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Abstract. We describe a broad setting under which, for Euro-
pean options, if the underlying asset form a geometric random walk

then, the error with respect to the Black-Scholes model converges

to zero at a speed of 1 for continuous payoffs functions, and at

a speed of 1
√
 for discontinuous payoffs functions.

1. Introduction

1.1. Motivation. Throughout this paper we assume a constant risk

free rate . Recall that under the Black-Scholes model, the value  of

an asset satisfies

 = + 

where the drift   0 is the risk free rate,  the volatility, and  is a

Brownian motion. This is equivalent to

 = 0 exp

µ
 +

µ
 − 1

2
2
¶


¶


for some Brownian motion . We are interested in European options

with maturity   0, and we divide the time interval [0  ] into 

regular subintervals [−1 ] defined by the time steps  = , for

 = 0 1  . Note that the effective yield rate  [−1 ] of  over
the period [−1 ] is given by

(1.1)  [−1 ]

= ln

µ

−1

¶
= 

¡
 −−1

¢
+

µ
 − 1

2
2
¶





Well known properties of the Brownian motions guarantee that ran-

dom variables  [−1 ],  = 1 2  are independent and identically
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distributed. We set 

= [0 ] and 


= exp (). Obviously

 = 0 exp

⎛⎝bcX
=1

 [−1 ]

⎞⎠ 

for every  ∈ ()N.
Consider now geometric random walks

©
()

ª
of the form

(1.2) 
()
 = 0 exp

⎛⎝bcX
=1

 [−1 ]

⎞⎠ 

with random variables  [−1 ] independent and identically distrib-
uted. Note that

(1.3)  [−1 ] = ln

Ã

()



()
−1

!


Set 

= [0 ] and 


= exp ().

The assumption that the variables  [−1 ] are independent and
identically distributed is known as the random walk hypothesis. It is a

strong but extensively studied criteria of market efficiency. The term

‘randomwalk hypothesis’ is due to Nobel laureate in Economics Eugene

Fama [12] in his 1965 article ‘Random Walks in Stock Market Prices’

and made famous by Malkiel [37] in his book ‘A Random Walk Down

Wall Street’. This paper ties up the random walk hypothesis to the

Black-Scholes model: we find conditions on  such that for a broad

class of option payoffs , the price of security derivatives for which

the underlying asset is approximated by () converges to the Black-

Scholes price at a speed of 1, providing that the payoff function is

continuous, and 1
√
 otherwise.

The problem of describing and controlling option value errors re-

sulting from evaluating European options under binomial tree scheme

approximations of the Black-Scholes model has attracted the attention

of numerous researchers and remains an active and vibrant research

topic. An argument to establish a speed of convergence of order −1

for the European call option under a few specific binomial models is

proposed in Leisen and Reimer [35]. The authors construct a tree with

a convergence of order −2 but this was not actually proven until Joshi
[20]. Explicit formulae for the error in binomial tree schemes can be

found in Walsh [43], Diener and Diener [10, 11], and Leduc [32]. Chang

and Palmer [6] also derives explicit error formulae for call and digital

options in binomial tree schemes.



OPTION CONVERGENCE RATE WITH GRW APPROXIMATIONS 3

Because the convergence of binomial trees displays notoriously oscil-

latory behaviors, ways to smooth and accelerate the convergence have

been sought after. For European options under binomial tree schemes

we have the following results. Chang and Palmer [6] proposed a method

to achieve a convergence for European options of the form +(1).

A smooth convergence in the sense of achieving an asymptotic expan-

sion in powers of 1 was obtained by Joshi in [19]. Joshi [20] showed

how his tree method could reach arbitrarily fast convergence when the

number of time steps is odd. His argument was extended in Xiao [45]

to even numbers of time steps. Korn and Muller [24] showed how to op-

timize the constant  in Chang and Palmer [6]. It was shown in Leduc

[33] that arbitrarily fast convergence can be reached for a large class

of binomial tree schemes. Joshi [21, Chapter 28] contains a thorough

coverage of tree methods and its literature.

The speed of convergence for American options when the underly-

ing is asset is approximated by binomial trees has attracted a lot of

interest. In Leisen [34], an argument is proposed to establish a speed

of convergence of −1 for put options under some specific models. An
analysis of this convergence can be found in Heston and Zhou [14]. In

Hu et al. [15], it is shown that uniformly over the nodes of the tree, the

error is of order −12. As shown in Leduc [30], the price of American
options can be decomposed into the sum of a European option and

a continuously paying option. Under specific assumptions, a rate of

convergence of −1 was obtained in Leduc [31] for continuously paying
options.

For binomial tree approximations and game options a speed of con-

vergence of −14 (ln)34 was established in Kifer [23]. An explicit first
order error formula was obtained in Lin and Palmer [36] for European

barrier options.

Because the results have been so far quite specific in terms of the

approximating schemes that were considered with a focus on binomial

schemes, Ahn and Song proved in [1] the mere convergence of Euro-

pean and American options for trinomial trees. An analysis of the

convergence of option prices in trinomial trees is done in Xiaoping et

al. [46]. Option rate of convergence for binomial and trinomial trees is

also studied in Chung and Shih [8].

Regarding the speed of convergence of European options, Walsh [43]

considered a class of payoff functions which is very general for any

practical purposes, but his result is limited to the specific random walk

obtained when the CRR binomial tree scheme is applied to the dis-

counted process. In Diener and Diener [10] a fairly general class of
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binomial tree schemes is considered but the convergence rate of −1

is established only for the call option. In Leduc [32], the gap between

[43] and [10] is filled and the speed of convergence for European option

is established for both a general class of payoffs and a general class a

binomial tree schemes.

As in Lamberton [27], our approximation setting is described through

conditions on  and on the payoff function .

