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Abstract

The analysis of the convergence of tree methods for pricing barrier and lookback options has been
the subject of numerous publications aiming at describing, quantifying, and improving the slow and
oscillatory convergence in such methods. For barrier and lookback options, we find path-independent
options whose price is exactly that of the original path-dependent option. The usual binomial models
converge at a speed of order 1/

√
n to the Black-Scholes price. Our new path-independent approach yields

convergence of order 1/n. Furthermore, we derive a closed form formula for the coefficient of 1/n in the
expansion of the error of our path-independent pricing when the underlying is approximated by the Cox,
Ross, and Rubinstein (CRR) model. Using this we obtain a corrected model with a convergence of order
n−3/2 to the price of barrier and lookback options in the Black-Scholes model. Our results are supported
and illustrated by numerical examples.
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1 Introduction

In this paper, we study barrier and lookback options. We assume the stock price evolves as in the Black-
Scholes model and use the following notations: S0 as the initial stock price, K as the strike price, r as
the continuously compounded interest rate, σ as the volatility, T as the time to maturity and B as the
barrier. We show that, for barrier and lookback options, there are path-independent options whose price
is exactly that of the original path-dependent option. Certainly for barrier options this is not a new
observation. According to page 188 in Björk (2009) (see also Kennedy (2016)), the price at time t = 0
of an up and out option with payoff φ(ST ) and barrier B is

e−rTE(G(ST )),

where

G(ST ) =

{
φ(ST ) (S2

0/B ≤ ST < B)

φ(ST )− (B/S0)2r/σ
2−1 max{B2ST /S

2
0 −K, 0} (ST < S2

0/B)
. (1)

and 0 otherwise. Figure 1 shows a graph of the function G for an up and out call option with strike
K = 105, barrier B = 120, when S0 = 100, r = 0.05, σ = 0.2, T = 1. Note that the function is
discontinuous and can be negative.
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Figure 1: This is Björk’s payoff function G(ST ) for an up
and out call option with strike K = 105, barrier B = 120,
when S0 = 100, r = 0.05, σ = 0.2, T = 1. Note that this
function is discontinuous and takes negative values.

However, what we show here is that there are better choices for G(ST ), better in the sense that
computing e−rTE(G(ST )) using the binomial method leads to a faster rate of convergence to the Black-
Scholes price than the usual method.

In Lin and Palmer (2013), it was shown that the difference in the binomial price and Black-Scholes
price for a barrier option is cn/

√
n + O(1/n), n being the number of periods. Note in general here cn

depends on n, that is, the convergence is not smooth and the binomial price oscillates as n → ∞. In
Section 2 we show that G(ST ) can be chosen in such a way that when the barrier option price is calculated
as e−rTE(G(ST )) using the CRR binomial model, then the difference is cn/n + O(1/n3/2). Using the
results in Leduc (2013), we are also able to calculate cn. In this case the convergence is not smooth
because G(ST ) is only continuous, not differentiable.

In Heuwelyckx (2014), it was shown that the difference in the binomial price and Black-Scholes price
for a lookback option with floating strike is c/

√
n+O(1/n), n being the number of periods. Here c is a

constant and so the convergence is smooth. In Section 3 we show that G(ST ) can be chosen in such a way
that when the lookback option (with floating or fixed strike) price is calculated as e−rTE(G(ST )) using
the CRR binomial model, then the difference is c/n+O(1/n3/2). Using the results in Leduc (2013), we
are also able to calculate c. In this case the convergence is smooth because G(ST ) is differentiable.

Our general approach to finding G is as follows. Let VT be the payoff to an option, which may be
path dependent. Then, taking the expected value with respect to the risk neutral measure, its price at
time t = 0 is

e−rTE(VT ) = e−rTE(E(VT |ST )) = e−rTE(G(ST ))

where
G(ST ) = E(VT |ST ).

We call this the conditional expectation approach. In Sections 2 and 3 we also describe an alternative
approach which follows more directly from Carbone (2004) and leads to a different G.

The analysis of the convergence of tree methods for barrier and lookback options has been the subject
of numerous scholarly works. Early papers include Boyle and Lau (1994) and Derman et al. (1995)
where techniques to enhance the convergence for barrier options evaluated with the binomial model are
discussed. Cheuk and Vorst (1997) (see also Babbs (1992, 2000)) describe a simple way to calculate
the binomial price of lookback options. Embedding binomial trees in a Brownian motion with drift,
Rogers and Stapleton (1997) develop an accelerated binomial method. Lyuu (1998) uses combinatorial
methods to develop efficient pricing for barrier options in the binomial and trinomial models. Broadie
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et al. (1999) suggest the enhanced trinomial method to obtain a faster convergence to discretely and
continuously monitored barrier and lookback options. Dai (2000) suggests a modified version of the
classical binomial tree scheme to ameliorate its slow convergence. Carbone (2004) studies the rate of
convergence of the binomial method for barrier and lookback options. Gaudenzi and Lepellere (2006)
improve the efficiency of the standard binomial method using interpolations of the lattice values. The
bino-trinomial trees of Dai and Lyuu (2010) improve convergence of double barrier options by insuring
that barriers fall exactly on nodes of the tree. Lin and Palmer (2013) provide an explicit formula for
the coefficient of 1/

√
n and 1/n in the expansion of the error of barrier options in the Cox, Ross and

Rubinstein (CRR) model. Heuwelyckx (2014) extends the result to lookback options. Grosse-Erdmann
and Heuwelyckx (2016) generalize Heuwelyckx (2014) to any given time after emission. Appolloni et al.
(2014) introduced the binomial interpolated lattice approach to deal with the ‘near barrier’ problem and
improve the convergence of American option prices. Bock and Korn (2016) use Edgeworth expansions
to construct a fast converging binomial tree for vanilla and barrier options.

