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Abstract. We study the value of European security derivatives in the
Black-Scholes model, when the underlying asset ξ is approximated by
random walks ξ(n). We obtain an explicit error formula, up to a term

of order O(n− 3
2 ), which is valid for general approximating schemes and

general payoff functions. We show how this error formula can be used
to find random walks ξ(n), for which option values converge at a speed

of O(n− 3
2 ).

1. Introduction

1.1. Motivation. The problem of describing and controlling the error for
options evaluated under random walk approximations {ξ(n)} of a geometric
Brownian motion ξ has attracted the attention of many researchers (see,
for instance, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25]). Knowledge and
control of the error resulting from evaluating options through random walk
approximations is of immediate interest, as random walks are broadly used
to price them. An explicit error formula, up to an error term of order n−α,
for some α > 0, has allowed an ”acceleration” of the speed of convergence to
an order of n−α in [13] and [11]. In a broader context, such error formulae
contribute to the understanding of how small modelling errors affect option
prices, which is intimately related to the important question of option price
robustness.

It is common practice to approximate a real valued function f (x) by its
Taylor expansion, which, for f sufficiently regular, is given around a by

f (x) =
N∑
k=0

f (k) (a)

k!
(x− a)k +

∫ x

a

f (k+1) (t)

k!
(x− t)k dt.

The first-order term f (1) (a) provides a measure of the sensitivity of f to
small changes of its parameter x around a.

In the case of an option, its value v depends on the distribution of the
underlying asset ξ, and small random/unknown changes in the distribution
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of ξ induce a ”modelling error” in the pricing. One would like to have an
analogue to Taylor’s expansion for the value v (ξ) of an option, seen as a
function of the distribution of the underlying asset ξ, that would help to
price and perhaps hedge the modelling error.

In the case of a binomial approximation scheme {ξ(n)} of the underlying
asset ξ in the Black-Scholes model, such an analogue to Taylor’s expansion
takes the form

v (ξ) = v
(
ξ(n)

)
+

N∑
k=1

vk

(
ξ(n)

)
n−

k
2 +O(n−

N+1
2 ).

If N = 2 then n−
N
2 = n−1, and explicit formulae for the coefficients v1

(
ξ(n)

)
and v2

(
ξ(n)

)
provide what we call a first-order error formula. Walsh [25]

gives such a formula for general piecewise C(2) payoffs, but only in the
specific case where the binomial scheme is the Cox, Ross and Rubinstein
scheme, applied to the discounted process. Diener and Diener [4] provide
a first-order error formula for general binomial schemes, but only in the
specific case where the payoff is a call option. In [5] they obtain this first-
order error formula for digital options. The present paper fills the obvious
gap: we obtain a first error formula which is valid for both general payoffs
and for general binomial scheme approximations.

Chang and Palmer [2] showed how knowledge of a first-order error formula
can be used to obtain schemes for which the error is smooth, that is for
which the error has the form cn−1 + o

(
n−1

)
for some constant c. Korn and

Müller [13], developed an optimization procedure to minimize the absolute
value of this c. We will show here how, using the error formula obtained
in this paper, a slight modification of Korn and Müller’s [13] optimization
procedure allows one to reach ”accelerations” of the convergence to an order
of O

(
n−1.5

)
.

An interesting feature of our paper is that, when the payoff of the option is
continuously differentiable, our error formula remains valid for non-binomial

scheme approximations {ξ(n)}, as long as ξ
(n)
T
n

satisfy the moment conditions

P1-P5 given in section 6. Our error formula is derived from a localization
of the error and an expansion of the local errors.

1.2. Main result. Throughout this paper we assume that r > 0 is the
(constant) risk free rate and that ξ = (ξ,F , Ex) is a geometric Brownian
motion with volatility σ and drift r under risk neutral probability. Here F
is the usual filtration and Ex denotes the expectation when ξ0 = x.

For all practical purposes, traders are interested in payoff functions which
are piecewise smooth. We consider here payoffs h which are piecewise C(3)

and for which

(1.1) x`
∣∣∣h(`)(x)

∣∣∣ ≤ Q (1 + xp) for ` = 0, ..., 3 and every x ≥ 0,
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for some integer p ≥ 1 and some real number Q. By piecewise C(3), we mean
that there exists a partition 0 < K1 < ... < KN < ∞ of [0,∞) and N + 1

functions h0, ..., hN ∈ C(3) such that

h = h01[0,K1) + h11[K1,K2) + ...+ hN1[KN ,∞).

We denote this class of payoffs by K(3)
p . We put a norm ‖ ‖(3)

p on K(3)
p equal

to the smallest value of Q for which (1.1) holds. For any integer m ≥ 0, we

define K(m)
p and ‖ ‖(m)

p analogously.
We want to provide a first-order error formula, when ξ is approximated

by binomial schemes {ξ(n)}∞n=1 where ξ(n) is a random walk which, at every

positive time t in T
nN, has a probability pn of jumping from its current state

ξ
(n)
t to the state ξ

(n)
t un, and a probability 1 − pn of jumping to the state

ξ
(n)
t dn. Risk neutrality requires that pn be equal to

pn :=
exp(r Tn )− dn
un − dn

,

with

un := exp

(
σ

√
T

n
+ λσ2T

n
+ µn

2σ

T

(
T

n

) 3
2

)
,

dn := exp

(
−σ
√
T

n
+ λσ2T

n
+ µn

2σ

T

(
T

n

) 3
2

)
,

where |µn| ≤ L for some L, one gets fairly general binomial schemes, anal-
ogous to those considered in [2] and [13]. We will refer to these schemes as

flexible CRR schemes. Because we always assume that ξ
(n)
0 = ξ0, Ex also

denotes the expectation when ξ
(n)
0 = x.