Assumption 1. Random walks
©
()

ª
are of the form (1.2) and satisfy

the following conditions:



= () =





µ
( − 1

2
2) +O

³
−

1
2

´¶
(A1)



=
p
  () =

r




³
 +O

³
−

1
2

´´
(A2)

Furthermore, for every real constant ,

 (exp ()) =  (exp ()) +O ¡−2¢ (A3)



µ
exp

µ


r





¶¶
= O (1) (A4)

We also describe a general class of payoff functions  for which the

rate of convergence will be established. We say that a function  is

piecewise (), for some integer  ≥ 0, if there exists countably many
intervals  := [ +1), 0  1  , forming a partition of [0∞)
and functions  extendible to be 

() on the closure of , such that

 () =

∞X
=0

 () 1[+1) () 

We use  to denote the identity function, that is  () :=  for every .

Given an integer , we set  () := . We denote by K() the class
of piecewise () functions such that  , 0, ..., () have a limit
at infinity and are of bounded variation over [0∞). Clearly, for any
 ∈ K(), functions  , 0, ..., () are bounded and we define a
norm κ on K() by

κ () =
X
=0

¡
TV

¡
()

¢
+
°°()°°∞¢ 

Finally we denote by E () and E  () the price of a European
option with maturity  and payoff function , when the spot price is

 and the underlying asset is respectively  and (). The core of this

paper is devoted to proving the following theorem:
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Theorem 1. If
©
()

ª
is a collection of risk neutral geometric random

walks satisfying Assumption 1 then, for every 0  1  2 ≤  , there

exists a constant  which may depend only on 1, 2,  , ,  and©
()

ª
such that for every  in K(2)

sup
1≤≤2

sup
≥0

|E ()− E  ()| ≤ 

Ã
1√


X
0

|∆ ()|+ 1

κ2 ()

!


Hinging on Theorem 1, section 2 below extends the rate of conver-

gence of the above result to polynomial payoffs and proves that the

requirement of risk neutrality can be dropped.

General geometric random walk (GRW) approximations, similar to

those described here, have been considered in Lamberton’s random

walk setting: Lamberton [26, 27], Carbone [3], Lamberton and Rogers

[29]. Yet, in the case of the American put, only a suboptimal conver-

gence of order (−1 log )45 could be proved. Furthermore, as pointed
out in [10, p. 273], because of the risk neutrality requirement of typical

binomial and trinomial trees, such models do not generally fit into Lam-

berton’s setting. The randomized binomial trees studied in Xiaoping

and Jie [47] can also be seen as GRW, but their convergence towards

the Black-Scholes model was not analyzed. The purpose of this paper

is precisely to develop a broad setting, that includes common binomial

and trinomial tree schemes, for which we prove an optimal speed of

convergence for European options values of order 1 when the payoff

function is continuous and 1
√
 otherwise. This serves as the foun-

dation under which our results will be extended in a further paper to

American options, filling the gap left in [27] and solving a difficult [28,

section 4.4.2] and long lasting problem.

1.2. Notation. Our results and proofs are best expressed using the

notation and conventions of [32] which is gathered in this section.

Parameters , ,  are fixed throughout this paper, and expressions

in terms of these parameters are considered constants. To simplify

the presentation we suppose that  ≤ 1 although our results remain
valid for any   0. Given ,  denotes the 

 time step, that is,

 = 

. The symbol  denotes the expectation when 0 = . As no

ambiguity is possible, we also use the same symbol for the expectation

with respect to (). We always assume that 
()
0 = 0. Throughout

this paper 
and 


()


denote the cumulative distribution functions

of  and 
()

. For   ≥ 0 and function , we denote

E () = − ( ()) 
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and similarly

E  ()

= −((

()
 ))

Note that E and E simply denote the discounted expectation. Option
prices are given by the discounted expectation of the payoff in the risk

neutral world. Hence, when 0 = , the price of a European option

with payoff  and maturity  is E () in model  and E () in
model (). We denote by Err  () the error between the price of

a European option when the underlying  is approximated by ().

Hence

Err  ()

= E ()− E  () 

We denote by  the identity function: ()

=  for every , and given

an integer  ≥ 0, we have  () := . Among other things, this allows

to define for any integer  ≥ 0, the important quantities
∆
()




= Err



³
( − 1)

´
(1)

where

Err


³
( − 1)

´
(1) = −


1((


− 1) − (()



− 1))

The terms 2∆
()

 are significant as they drive the oscillations of the er-

ror Err () in Theorem 4 below. Lemma 3 in the appendix guarantees

that

∆
()

 = O(−(2∨
2 ))

Finally, expressions such as  = +O (−1) mean that there exists a
constant  (which cannot depend on  but may depend only on some

constants such as , ,  ) for which |−| ≤ −1.

1.3. Outline. Consider the following conditions on ():

P0: () is risk neutral.

P1: For every 0   ≤  ,  ∈ 

N,

sup
≥0

¯̄̄


()


()− 
()
¯̄̄
=
√
−1O (1) 

P2: For any fixed integer  ≥ 0,
E


³
| − 1|

´
(1) = O

³
−


2

´


P3: For any fixed integer  ≥ 0,
∆
()




= Err



³
( − 1)

´
(1) = O(−(2∨

2 ))
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P4:

(P4a) E


(|ln ()|) (1) = O
³
−

1
2

´


Furthermore, for any fixed real number ,

(P4b) E


() (1) = E

() (1) +O ¡−2¢ 

and

(P4c) E


(| − 1|) (1) = O
³
−

1
2

´


(P4d) max
=0

¯̄̄
E



() ()− E 

() ()

¯̄̄
= O ¡−1¢ 

(P4e) max
=0

¯̄̄
E



() ()
¯̄̄
= O (1) 

P5: For any fixed integer  and any fixed integer  ≥ 0,

E


(

¯̄̄̄Z 

1

 ( − )



¯̄̄̄
) (1) = O(−+1

2 )

In section 4 we prove that under Assumption 1, conditions P1-P5

hold. In section 3 we assume that P0-P5 hold to prove Theorem 1.

