, to the feature variables as explained in details in
Section 4.1.

In the following, we provide a formulation for the multi
model classification problem using linear classification.

Denote by 𝐗𝐗 = [𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑛𝑛]𝑇𝑇 is the sequence of
MPEG-2 feature vectors where X∈ℜnxm, where m is the
dimensionality of the feature vector, and n is the total number
of feature vectors. The corresponding CU split decisions are
denoted by 𝐒𝐒 = [𝐬𝐬1, 𝐬𝐬2, … , 𝐬𝐬𝑛𝑛]𝑇𝑇 where S∈nxL, L is the
dimensionality of the split decisions, which is 21, and n is the
total number of CUs which is the same as the total number of
feature vectors.

In this formalization, the mapping between the feature
vectors and the split decisions is performed using a linear
classification approach [21]. However, this is not a
straightforward process as 21 split decisions need to be
classified. As a result, the prediction of split units is formulated
as a multi model classification problem.

The training procedure is repeated L times, where L=21,
to compute L optimum weight vectors {𝐰𝐰𝑖𝑖

𝑙𝑙}𝑙𝑙=1..𝐿𝐿 , where
w∈ℜmx21. Each set of weight vectors corresponds to one split
decision out of 21. Recall from Figure 3 that 21 decisions are
required to identify the split structure for a given CU. Since a
split decision is binary, two weight vectors are needed for each
split decision, l; 𝐰𝐰0

𝑙𝑙 and 𝐰𝐰1
𝑙𝑙 . Each vector is computed by

minimizing the second norm between a linear combination of
MPEG-2 train feature vectors (iwX) and a HEVC split decision
at index l represented by the column vector 𝐲𝐲𝑖𝑖𝑙𝑙 , argmin

𝑤𝑤𝑖𝑖
�𝐗𝐗𝐗𝐗𝑖𝑖 −

𝐲𝐲𝑖𝑖𝑙𝑙�2, such that
𝐰𝐰𝑖𝑖
𝑙𝑙 = (𝐗𝐗𝑇𝑇𝐗𝐗)−1𝐗𝐗𝑇𝑇𝐲𝐲𝑖𝑖𝑙𝑙 (1)

The subscript i is either 0 or 1 corresponding to the 2
classes of split and no split. The 𝐲𝐲0𝑙𝑙 is a column vector from the
S matrix at split index l, and 𝐲𝐲1𝑙𝑙 is the ones’ complement of 𝐲𝐲0𝑙𝑙 .

To classify the L split decisions of an incoming MPEG-
2 feature vector represented by the row vector xj, the optimum
weights obtained from (1) are used in (2)

[0 0 0 1 1]

 [0 1 0 0 1]

 [0 0 0 0 0] [0 0 0 0 1]

https://www.springer.com/journal/42452

This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

5

𝑠𝑠𝑗𝑗𝑙𝑙 = argmax

𝑖𝑖
(𝐱𝐱𝑗𝑗𝐰𝐰𝑖𝑖

𝑙𝑙) (2)

This classification process is repeated 21 times (l=1..21)
for each split decision. The advantage of using this approach for
the classification of the 21 split decisions is related to the
computation of its model weights. The weights in this solution
are calculated using a non-iterative approach as shown in
Equation (1), consequently affecting the speed of the model
generation as reported in the experimental results section.

Additionally, a cleanup post-process is needed to make
sure that there is no contradiction between the sub-CU and CU-
level split flags. That is, if any of the sub-CU split flags is “1”
then the CU level split flag will be set to “1” as well. For
example, if there exists a 32x32 split flag in 64x64 CU then the
split flag of the later is set to “1”. Likewise, if there is a split
flag within a sub-CU, then the split flag for that sub-CU is set
to “1”. For example, if there exists a 16x16 split flag in 32x32
sub-CU then the split flag of the later is set to “1”.

1.2. Three tier classification solution

In this proposed solution, feature variables are extracted
from both the MPEG-2 decoder and HEVC re-encoder. Such
feature variables result in higher rate-distortion transcoding
performance as the HEVC re-encoder features are more
relevant to the split decisions of the re-encoding part.

During the training phase, feature variables are collected
from the MPEG-2 decoder from 4x4 MBs, 2x2 MBs and 1x1
MBs. Since the size of MPEG-2 MBs are 16x16 pixels, these
MB arrangements correspond to CU sizes of 64x64, 32x32 and
16x16 respectively. Additionally, for the HEVC re-encoder part,
a three tier approach is used for feature extraction as follows.
For each CU, feature variables are collected at three CU depths;
64x64, 32x32 and 16x16. This results in three feature matrices
combining feature variables from both MPEG-2 and HEVC.
Each matrix has corresponding split decision flags/ground truth
that are recorded during the training phase. Consequently, three
classification models are generated at three CU depths. This
model generation process is illustrated in Figure 4.