Now if h belongs to K(3)
p , then h can be split into a linear combination

of digital options and call options, plus a function which is continuously

differentiable and in K(3)
p . Indeed it is easy to see that

(1.2) h (x) = g (x) +
N∑
`=1

∆h (K`) 1[K`,∞) (x) +
N∑
`=1

∆h′ (K`) max (x− K`, 0) ,

where g is C(1) and belongs to K(3)
p . Since error formulae for digital and

call options are already known, thanks to [4], [5] and [2], the contribution

of this paper is to find the error formula for the C(1) part of h. For the sake
of simplicity, we will restrict our exposition to continuous payoff functions
h. Given that ξ0 = x, we denote by ErrnT (h) (x) the error, under the Black-

Scholes model, resulting from pricing with a flexible CRR scheme {ξ(n)
T } a

European option with payoff h and maturity T . In other words

ErrnT (h) (x) := e−rTEx (h (ξ))− e−rTEx(h(ξ
(n)
T )).
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Let CK (z) = max (z −K, 0) denote the payoff of a European call option

with strike K, and set d1 =
(ln( x

K)+(r+ 1
2
σ2)T)

σ
√
T

, and d2 = d1 − σ
√
T . Let also

frac(z) be the fractional part of z, with frac (z) := − frac (|z|), when z < 0.
The following is due to [4] and [2].

Theorem 1 (Call Option First Order Error Formula). Let {ξ(n)} be a flex-
ible CRR scheme. For every x > 0, the error ErrnT (CK) (x) satisfies

ErrnT (CK) (x) = ΛnT (K,x) +O
(
n−1.5

)
,

where ΛnT := ΛnT (K,x) is given by

ΛnT =
xe−0.5d21

24σ
√

2πT
(A+B) ,

A = σ2T
(
6 + d2

1 + d2
2

)
+ 12T 2

(
r − λσ2

)2 − 4T
(
d2

1 − d2
2

) (
r − λσ2

)
,

B = 48σ2T f(n)
(

1 + f(n)
)
,

f(n) = frac(
1

2

(
lnx− lnK − σ

√
T
√
n+ λσ2T

) √n
σ
√
T

+ µn).

(1.3)

The following theorem is the main result of this paper. Given a continuous

payoff h in K(3)
p , it provides a formula for the error ErrnT (h) (x).

Theorem 2 (General First Order Error Formula). Let {ξ(n)} be a flexible

CRR scheme and let p ≥ 1. For every continuous h in K(3)
p , if 0 < K1 <

... < KN < ∞ defines a partition of [0,∞), for which h is C(1) on the
corresponding closed subintervals, then for every x ≥ 0,

(1.4) ErrnT (h) (x) =
ΥT (h, x) +

∑N
`=1 ∆h′ (K`) ΛnT (K`, x)

n
+O

(
n−1.5

)
,

where

ΥT (h, x) =

(
1

2
∆2 −

1

3
∆3 +

1

4
∆4

)
e−rTEx

(
ξ2
Th
′′ (ξT )

)
+

1

24

4∆3 − 5∆4

σ
√
T

e−rTEx

(
ξ2
Th
′′ (ξT ) ηT

(
ξT
x

))
+

1

24

∆4

Tσ2
e−rTEx

(
ξ2
Th
′′ (ξT )

(
η2
T

(
ξT
x

)
− 1

))
,
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and

ηT (z) =
ln (z)−

(
r − 1

2σ
2
)
T

√
Tσ

,(1.5)

∆2 = −σ4T 2λ+ λ2σ4T 2 + r2T 2 + rT 2σ2 +
5

12
σ4T 2 − 2T 2rσ2λ,

∆3 = 2rT 2σ2 − 2σ4T 2λ+ 2σ4T 2,

∆4 = 2σ4T 2.

Remark 1. In Theorem 2, if additionally h is C(1), then the error formula
(1.4) remains valid for any approximation scheme satisfying properties P1-
P5 given in section 6. This is due to the fact that only these properties are
used in the proofs. They boil down to moment conditions, and therefore our
error formula remains valid under these broad assumptions on the moments

of the single step random walk jumps ξ
(n)
T
n

.

Let {ξ(n)} be a flexible CRR scheme, and h as in Theorem 2. For sim-
plicity assume that N = 1. We show here how a slight modification of Korn
and Müller’s [13] optimization procedure allows us to reach accelerations to
an order of O

(
n−1.5

)
. For this purpose only, we assume not only that the

risk free rate r, the volatility σ, the maturity T and integer p are constant,
but also that the payoff h and the current value of the underlying asset x
are fixed. In other words, only λ and f(n) are seen as variables. A glance at
(1.4) reveals that ErrnT (h) (x) can be written as

(1.6) ErrnT (h) (x) =
P (λ) +Q

(
f(n)
)

n
+O

(
n−1.5

)
,

where f(n) := f(n) (λ, µn) is given by (1.3), and where for some constants
a, b, c, d,

P (λ) = aλ2 + bλ+ c,

Q
(
f(n)
)

= df(n)
(

1 + f(n)
)
.