Section 2 discusses Assumption 1 and extends Theorem 1 to a class

of polynomially bounded payoff functions while dropping the condition

P0 of risk neutrality for ().

2. Discussion and main result

In this section we examine more closely Assumption 1. First we

explain why A3 is equivalent to having all options with a polynomial

payoff converging at a rate of −1. Then we show that the risk neutral
requirement of Theorem 1 can be dropped. Putting this together, we

obtain the main result of this paper. Next we survey the literature of

binomial and trinomial trees to see which ones fall under Assumption 1

and if those who don’t have a slower convergence rate. We prove that,

for binomial trees, Assumption 1 is equivalent to having a convergence

of order −1 for all put options, all call options, and all options with
a polynomial payoff. Finally we show how that the class of geometric

random walks considered in Lamberton [27] fall under Assumption 1.
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2.1. Main result. Let P denote the set of all polynomials with real

coefficients and real exponents. Note that P4d is equivalent to saying

that a convergence of order −1 occurs for every polynomial in P.
Furthermore, P4d is equivalent toA3 according to Lemma 2 in section

4.2 below. Thus condition A3 is equivalent to having a convergence of

order −1 for every polynomial in P. It follows easily from P4d that,

given 0  1 ≤ 2 ≤  and a real ,

(2.1) sup
1≤≤2

|Err () ()| = O ¡−1¢ 
Note that, since the payoff of a put option belong to K(2), the put-
call parity implies that a convergence at a speed of −1 also occurs for
call options. Yet it must be underlined that because of (2.1), only a

pointwise convergence in  can be obtained, not a uniform one.

We now show how the risk neutrality requirement of Theorem 1 can

be dropped. First note that, with  = 1, conditionA3 already requires

() to be risk neutral up to a negligible term of order −2. Indeed from
A3,

 (exp ()) = 

 + 

where  = O (−2). Define

 := ln

Ã







 + 

!


 :=  + 

and note that

 = ln

µ
1− 



 + 

¶
= O ¡−2¢ 

Clearly

 (exp ()) =  (exp ()) = 

 

Thus  determines a risk neutral family of random walks e(). This
family obviously satisfies Assumption 1, given that () does.

Fix constants 1 and 2, 0  1 ≤ 2 ≤  . For any  ∈ [1 2], let
m := m () = bc be the largest integer such that m = m ≤ .

For any  ∈ K(2) we have
−

³

³e()

´´
= −

³

³


()


´´


where  :=  () is defined by  = m. Note that,

0  || ≤  || = O
¡
−1

¢
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Define now for every real  ≥ 0,
± () := 

¡
±

¢


Note that

−

³

³e()

´´
= −

³
+

³

()


´´


−

³
−

³e()

´´
= −

³

³

()


´´


Moreover, iffErr () () = −

³

³e()

´´
− − ( ()) 

thenfErr ¡−¢ () = Err () () + −
¡
 ( ())−

¡

¡
−

¢¢¢


Now since

− = 1 +O ¡−1¢ 


¡

¡
−

¢¢
= − ( ()) 

one verifies that, if  is a digital option, then (uniformly on the strike)

sup
1≤≤2

sup
≥0

¯̄
 ( ())−

¡

¡
−

¢¢¯̄
= O ¡−1¢ 

On the other hand if  ∈ K(2) is continuous then, from¯̄
 ()− − ()

¯̄
≤ k0k∞O

¡
−1

¢


we get

sup
1≤≤2

sup
≥0

¯̄
 ( ())−

¡

¡
−

¢¢¯̄ ≤ k0k∞O ¡−1¢ 
Therefore, decomposing  into a sum of digital options and a continuous

member of K(2), it is easy to see that
sup

1≤≤2
sup
≥0

¯̄
 ( ())−

¡

¡
−

¢¢¯̄
= κ2 ()O

¡
−1

¢


Hence fErr ¡−¢ () = Err () () + κ2 ()O ¡−1¢ 
Noting that

κ2
¡
−
¢
= O (1)κ2 () X

0

¯̄
∆− ()

¯̄
=
X
0

|∆ ()| 

we obtain from Theorem 1 that

sup
1≤≤2

sup
≥0

¯̄̄ fErr ¡−¢ ()¯̄̄ = O ³− 1
2

´X
0

|∆ ()|+ κ2 ()O
¡
−1

¢
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Thus

sup
1≤≤2

sup
≥0

|Err () ()| = O
³
−

1
2

´X
0

|∆ ()|+ κ2 ()O
¡
−1

¢


Putting this together with (2.1) we obtain the main result of this paper:

Theorem 2 (Uniform speed of convergence for European options). If©
()

ª
is a collection of geometric random walks satisfying Assumption

1 then, for every 0  1  2 ≤  , there exists a constant  which

may depend only on 1, 2,  , ,  and
©
()

ª
such that for every 

in K(2)

sup
1≤≤2

sup
≥0

|Err () ()| ≤ 

Ã
1√


X
0

|∆ ()|+ 1

κ2 ()

!
;

furthermore for every   0 and every real ,

sup
1≤≤2

|Err () ()| = O ¡−1¢ 
2.2. A survey of binomial and trinomial trees. Let ∆ := .

Recall that a self-similar trinomial tree () is a stochastic process

which at every positive time  in (∆)N, has a probability  of jump-
ing from its current state 

()
 to the state 

()
 , a probability  of

jumping to the state 
()
 , and a probability 1−  −  of jumping

to the state 
()
 , for some    0. A self-similar binomial

tree is a special case with + = 1. This corresponds, in our setting,

to a GRW () where the random variable  takes the value ln ()

with probability , the value ln () with probability 1−−, and

the value ln () with probability 

.