As can be seen from the literature survey above, many methods have been used to improve the
convergence of the binomial method. The work done in this article differs significantly from these papers.
In particular, the conditional expectation approach, to our knowledge, has never been used before for any
path-dependent option. It is simple and could in principle work for any path-dependent option (without
the need of any deep understanding of the option) because it is a purely mathematical phenomenon.
Our new path-independent approach yields convergence of order 1/n, whereas the usual binomial models
converge at a speed of only order 1/

√
n to the Black-Scholes price. Moreover we derive a closed form

formula for the coefficient of 1/n in the expansion of the error of our path-independent pricing, which
has never been done before, and using this, we can obtain a corrected model with a convergence of
order 1/n3/2 to the price of barrier and lookback options in the Black-Scholes model. Note that for
barrier options the error expansion for the CRR binomial price is known but for lookbacks only in the
floating strike case which, as we point out below, is just a special case of the fixed strike case. The
CRR binomial prices of lookback options with fixed strike appear to converge at a rate of 1/

√
n to their

Black-Scholes limits. However, to the best of our knowledge this has never been proved. This paper is
the first to develop an error expansion for a binomial price of fixed strike lookback options. For our path
independent pricing, we establish a convergence of order 1/n and indeed of order 1/n3/2 in our corrected
model. Moreover, our results remain valid for a broad family of tree models, while papers published so
far were focussed on the CRR and a couple of other binomial models.

2 Barrier Options

In this section we study barrier options. First we calculate a function G using the conditional expectation
approach. Next we describe an alternative approach. Then, by way of an example, we compare the prices
given by the standard binomial method for barrier options with those given by using G(ST ), where G
is as in (1), then as in the conditional expectation approach and finally as in the alternative approach.
Finally we consider G found by the conditional expectation approach and use the method given in Leduc
(2013) to calculate the coefficient of 1/n in the error.

2.1 Conditional Expectation Approach

Consider an up and out option with payoff φ(ST ) and barrier B where B > S0. Then, following the
treatment in Shreve (2004), the payoff to this barrier option is

VT = φ(ST )1{max0≤t≤T St<B} = φ(ST )1{M̂T<b}
,

where

α = r/σ − σ/2, Ŵt = αt+Wt, M̂T = max
0≤t≤T

Ŵt, ST = S0e
σŴT , b = log(B/S0)/σ > 0,

and Wt is a Brownian motion. We calculate the conditional expectation G(ST ) = E(VT |ST ). Note that

G(y) = E

(
φ(ST )1{M̂T<b}

∣∣∣∣ST = y

)
= E

(
φ(ST )1{M̂T<b}

∣∣∣∣ŴT = log(y/S0)/σ

)
= φ(y)g(x),
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where x = log(y/S0)/σ and

g(x) = E

(
1{M̂T<b}

∣∣∣∣ŴT = x

)
.

Now g(x) = 0 when x ≥ b since x ≥ b implies that M̂T ≥ ŴT = x ≥ b.

Now note that the conditional density of M̂T is

fM̂T
(a|ŴT = x) =


2(2a− x)

T
e−2(a2−ax)/T (a ≥ x+)

0 (a < x+),
(2)

since ŴT is a normal random variable with expectation αT and variance T and, according to (Shreve,

2004, Th. 7.2.1), the joint density of
(
M̂T , ŴT

)
is

fM̂T ,ŴT
(a, x) =

2(2a− x)

T
√

2πT
eαx−

1
2
α2T− 1

2T
(2a−x)2 , (3)

when a ≥ 0, x ≤ a and 0 otherwise. Then if x < b,

E(1{M̂T<b}
|ŴT = x) =

∫ b

x+

2(2a− x)

T
e−2(a2−ax)/T da = 1− e−2b(b−x)/T .

So

g(x) =

{
1− e−2b(b−x)/T (x < b)

0 (x ≥ b)
.

Then

G(ST ) = φ(ST )g(log(ST /S0)/σ) =

φ(ST )

[
1−

(
ST
B

)β]
(ST < B)

0 (ST ≥ B),
(4)

where

β =
2

σ2T
log(B/S0).

Example: Consider an up and out call option with strike K = 105, maturity T = 1 and barrier
B = 120. Suppose the interest rate is r = 0.05, the volatility σ = 0.2 and the stock price at t = 0 is
S0 = 100. Then the function G is

G(ST ) =

max{ST − 105, 0}

[
1−

(
ST
120

)50 log(1.2)
]

(ST < 120)

0 (ST ≥ 120).

A graph of this is shown in Figure 2.

Remark: For a down and out option with payoff φ(ST ) and barrier B < S0, the corresponding
function is

G(ST ) =

φ(ST )

[
1−

(
ST
B

)β]
(ST > B)

0 (ST ≤ B),

where β = 2
σ2T

log(B/S0) and the price at t = 0 is e−rTE(G(ST )). To obtain G for an “in” option, we
just subtract the G for the corresponding “out” option from φ(ST ).

2.2 Alternative approach

Here is an alternative approach along the lines of Carbone (2004). Consider an up and out call with
strike K and barrier B where we can assume K < B and S0 < B since otherwise the value of the option
is 0. As in Shreve (2004), the payoff of the option is

VT = (S0e
σŴT −K)1{ŴT≥k,M̂T≤b}

,
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Figure 2: The payoff function under the conditional ex-
pectation approach for an up and out call option with
strike K = 105, maturity T = 1 and barrier B = 120
when the interest rate is r = 0.05, the volatility σ = 0.2
and the stock price at t = 0 is S0 = 100.

where

α = r/σ − σ/2, Ŵt = αt+Wt, M̂T = max
0≤t≤T

Ŵt, k =
1

σ
log

K

S0
, b =

1

σ
log

B

S0
,

where Wt is a Brownian motion. Recalling from (3) the joint density of (M̂T , ŴT ), we see that the time
t = 0 price of the option is

V0 = e−rTE(VT )

=

∫ b

k

∫ b

x+
e−rT (S0e

σx −K)
2(2a− x)

T
√

2πT
eαx−

1
2
α2T− 1

2T
(2a−x)2dadx.

If we make the change of variable z = (2a− x)/
√
T in the inner integral, this becomes∫ b

k

∫ (2b−x)/
√
T

|x|/
√
T

e−rT (S0e
σx −K)

z√
2πT

eαx−α
2T/2−z2/2dzdx.