The following is admittedly a slight extension of Korn and Müller’s [13]
optimization procedure which shows how one can obtain an optimal scheme
for our general payoff functions:

(1) Choose a constant χ0 = Q (µ0) for some −1 < µ0 < 1,
(2) Choose λ0 such that

(1.7) mχ0 := inf
λ
|P (λ) + χ0| = |P (λ0) + χ0|

(3) Set µn := µ0 − f(n) (λ0, 0), and note that

f(n)(λ0, µn) = frac
(
f(n) (λ0, 0) + µn

)
= µ0.
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Under the binomial scheme with parameters (λ0, µn), equation (1.6) can be
rewritten as

ErrnT (h) (x) =
mχ0

n
+O

(
n−

3
2

)
.

When mχ0 = 0, the convergence of the scheme has been accelerated to an

order of O(n−
3
2 ), otherwise, the constant mχ0 has been optimized.

Here the differences with [13] are that we allow χ0 6= 0 (which is sometimes
necessary to reach mχ0 = 0, as in the example provided below), and we use

the error formula (1.4) to show that the remainder term is of order O(n−
3
2 ),

as opposed to o
(
n−1

)
in [13].

1.3. Example and simulations.

Example 1 (Simulation and the error formula). Consider the classical CRR
scheme, where λ = µn = 0, and the following payoff function

h (z) =

{
z2 0 ≤ z ≤ K
1 K < z,

which is continuous and belongs to K(3) with K = 1. It is easy (with Maple)
to calculate that

ΥT (h, x) =

(
1

2
∆2 −

1

3
∆3 +

1

4
∆4

)
A+

1

24

4∆3 − 5∆4

σ
√
T

B +
1

24

∆4

Tσ2
C,

where

A=x2eT(r−σ2)
(
c+ e

1
2
a2
)
,

B=x2eT(r−σ2)(
−
√

2d+ ac
√
π + a

√
πe

1
2
a2

√
π

),

C=x2eT(r−σ2)(
−b
√

2d− a
√

2d+ a2√πc+ e
1
2
a2a2√π√

π
),

and a = 2σ
√
T , b = ηT (Kx ), c = e

1
2
a2 erf( b−a√

2
), d = exp

(
−1

2b (−2a+ b)
)
. In

figure 1, we set r = 0.08, σ = 0.5, T = 1 and x = 1.1 and, in accordance

with Theorem 2, n1.5(ErrnT h (x)− ΥT (h)(x)
n −∆h′ (K)

Λn
K(x)
n ) is bounded.

Example 2 (Optimal Scheme). We use the same payoff function h of ex-
ample 1, as well as r = 0.08, σ = 0.5, T = 1 and x = 1.1. Hence, everything
is fixed except λ and µn. Reusing the formula of example 1, we calculate that
the general first-order error formula, can be rewritten as

ErrnT (h) (x) =
aλ2 + bλ+ c+ df(n)

(
1 + f(n)

)
n

+O
(
n−1.5

)
,

where

a = −0.031544554932975475877, b = 0.015054127355591099077,
c = 0.084196334462544764572, d = −0.73282116693588932807.
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Figure 1. The quantity n1.5(ErrnT h (x) − ΥT (h)(x)
n −

∆h′ (K1)
Λn
K1

(x)

n ) oscillates rapidly but remains bounded.

Choose χ0 = −d
4 , and note that χ0 = Q (µ0) with µ0 = −0.5. Note also that

in equation (1.7), mχ0 = 0 is attained with λ0 = 1.8896959961364908175.

Letting µn = µ0 − f(n) (λ0, 0), the flexible scheme ξ(n) with parameters λ0

and µn satisfies ErrnT (h) (x) = O
(
n−1.5

)
. The convergence is illustrated in

figure 2.

1.4. Settings and notation. The following lists some assumptions and
notation used throughout the rest of this paper.

Constants r, σ, T , p and L: We study the convergence of options

with payoffs h in K(3)
p , where p ≥ 1 is some integer, when the geomet-

ric Brownian motion is approximated by flexible binomial schemes
{ξ(n)}, which depend on parameters λ and µn. We suppose that
|µn| ≤ L, for some L. Parameters λ, r, σ, T , p and L are fixed
throughout this paper, and expressions in terms of these parameters
are considered constants.

Independence of ξ and ξ(n): We assume that ξ and ξ(n) are inde-
pendent.

Time steps tm: Given n, tm denotes the mth time step, or in other
words, tm = mT

n .
Discounted expectations E and En: for every t, x ≥ 0 and polyno-

mially bounded function h, we denote Eth (x) := e−rtEx (h (ξt)), and

similarly Ent h (x) := e−rtEx(h(ξ
(n)
t )). Note that E and En simply
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Figure 2. The value of the option as a function of n for
both the optimal scheme and the classical CRR scheme of
example 2. The horizontal line is the value of the option in
the Black-Scholes model.

denote the discounted expectation. They are semigroup operators:
Et+sh = EtEsh and Ent+sh = Ent Ens h. Because ξ and ξ(n) are indepen-
dent, E and En commute: Ent Esh = EsEnt h.

The error Errn: We denote Errnt (h) (x) := Eth (x)− Ent h (x). When-
ever possible, we write Errnt f (x) instead of Errnt (f) (x). Note that
the operator Errn commutes with E and En and therefore with itself.

The identity function I and the symbols δ
(n)
k and ∆

(n)
k : We de-

note by I the identity operator: I(z) := z, for every z. Among other
things this allows us to define expressions such as

ErrnT
n

(∫ I

1
g (u) du

)
(x) = e−r

T
nEx

(∫ ξT
n

1
g (u) du−

∫ ξ
(n)
T
n

1
g (u) du

)
,

and for any integer k ≥ 0,

δ
(n)
k := EnT

n

(
|I − 1|k

)
(1) = e−r

T
nE1(|ξ(n)

T
n

− 1|k),

∆
(n)
k := ErrnT

n

(
(I − 1)k

)
(1) = e−r

T
nE1((ξT

n
− 1)k − (ξ

(n)
T
n

− 1)k).