Note that, given ln () = O(
√
∆) and ln () = O(

√
∆), condi-

tion A4 is trivially satisfied. Furthermore, given expansions of , ,

, 

, and  in powers of

√
∆, it is always elementary to check if a

tree satisfy the other conditions of Assumption 1. Essentially follow-

ing Joshi [21, Chapter 28] which provides an extensive review of the

literature, we surveyed over 30 binomial and trinomial trees from 26

different publications to see which ones fall under Assumption 1.

The binomial trees surveyed are from Cox, Ross and Rubinstein [9],

Jarrow and Rudd [17], Trigeorgis [41], Tian [39], Chriss [7], Leisen

and Reimer [35], Lamberton [25], Wilmott [44], Tian [40], Jarrow and

Turnbull [18], Van den Berg [42], Jabbour et al. [16], Walsh [43], Diener

and Diener [10], Chang and Palmer [6], Chance [5], Joshi [19, 20], Korn

and Muller [24], Leduc [32, 33]. The trinomial trees surveyed are from
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Boyle [2], Kamrad and Ritchken [22], Tian [39], Ahn and Song [1], and

Chan et al. [4].

We found that among all the trees surveyed, those reaching a speed

of convergence of order −1 all satisfy Assumption 1. Two trees did
not reach a speed of convergence of order −1 and therefore did not
fall under Assumption 1. These two binomial trees are: (a) the special

case in Diener and Diener [10] when  6= ; (b) the trees introduced by

Chance [5] when  6= 12.
For Diener and Diener [10] when  6= ,

 = 1 + 
√
∆+ ∆+O

³
∆

3
2

´


 = 1− 
√
∆+ ∆+O

³
∆

3
2

´


 =
∆ − 

 − 


Diener and Diener proved that, in this case, the speed of convergence

for call options is of order −12. The corresponding random variable

 does do not satisfy condition A3 because


¡


¢
= 

¡


¢
+
1

2
 ( − 1) (− )∆

3
2 +O ¡∆2

¢


In the case of Chance [5] when  6= 12,

 =

exp

µ
∆+ 

√
∆√

(1−)

¶
 exp

µ


√
∆√

(1−)

¶
+ (1− )



 =
exp (∆)

 exp

µ


√
∆√

(1−)

¶
+ (1− )



 =  =
∆ − 

 − 


Random variable  does do not satisfy condition A3 because


¡


¢
= 

¡


¢
+∆

3
2

µ
−

3 (2 − 1) (2 − 1)
6
√

√
1− 

¶
+O ¡∆2

¢


It follows from Lemma 2 in section 4.2 that the tree converges at a

speed of only −12 for polynomial payoffs.
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2.3. A characterization of binomial trees with convergence rate

of order −1. We explains here why the result of the previous section
are not surprising. Let 1 2 be real numbers 1 2  0, and consider

self-similar binomial trees of the form

 = 1 + 1
√
∆+ 1∆+O

³
∆

3
2

´


 = 1− 2
√
∆+ 2∆+O

³
∆

3
2

´


The existence of expansions of  and  in powers of
√
∆ up to a

term of order 32 appears to be quite typical in the literature. For

such binomial trees we have:

Theorem 3. All put options, all call options and all options with poly-

nomial payoffs converge at a rate of −1 to the Black-Scholes price with
risk free rate  and volatility  if and only if the binomial tree falls un-

der Assumption 1. Moreover, in this case  = 1 = 2 and 1 = 2.

Proof. We know from Theorem 2, that Assumption 1 is a sufficient

condition for all put options, all call options and all options with poly-

nomial payoffs to converge at a rate of −1 to the Black-Scholes price
with risk free rate  and volatility . We need only to prove the con-

verse.

First assume risk neutrality so that  = (
∆−) ( − ). Tay-

lor’s expansion theorem gives that the corresponding random variable

 satisfies

 () = ( − 1
2
2)∆+

¡
2 − 12

¢
∆+O

³
∆

3
2

´
p

  () = 
√
∆−

√
∆ ( −√1√2) +O (∆) 

 (exp ()) =  (exp ())− ∆

2
 ( − 1) ¡2 − 12

¢


− ∆
3
2

6
 ( − 1)+O ¡∆2

¢
where

 := 32 − 31 + 312 − 321 − 2122 + 2212 + 1
2
2 − 212

As  is a varies, it is easy to see that convergence at a speed of order

−1 for all payoffs of the form  (in other words A3) can occur only

if  = 1 = 2 and 1 = 2. In that case Assumption 1 holds.
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Suppose now that the binomial tree is not risk neutral. As in section

2.1, set

 :=  (exp ())− exp (∆) 

 := ln

µ
exp (∆)

exp (∆) + 

¶


 :=  + 

Then  determines a risk neutral binomial tree so that

 () = exp ()
 (exp ()) = exp ( ) 

Now  (exp ()) = 
³

()



´
and since, by assumption, options with

a polynomial payoff converge at a rate of −1,

 (exp ()) =  ( ) +O
¡
−1

¢
= exp ( )

¡
1 +O ¡−1¢¢ 

Hence

exp () exp ( )
¡
1 +O ¡−1¢¢ = exp ( ) 

This gives

− = ln
¡
1 +O ¡−1¢¢ = O ¡−1¢ 

 = O
¡
−2

¢
= O ¡∆2

¢


Now  determines a risk neutral binomial tree. Let e and e be its
corresponding up and down factors. Note thate = exp () =  +O

¡
∆2

¢
e = exp ()  =  +O

¡
∆2

¢


It follows that 1 = 2 =  and 1 = 2, as wanted. In this case

Assumption 1 holds for . But it is simple to see that therefore this

must also be the case for . ¤

2.4. Lamberton’s geometric random walks. Having in mind the

representation of a geometric Brownian motions  as

 = 0 exp

µµ
 − 1

2
2
¶
+ 

¶
for some Brownian motion , it is natural to consider approximations

 () := 
³
−

³
 +

()



´´
of  := 

¡
− ( + )

¢
where


()
 =

r




b cX
=1
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for some i.i.d. random variables  distributed as  satisfying some

natural conditions. This is Lamberton’s setting [25, 26, 29, 27, 3]

for approximating the underlying asset in the Black-Scholes model.