(a) Overview of model generation

Having generated the three split classification models,

the system can start operating in the transcoding mode. During
which, features are extracted from the MPEG-2 decoder from
4x4, 2x2 and 1x1 MBs. The HEVC re-encoder starts by
extracting features at 64x64 level only. At this point, a feature
vector is formed from the MPEG-2 4x4 MBs and the 64x64
CU. The 64x64 classification model is then used to classify
this FV as split or no split. If classified as no split, then early
CU termination takes place and no further split predictions are
performed. Otherwise, if the split decision is predicted as split,
then 4 features vectors are created, one for each of the 32x32
sub-CUs. The 32x32 classification model is used to predict the
split decision of each FV. This process is repeated for the
16x16 sub-CUs where the 16x16 classification model can be
used to predict their split decisions. This split decision
arrangement is illustrated in Figure 5. It is worth mentioning
that early termination algorithms for optimizing HEVC

Start training

Read MPEG-2
 bitstream

Decode

YUV seq.

Feature
extraction

64x64
32x32
16x16

HEVC
re-encoder

MPEG-2
features

End

Model
generation

32x32
16x16

3 split
Models

64x64

Feature variables
Sub-

process

End

Class labels/ground truth
Feature vectors

https://www.springer.com/journal/42452

This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

6

encoders use similar multi-tier arrangements as reported in
[20] and [22].

(b) Detailed sub process

Figure 4. Flowchart of the proposed 3-tier model
generation.

Similar to the multi model solution, we implement the

3-tier solution using decision trees and linear classifiers. As
mentioned previously, the 3-tier solution generates 3 models as
opposed to the multi model solution where 21 models are
generated. In an attempt to further reduce the model generation
time, in this solution we use a reduced set of feature vectors as
listed in Table 2.

Table 2. MPEG-2 and HEVC feature variables for 3-

tier modeling
Feature

name Comments

MPEG-2 MB skip
flag

Set to 1 if all 4x4, 2x2 and 1x1 MBs
are skipped. This corresponds to
64x64, 32x32 or 16x16 CUs.

Avg MVs of co-
located CU

Average value of MVs of the
temporally collocated CU scaled by
ref. picture distance.

PU split mode

Computed prior to splitting a CU

Skip RD cost
2Nx2N RD cost
2NxN RD cost
Nx2N RD cost
NxN RD cost
2NxuN RD cost
2NxdN RD cost
lNx2N RD cost
MergeFlag Binary variables SkipMergeFlag

AvgDepth Of surrounding CUs that are
previously encoded

These features are collected at 3 tiers pertaining to 64x64,

32x32 and 16x16 CU sizes. The last 12 feature variables are
proposed by [20] for the optimization of the HEVC encoder.

4.3 Summary of proposed solutions

Conceptually, the proposed solutions are similar in

terms of using the first part of the video for model generation
and applying it for the prediction of split decisions for the rest
of the video. However, training and feature extraction are
different in both solutions.

As illustrated in Figure 2, the multi model classification
solution uses the first part of the video for training the
parameters of the 21 models. Once the models are generated,
the transcoder extracts FVs from the incoming MPEG-2 video
and uses them to predict the 21 split decisions of corresponding
HEVC CUs.

As illustrated in Figures 4 and 5, the three tier solution
uses the first part of the video for training the parameters of 3
split models for 64x64, 32x32 and 16x16 CUs/sub-CUs. Once
the models are generated, the transcoder extracts FVs from the
incoming MPEG-2 video and the HEVC re-encoder and uses
them to predict the split decisions of corresponding HEVC CUs
one level at a time (i.e. 64x64, 32x32 and 16x16).

Read CU

Set N to 64

Collect features
at NxN level

Set N to N/2

N > 16

Save all split flags

HEVC
features

Split
flags

Yes

Start HEVC
re-encoding

End

CU
available?

No

Yes

Class labels/ground truth
Feature vectors

https://www.springer.com/journal/42452

This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

7

Figure 5. Flowchart of the proposed split prediction

using the 3-tier solution.

5. Experimental results
We use a similar experimental setup to the one reported in

[9]. Six test video sequences are used, namely; BasketballDrill
(832x480, 50Hz), PartyScene (832x480, 50Hz), BQMall

(832x480, 60Hz), RaceHorses (832x480, 30Hz), Vidyo1
(1280x720, 60Hz) and BasketballDrive (1920x1080, 50Hz).
The sequences are MPEG-2 encoded using an IPPP… structure.

It is typical in video transcoding to use such a GoP structure
without intermediate I or B frames such that picture drift, if any,
is magnified. Variable bitrate coding is used with QPs of
{12,15,20,23} out of 31. The HEVC coder uses the following
corresponding set of QPs {25,27,29,30}. The selected QPs are
set such that the reduction in transcoded bitrate is around 50%.

The coding structure is IPPP… using 4 reference frames.
The maximum CU size is set to 64x64. The asymmetric motion
partitions tool and the adaptive loop filter tool are both enabled.
HEVC reference software HM13.0 is used [19]. In all cases, the
HEVC uses the default fast motion estimation (a modified
EPZS) and fast mode decision. The first 25 frames of each
sequence are used for model generation. The ground truth,
which is the true split flags, are computed by encoding the video
sequences using the HEVC re-encoder with the same coding
parameters explained above. Additionally, for the purpose of
comparing the proposed solution against recent state-of-the-art
solutions, nine other video sequences are used in this section.