Then we swap the order of integration to get∫ (2b−k)/
√
T

k+/
√
T

∫ g(z)

h(z)

e−rT (S0e
σx −K)

z√
2πT

eαx−α
2T/2−z2/2dxdz,

where
g(z) = min{

√
Tz, 2b−

√
Tz}, h(z) = max{k,−

√
Tz}.

This can be written as

e−rT−α
2T/2

√
T

∫ (2b−k)/
√
T

k+/
√
T

z

∫ g(z)

h(z)

(S0e
(σ+α)x −Keαx)dx

e−z
2/2

√
2π

dz = e−rT
∫ (2b−k)/

√
T

k+/
√
T

H(z)
e−z

2/2

√
2π

dz,

where

H(z) =
e−α

2T/2

√
T

z

∫ g(z)

h(z)

(S0e
(σ+α)x −Keαx)dx.

Since ST = S0e
(r−σ2/2)T+σ

√
TZ , where Z is a standard normal variable, it follows that the t = 0 price of

the option is
e−rTE(G(ST )),
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Figure 3: The payoff function under the alternative ap-
proach for an up and out call option with strike K = 105,
maturity T = 1 and barrier B = 120 when the interest
rate is r = 0.05, the volatility σ = 0.2 and the stock price
at t = 0 is S0 = 100.

where

G(ST ) = H

(
log(ST /S0)− (r − σ2/2)T

σ
√
T

)
,

when a1 ≤ ST ≤ a2 with a1 = max{K,S0}e(r−σ
2/2)T and a2 = B2

K
e(r−σ

2/2)T , and 0 otherwise.

Integrating, we find that

H(z) =
e−α

2T/2

√
T

z

[
S0

σ + α
(e(σ+α)g(z) − e(σ+α)h(z))− K

α
(eαg(z) − eαh(z))

]
,

where K
α

(eαg(z) − eαh(z)) is interpreted as K(g(z)− h(z)) when α = 0. With

z = d(ST /S0) =
log(ST /S0)− (r − σ2/2)T

σ
√
T

,

we see that

g(z) =
1

σ
min

{
log

(
ST
S0

)
− (r − σ2/2)T, log

(
B2

STS0

)
+ (r − σ2/2)T

}
so that

eg(z) = p(ST )1/σ, where p(ST ) = min

{
ST e

−(r−σ2/2)T

S0
,
B2e(r−σ

2/2)T

STS0

}
.

Next we see that

h(z) =
1

σ
max

{
log

(
K

S0

)
,− log

(
ST
S0

)
+ (r − σ2/2)T

}
so that

eh(z) = q(ST )1/σ, where q(ST ) = max

{
K

S0
,
S0e

(r−σ2/2)T

ST

}
.

Then for max{K,S0}e(r−σ
2/2)T ≤ ST ≤ B2

K
e(r−σ

2/2)T , we have

G(ST ) =
e−α

2T/2

√
T

d(ST /S0)

[
2σS0

2r + σ2

(
p(ST )r/σ

2+1/2 − q(ST )r/σ
2+1/2

)

− 2σK

2r − σ2

(
p(ST )r/σ

2−1/2 − q(ST )r/σ
2−1/2

)]
,

(5)
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where 2σK
2r−σ2

(
p(ST )r/σ

2−1/2 − q(ST )r/σ
2−1/2

)
is interpreted as K

σ
log(p(ST )/q(ST )) when σ2 = 2r; oth-

erwise G(ST ) = 0.

Figure 3 shows a graph of the function G(ST ) when S0 = 100,K = 105, B = 120, r = 0.05, σ =
0.2, T = 1.

2.3 Example

We now give an illustration of the convergence under the binomial method (note we always use the CRR
binomial model) when a barrier option is transformed into a path-independent option by an appropriate
choice of the payoff function G. We consider an up and out call option with strike K = 105, maturity
T = 1 and barrier B = 120 when the stock price at t = 0 is S0 = 100, the interest rate is r = 0.05 and the
volatility σ = 0.2. The Black-Scholes price at t = 0 of the up and out call barrier option is 0.506751. We
compute the price under the traditional CRR approach for barrier options, as a path-independent option
using Björk’s payoff (1), under the conditional approach (4), and under the alternative approach (5).
In the table below, n is the number of periods and “error” denotes the difference between the binomial
price and Black-Scholes price.

n CRR
√
n(error) Björk

√
n(error) conditional n(error) alternative n(error)

1000 0.520387 0.431 0.554034 1.50 0.507436 0.685 0.506837 0.0854
2000 0.520162 0.600 0.551815 2.02 0.507739 1.97 0.506602 -0.298
3000 0.508999 0.123 0.361436 -7.96 0.506236 -1.55 0.507296 1.64
4000 0.519242 0.790 0.418624 -5.57 0.506748 -0.00128 0.506476 -1.10
5000 0.525514 1.33 0.571973 4.61 0.506933 0.910 0.506517 -1.17
6000 0.519082 0.955 0.549637 3.32 0.507016 1.59 0.506936 1.11
7000 0.527950 1.77 0.580930 6.21 0.506631 -0.839 0.506599 -1.06
8000 0.518720 1.07 0.455417 -4.59 0.506648 -0.823 0.506604 -1.18
9000 0.520073 1.26 0.553379 4.42 0.506875 1.11 0.506655 -0.868
10000 0.526712 2.00 0.493195 -1.36 0.506856 1.05 0.506906 1.55

We see that the convergence is of order 1/
√
n and

√
n(error) exhibits bounded oscillations for the

CRR and Björk approaches. For the CRR method this is consistent with Lin and Palmer (2013) and
for the Björk method, in view of Leduc (2016), it is a consequence of the fact that the Björk payoff
is not continuous. On the other hand, under the conditional and alternative approaches, the payoff is
continuous and only piecewise differentiable so that we observe, as expected, a convergence of order
O(1/n), with n(error) exhibiting bounded oscillations. In the next section, for the conditional approach,
we calculate the coefficient of 1/n in the error.