Indeed Lamberton [27] points out that with  () :=  (0
) and

 := ( − 22)  one gets


³
 +

()



´
= 

µ
0


−2

2


+

()



¶
= 

³

()



´
where


()
 = 0 exp

⎛⎝bcX
=1

 [−1 ]

⎞⎠ 

and where the random variables

 [−1 ] :=

µ
 − 2

2

¶



+ 

r





are i.i.d. This boils down to studying the special class of those random

variables , in the setting of this paper, for which  has the form

(2.2)  := [0



] =

µ
 − 2

2

¶



+ 

r





for some random variable  which doesn’t depend on .

The same setting allows to study American options by replacing 

with the optimal stopping time. Under the condition that

(C)  is bounded,  ( ) = 0 
¡
 2
¢
= 1 and 

¡
 3
¢
= 0,

Lamberton [27] established that the price of the American put con-

verges at a speed of at least (−1 log)45.
It is worth pointing out that because  does not vary with , Lam-

berton’s setting is inherently incompatible with risk neutrality. Indeed,

if for instance [25]  ( = 1) = 12 and  ( = −1) = 12 then, for
every  ≥ 1 sufficiently large,

−



µ



−2

2




+
√





¶
= 1−

µ




¶2µ
4

12

¶
+O

Ãµ




¶3!
 1

Hence the geometric random walk is not risk neutral. Conversely, for

the classical Cox, Ross and Rubinstein [9] binomial tree () we can

write


()



= 


−2

2




+
√
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where the random variable  is given by

 =

⎧⎪⎨⎪⎩ 1−

−2

2

√




with probability  :=



 −−

√






√

 −−

√



−1−

−2

2

√




with probability 1− 

Unlike in Lamberton’s setting, the distribution of  depends on  and

moreover  ( ) 6= 0.
While the geometric random walks coming from the setting of Lam-

berton can hardly be risk neutral, that doesn’t prevent them from being

quasi risk neutral in the sense that they satisfy condition A3. In fact,

under the condition L1-L2 below which forms a milder version of C,

 ( ) = 0 
¡
 2
¢
= 1 

¡
 3
¢
= 0(L1)

 () :=  (exp ( )) ∞ for every real ,(L2)

these geometric random walks fall under Assumption 1. To verify this,

set  as in (2.2) and choose  satisfying conditions L1-L2. Note first

that



= () =




( − 1

2
2)



=
p
  () =

r





and for every real ,



µ
exp

µ


r





¶¶
= exp

Ãµ
 − 2

2

¶r




!
 () = O (1) 

In other words conditions A1, A2 and A4 are satisfied.

Now fix  and recall that  :=  + ( − 22) for some

Brownian motion  . Note that

 (exp ()) = exp

µ


µ
 − 2

2

¶




¶
exp

µ
1

2




22

¶
= exp

µ


µ
 − 2

2

¶




¶µ
1 +

1

2




22 +O ¡−2¢¶ 

On the other hand

 (exp ()) = exp

µ


µ
 − 2

2

¶




¶


Ã


r




!
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Taylor’s expansion theorem gives that, for some 0 ≤  ≤ 
p
,



Ã


r




!
= 1 + 0

 (0) 

r



+
1

2
 00

 (0)

Ã


r




!2

+
1

3!
 000

 (0)

Ã


r




!3
+
1

4!


(4)

 ()

Ã


r




!4


Using sup0≤≤1
(4)

 () ∞ and condition L1, one gets

 0
 (0) = 0

00
 (0) = 1

000
 (0) = 0

and



Ã


r




!
= 1 +

1

2




22 +O ¡−2¢ 

Hence

| (exp ())− (exp ())| ≤ exp
µ


µ
 − 2

2

¶




¶
O ¡−2¢

= O ¡−2¢ 
showing that A3 holds.

3. Speed of convergence of European options

3.1. Speed of convergence for discontinuous payoffs. Recall that


and 


()


denote the cumulative distribution functions of  and


()

. Property P1 can be extended to the following result:

Proposition 1. If property P1 holds and  belongs to K(0) then, for
any time step 0   ≤  ,

(3.1) Err () () = 0 ()
1√

O (1) 

Proof. Chose 0   ≤  ,  ∈ N and let  : = lim→∞  ().

Function  can be written as

 () =  () +

∞X
=1

∆ () 1[∞) ()−
∞X
=1

∆ () + 

where  is a continuous asymptotically vanishing at infinity function

belonging to K(0). Note that clearly
0 () ≤ 40 () 
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Obviously,

Err () () = Err


() () +

∞X
=1

∆ () Err



¡
1[∞)

¢
() 

Property P1 implies

Err
¡
1[∞)

¢
() =

1√

O (1) 

where the O term is uniform in  and . Hence
∞X
=1

∆ () Err



¡
1[∞)

¢
() =

∞X
=1

∆ ()
1√

O (1)

≤ 0 ()
1√

O (1) 

Now, to simplify the notation, let 

=

and 

=


()


. Noting

that  (0) = 0 and lim→∞  () = 0, integration by parts gives

E () () = −
Z ∞

0

 () 0
 () 

= −  ()  ()|∞0 − −
Z ∞

0

 () ()

= −−
Z ∞

0

 () () 

where  is the Borel measure such that  ( ) =  () −  ().