The proposed prediction of split decisions is assessed in the
context of video transcoding. This is achieved by comparing the
resultant compression results against the brute-force method of
full re-encoding. The comparison is performed in terms of
excessive bitrate and PSNR. The results of integrating the
proposed solutions with a video transcoder are also compared
against an existing MPEG-2 to HEVC transcoder of [9].

Lastly, the proposed solutions are assessed in terms of
prediction accuracy and computational time.
In the following, the presentation and discussion of the results
are divided into 2 subsections, namely; results based on the
multi model approach and results based on the 3-tier approach.

Start transcoding

Read MPEG-2
 bitstream

Decode
YUV seq.

Feature
extraction

64x64
32x32
16x16

HEVC
re-encoder

MPEG-2
features

Write HEVC
 bitstream

End

Read CU

Set N to 64

Collect features
at NxN level

& combine with
MPEG-2 features

Set N to N/2

MPEG-2
features

Predict split

Split?

Yes

No

CU
available?

No
Yes

Split
model

https://www.springer.com/journal/42452

This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

8

5.1 Multi model approach results

The percentages of transcoding excessive bitrates based

in this solution are reported in Table 3. The excessive bitrates
are computed in comparison to performing full HEVC re-
encoding as (transcoding_bitrate – full_re-encoding_bitrate) /
full_re-encoding_bitrate * 100. Each video sequence is
transcoded 4 times using the above-mentioned input-output
quantization pairs. The percentage of excessive bit rate is
reported for each input-output quantization pair. The overall
averages are also reported in the table.

In the table, “Multi model – Trees” and “Multi model –
linear” refer to the use of decision trees and linear classifiers
with the proposed multi model solution. The average excessive
bitrates of the four runs show that the proposed solutions, with
reference to the reviewed work, are reduced by 36% and 66%
using decision trees and linear classification respectively. This
is a clear transcoding advantage which is due to higher accuracy
of predicting split decisions for all sub CUs of a 64x64 CU. The
bitrate results also indicate that the proposed multi model
classification approach based on linear classification, results in
lower excessive bitrate when compared to multi model
classification based on decisions trees. This indicates that there
is a linear mapping between the MPEG-2 features and the
corresponding split decisions in the HEVC re-encoder.
Moreover, the average PSNR differences in comparison to the
re-encoding approach are reported in Table 4.

As the differences are minor, the results in Table 4 are
the averages of the four runs per video sequence. The drop in
PSNR is computed by subtracting the PSNR of the transcoder
from that of the full re-encoder. The results indicate that in

comparison to full re-encoding, the PSNR for the proposed

solutions are similar. Clearly, a 0.05 or 0.06 dB difference in
PSNR is subjectively negligible.

Table 3. Excessive bitrate (%) of proposed and reviewed
 Multi model - Trees Multi model - linear Reviewed[9]

 Qin→Qout Qin→Qout Qin→Qout

 12→
25

15→
27

20→
29

23→
30

12→
25

15→
27

20→
29

23→
30

12→
25

15→
27

20→
29

23→
30

Race
Horses 1.98 2.79 3.35 3.62 1.63 2.14 2.41 2.55 4.2 5.6 6.1 6.5

Basket
ball 2.81 3.29 3.46 3.67 2.05 2.23 1.97 1.97 5.4 51 4.7 4.3
Drill
Party
Scene 1.98 2.6 2.8 3.12 1.13 1.58 1.66 1.74 2.2 2.4 2.6 2.7

BQ-Mall 3.67 4.43 4.97 5.35 2.63 3.11 3.35 3.48 5.5 6.5 6.6 6.8
Basket

ball 4.28 4.79 5.01 5.41 2.47 2.61 2.4 2.46 3.8 4.1 3.8 4
Drive

Vidyo1 3.32 3.79 4.69 4.48 0.67 0.35 0.47 0.38 0.9 0.2 0.2 0
Avg. 3.74% 1.98% 5.80%

https://www.springer.com/journal/42452

This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

9

Table 4. Average drop in PSNR in dB of proposed and
reviewed transcoding solutions

 Multi model
Trees

Multi
model
Linear

Reviewed
[9]

RaceHorses -0.04 -0.05 -0.07
BasketballDrill -0.05 -0.06 -0.07

PartyScene -0.03 -0.03 -0.04
BQMall -0.05 -0.06 -0.09

BasketballDrive -0.05 -0.06 -0.06
Vidyo1 -0.09 -0.11 -0.11

Average -0.05 -0.06 -0.08

The prediction accuracy of split decisions plays an
important role in transcoding as it affects the accuracy of re-
encoding. The prediction accuracy is measured by computing
the percentage of correctly predicted split decisions in
comparison to full re-encoding. The accuracy is reported in
Table 5 for the proposed and reviewed solutions as an average
of the four transcoding runs.

Table 5. Classification accuracy of CU split decisions.