Note that ∆
(n)
1 = 0 because both ξ and ξ(n) are risk neutral.
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A function χp on K
(3)
p : Given h in K(3)

p , and a partition 0 < K1 <

... < KN < ∞ of [0,∞), for which h is C(3) when restricted to the
closed intervals defined by this partition, χp is defined by:

(1.8) χp (h) := ‖h‖(3)
p +

N∑
`=1

2∑
j=0

2∑
k=0

(K`)
j
∣∣∣∆h(k) (K`)

∣∣∣ .
1.5. Proof of Theorem 2. Using (1.2) to split the payoff function h into a

sum of call options and a continuously differentiable function g in K(3)
p , one

gets

ErrnT (h) (x) =
N∑
`=1

∆h′ (K`) ΛnT (K`, x) + ErrnT (g) (x) ,

where ΛnT (K, x) = ErrnT (max (I − K, 0)) (x) is the error for a call option
with strike K. Because smooth functions are undoubtedly easier to deal
with, we replace g by ET

n
g, which is the option itself evaluated over one

single time step. This provides a new smoothed payoff which is infinitely
differentiable. This smoothing of g splits the error, ErrnT g, into a sum of
two terms: ErrnT (g − ET

n
g), the error coming from the payoff smoothing

procedure itself, and ErrnT ET
n
g, the error of the smoothed payoff. The fact

that the payoff smoothing error is negligible, that is of order O(n−
3
2 ), is

what Theorem 6 says. As for the smoothed payoff error, Theorem 4 says
that

(1.9) ErrnT

(
ET

n
g
)

(x) =
1

n

4∑
k=2

∆k

k!
xk

∂k

∂xk
ET g (x) +O(n−

3
2 ).

Using the representation formulae for the derivatives ∂k

∂xk
ET g (x) given in

Theorem 5, tedious arithmetic simplifications allow to rewrite the above as

ErrnT

(
ET

n
g
)

(x) = ΥT (g) (x) +O(n−
3
2 ).

Since g′′ = h′′ then ΥT (g) (x) = ΥT (h) (x), which completes the proof.

1.6. Outline of the paper. Theorem 2 establishes a formula for the error

ErrnT (h) (x), when the continuous payoff function h belongs to K(3)
p . In the

proof of Theorem 2, after h has been split into a sum of call options and

a function g in C(1) ∩ K(3)
p , finding the formula for ErrnT (h) (x) requires to

show that ErrnT

(
g − ET

n
g
)

(x) is negligible, and to find an error formula

for ErrnT

(
ET

n
g
)

(x), more specifically to show (1.9). The latter task is the

subject of Theorem 4. We now sketch how various parts of this paper fit
together to establish (1.9). Let us point out that Theorem 4 comes naturally
—and in great generality— from a localization formula and an expansion
formula of these local errors, used in conjunction with our representation
formulae. A local error refers here to an error when the maturity is T

n ,
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and error localization refers to expressing an error as a sum of (discounted
expected) local errors and a sum of errors of local errors.

Because of the localization formula (Theorem 3), we have

ErrnT ET
n
g =

n−1∑
j=0

ET−tj+1

(
ErrnT

n

EtjET
n
g
)
−
n−1∑
j=0

ErrnT−tj+1

(
ErrnT

n

EtjET
n
g
)
.

Thus, because Errn and E commute, and because E is a semigroup,

ErrnT ET g =

n∑
j=1

ErrnT
n

ET g −
n∑
j=1

ErrnT−tj (ErrnT
n

Etjg).

To avoid technicalities, let us temporarily ignore the facts that local errors
ErrnT

n

Etjg (x) depend on the payoff Etjg and on the initial value x of the

underlying asset, and that the O terms are not uniform in the payoff and
the initial value of the underlying asset. Then, as pointed out in Remark 3,
we can rewrite our local error expansion formula for ErrnT

n

Etjg as

ErrnT
n

Etjg =
1

n2

4∑
k=2

∆k

k!
xk

∂k

∂xk
Etjg +O(n−

5
2 ),

from which we obtain the following error localization expansion formula for
ErrnT ET

n
g:

ErrnT ET
n
g =

1

n

∑4
k=2

∆k

k!
xk

∂k

∂xk
ET g

−
4∑

k=2

n∑
j=1

∆k

k!n2
ErrnT−tj (I

k ∂
k

∂xk
Etjg) +O(n−

3
2 ).

But Lemma 3 shows that

ErrnT−tj (I
k ∂

k

∂xk
Etjg) =

√
tj
−(k−1)O(n−1),

and therefore simple calculations give, as wanted,

ErrnT ET
n
g =

1

n

∑4
k=2

∆k

k!
xk

∂k

∂xk
ET g +O(n−

3
2 ).

To complete the outline of this paper, let us mention that section 2 gathers
the results about localization, section 3 deals with the smoothed payoff error,
while section 4 establishes our representation formulae for the derivatives of
European options. The fact that payoff smoothing errors are negligible is
proved in section 5. The appendix contains auxiliary results, including a list
of some simple properties, P1-P5, enjoyed by all flexible CRR schemes.

Remark 2 (On the O notation). In the rest of the paper, unless otherwise
mentioned, the O notation is uniform. By this we mean that if A, B and
C ≥ 0 are real-valued, then the expression A = B + CO

(
n−1

)
means that



A EUROPEAN OPTION GENERAL ERROR FORMULA 11

there exists a constant Q, which may depend only on our parameters r, σ,
T , p and L, such that |A−B| ≤ CQn−1.