Although  may not be differentiable everywhere, integration by parts

for distributions (see for instance [38, Exercise 5.10.17]) again gives

E () () = −− (0)  (0)− −
Z ∞

0

 () ()

Invoking P1, it follows that¯̄
 () ()

¯̄
≤ | (0)−  (0)| | (0)|

+

¯̄̄̄Z ∞

0

k − k∞  ()

¯̄̄̄
≤ 2 k − k∞ | (0)|
≤ 0 ()

1√

O (1) 

= 0 ()
1√

O (1) 

¤
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3.2. Speed of convergence for (1) payoffs. For geometric random

walks satisfying properties P0-P5 hold, a error formula was obtained

in [32] for European options with payoff functions assumed to be poly-

nomially bounded, in contrast to of bounded variation as it is the case

in this paper. This bounded variation condition is used here to ensure

a uniform rate of convergence of order 1. Furthermore, in order to

establish [32, Proposition 6.4], which is the analogue to Proposition 1,

it is required in [32] that the payoff function  be piecewise continu-

ously differentiable. But when  () = 2(2) () this in turns requires

 to be three times piecewise continuously differentiable, which is some-

thing that we want to avoid in this paper. Taking these changes into

account, although stated slightly differently, Leduc [32] obtained the

following result:

Theorem 4 (Convergence speed for (1) payoffs). Assume that prop-

erties P0-P5 hold and let  belong to (1) ∩K(2). Then for every time
step 0   ≤  and for every  ≥ 0,

Err  () =


2
Υ

( ) + 2 ()

− 1
2O ¡−1¢ 

where

Υ

( ) =

4X
=2

2∆
()



!
E ()

 ()

=

µ
1

2
2∆

()
2 −

1

3
2∆

()
3 +

1

4
2∆

()
4

¶
−

¡
2

00 ()
¢

+
1

24

42∆
()
3 − 52∆()

4


√


−

µ
2

00 () 

µ



¶¶
1

24

2∆
()
4

2
−

µ
2

00 ()

µ
2

µ



¶
− 1
¶¶



and

(3.2)  () =
ln ()− ¡ − 1

2
2
¢
√




3.3. Speed of convergence for put options. Theorem 4 above im-

mediately provides the speed of convergence for every option with pay-

off  in (1)∩K(2). Obviously, this is not the case for a put option. Let
 ≥ 0 represent the strike and maturity value of some put option.
Let  () denote the value of such option under model  when the

spot price 0 is  ≥ 0, and let  ()

 () denote the value of the same

call option under model (). Obviously, 0() = max ( −  0).
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Theorem 5 (Convergence speed for put options). Assume that prop-

erties P0-P5 hold. Then for any time step 0   ≤  ,

() = 
()


() +

√
−1O ¡−12¢ 

Proof. Set

∆

 ()


=


()− 0()

and note that

 ()− 
()

 () = 

³




´
()−

³
∆




´
() 

Because

0
¡
∆

¢
=
°°∆

°°
∞ = O ¡−12¢

and ∆ is piecewise monotone continuous vanishing at infinity, it

follows from Proposition 1 that, with  () = max ( −  0),

()− 
()


() = 

³
E


´
() +

√
−1O ¡−12¢ 

We just need to show that



³
E


´
() = 

√
−1O ¡−12¢ 

But according to Theorem 4,



³
E


´
() =



2

4X
=2

2∆
()



!
E ()

 ()

+ 2

³
E


´√

−1O ¡−1¢ 
Yet it is simple to see that

2

³
E


´
= 
√
O (1) 

Hence

()− 
()


() =



2

4X
=2

2∆
()



!





()

+
√
−1O ¡−12¢ 

Simple and direct calculations show that



2

4X
=2

2∆
()



!





() () = 

√
−1O ¡−12¢ 

yielding the desired result. ¤
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3.4. Speed of convergence for general payoffs. Assume that 

belongs to K(2). It is not difficult to verify that  can be written as

 () =  () +

∞X
=1

∆ () 1[∞) ()(3.3)

+

∞X
=1

∆0 ()max ( −  0) 

where  is (1) and belongs to K(2). Hence,  can be split into a linear
combination of digital options, put options, and a function which is

continuously differentiable and in K(2).

Theorem 6 (Convergence speed for general payoff). Assume that prop-

erties P0-P5 hold and let  belong to K(2). Then for any time step
0   ≤  ,

 () () =

∞X
=1

∆ ()
√
−1O (1)

+

∞X
=1

∆0 ()
√
−1O ¡−12¢

+
°°200°°∞O ¡−1¢

+ 2 ()
√
−1O ¡−1¢ 

Proof. We use the decomposition (3.3) of  into a function  ∈ (1) ∩
K(2) and digital and put payoff functions. Let  be the pdf of a standard
normal random variable. Recall the definition of  from (3.2). Note

that if

(3.4)  ()

= exp

µ

√
 +

µ
 − 1

2
2
¶


¶


then, for every function  ,

(3.5)  ( ()) =

Z ∞

−∞
 ( ()) () 

and additionally

 ( ()) = 
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Hence, for some constant   0,¯̄


¡
2

00 ()
¢¯̄ ≤ °°200°°∞ ¯̄̄̄



µ
2

00 () 

µ



¶¶¯̄̄̄
≤
°°200°°∞ Z ∞

−∞
|| () 

≤
°°200°°∞

and similarly,



µ
2

00 ()

µ
2

µ



¶
− 1
¶¶
≤
°°200°°∞

Recalling Υ
()
 ( ) from Theorem 4, and noticing that 00 = 00, it

follows that¯̄̄
Υ
()