 Multi model
Trees

Multi
model
Linear

Reviewed
[9]

RaceHorses 85.3% 86.8% 59.0%
BasketballDrill 88.4% 90.0% 62.0%

PartyScene 75.1% 79.4% 58.0%
BQMall 84.3% 87.2% 60.0%

BasketballDrive 88.7% 90.4% 58.0%
Vidyo1 94.7% 95.4% 73.0%

Average 86.1% 88.2% 61.7%
It is shown in the table that both of the proposed

solutions have higher prediction accuracy in comparison to
the reviewed solution. This is a clear indication that the
proposed training approach is more accurate than the existing
transcoding solution. The results also indicate that the
prediction accuracy using the linear classifier resulted in the
highest classification accuracy. This can have a positive
influence on reducing the excessive bitrate as reported in
Table 4 above.

The classification accuracies of the Vidyo1 sequence
stands out in all solutions. Further investigations into the
Vidyo1 transcoding scenario revealed that the percentage of
non-split CUs in the re-encoded video is around 53%.
Therefore, it seems that the classification of split decisions in
such a sequence is more straightforward.

The performance of the multi-model solution using
linear classification generated best results. To further verify
the claim that there is a linear mapping between the MPEG-2
features and the corresponding split decisions in the HEVC
re-encoder, we repeated the results using the same linear
classifier but with second order polynomial expansion of the
feature vectors prior to classification. Interestingly, we found
that the average classification accuracy of CU split decisions
over 4 transcoding runs dropped to 82.7% which is inferior to

the linear classifier without polynomial expansion. This gives
further indication that there is a linear mapping between the
feature variables of Table 1 and the CU split decisions.
The proposed solutions work for higher video resolutions as
well. Although the highest supported spatial resolution in
MPEG-2 is 1920x1080; nonetheless, the proposed solutions
are tested using the old_town_cross sequence which has
3840x2160 pixels at 50Hz. In both solutions, the drop in
PSNR was trivial; around 0.03dB, without any excessive
bitrate. The prediction accuracy of split decisions was 95.6%.
In summary, based on the results presented in Tables 3, 4 and
5, it is shown that the proposed prediction of CU split
decisions using the proposed training solutions are
advantageous. The advantage stems from reducing the
excessive bitrate to 1.98%, which is the result of a rather
accurate prediction of the CU split decisions.

In Table 6, we report the model generation time of the
proposed solutions. The time computations measured for the
experiments in Tables 6 and 7 are carried out on an Intel®
Core ™ i7 CPU @ 2.7GHz. The OS is 64-bit Windows 7
Enterprise N with 16 GB of memory. As mentioned
previously, 21 models are generated, one for each split
decision. Each model has a copy of the feature vectors and
the corresponding split decision; therefore the models can be
generated in parallel as they are independent of each other. In
Table 6, the parallel execution time of the models is computed
by finding the maximum time required to generate each of the
21 models.

It is shown in the table that the model generation
time increases as the spatial resolution of the video increases.
It is also shown that the model generation time using decision
trees is higher than that of using linear classifiers. This is an
expected result as the latter classifiers use a non-iterative,
closed-form solution for the calculation of the model weights.
The model generation time of the reviewed work and the
multi model solution based on linear classification require the
same time as in both solutions the linear classifiers use the
same number of feature vectors.

Table 6. Model generation time in seconds averaged over 4

transcoding runs.

Sequence
Multi
model
Trees

Multi
model
Linear

RaceHorses 2.31s 0.97s
BasketballDrill 2.26s 1.28s

PartyScene 2.65s 1.25s
BQMall 2.12s 1.58s
Vidyo1 6.32s 4.48s

BasketballDrive 20.6s 4.53s
Average 6.04s 2.35s

The transcoding speedup factors for the proposed

and reviewed solution are reported in Table 7. The speedup
factor is computed by dividing the time required for HEVC
full re-encoding by the time required for transcoding with
split decision predictions. The speedup factors per sequence
are computed for all QP combinations and the average
speedup values are reported in Table 7.

https://www.springer.com/journal/42452

This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

10

Table 7. Transcoding speedup factors averaged over 4 runs.

Sequence Multi model
Trees

Multi
model
Linear

Reviewed
[9]

RaceHorses 1.4 1.5 2.4
BasketballDrill 1.7 1.8 2.5

PartyScene 1.2 1.3 2
BQMall 1.5 1.5 2.3

BasketballDrive 2.3 2.3 2.9
Vidyo1 2.6 3.0 3.1

Average 1.8 1.9 2.5

Approximately, the speedup factors for the test
sequences vary depending on the video content. This is so
because the split decisions and the coding tree units of CUs
mainly depend on the spatio-temporal content of the video
sequence. The time required to compress a sequence is
partially related to the complexity of the coding tree units and
split decisions. In the transcoding case, coding depths beyond
the predicted ones are not tested. It is shown in the table that
the average speedup factor for the reviewed solution is higher
than that of the proposed solutions. This is expected as the
excessive bitrate of the reviewed solution as reported in Table
3 is 5.8%. It is known in video compression that high
encoding speedups can be easily achieved at the expense of
the rate-distortion performance.
In summary, the proposed multi model solutions are superior
to the reviewed transcoding work in terms of reducing the
excessive bitrate by up to 66% as shown in Table 3. PSNR
differences on the other hand, are all on average negligible
with a slight advantage to the proposed solutions as shown in
Table 4. In terms of classification accuracy of split decisions,
the proposed solutions achieved around 86% and 88%
accuracy in comparison to 62% of the reviewed work as
reported in Table 5. These results justify the noticeable
reduction in excessive bitrate that was reported in Table 3.
With the 5.8% excessive bitrate of the reviewed solution, it is

no surprise that the transcoding speedup is up to 2.5 in

comparison to the proposed solutions that achieved up to 1.9
speedup as reported in Table 7.
Therefore, the proposed solution is superior to the existing
work in terms of the prediction accuracy of the CU split
decisions and in terms of reducing the excessive transcoding
bitrate.