2. Local errors and error localization

The localization of errors and the treatment of local errors plays an im-
portant role in this paper. The idea stems from a step-by-step approach
corresponding to the steps in the binomial tree approach. From a binary
tree point of view, the equation

EnT
n

h (x) = h (xu(n)) p(n) + h (xd(n)) (1− p(n))

corresponds to calculating the discounted expectation in a single time-step
tree, while Entjh does this with a j time-step tree. Programming this binary

tree approach naturally leads to recursive calls to the operator EnT
n

:

Entj+1
h = EnT

n

(
Entjh

)
= EnT

n

(EnT
n

(Entj−1
h)),

and more generally

(2.1) Entj+1
h =

j+1 times︷ ︸︸ ︷
EnT

n

(EnT
n

(...(EnT
n

h))).

This equation reveals the semigroup and commutation properties of En,

Entj+tk
h = EntjE

n
tk
h = EntkE

n
tjh,

which extend to

EntjEtkh = EtkE
n
tjh.

This semigroup property is equivalent to the fact that one can value an
option in two steps: if the expiry date of the option is T , and tj is some
intermediate time, one can first value the option with a maturity of T − tj ,
which depends one the stock price, and then considering that as an option
with maturity tj , find its value at time 0. More generally, one can first

evaluate the option with a maturity of T
n , use this as the payoff of another

option with maturity T
n , and continue this way until the full maturity T has

been reached, just as in (2.1). In this binary tree recursive implementation,
one starts by calculating EnT

n

h. If the ultimate goal is to estimate ETh through

E(n)
T h, it is natural to keep track of the error resulting from this very first

step:

(2.2) EnT
n

h = ET
n
h−

(
ET

n
h− EnT

n

h
)

= ET
n
h− ErrnT

n

h.

Then comes the second call to EnT
n

:

En
2T
n

h = EnT
n

(
EnT

n

h
)

= EnT
n

(
ET

n
h− ErrnT

n

h
)

= EnT
n

ET
n
h− EnT

n

(ErrnT
n

h).
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Note that

EnT
n

ET
n
h = ET

n
ET

n
h−

(
ET

n
ET

n
h− EnT

n

ET
n
h
)

= E2T
n
h− ErrnT

n

ET
n
h.

Hence,

En
2T
n

h = E2T
n
h− EnT

n

(ErrnT
n

h)− ErrnT
n

ET
n
h.

This procedure can be continued, resulting in

(2.3) Entmh = Etmh−
m−1∑
j=0

Entm−tj+1

(
ErrnT

n

Etjh
)
.

It shows that, if the local errors can be calculated with sufficient accuracy,
then the global error can be accurately estimated from these local errors.
Equation (2.3) is equivalent to

(2.4) Errntm h =
m−1∑
j=0

Entm−tj+1

(
ErrnT

n

Etjh
)
.

It says that, when evaluating a European option with maturity tm, the
error with respect to the Black-Scholes model can be decomposed into the
sum of the discounted expected values, with respect to Entm−tj+1

, of the single

step errors ErrnT
n

Etjh. Replacing the terms Entm−tj+1
by Etm−tj+1 in the right-

hand side of equation (2.4) results in additional error terms: the compounded
errors

−Errntm−tj+1

(
ErrnT

n

Etjh
)
,

which follow from the trivial identity

Entm−tj+1
= Etm−tj+1 − Errntm−tj+1

.

This discussion should provide a solid intuitive background for the following
Error localization formula.

Theorem 3 (Error localization formula). Let n,m ≥ 1 be integers, and let
h be a polynomially bounded function. Then,

(2.5) Errntm h =
m−1∑
j=0

Etm−tj+1

(
ErrnT

n

Etjh
)
−
m−1∑
j=0

Errntm−tj+1

(
ErrnT

n

Etjh
)
.

Proof. First we prove (2.3) by induction. When m = 1, (2.3) coincides with
(2.2), which is trivially true. Assuming that (2.3) has been established for
m = k, we get

Entk+1
h = Ent1Etkh−

k−1∑
j=0

Ent1E
n
tk−tj+1

(
ErrnT

n

Etjh
)

= Ent1Etkh−
k−1∑
j=0

Entk+1−tj+1

(
ErrnT

n

Etjh
)
.
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Using (2.2) with h replaced by Etkh, we obtain

Entk+1
h = Etk+1

h− ErrnT
n

Etkh−
k−1∑
j=0

Entk+1−tj+1

(
ErrnT

n

Etjh
)
.

This rewrites as (2.3), yielding (2.4). Using

Entm−tj+1

(
ErrnT

n

Etjh
)

= Etm−tj+1

(
ErrnT

n

Etjh
)
− Errntm−tj+1

(
ErrnT

n

Etjh
)
,

equation (2.5) follows from (2.4) in the most trivial manner. �

Local errors can be analyzed in a great variety of ways, including a sim-
ple Taylor expansion as in Lemma 1 below, where the expression

∑N
k=2 is

understood to vanish in the case N < 2.

Lemma 1 (Local error expansion formula). For every integer N ≥ 0, p ≥ 1,

g ∈ C(N) ∩ K(N+1)
p and x ≥ 0,

(2.6) ErrnT
n

g (x) =

N∑
k=2

∆
(n)
k xkg(k)(x)

k!
+Rn,NT

n

(
IN+1g(N+1)

)
(x) ,

where for every function ψ,

Rn,NT
n

(ψ) (x) :=
1

N !
ErrnT

n

(

∫ I

1

ψ (xu) (I − u)N

uN+1
du) (1) .