2.4 Calculation of coefficient of 1/n in the error for the up and out call
when using the conditional expectation approach

For the conditional expectation approach, we observed that the error was of order 1/n. This is expected
as the payoff function is piecewise smooth continuous. The results in Leduc (2013) enable us to calculate
the coefficient cn of 1/n in the asymptotic expansion of the error, that is,

Cn − CBS =
cn
n

+O

(
1

n3/2

)
,

where Cn is the price calculated by the n−period CRR model using the conditional payoff function and
CBS is the Black-Scholes price. We will find that cn is not a constant, that is, the convergence is not
smooth, as expected because the payoff function is not differentiable.

As found in subsection 2.1, the up and out call has the same value as the option with terminal payoff
G(ST ), where

G(ST ) =


0 (ST ≤ K)

(ST −K)(1− (ST /B)β) (K < ST < B)

0 (ST ≥ B),

7



where β = 2 log(B/S0)/(σ2T ). This is continuous but not differentiable at ST = K and ST = B.
However, if we take

α1 = 1− (K/B)β , α2 = β(K −B)/B, (6)

the payoff
J(ST ) = G(ST )− α1 max(ST −K, 0) + α2 max(ST −B, 0) (7)

is differentiable and then we know the coefficient of 1/n in the error for this payoff is a constant c. Then
the coefficient of 1/n in the error for the original payoff G is

cn = c+ α1an(K)− α2an(B), (8)

where an(X) is the coefficient of 1/n in the error for the call with strike X. In fact, according to Chang
and Palmer (2007),

an(X) = a(X) + b(X)(1−∆2
n(X)), (9)

where

d1(X) =
log(S0/X) + (r + σ2/2)T

σ
√
T

, d2(X) = d1(X)− σ
√
T ,

A(X) = −σ2T (6 + d21(X) + d22(X)) + 4T (d21(X)− d22(X))− 12T 2r2,

a(X) =
S0e
−d21(X)/2

24σ
√

2πT
A(X), b(X) =

S0e
−d21(X)/2

24σ
√

2πT
12σ2T,

∆n(X) = 1− 2 frac

[
log(S0/X)

2σ
√
T

√
n− n

2

]
,

and frac(x) = x−floor(x). Figure 4 compares the graph of G(ST ) with the graph of J(ST ). The latter is
continuously differentiable because at every jump of of G′(ST ), we have subtracted ∆G′(ST ) call options,
where ∆G′(ST ) is the jump.

Now according to Leduc (2013), if Cn is the n−period CRR binomial approximation to the option
with payoff J(ST ) and CBS is the corresponding Black-Scholes price,

Cn − CBS =
c

n
+O

(
1

n3/2

)
,

where

c = −
(

∆2S
2
0

2
V ′′0 (S0) +

∆3S
3
0

6
V ′′′0 (S0) +

∆4S
4
0

24
V

(4)
0 (S0)

)
, (10)

with
V0(x) = e−rTE(J(ST )|S0 = x) with β = 2 log(B/S0)/(σ2T ) fixed,

and
∆2 = T 2(r2 + rσ2 + 5σ4/12), ∆3 = 2σ2T 2(r + σ2), ∆4 = 2σ4T 2. (11)

Omitting the details of the proof, we calculate V0(x).

With β = 2 log(B/S0)/(σ2T ) fixed,

V0(x) = e−rTE(J(ST )|S0 = x)

= (1− α1)C(x,K, r, σ, T )− (1− α2)C(x,B, r, σ, T ) + (K −B)D(x,B, r, σ, T )

−e
β(r+(β+1)σ2/2)Txβ

Bβ
[C(x,K, r + βσ2, σ, T )− C(x,B, r + βσ2, σ, T ) + (K −B)D(x,B, r + βσ2, σ, T )],

where C(x,K, r, σ, T ) (resp. D(x,K, r, σ, T )) is the time t = 0 Black-Scholes price of the call (resp.
digital call) option with strike K, maturity T when the interest rate is r, the volatility σ and the t = 0
stock price is x.

After getting the second, third and fourth derivatives of this function with respect to x and setting
x = S0, we are able to calculate c. Then we calculate an(K) and an(B) from (9) and finally cn from (8).
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Figure 4: The graph of the smoothed function J(ST ) (the
lower graph) compared to the graph of the original con-
ditional payoff function G(ST ) for an up and out call op-
tion with strike K = 105, maturity T = 1 and barrier
B = 120 when the stock price S0 = 100 at t = 0, inter-
est rate r = 0.05 and volatility σ = 0.2. Discontinuities
in the derivatives of G(ST ) were removed by subtracting
appropriate call option payoffs.

Example: We consider the t = 0 price of an up and out call option with strike K = 105, maturity
T = 1 and barrier B = 120 with stock price S0 = 100 at t = 0, interest rate r = 0.05 and volatility
σ = 0.2. The conditional payoff G(ST ) is shown in Figure 1. We find from (6) that

α1 = 0.703966474488, α2 = −1.13950972996.

The smoothed out payoff J(ST ) as given in (7) is shown in Figure 4. We calculate c = −0.0145928896929
using (10) and, using (9) and (8),

cn = c+ α1an(K)− α2an(B)

= 2.18617073592− 2.79267187864 ∆2
n (K)− 3.88274748116 ∆2

n (B) .

It is the quantities ∆2
n(K) and ∆2

n(B) which cause the oscillation. The Black-Scholes price is CBS =
0.506751. In the table below, n is the number of periods in the CRR binomial model, Cn is the price
obtained using the CRR model with payoff G(ST ), ∆n(K) and ∆n(B) are as in the equation following
(9), cn is the coefficient of 1/n in Cn − CBS . C∗n = Cn − cn/n is what we call the corrected conditional
approach. We calculate

n3/2(error) = n3/2(Cn − CBS − cn/n)

in order to verify the correctness of cn. As expected, it remains bounded. Also we note that C∗n converges
much faster than Cn to the Black-Scholes price.

n Cn C∗n ∆n (K) ∆n (B) cn n3/2(error)

1000 0.507436 0.506790 0.714402 -0.172431 0.645430 1.243162
2000 0.507739 0.506761 -0.090188 -0.231661 1.955082 0.880395
3000 0.506236 0.506750 0.361737 0.930815 -1.543335 -0.117772
4000 0.506748 0.506746 0.428805 0.655139 0.006172 -1.197684
5000 0.506933 0.506757 0.249928 -0.539595 0.881216 2.070304
6000 0.507016 0.506754 -0.103651 -0.387165 1.574158 1.353329
7000 0.506631 0.506753 -0.589610 -0.729421 -0.850507 0.998497
8000 0.506648 0.506749 0.819625 0.536679 -0.808229 -1.355984
9000 0.506875 0.506753 0.143207 -0.517292 1.089909 1.920429
10000 0.506856 0.506750 -0.604918 0.160778 1.063893 -1.254161
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Figure 5: The prices obtained using the conditional ap-
proach and the corrected conditional approach (the two
lower graphs) are almost indistinguishable from their
limit, the Black-Scholes value. The convergence of the
price obtained by the traditional CRR approach (the up-
per graph) is far slower.