5.2 Three-tier approach results

In this sub section, we present and discuss the results based
on the three-tier solution using decision trees. The results are
compared against the multi model and reviewed work results.
We start by presenting the excessive bitrate results as reported
in Table 3 above. The results in Table 8 indicate that the
proposed 3-tier solution using decision trees is the most
accurate as on average, there is no excessive bitrate in
comparison to full re-encoding. Recall that in Table 3, the
average excessive bitrates for the two multi model solutions
and the reviewed work are 3.74%, 1.98% and 5.8%
respectively. This excellent performance of the 3-tier solution
is due to the use of feature variables from both MPEG-2
decoder and HEVC re-encoder part. The feature variables of
the HEVC re-encoder are more relevant to the re-encoding
part as these variables directly contribute to the split decisions
of the HEVC re-encoder. It is also shown in the table that the
three-tier solution with linear classification results in average
excessive bitrate of 2.37%. As mentioned in the previously,
the feature variables used in the 3-tier solution are listed in
Table 2. These feature variables are different that the ones
used for the multi-model solution, which are listed in Table
1. The feature variables in Table 2 are selected based on the
fact that in the 3-tier solution, features are selected from the
HEVC video whilst encoding the CUs. These features are
limited in number and therefore more suitable for decision
trees. Further investigation revealed that the classification
accuracy of the split decisions at three depth levels is inferior
using linear classification in the 3-tier framework.

In some cases, the excessive bitrates reported in Table 8
are negative, which indicates that the transcoder generated
slightly lower bitrate than the full re-encoder. This comes at

Table 8. Excessive bitrate (%) of proposed 3-tier solution
 Three-Tier (Trees) Three-Tier (Linear)

 Qin→Qout Qin→Qout

 12→25 15→27 20→29 23→30 12→25 15→27 20→29 23→30
RaceHorses 0.67 0.16 -0.02 0.44 0.9 0.8 2.9 3.1

BasketballDrill -0.34 0 -0.36 0 2.3 1.5 0.8 0.6

PartyScene 0.74 0.23 -0.55 -0.82 10.0 7.8 4.9 4.0
BQMall 0.67 -0.06 -0.26 -0.26 6.7 5.2 2.6 1.7

Vidyo1 -0.19 -0.29 -0.29 -0.32 8.3 -0.4 -0.5 -0.7
Basketball -1.43 -1.11 -1.37 -1.59 -1.6 -1.3 -1.6 -1.3

Drive

Avg. all runs 0.00% 2.37%

https://www.springer.com/journal/42452

This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

11

the expense of a slight drop in PSNR as reported in Table 9.
The drop in PSNR is computed by subtracting the

PSNR of the transcoder from that of the full re-encoder.
Recall that the corresponding averages of the proposed multi
model solutions in Table 4 above are -0.05 and -0.06 dB. The
drop in PSNR is slightly higher when the 3-tier framework
with linear classifiers is used. Again, this is due to the less
accurate CU split prediction at the three levels of CU depths
as elaborated upon next.

Table 9. Average drop in PSNR in dB

of proposed and reviewed transcoding solutions

Sequence
3-Tier 3-Tier Reviewed
Trees Linear [9]

RaceHorses -0.03 -0.08 -0.07
BasketballDrill -0.02 -0.04 -0.07

PartyScene -0.04 -0.26 -0.04
BQMall -0.02 -0.13 -0.09

BasketballDrive -0.01 -0.03 -0.06
Vidyo1 -0.02 -0.03 -0.11

Average -0.02 -0.096 -0.08

In terms of classification accuracy, the proposed 3-tier
solution has a lower classification result in comparison to the
multi model approach. The average classification accuracy of
the 3-tier solution using decision trees is 81% in comparison
to 86.1% and 88.2% of the multi model solutions. This can be
justified as follows; in the 3-tier solution, the classifier starts
by predicting the split decision for the whole 64x64 CU, if the
decision is ‘no split’, then no further split decisions are
predicted.

Therefore, if the 64x64 split decision is incorrect then
all of the subsequent 32x32 and 16x16 split decisions are
incorrect as well. This is not the case for the multi model
solutions as the 21 split decisions are predicted separately at
the same time. This prediction is followed by a clean-up
process in which the 64x64 split decision can be altered if the
32x32 or the 16x16 sub CUs are predicted as being split.
Additionally, the average classification accuracies using the
3-tier framework for both linear classification and decisions
trees are reported in Table 10.