Proof. Recall that the Taylor expansion of g (y) around x is

g (y)− g(x) =
N∑
k=1

g(k) (x)

k!
(y − x)k +

1

N !

∫ y

x
g(N+1) (u) (y − u)N du.

Using the (discounted expected) Taylor expansions of g(xξT
n

) and g(xξ
(n)
T
n

)

around x in

ErrnT
n

g (x) = e−r
T
nE1

(
(g(xξT

n
)− g(x))− (g(xξ

(n)
T
n

)− g(x))

)
,

one gets (2.6) after a simple manipulation of the remainder. �

Remark 3 (Order of the remainder Rn,NT
n

). If for some constants α ≥ 0

and β ≥ 1 ∣∣∣xN+1g(N+1) (x)
∣∣∣ ≤ α(1 + xβ

)
,

then∣∣∣∣Rn,NT
n

(
IN+1g(N+1)

)
(x)

∣∣∣∣ ≤ α

N !
ErrnT

n

(∣∣∣∣∫ I

1
u−(N+1) (I − u)N du

∣∣∣∣) (1)

+
αxβ

N !
ErrnT

n

(∣∣∣∣∫ I

1
uβ−(N+1) (I − u)N du

∣∣∣∣) (1) ,
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and, because of property P5 in section 6,

∣∣∣∣Rn,NT
n

(
IN+1g(N+1)

)
(x)

∣∣∣∣ = α
(

1 + xβ
)
O
(
n−

N+1
2

)
.

Now a glance at the error localization formula reveals that we deal with local
errors, ErrnT

n

Esg, where the payoff has the form Esg for some time step s.

As pointed out in section 1.6, we are interested in the case s > 0, and g in

C(1) ∩K(3)
p . But in this case, the European option derivative representation

formulae (see Remark 6 below) guarantees that

∣∣∣∣I5 ∂
5

∂x5
Esg (x)

∣∣∣∣ ≤ ‖g‖(2)
p

(√
s
)−3 (

1 + xp+2
)
,

and thus∣∣∣∣Rn,4T
n

(
I5 ∂

5

∂x5
Esg
)

(x)

∣∣∣∣ = ‖g‖(2)
p

(√
s
)−3 (

1 + xp+2
)
O
(
n−

5
2

)
.

Because of Theorem 3, the error Errntm g (x) can be decomposed into two
components which need to be analyzed separately: (1) the main term of the
error, denoted MErrntm g (x), which is the sum, over j = 0, ...,m− 1, of the
local errors Etm−tj+1(ErrnT

n

Etjg); (2) the compounded error term, denoted

CErrntm g (x), which is the sum, over j = 0, ...,m− 1, of these errors of local
errors Errntm−tj+1

(ErrnT
n

Etjg). In other words,

MErrntm g (x) :=

m−1∑
j=0

Etm−tj+1

(
ErrnT

n

Etjg
)

(x) ,

CErrntm g (x) :=
m−1∑
j=0

Errntm−tj+1

(
ErrnT

n

Etjg
)

(x) .

Of course we want to combine the error localization formula with the local
error expansion formula obtaining:

Proposition 1 (Error localization expansion formula). Let M ≥ 0 be an
integer, let 0 < tm ≤ T be the mth time step, and assume that g belongs to

C(M) ∩ K(M+1)
p . Then, for every integer N ≥ 0 and for every x > 0,

Errntm g (x) = MErrntm g (x)− CErrntm g (x) ,
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where

MErrntm g (x) = m
N∑
k=2

∆
(n)
k

k!
xk

∂k

∂xk
Etm−1 (g) (x)(2.7)

+mRn,NT
n

(
IN+1 ∂

N+1

∂xN+1
Etm−1g

)
(x) ,

CErrntm g (x) =

m−1∑
j=1

N∑
k=2

∆
(n)
k

k!
Errntm−tj+1

(
Ik

∂k

∂xk
Etjg

)
(x)(2.8)

+
m−1∑
j=1

Rn,NT
n

(
Errntm−tj+1

(
IN+1 ∂

N+1

∂xN+1
Etjg

))
(x)

+
M∑
k=2

∆
(n)
k

k!
Errntm−1

(
Ik

∂k

∂xk
g

)
(x)

+Rn,MT
n

(
Errntm−1

(
IM+1 ∂

M+1

∂xM+1
g

))
(x) .

Proof. Note that, for every s > 0, Esg belongs to C(N) ∩ K(N+1)
p , for every

integer N ≥ 0. The result is obtained by a simple combination of the error
localization formula and the local error expansion formula, using the facts
that for every pair of steps t` and tm, every polynomially bounded function
ψ and every integer k ≥ 0, the following hold:

(1) Et` and ErrnT
n

commute,

Et` ErrnT
n

ψ = ErrnT
n

Et`ψ,

(2) by independence and Fubini’s theorem, Errnt` and Rn,NT
n

also com-

mute,

Errnt`(R
n,N
T
n

(ψ)) = Rn,NT
n

(
Errnt`(ψ)

)
,

(3) because of Lemma 3 below,

Et`
(
Ik

∂k

∂xk
Etmψ

)
= Ik

∂k

∂xk
Et`Etmψ = Ik

∂k

∂xk
Et`+tmψ.

�

Remark 4. We will use the error localization expansion formula with N =

4. The reason for this is, in essence, that if g belongs to C(4) ∩ K(5)
p , then

each of the remainders —the R-terms— in formulae (2.7) and (2.8) are of

order n−
5
2 , which makes them collectively of order n−

3
2 , and thus negligible.
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3. The smoothed payoff error

As noted earlier —in section 1.6— we are particularly interested in the
error ErrnT ET

n
g (x), which decomposes into

ErrnT ET
n
g (x) = MErrnT ET

n
g (x)− CErrnT ET

n
g (x) .