Figure 6: Subtracting the error cn/n from the values Cn
of the conditional approach results in a striking improve-
ment in the convergence. Here the values obtained by the
corrected conditional approach appears almost flat when
compared to those obtained by the conditional approach.

Figure 5 displays the value of the option calculated using the classical CRR method, our conditional
approach and the corrected conditional approach. The option values were calculated for all multiples of
n = 500 up to a maximum of 50, 000. The conditional approach and the corrected conditional approach
converge much faster than the usual CRR method. Because their error is asymptotically infinitely smaller
than the error of the CRR approach, they appear almost indistinguishable from the limiting value CBS .
However, when compared to one another in Figure 6, it is clear that the corrected conditional approach
converges far faster than the uncorrected one.

Remark: Leduc (2013) gives another way to calculate c. In fact,

c = −e−rT [c1I1 + c2I2 + c3(I3 − I1)],

where

c1 =
1

2
∆2 −

1

3
∆3 +

1

4
∆4, c2 =

1

24

4∆3 − 5∆4

σ
√
T

, c3 =
1

24

∆4

σ2T

with ∆2, ∆3, ∆4 as in (11) and for i = 0, 1, 2, 3

Ii = E(S2
TZ

iG′′(ST )) with Z =
log(ST /S0)− (r − σ2/2)T

σ
√
T

.

It turns out that the method we used above is more convenient here.

3 Lookback options

We consider a lookback call with fixed strike K. We want to price it at time 0 but we suppose we started
taking the maximum at some previous time t0 ≤ 0. So the payoff is

VT = max

{
max

{
L, max

0≤t≤T
St

}
−K, 0

}
,

where L = maxt0≤t≤0 St ≥ S0. A put with floating strike has payoff

max

{
max

{
L, max

0≤t≤T
St

}
− ST , 0

}
= max

{
L, max

0≤t≤T
St

}
− ST .
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Figure 7: This is the graph of the conditional payoff func-
tion G(ST ) for a lookback call option with strike K = 95,
maturity T = 1 and with L = 110 as the maximum stock
price up to time t = 0. The stock price at t = 0 is
S0 = 100, the interest rate r = 0.05 and the volatility
σ = 0.2. This function is continuously differentiable.

So we include the case of a put with floating strike by taking K = 0 in the call with fixed strike case
(and subtracting ST ). A lookback put with fixed strike K has payoff

VT = max

{
K −min

{
L, min

0≤t≤T
St

}
, 0

}
,

where L = mint0≤t≤0 St ≤ S0. A call with floating strike has payoff

max

{
ST −min

{
L, min

0≤t≤T
St

}
, 0

}
= ST −min

{
L, min

0≤t≤T
St

}
.

So we include the case of a call with floating strike by taking K = S0 in the put with fixed strike case
and adding ST − S0.

Here we only consider lookback calls with fixed strike, that is,

VT = max

{
max

{
L, max

0≤t≤T
St

}
−K, 0

}
= max

{
max

0≤t≤T
St −B, 0

}
+B −K,

where
B = max{K,L}.

3.1 Conditional Expectation Approach

First we find the payoff using the conditional expectation approach. So, for every y > 0, we calculate

G(y) = E(VT |ST = y) = E(VT |S0e
σŴT = y) = E(VT |ŴT = log(y/S0)/σ),

where, as in Shreve (2004), we take α = (r − σ2/2)/σ, Ŵt = αt + Wt and M̂T = max0≤t≤T Ŵt so that

St = S0e
σŴt . So for real x, we calculate

g(x) = E(VT |ŴT = x)

= E

(
max

{
max

0≤t≤T
St −B, 0

} ∣∣∣∣ŴT = x

)
+B −K

= E

(
max

{
S0e

σM̂T −B, 0
} ∣∣∣∣ŴT = x

)
+B −K.
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Recall from (2) the conditional density of M̂T

fM̂T
(a|ŴT = x) =

2(2a− x)

T
e−2(a2−ax)/T = h′(a),

where h(a) = −e−2(a2−ax)/T if x+ ≤ a and 0 otherwise. Then

g(x) =

∫ ∞
x+

p(a)h′(a)da+B −K where p(a) = max{S0e
σa −B, 0}.

Note that p′(a) = σS0e
σa when a ≥ b = log(B/S0)/σ and 0 otherwise.

Then, integrating by parts,

g(x) = p(a)h(a)

∣∣∣∣∞
x+
−
∫ ∞
max{b,x+}

σS0e
σah(a)da+B −K = I1 + I2 +B −K,

where

I1 = −p(x+)h(x+) =

{
0 (x ≤ b)
S0e

σx −B (x > b)

and

I2 =

∫ ∞
max{b,x+}

σS0e
σae−2(a2−ax)/T da =

σS0

√
2πTed

2
1/2

2
N

(
d1 −

2 max{x, b}√
T

)
,

where d1 = x+σT/2√
T

and N is the standard normal cumulative distribution function. Then

g(x) =


B −K +

σS0

√
2πTed

2
1/2

2
N(d2) (x ≤ b)

S0e
σx −K +

σS0

√
2πTed

2
1/2

2
N(d3) (x > b),

where

d1 =
x+ σT/2√

T
, d2 = d1 −

2b√
T
, d3 = d1 −

2x√
T

= −d1 + σ
√
T .