Table 10. Classification accuracy of CU split using 3-tiers.

Sequence
3-Tier 3-Tier
Trees Linear

RaceHorses 81.6% 78.2%

BasketballDrill 82.4% 77.7%
PartyScene 74.0% 63.7%

BQMall 79.9% 74.7%
BasketballDrive 79.2% 75.1%

Vidyo1 89.2% 83.9%
Average 81.0% 75.5%

It is shown in the table that linear classification with

the proposed 3-Tier solution that uses the feature variables of
Table 2 results in less accurate classification results of CU
splits. This justifies the lower performance in terms on
excessive transcoding bitrate and drop in PSNR as reported
in Tables 8 and 9 above. Further investigation revealed that
the average classification accuracy at the first tier (64x64 CU
level) was 87.6% using decision trees and 74.3% using linear
classifiers. The classification accuracy of the latter is
relatively low. Recall that the 32x32 split decisions are
examined only if the corresponding 64x64 split decision is
predicted as true, therefore, inaccurate prediction of the
64x64 split decision has an adverse effect on rate-distortion
performance.

The model generation time and the transcoding
speedup of the proposed 3-tier solution are reported in Table
11.

Table 11. Model generation time in seconds and
 transcoding speedup averaged over 4 runs.

The average time required for model generation for the

proposed multi model solutions are 6.04s and 2.35s as
reported in Table 6 above. In the proposed 3-tier solution, the
corresponding average is 3.08s. Again, the 3-tier solution
uses decision trees; hence, the modeling time is expected to
be more than the multi model solution based on linear
classification. In comparison to the model generation time of
the multi model solution using decision tress, the present
solution has lower computational complexity as less feature
variables are used in this solution. The transcoding speedup
on the other hand is lower than that of the multi model
solutions. This indicates that the latter solutions predicted a
higher percentage of non-splits resulting in faster transcoding
and lower video quality.

In summary, the 3-tier solution using decision trees
resulted in the best rate-distortion behavior. In terms of model
generation time, the 3-tier approach based on linear
classification is the fastest, yet this is achieved at the expense
of rate-distortion performance.
Additionally, the use of feature variables from both MPEG-2
and HEVC and the prediction of CU splits at three different
depths resulted in eliminating the excessive transcoding
bitrate as shown in Table 8. This is a clear advantage over
both, the reviewed work and the proposed multi model
solutions that resulted in minimum excessive bit rate of 1.9%
as reported in Table 3. This discussion also holds for the
average drop in PSNR as reported in Table 9. This high
accuracy in transcoding comes at an expense of lower
speedup of 1.65 as reported in Table 5. The speedup of the
proposed multi model solution on the other hand was 1.9 as
reported in Table 7.

Sequence Modeling
time (s)

Trans.
Speedup

RaceHorses 2.13s 1.45
BasketballDrill 1.42s 1.52

PartyScene 3.61s 1.31
BQMall 1.53s 1.44
Vidyo1 2.79s 2.53

BasketballDrive 6.97s 1.64
Average 3.08s 1.65

https://www.springer.com/journal/42452

This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

12

Therefore, the second proposed solution further
reduced the transcoding excessive bitrate and enhanced the
video quality at the expense of reducing the transcoding

speedup. There is a trade-off between transcoding accuracy
and transcoding speedup as expected.

Lastly, there are a number of HEVC encoder
optimization solutions reported in the literature such as [23],
[24], [25], [26] and [27]. The proposed CU split prediction
can be applied to the HEVC encoder and compared to existing
literature. For a fair comparison, we apply our 3-tier CU split
prediction to the HEVC encoder and assess the accuracy and
efficiency using BD-rate [22] and time savings. A lower BD-
rate value and a higher time saving are desired. In the
literature, some researchers use the Computational
Complexity Reduction (CCR%) which is computed as
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟⁄ *10
0. Others use ∆Time (%) which is defined as
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖) 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⁄
*100.

Table 12. List of video sequences used.

Class ID Video
sequence Res. Hz Bit

depth

D
D1 BlowingBubbles 416x240 50 8
D2 BQSquare 416x240 60 8
D3 BasketballPass 416x240 50 8

C
C1 ParkScene 832x480 50 8
C2 BQMall 832x480 60 8
C3 BasketballDrill 832x480 50 8

B
B1 PartyScene 1920x1080 24 8
B2 Cactus 1920x1080 50 8
B3 BQTerrace 1920x1080 60 8

A

A1 Traffic 2560x1600 30 8
A2 NebutaFestival 2560x1600 60 10

A3 SteamLocomoti
veTrain 2560x1600 60 10

Table 12 lists the video sequences and their resolutions
employed for comparison with [23], [24], [25], [26] and [27]
all video sequences are encoded with QPs of {22, 27, 32, and

37}.
In Table 13, we show the results of predicting the CU

split decisions of HEVC in comparison to [23], [24], [25],
[26] and [27].