( )

¯̄̄
=
k200k∞


O (1) = k200k∞


O (1) 

and ¯̄
Err  ()

¯̄
≤ 

2
k200k∞


O (1) + 2 ()

1√

O ¡−1¢ 

Hence

(3.6) Err  () =
°°200°°∞O ¡−1¢+ 2 ()

1√

O ¡−1¢ 

It is not difficult to see that

2 () ≤ 72 ()
and therefore

Err  () =
°°200°°∞O ¡−1¢+ 2 ()

1√

O ¡−1¢ 

It remains to tackle the digital and put options in the decomposition

of . But these options are treated respectively using property P1 and

Theorem 5, completing the proof. ¤

3.5. Proof of Theorem 1. Let  ∈ K(2) and fix constants 1 2
such that 0  1 ≤ 2 ≤  . Let  ∗1 be the largest time step 
such that  ≤ 1. Assume that  is large enough to guarantee that

 ∗1 ≥ 12  0. For any  ∈ [1 2], let m be the largest time step 
such that  ∗1 ≤  ≤ .

Because 
()
 is constant in between two time steps,

(3.7) sup
∗1≤≤2

sup
0≤

¯̄
E  ()− Em ()

¯̄
= kk∞O

¡
−1

¢
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Recalling (3.4) and (3.5) we get




 ( ()) =

√


Z ∞

−∞
 ()

0 ( ()) () 

+

µ
 − 1

2
2
¶Z ∞

−∞
 ()

0 ( ()) () 

Because 0 () is bounded, it clearly follows that

sup
∗1≤≤2

sup
0≤

¯̄̄̄



 ( ())

¯̄̄̄
= k0k∞O (1) 

Therefore, from Taylor’s theorem,

(3.8) sup
∗1≤≤2

sup
0≤

|E ()− Em ()| = k0k∞O
¡
−1

¢


Thanks to Theorem 6,

(3.9) sup
∗1≤≤2

sup
0≤

¯̄
E ()− E ()

¯̄
= 2 ()O

¡
−1

¢


Putting (3.7), (3.8) and (3.9) together completes the proof.

4. A general framework

Recall  [−1 ] and  [−1 ] from (1.1) and (1.3). Recall also

that if 0 = 1 then  = ln
¡


¢
,  = ln

³

()



´
,  =  and

 = 
()


. Furthermore, for any real number , any integer  =

0  , and  = ,

E () () = −

¡

¢
= − ( ())


= − () 

The same statement is true with E    replaced by E  
(). Note

the following restatements of A3:

(
) = () +O ¡−2¢ 

This section is devoted to prove that under Assumption 1, properties

P1-P5 hold.

4.1. Speed of convergence for digital option. Here we establish

property P1. This requires the following lemma:
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Lemma 1. Under Assumption 1, for any constant integer  ≥ 0, the
following holds:


³
||

´
= O

³
−


2

´
(4.1)



3


=


¡| − |3

¢
3

= O (1) (4.2)

1√


=
1


√

+O

³
−

1
2

´
(4.3)

√



=

√

¡
 − 1

2
2
¢


+O

³
−

1
2

´
(4.4)

Proof. For every integer   0, we have



Ã¯̄̄̄r





¯̄̄̄!
≤ 

³

√





´
+

³
−
√





´
= O (1) 

where the last equality follows from A4 and proves (4.1).

To establish (4.2), let

 = 
¡| − |3

¢
and note that



3
=


³¯̄p



 −

p



¯̄3´¡p




¢3

≤
P3

=0

¡p



¢3− ¡3



¢

³¯̄p





¯̄´¡p



¢3 

It follows from A1, A2 and (4.1) that

sup




3
∞

As for equation (4.3) and (4.4), they are obtained through simple al-

gebra. ¤
A European digital put option is an option that pays one at maturity

if the asset value is below some strike (denoted in this section by )

while a European digital call option pays one at maturity if the asset

value exceeds the strike. The theorem below establishes that under

Assumption 1, digital option values with maturity  converge at a

speed of O ¡−12¢ to the value of the option under the Black-Scholes
model.
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Theorem 7 (Convergence Speed for Digital Options). Under Assump-

tion 1, for any time step 0   ≤  ,

(4.5) sup


¯̄̄


()


()− 
()
¯̄̄
=
√
−1O (1) 

Proof. Let Φ and  denote respectively the cumulative distribution

function and probability density function of a standard normal random

variable. Note that, if N a standard normal random variable, then


() = 

µ
0 exp

µ

√
N +

µ
 − 1

2
2
¶


¶
≤ 

¶
= Φ (∗) 

where ∗ := ∗ () is defined by

∗

=
ln− ln0 −

¡
 − 1

2
2
¢



√




Let 

=  () and 


=
p
  (). Similarly as above,



()


() = 

Ã
0 exp

Ã
X
=1

 [−1 ]

!
≤ 

!
= 

¡N ∗
 ≤ ∗

¢
where

N ∗



=

1√


X
=1

( [−1 ]− ) 

∗

=
ln− ln0 −√




The Berry-Esseen theorem (see [13, Theorem 1, p. 542]) guarantees

that

sup


¯̄

¡N ∗

 ≤ ∗
¢−Φ

¡
∗

¢¯̄ ≤ 3 

3
√



where



3
=


¡| − |3

¢
()

3


According to Lemma 1,

sup




3
∞

thus

sup


¯̄

¡N ∗

 ≤ ∗
¢−Φ

¡
∗

¢¯̄ ≤ √−1O (1) 
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Clearly,

sup


¯̄̄


()