Thus we have shown that

G(ST ) = g(log(ST /S0)/σ) =


B −K + Fed

2
1/2N(d2) (ST ≤ B)

ST −K + Fed
2
1/2N(d3) (ST > B)

,

where

F =
1

2
σS0

√
2πT , d1 =

log(ST /S0) + σ2T/2

σ
√
T

, d2 = d1 +
2 log(S0/B)

σ
√
T

, d3 = −d1 + σ
√
T .

Smoothness: We show that G is continuously differentiable. The continuity at B follows from the
fact that when ST = B,

d3 = −d1 + σ
√
T = − log(B/S0)

σ
√
T

+ σ
√
T/2 = d1 +

2 log(S0/B)

σ
√
T

= d2.

Next the derivative of G(ST ) from the left at ST = B is

Fed
2
1/2

σ
√
TB

[d1N(d2) +N ′(d2)]

and the derivative of G(ST ) from the right at ST = B is

1 +
Fed

2
1/2

σ
√
TB

[d1N(d3)−N ′(d3)] = 1 +
Fed

2
1/2

σ
√
TB

[d1N(d2)−N ′(d2)].
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The difference between these is

1− 2Fed
2
1/2

σ
√
TB

N ′(d2) = 1− S0

B
e(d

2
1−d

2
2)/2 = 0

since when ST = B,

d21 − d22 = d21 −
(
d1 +

2 log(S0/B)

σ
√
T

)2

= 2 log(B/S0).

Hence G is continuously differentiable as claimed.

Computational issues: Note that d2 = d1 − β, where β = 2 log(B/S0)/(σ
√
T ). When ST → 0, both

d1 and d2 → −∞. Then calculating ed
2
1/2N(d2) involves multiplying a large number by a small number.

Instead we write

ed
2
1/2N(d2) =

eβd2+β
2/2

√
2π

e(−d2)
2/2

∫ ∞
−d2

e−t
2/2dt =

eβd2+β
2/2

√
2π

g(−d2),

where

g(x) = ex
2/2

∫ ∞
x

e−t
2/2dt =

∫ ∞
0

e−xt−t
2/2dt.

There are no problems calculating this last integral when x is large.

Now d3 = −d1 + σ
√
T . When ST →∞, d1 →∞ but d3 → −∞. Then we write

ed
2
1/2N(d3) =

ed
2
1/2

√
2π

∫ ∞
d1−σ

√
T

e−t
2/2dt =

e−σ
√
Td3+σ

2T/2

√
2π

g(−d3).

A graph of the function G for S0 = 100, K = 95, L = 110, r = 0.05, σ = 0.2, T = 1 is shown in
Figure 7.

3.2 Alternative approach for lookbacks

Here is an alternative approach suggested by Carbone (2004). As above, we take α = (r − σ2/2)/σ,

Ŵt = αt+Wt and M̂T = max0≤t≤T Ŵt so that St = S0e
σŴt and max0≤t≤T St = S0e

σM̂T .

Recall from (3) the joint density, fM̂T ,ŴT
(a, x), of (M̂T , ŴT ). So the t = 0 price of the option with

payoff

VT = max

{
max

{
L, max

0≤t≤T
St

}
−K, 0

}
= max

{
S0e

σM̂T −B, 0
}

+B −K,

where B = max{K,L}, is

e−rT
∫ ∞
0

∫ a

−∞
(max {S0e

σa −B, 0}+B −K)
2(2a− x)

T
√

2πT
eαx−α

2T/2−(2a−x)2/(2T )dxda.

Setting z = (2a− x)/
√
T , this becomes

e−rT
∫ ∞
0

∫ z
√
T

−z
√
T

(
max

{
S0e

σ(x+z
√
T )/2} −B, 0

}
+B −K

) zeαx−α2T/2−z2/2
√

2πT
dxdz,

which equals

e−rT
∫ ∞
−∞

g(z)
e−z

2/2

√
2π

dz

where

g(z) =
e−α

2T/2

√
T

z

∫ z
√
T

−z
√
T

eαx
(

max
{
S0e

σ(x+z
√
T )/2} −B, 0

}
+B −K

)
dx if z ≥ 0,
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Figure 8: This is the graph of the alternative payoff func-
tion G(ST ) for a lookback call option with strike K = 95,
maturity T = 1 and with L = 110 as the maximum stock
price up to time t = 0. The stock price at t = 0 is
S0 = 100, the interest rate r = 0.05 and the volatility
σ = 0.2. This function is continuously differentiable.

and 0 otherwise. Since ST = S0e
(r−σ2/2)T+σ

√
TZ , where Z is a standard normal variable, then the t = 0

price of the option is
e−rTE(G(ST )),

where

G(ST ) = g

(
log (ST /S0)−

(
r − σ2/2

)
T

σ
√
T

)
.

If 0 ≤ z
√
T ≤ b = log(B/S0)/σ, the integral in g(z) equals

(B −K)

∫ z
√
T

−z
√
T

eαxdx =
B −K
α

[eαz
√
T − e−αz

√
T ]

which is interpreted as 2(B −K)z
√
T when α = 0. Then if z

√
T > b, the integral equals

=

∫ z
√
T

2b−z
√
T

eαx(S0e
σ(x+z

√
T )/2 −K)dx+

∫ 2b−z
√
T

−z
√
T

(B −K)eαxdx

=
S0e

σz
√
T/2

α+ σ/2
[e(α+σ/2)z

√
T − e(α+σ/2)(2b−z

√
T )] +

B

α
(eα(2b−z

√
T ) − e−αz

√
T )− K

α
(eαz

√
T − e−αz

√
T )

with the obvious interpretation when α = 0. So when α 6= 0, that is 2r 6= σ2, the time t = 0 price of the
option is

e−rTE(G(ST )),

where, taking uT = ST /(S0e
(r−σ2/2)T ),

G(ST ) =
e−α

2T/2

√
T

d(ST /S0)



0 (uT < 1)

c0
[
u
r/σ2−1/2
T − u−r/σ

2+1/2
T

]
(1 ≤ uT ≤ B/S0),

c1u
r/σ2+1/2
T + c2u

r/σ2−1/2
T + c3u

−r/σ2+1/2
T (uT > B/S0),
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where

d(z) =
log(z)− (r − σ2/2)T

σ
√
T

, c0 =
2σ(B −K)

2r − σ2

and

c1 =
σS0

r
, c2 = − 2σK

2r − σ2
, c3 =

σ3B

r(2r − σ2)

(
B

S0

)2r/σ2−1

− c0.