In [23], the average BD-rate penalty is 0.62 with a
∆Time advantage of 53.6%. The proposed solution is faster
as the ∆Time is 82.6%. The time difference is achieved with
an enhanced BD-rate of 0.54 instead of 0.62. In [24], the
average BD-rate penalty was 2.0 with a CCR of 37.8%. In
this case, the proposed solution is more accurate as the BD-
rate is noticeably lower. The proposed solution is also faster
as the CCR is 40% versus 37.8% for the proposed solution.

In [25], the average BD-rate penalty is 0.79 which is
inferior to the proposed solution and the CCR% saving is
lower as well. In [26] and [27], the CCR are 47.6% and
48.4%, however, the computational savings come at a
relatively high BD-rate cost of 0.91 and 1.4 respectively.

Lastly, the work reported in [28] proposed CU split
prediction based on the motion features and rate-distortion
cost of the NxN inter mode. A MV reuse scheme is also
proposed to expedite compression. The CCR% results
reported range from 55% to 61%. However, this speedup
comes at the expense of high BD-rate loss of 1.93 to 2.33.

In conclusion, applying the proposed solution to the
HEVC encoder results in high time savings whilst enhancing
the compression efficiency. Incorporating the proposed
solution in the MPEG-2 to HEVC transcoder, as described in
Section 4, resulted in an efficient video transcoder as evident
in the transcoding results of Sections 5.1 and 5.2 above.

6. Conclusion
Two novel solutions for transcoding MPEG-2 video into

HEVC are proposed where split decisions of HEVC CUs are
represented as a sequence of 21 binary numbers.
Consequently, the split decisions of a CU are predicted using

Table 13. Accuracy and time savings of prediction CU split decisions.

https://www.springer.com/journal/42452

This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

13

21 classification models. Alternatively, the split decisions are
grouped into 3 depth levels and consequently, 3 classification
models are generated. The two solutions were referred to as
multi models and three-tier solutions respectively. In both
solutions, the transcoder starts by operating in training mode
in which feature vectors are mapped to split decisions. Once
the classification models are generated, the system switches
to transcoding mode.

It was shown in the experimental results that the 3-tier
transcoding solution generates rate-distortion results that are
very close to those of the full re-encoding counterpart. In fact,
it was shown that the excessive bitrate can on average be
eliminated in comparison to full re-encoding. Surely, this
increase in transcoding accuracy comes at the expense of
speedup when compared to other transcoding solutions. It
was also shown that, depending on the classifier used, the
model generation time varies from 2.35s-6.04s and 0.08s-3.1s
for the multi model and 3-tier solutions respectively.
Conflict of Interest: Authors T. Shanableh and M. Hassan
declare that they have no conflict of interest.

7. References
[1] ISO/IEC 23008-2:2015, “Information technology--High
efficiency coding and media delivery in heterogeneous
environments--Part 2: High efficiency video coding,”
ISO/IEC Standard, May, 2015.
[2] T. Shanableh and M. Ghanbari, “Heterogeneous Video
Transcoding Into Lower Spatio Temporal Resolutions With
Different Encoding Formats,” IEEE Transactions on
Multimedia, 2(2), pp. 101-111, June, 2000.
[3] T. Shanableh and M. Ghanbari, “Hybrid DCT/pixel
domain architecture for heterogeneous video transcoding,”
Signal Processing: Image Communication, 18(8), pp. 601-
620, September, 2003.
[4] E. Peixoto, T. Shanableh and E. Izquierdo, “H.264/AVC
to HEVC Video Transcoder based on Dynamic Thresholding
and Content Modeling, ” IEEE Transactions on Circuits and
Systems for Video Technology, 24(1), pp. 99-112, Jan., 2014.
[5] E. Peixoto, B. Macchiavello, E. Mintsu Hung, T.
Shanableh and E. Izquierdo, “An H.264/Avc to Hevc Video
Transcoder Based on Mode Mapping,” IEEE International
Conference on Image Processing (ICIP), Melbourne,
Australia, September, 2013.
[6] Y. Chen, Z.Wen, J. Wen. M. Tang and P. Tao, “Efficient
Software H.264/AVC to HEVC Transcoding on Distributed
Multicore Processors,” IEEE Transactions on Circuits and
Systems for Video Technology, 25(8), pp. 1423-1434,
August, 2015.
[7] Wei Jiang, Yaowu Chen and Xiang Tian, “Fast
transcoding from H.264 to HEVC based on region feature
analysis,” Multimedia Tools and Applications, 73(3), pp.
2179–2200, December, 2014.
[8] W. Jiang and Y.W. Chenc, “Low-complexity transcoding
from H.264 to HEVC based on motion vector clustering,”
Electronics Letters, 49(19), pp. 1224-1226, September, 2013.
[9] T. Shanableh, E. Peixoto and E. Izquierdo, "MPEG-2 to
HEVC video transcoding with content-based modeling,"
IEEE Transactions on Circuits and Systems for Video
Technology, 23(7), pp. 1191–1196, July, 2013.