Now thanks to the European option derivative representation formulae, The-
orem 5 below, for every integer k ≥ 0,∣∣∣∣xk ∂k∂xk ET g (x)

∣∣∣∣ ≤ ‖g‖(2)
p

(
1 + xp+2

)
O(1).

Therefore, using property P3, ∆
(n)
k =

(
1
n

)2
∆k + O(n−

5
2 ), and Remark 3,

one rewrites the main term of the error as

MErrnT ET
n
g (x) =

1

n

4∑
k=2

∆k

k!
xk

∂k

∂xk
ET g (x) + ‖g‖(2)

p

(
1 + xp+2

)
O(n−

3
2 ).

As for the compounded error term, CErrnT ET
n
g (x), the error localization

expansion formula gives (with N = M = 4)

CErrnT ET
n
g (x) =

n∑
j=1

4∑
k=2

∆
(n)
k

k!
ErrnT−tj

(
Ik

∂k

∂xk
Etjg

)
(x)(3.1)

+
n∑
j=1

Rn,4T
n

(
ErrnT−tj

(
I5 ∂

5

∂x5
Etjg

))
(x) .

Now Lemma 4 below says that, for 0 < tj < T ,

(3.2) ErrnT−tj (I
k ∂

k

∂xk
Etjg) = χp (g)

√
tj
−(k−1)O

(
n−1

) (
1 + xp+3

)
,

where κp is defined by (1.8). As for the case tj = T , it amounts only to

O(n−
3
2 ) ‖g‖(2)

p

(
1 + xp+2

)
, in formula (3.1), due to remark 3 and property

P3. Thus, replacing (3.2) in (3.1) gives

CErrnT ET
n
g (x) =

n−1∑
j=1

4∑
k=2

O
(
n−2

)
k!

χp (g)
√
tj
−(k−1)O

(
n−1

) (
1 + xp+3

)
+

n−1∑
j=1

χp (g)
√
tj
−4O

(
n−1

) (
1 + xp+3

)
O(n−

5
2 )

+ ‖g‖(2)
p

(
1 + xp+2

)
O(n−

3
2 )

= χp (g)
(
1 + xp+3

)
O(n−

3
2 ).

We have proved the following result:
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Theorem 4. For every g ∈ C(1) ∩ K(3)
p and every x > 0,

(3.3) ErrnT ET
n
g (x) =

1

n

4∑
k=2

∆k

k!
xkE(k)

T g (x) + κp (g)
(
1 + xp+3

)
O(n−

3
2 ).

Theorem 4 is a key component of the proof of Theorem 2. As pointed
out in section 1.5, our first-order error formula (1.4) is obtained from (3.3)
by a trivial use of the European option derivative representation formulae
below. The European option derivative representation formulae and the
negligibility of the payoff smoothing error are proven below.

4. European option derivative representation formulae

Let φ (z) be the pdf of a standard normal random variable and let,

as usual, φ(j)(z) be its jth derivative. To shorten expressions, we denote

ζs (z) := e
√
sσz+(r− 1

2
σ2)s, with which we can write

Esh (x) = e−rs
∫ ∞
−∞

h (xζs (z))φ(z)dz.

We will show that the derivatives of Esh (x) can be expressed as linear com-

binations of smooth functions E
(j)
s h (x) of the form

E(j)
s h (x) := e−rs

∫ ∞
−∞

h (xζs (z))φ(j)(z)dz.

Not only do we need expressions for the derivatives of Esh (x), but it turns

out that we also need expressions for the derivatives of Ik ∂k

∂xk
Esh, for integers

k ≥ 0. This motivates the notation

E(k)
s h (x) :=

∂k

∂xk
Esh (x) ,

E〈k〉s h (x) := xkE(k)
s h (x) ,

and, more generally, for any function ψ in C(k),

ψ〈k〉 (x) := xkψ(k) (x) .

Now let h be any continuous function in K(1) and let s > 0. Integration
by parts gives

(4.1) e−rs
∫ ∞
−∞

ζs (z)h′ (xζs (z))φ(j)(z)dz =
−1

x
√
sσ

E(j+1)
s h (x) ,

and since

∂

∂x
E(j)
s h (x) = e−rs

∫ ∞
−∞

ζs (z)h′ (xζs (z))φ(j)(z)dz,

then
∂

∂x
E(j)
s h (x) =

−1

x
√
sσ

E(j+1)
s h (x) .
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Thus, for integers j, k ≥ 0, repeated differentiation gives that, for some real
numbers α1,...,αk,

∂k

∂xk
E(j)
s h (x) =

k∑
`=1

α`
xk

(
−1√
sσ

)`
E(j+`)
s h (x) .

Note that equation (4.1) says that for j ≥ 1,

E(j)
s h (x) = −

√
sσe−rs

∫ ∞
−∞

(xζs (z))h′ (xζs (z))φ(j−1)(z)dz.

In other words

(4.2) E(j)
s h (x) = −

√
sσE(j−1)

s

(
Ih′
)

(x) .