When α = 0, that is 2r = σ2, we get

G(ST ) =
2

σ
√
T
d(ST /S0)



0 (ST < S0),

(B −K) log(ST /S0) (S0 ≤ ST ≤ B),

ST −K log(ST /S0) +B(log(B/S0)− 1) (ST > B).

One verifies that G is continuously differentiable. A graph of G for S0 = 100, K = 95, L = 110,
r = 0.05, σ = 0.2, T = 1 is shown in Figure 8.

3.3 Example

Now we compute the t = 0 price of a lookback call with fixed strike K = 95 and maturity T = 1, when
the maximum stock price up to time t = 0 is L = 110. We suppose the current stock price S0 = 100,
the interest rate r = 0.05 and the volatility σ = 0.2. The Black-Scholes price is CBS = 25.475463. We
compute the CRR binomial price Cn in three ways. First by using the method in Cheuk and Vorst
(1997), then using the conditional payoff and thirdly using the alternative payoff. In the table below n
denotes the number of periods and “error” means Cn − CBS .

n Cheuk-Vorst
√
n(error) conditional n(error) alternative n(error)

1000 25.652643 5.60 25.475654 0.192 25.463169 -12.29
2000 25.564515 3.98 25.475561 0.197 25.469319 -12.29
3000 25.573158 5.35 25.475524 0.184 25.471368 -12.28
4000 25.555958 5.09 25.475509 0.184 25.472377 -12.34
5000 25.589251 8.05 25.475502 0.195 25.473005 -12.29
6000 25.560545 6.59 25.475494 0.187 25.473409 -12.33
7000 25.557603 6.87 25.475490 0.192 25.473707 -12.29
8000 25.570866 8.53 25.475486 0.184 25.473922 -12.33
9000 25.524024 4.61 25.475484 0.191 25.474095 -12.31
10000 25.558672 8.32 25.475482 0.193 25.474232 -12.31

As expected, the error for the Cheuk-Vorst method is of order 1/
√
n. In the other cases, the error

is of order 1/n and the convergence is smooth in the other two cases, as expected since the payoff is
differentiable.

3.4 Coefficient of 1/n for lookbacks using the conditional expectation
approach

For the conditional expectation approach, we observed that the error was of order 1/n and the convergence
was smooth. This is expected as the payoff function is differentiable. The results in Leduc (2013) enable
us to calculate the coefficient c of 1/n in the asymptotic expansion of the error, that is,

Cn − CBS =
c

n
+O

(
1

n3/2

)
,

where Cn is the price calculated by the n−period CRR model using the conditional payoff function and
CBS is the Black-Scholes price.
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The payoff under the conditional expectation approach is

G(ST ) =


B −K + Fed

2
1/2N(d2) (ST ≤ B)

ST −K + Fed
2
1/2N(d3) (ST > B),

where

B = max{K,L}, F =
1

2
σS0

√
2πT ,

and

d1 =
log(ST /S0) + σ2T/2

σ
√
T

, d2 = d1 +
2 log(S0/B)

σ
√
T

, d3 = −d1 + σ
√
T .

Now we calculate
V0(x) = e−rTE(G(ST )|S0 = x).

This means ST = xe(r−σ
2/2)T+σ

√
TZ , where Z is N(0, 1), but the S0’s in the di remain as they are. It is

straightforward to prove that

V0(x) = e−rT (B −K) + xN(d4)−Be−rTN(d5)− σ
√
Tx

2d6

(
(S0e

−rT )−β+1xβ−1N(d7)−N(d4)
)
,

where

β =
2 log(B/S0)

σ2T
, d4 =

log(x/B) + (r + σ2/2)T

σ
√
T

, d5 = d4 − σ
√
T

and

d6 =
log(x/S0) + rT

σ
√
T

, d7 = −d4 + (−β + 1)σ
√
T .

Then we calculate the coefficient as

−
(

∆2S
2
0

2
V ′′0 (S0) +

∆3S
3
0

6
V ′′′0 (S0) +

∆4S
4
0

24
V

(4)
0 (S0)

)
,

where
∆2 = T 2(r2 + rσ2 + 5σ4/12), ∆3 = 2σ2T 2(r + σ2), ∆4 = 2σ4T 2.

Remark: As remarked earlier, Leduc (2013) gives another way to calculate the coefficient. It turns
out in this case also that the method we just used above is more convenient.

Example: For S0 = 100, K = 95, L = 110, r = 0.05, σ = 0.2, T = 1, we calculate the value
Cn of the call option using our conditional expectation approach. We calculate the coefficient c to be
0.188528. Recall that the Black-Scholes price is CBS = 25.475463. The value of Cn can be improved
by subtracting the error term c/n. Let us call C∗n = Cn − c/n, the corrected option value. With ‘error’
meaning Cn − CBS , and ‘error∗’ meaning the corrected error, C∗n − CBS = Cn − CBS − c/n, the term
n(error) converges slowly to c, which is reflected in the fact that n3/2(error∗) remains bounded.

n conditional n(error) corrected n3/2(error∗)

1000 25.475654 0.192 25.475465 -0.37
2000 25.475561 0.197 25.475467 0.099
3000 25.475524 0.184 25.475461 -0.48
4000 25.475509 0.184 25.475462 0.36
5000 25.475502 0.195 25.475464 0.32
6000 25.475494 0.187 25.475463 -0.22
7000 25.475490 0.192 25.475463 -0.36
8000 25.475486 0.184 25.475462 -0.29
9000 25.475484 0.191 25.475463 0.072
10000 25.475482 0.193 25.475463 0.45
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Figure 9: The conditional approach and the corrected con-
ditional approach both significantly improve the conver-
gence of the Cheuk-Vorst approach. The values obtained
using the Cheuk-Vorst approach are shown in the upper
graph. The graphs of the values obtained by the other two
approaches coincide with the Black-Scholes value which is
along the horizontal axis.