[10] Y. Chen, Y. Zhou and J. Wen, “Efficient software HEVC
to AVS2 transcoding,” Information (Switzerland), 7(3),
September, 2016.
[11] E. De La Torre, R. Rodriguez-Sanchez and J. L.
Martínez, “Fast video transcoding from HEVC to VP9,”
IEEE Transactions on Consumer Electronics, 61(3), pp. 336-
343, August, 2015.
[12] L. Pham Van, J. De Praeter, G. Van Wallendael, S. Van
Leuven, J. De Cock and R. Van De Walle, “Efficient Bit Rate
Transcoding for High Efficiency Video Coding,” IEEE
Transactions on Multimedia, 18(3), pp. 364-378, March,
2016.
[13] J. Wang, L. Li, G. Zhi, Z. Zhang and H. Zhang,
“Efficient algorithms for HEVC bitrate transcoding,”
Multimedia Tools and Applications, 76(24), pp. 26581-
26601, December, 2017.
[14] C.-S. Lin, W.-J. Yang and C.-W. Su, “FITD: Fast Intra
Transcoding from H.264/AVC to high efficiency video
coding based on DCT coefficients and prediction modes,”
Journal of Visual Communication and Image Representation,
v38, pp. 130-140, July, 2016.
[15] A. J. Diaz-Honrubia, J. L. Martinez and P. Cuenca, “A
fast intra H.264/AVC to HEVC transcoding system,”
Multimedia Tools and Applications, 77(5), pp. 6367-6384,
March, 2018.
[16] A. Díaz-Honrubia, G. Cebrián-Márquez, J. Martínez, P.
Cuenca, J. Puerta and J. Gámez, “Low-complexity
heterogeneous architecture for H.264/HEVC video
transcoding,” Journal of Real-Time Image Processing, 12(2),
pp. 311-327, August, 2016.
[17] M.F. Liu, G.-Y. Zhong, X.-H. He and L.-B. Qing,
“Transcoding method from H.264/AVC to high efficiency
video coding based on similarity of intraprediction,
interprediction, and motion vector,” Journal of Electronic
Imaging, 25(5), September, 2016.
[18] E. Mora, M. Cagnazzo and F. Dufaux, “AVC to HEVC
transcoder based on quadtree limitation,” Multimedia Tools
and Applications, 76(6), pp. 8991-9015, March, 2017.
[19] I.-K. Kim, K. D. McCann, K. Sugimoto, B. Bross, W.-J.
Han and G. J. Sullivan, "High Efficiency Video Coding
(HEVC) Test Model 13 (HM13) Encoder Description," JCT-
VC O1002, 15th meeting of Joint Collaborative Team on
Video Coding of ITU-T SG 16 WP 3 and ISO/IEC JTC 1,
November, 2013.
[20] G. Correa, P. A. Assuncao, L. V. Agostini and L. A. da
Silva Cruz, “Fast HEVC Encoding Decisions Using Data
Mining,” IEEE Transactions on Circuits and Systems for
Video Technology, 25(4), pp. 660-673, April, 2015.
[21] T. Shanableh and K. Assaleh, “Feature modeling using
polynomial classifiers and stepwise regression,”
Neurocomputing, 73(10-12), pp. 1752-1759, June, 2010.
[22] G. Bjøntegaard, “Improvements of the BD-PSNR model,
document VCEG-AI11, ITU-T SG16/Q6,” Berlin, Germany,
July, 2008.
[23] H. Kim and R. Park, “Fast CU Partitioning Algorithm
for HEVC Using an Online-Learning-Based Bayesian
Decision Rule,” IEEE Transactions on Circuits and Systems
for Video Technology, 26(1), pp. 130-138, January, 2016.
[24] J. Xiong, H. Li, Q. Wu and F. Meng, “A Fast HEVC Inter
CU Selection Method Based on Pyramid Motion

https://www.springer.com/journal/42452

This is a pre-print of an article published in SN Applied Sciences. The final authenticated version will be available
online at: https://www.springer.com/journal/42452

14

Divergence,” in IEEE Transactions on Multimedia, vol. 16,
no. 2, pp. 559-564, February, 2014.
[25] H. Yoo and J. Suh, “Fast coding unit decision based on
skipping of inter and intra prediction units,” Electronics
Letters, 50(10), pp. 750-752, August, 2014.
[26] K.-H. Tai, M.-Y. Hsieh, M.-J. Chen, C.-Y. Chen, and C.-
H. Yeh, “A Fast HEVC Encoding Method Using Depth
Information of Collocated CUs and RD Cost Characteristics
of PU Modes,” IEEE transactions on broadcasting, 63(4),
December, 2017.
[27] M. Tang, X. Chen, J. Gu, Y. Han, J. Wen, and S. Yang,
“Accelerating HEVC Encoding Using Early-Split,” IEEE
signal processing letters, 25(2), February, 2018.
[28] T. Mallikarachchi, D. Talagala, H. Arachchi and A. Fernando,
“Content-Adaptive Feature-Based CU Size Prediction for Fast Low-
Delay Video Encoding in HEVC,” IEEE transactions on circuits and
systems for video technology, 28(3), March, 2018.

https://www.springer.com/journal/42452

	1. Introduction
	2. Literature review
	3. Transcoding Architecture
	4. Proposed classification solutions
	5. Experimental results
	6. Conclusion
	7. References