− 
()
¯̄̄
≤ sup



¯̄

¡N ∗

 ≤ ∗
¢−Φ

¡
∗

¢¯̄
+ sup



¯̄
Φ
¡
∗

¢−Φ (∗)
¯̄


Hence it remains to show that

sup


¯̄
Φ
¡
∗

¢−Φ (∗)
¯̄
=
√
−1O (1) 

Let  :=  () and  :=  () be defined as



= −√

¡
 − 1

2
2
¢






=
p
−1
(ln− ln0)




Using (4.3) and (4.4), one verifies that

∗ = + 

∗ = +  +O
³
−

1
2

´
+ O

³
−

1
2

´


From Taylor’s theorem we get that¯̄
Φ
¡
∗

¢− Φ (∗)
¯̄
≤ O

³
−

1
2

´
+ | (+ )| O

³
−

1
2

´


where  := 
¡
1 + O ¡−12¢¢ for some 0 ≤  ≤ 1. Note that − ≤

 ≤ , where

 :=
√


¯̄
 − 1

2
2
¯̄




For  large enough, note that  = 0 if and only if  = 0. Since

sup
−≤≤

sup
∈R

| (+ )| ∞

and  = O (1), it follows that¯̄
Φ
¡
∗

¢−Φ (∗)
¯̄
= O

³
−

1
2

´


¤

4.2. Speed of convergence for polynomial payoff functions. We

prove that A3 is equivalent to P4d. In other words we show that

convergence of options with polynomial payoff occurs at rate of −1 if
and only if condition A3 holds. More generally we have:



26 GUILLAUME LEDUC

Lemma 2. Let 0 ≤   1. Conditions A3[] and P4d[] below are

equivalent:

 (exp ()) =  (exp ()) +O ¡−(2−)¢(A3[])

max
=0

¯̄̄
Err



() ()
¯̄̄
= O ¡−(1−)¢(P4d[])

Proof. Fix  and 0 ≤   1. (=⇒) For  = 0   thanks to A3[],¯̄̄
E



() ()− E 

() ()

¯̄̄
= 

¯̄
 (

)− ()
¯̄

= 
¯̄̄¡
 () +O ¡−(2−)¢¢ − ()

¯̄̄
=  ()

¯̄̄¡
1 +O ¡−(2−)¢¢ − 1¯̄̄ 

Now

max
=0

 () = max
=0


³




´
= O (1) 

and ¯̄̄¡
1 +O ¡−(2−)¢¢ − 1¯̄̄ ≤ ³¡1 + ¯̄O ¡−(2−)¢¯̄¢ − 1´

+
¯̄
O ¡−(2−)¢¯̄

= O ¡−(1−)¢
yields P4d[].

(⇐=) Suppose that A3[] fails. Then for every   0, there exists

infinitely many  such that either

(4.6)  (
)   () + (2−)

or

(4.7)  (
)   ()− (2−)

Assume that (4.6) holds; the other case is treated similarly. Let

L := lim
→∞


³
1

³³

()



´´
−1 (( )


)
´


Recall that  () =  (( )

) and  () = 1 +  (1). We get

L= lim
→∞

(1−) ( (
)− ())

 lim
→∞

(1−)
µµ

 () +


(2−)

¶

− ()

¶
= lim

→∞
 ()(1−)

µµ
1 +



 ()(2−)

¶

− 1
¶

= 1 (( )

) 
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Because   0 is arbitrary large, this shows that

1

³³

()



´´
6= 1 (( )


) +O ¡−(1−)¢ 

Hence P4d[] fails. ¤

4.3. Properties P1-P5. We have shown in sections 4.1 and 4.2 that

under Assumption 1, conditions P1 and Pd4 hold. We establish here

that the remaining properties of P1-P5 also hold.

Lemma 3. Under Assumption 1, conditions P1-P5 hold.

Proof. In order to establish P2, note first that

 |exp ()− 1| ≤ 
¡¯̄




¯̄
(exp () + exp (−))

¢
≤
p
 (2

 )

q
 (exp () + exp (−))

2

It follows from (4.1) and A4 thatp
 (2

 ) = O
³
−


2

´
q

 (exp () + exp (−))
2
= O (1) 

establishing P2.

As for P3, first note that in the case 0 ≤  ≤ 4, using A3, one
writes

Err


³
( − 1)

´
(1) =

X
=0

(−1)−
µ




¶
Err



¡

¢
(1)

= O ¡−2¢ 
showing P3 in the case 0 ≤  ≤ 4. In the case  ≥ 5, using P2 we
get



µ³

()



− 1
´¶

≤
s


µ³

()



− 1
´2¶

= O
³
−


2

´


The same is true with 
()



replaced by 

, and this yields¯̄̄

Err


³
( − 1)

´
(1)
¯̄̄
≤ 

µ³



− 1
´¶

+

µ³

()



− 1
´¶

= O
³
−


2

´
proving P3.
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As for P4a, it follows from A1-A2 that

 (||) ≤
q

¡||2

¢ ≤p  () +2 () = O
³
−

1
2

´


Equation P4b is a restatement of A3.

As noted in [32], P4c, P4d and P4e follow from P4a and P4b.

It remains to prove P5. Using Schwarz’s inequality twice,

E


(

¯̄̄̄Z 

1

 ( − )



¯̄̄̄
) (1)

≤
s
E


(

¯̄̄̄Z 

1

2)

¯̄̄̄
) (1)

s
E


(

¯̄̄̄Z 

1

( − )
2



¯̄̄̄
) (1)

But

E


(

¯̄̄̄Z 

1

( − )
2



¯̄̄̄
) (1) =

1

2 + 1
E


(| − 1|2+1
) (1)

= O
³
−

2+1
2

´


Moreover, it follows from P4c when  6= −12 and from (4.1) when

 = −12, that

E


(

¯̄̄̄Z 

1

2

¯̄̄̄
)(1) = O

³
−

1
2

´


This yields P5. ¤
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