Figure 10: The graphs of the values obtained from the cor-
rected conditional approach (the lower graph) and those
obtained from the conditional approach are shown here.
The corrected conditional approach exhibits an unmistak-
able improvement over the conditional approach.

The corrected option value C∗n converges at a speed of n−3/2, while the option value Cn converges at
a speed of n−1. By comparison, the value of the option under the Cheuk-Vorst approach converges at a
speed of n−1/2.

Figure 9 displays these three methods of calculating the option value: option values were calculated
for multiples of n = 500 up to a maximum of 50, 000. The figure illustrates that the conditional approach
and the corrected conditional approach both strikingly outperform the Cheuk-Vorst approach. Zooming
in, Figure 10 compares the values obtained using the conditional approach to those obtained using the
corrected conditional approach. These two approaches are indistinguishable in Figure 9, because they
both improve the speed of convergence from n−1/2 to n−1. However, we see from Figure 10 that the
corrected conditional approach significantly improves the behavior of the convergence of the conditional
approach. This is because it accelerates the speed of convergence from n−1 to n−3/2.

Declaration of interest

The authors report no conflicts of interest. Guillaume Leduc was supported by a Faculty Research Travel
Grant (FRG17-T-10) given by the American University of Sharjah. The authors alone are responsible
for the content and writing of the paper.

Acknowledgements

We thank the referees for their helpful comments.

References

Appolloni, E., M. Gaudenzi, and A. Zanette (2014). The binomial interpolated lattice method for step
double barrier options. International Journal of Theoretical and Applied Finance 17(06), 1450035.
DOI: https://doi.org/10.1142/S0219024914500356

17



Babbs, S. (1992). Binomial valuation of lookback options. Working Paper .

Babbs, S. (2000). Binomial valuation of lookback options. Journal of Economic Dynamics and Con-
trol 24(11-12), 1499–1525. https://doi.org/10.1016/S0165-1889(99)00085-8

Björk, T. (2009). Arbitrage theory in continuous time. Oxford University Press.

Bock, A. and R. Korn (2016). Improving convergence of binomial schemes and the Edgeworth expansion.
Risks 4(2), 15. DOI: https://doi.org/10.3390/risks4020015

Boyle, P. P. and S. H. Lau (1994). Bumping up against the barrier with the binomial method. The
Journal of Derivatives 1(4), 6–14. DOI: https://doi.org/10.3905/jod.1994.407891

Broadie, M., P. Glasserman, and S.-G. Kou (1999). Connecting discrete and continuous path-dependent
options. Finance and Stochastics 3(1), 55–82. DOI: https://doi.org/10.1007/s007800050052

Carbone, R. (2004). Binomial approximation of Brownian motion and its maximum. Statistics and
Probability Letters 69(3), 271–285. DOI: https://doi.org/10.1016/j.spl.2004.06.020

Chang, L. and K. Palmer (2007). Smooth convergence in the binomial model. Finance and Stochas-
tics 11(1), 91–105. DOI: https://doi.org/10.1007/s00780-006-0020-6

Cheuk, T. H. and T. C. Vorst (1997). Currency lookback options and observation frequency: a bi-
nomial approach. Journal of International Money and Finance 16(2), 173–187. Retrieved from
http://hdl.handle.net/1765/10155

Dai, M. (2000). A modified binomial tree method for currency lookback options. Acta Mathematica
Sinica 16(3), 445–454. DOI: https://doi.org/10.1007/s101140000068

Dai, T.-S. and Y.-D. Lyuu (2010). The bino-trinomial tree: a simple model for efficient and accurate
option pricing. Journal of Derivatives 17(4), 7. DOI: https://doi.org/10.3905/jod.2010.17.4.007

Derman, E., I. Kani, D. Ergener, and I. Bardhan (1995). Enhanced numerical methods for options with
barriers. Financial Analysts Journal 51(6), 65–74. DOI: https://doi.org/10.2469/faj.v51.n6.1951

Gaudenzi, M. and M. A. Lepellere (2006). Pricing and hedging American barrier options by a modified
binomial method. International Journal of Theoretical and Applied Finance 9(04), 533–553. DOI:
https://doi.org/10.1142/S0219024906003664

Grosse-Erdmann, K. and F. Heuwelyckx (2016). The pricing of lookback options and binomial approxi-
mation. Decisions in Economics and Finance 39(1), 33–67. DOI: https://doi.org/10.1007/s10203-016-
0171-7

Heuwelyckx, F. (2014). Convergence of European lookback options with floating strike in the bi-
nomial model. International Journal of Theoretical and Applied Finance 17(04), 1450025. DOI:
https://doi.org/10.1142/S0219024914500253

Kennedy, D. (2016). Stochastic Financial Models. Chapman and Hall/CRC.

Leduc, G. (2013). A European option general first-order error formula. The ANZIAM Journal 54(4),
248–272. DOI: https://doi.org/10.1017/S1446181113000254

Leduc, G. (2016). Option convergence rate with geometric random walks approximations. Stochastic
Analysis and Applications 34(5), 767–791. DOI: https://doi.org/10.1080/07362994.2016.1171721

Lin, J. and K. Palmer (2013). Convergence of barrier option prices in the binomial model. Mathematical
Finance 23(2), 318–338. DOI: https://doi.org/10.1111/j.1467-9965.2011.00501.x

Lyuu, Y.-D. (1998). Very fast algorithms for barrier option pricing and the ballot problem. Journal of
Derivatives 5(3), 68–79. DOI: https://doi.org/10.3905/jod.1998.407999

Rogers, L. and E. Stapleton (1997). Fast accurate binomial pricing. Finance and Stochastics 2(1), 3–17.
DOI: https://doi.org/10.1007/s007800050029

Shreve, S. (2004). Stochastic Calculus for Finance: Continuous-Time Models. Springer-Verlag, New
York.

18