Hence if h ∈ C(1) ∩ K(2), then, for j ≥ 2, the relation (4.2) can be used a
second time, giving

E(j−1)
s

(
Ih′
)

(x) = −
√
sσE(j−2)

s

(
I
(
Ih′
)′)

(x) ,

E(j)
s h (x) =

(√
sσ
)2 (

E(j−2)
s

(
Ih′
)

(x) + E(j−2)
s

(
I2h′′

)
(x)
)
.(4.3)

Noting that

Esh (x) = E(0)
s h (x) ,

we have essentially obtained the following result, which can be used to obtain

explicit expressions for ∂k

∂xk
Esh (x) and ∂`

∂x`
E〈k〉s h (x), for any value of k, ` ≥ 0.

Theorem 5 (European option derivative representation formulae). For ev-

ery continuous function h in K(1), and every pair of integers j, k ≥ 0, there
exist real numbers α1, ..., αk, such that

(4.4) xk
∂k

∂xk
E(j)
s h (x) =

k∑
`=1

α`
√
s
−`
E(j+`)
s h (x) .

When k ≥ 1, there exist real numbers α1, ..., αk, such that

(4.5) xk
∂k

∂xk
E(j)
s h (x) =

k−1∑
`=0

α`
√
s
−`
E(j+`)
s

(
Ih′
)

(x) .

When h ∈ C(1) ∩ K(2) and k ≥ 2, there exist real numbers α1, ..., αk and
β1, ..., βk, such that
(4.6)

xk
∂k

∂xk
E(j)
s h (x) =

k−2∑
`=0

α`
√
s
−`
E(j+`)
s

(
I2h′′

)
(x)+

k−2∑
`=0

β`
√
s
−`
E(j+`)
s

(
Ih′
)

(x) .
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In particular, with h ∈ C(1) ∩ K(2), the following formulae hold:

x2E(2)
s h (x) = E(0)

s

(
I2h′′

)
(x)

x3E(3)
s h (x) = −2E(0)

s

(
I2h′′

)
(x)− 1

σ
√
s
E(1)
s

(
I2h′′

)
(x) ,

x4E(4)
s h (x) = 6E(0)

s

(
I2h′′

)
(x) +

5√
sσ

E(1)
s

(
I2h′′

)
(x) +

1

sσ2
E(2)
s

(
I2h′′

)
(x)

Proof. Equations (4.4), (4.5) and (4.6) follow from the content of the short
discussion at the beginning of this section. In order to get expressions for
∂k

∂xk
Esh (x) = ∂k

∂xk
E

(0)
s (h) (x), k = 2, 3, 4, one first calculates the actual values

of αj , j = 0, ..., 4, such that (4.4) holds, and repeatedly uses (4.2) and (4.3).
This is tedious but otherwise trivial. �

Remark 5 (Expressing E
(`)
s in terms of Es). Recall ηs from (1.5) and note

that ηs (ζs (z)) = z, and φ(`)(z)
φ(z) is a polynomial in z. Expressions involving

E
(`)
s

(
I2h′′

)
(x) can also be written in terms of Es in the following manner:

E(`)
s

(
I2h′′

)
(x) = e−rs

∫ ∞
−∞

(xζs (z))2 h′′ (xζs (z))
φ(`)(ηs(

xζs(z)
x ))

φ(ηs(
xζs(z)
x ))

φ(z)dz

= Es

(
I2h′′

φ(`)(ηs
(
I
x

)
)

φ(ηs
(
I
x

)
)

)
(x)

= e−rsEx

(
ξ2
sh
′′ (ξs)

φ(`)(ηs(
ξs
x ))

φ(ηs(
ξs
x ))

)
.

In the statement of Theorem 2, we use the last form of this equation.

Remark 6 (Boundedness of E〈k〉s g and xm ∂m

∂xmE
〈k〉
s g). With the European

option derivative representation formulae, functions of the form I` ∂
`

∂x`
E〈k〉tj g

are easy to deal with. If for instance k, ` ≥ 0 and k+` ≥ 2 and g ∈ C(1)∩K(2),
then

I`
∂`

∂x`
E〈k〉tj g =

k+`−2∑
j=0

αj
√
s
−j

E(j)
s

(
I2g′′

)
(x)

+
k+`−2∑
j=0

βj
√
s
−j

E(j)
s

(
Ig′
)

(x) ,

for some real numbers αi, βi, i = 0, ..., k + `− 2. The fact that such expres-
sions are polynomially bounded immediately follows from the fact that, given
real numbers a, b ≥ 0 and an integer j ≥ 0, there exists a constant Q, such
that for every function ψ satisfying |ψ (x)| ≤ a

(
1 + xb

)
, and every x, s > 0,∣∣∣E(j)

s (ψ) (x)
∣∣∣ ≤ Qa(1 + xb

)
.
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5. The payoff smoothing error

Recall χp (h) from (1.8).

Theorem 6. For every h ∈ C(1) ∩ K(3)
p and every x > 0,

ErrnT

(
h− ET

n
(h)
)

(x) = χp (h)
(
1 + xp+3

)
O
(
n−1.5

)
.

Proof. We get from the Taylor expansion theorem that

ET
n
h (x) = e−r

T
n h (x) + xh′ (x) ET

n
(I − 1)

+ ET
n

(

∫ I

1
(xu)2 h′′ (xu)

(I − u)

u2
du)(1).

Hence, since from risk neutrality, ET
n

(I − 1) = 1− e−r
T
n = O

(
n−1

)
,

h (x)− ET
n
h (x) = (1− e−r

T
n )
(
h (x)− xh′ (x)

)
− ET

n

(∫ I

1
(xu)2 h′′ (xu)

(I − u)

u2
du

)
(1) ,

and therefore

ErrnT

(
h− ET

n
(h)
)

(x) = O
(
n−1

)
ErrnT

(
h− Ih′

)
(x)

− ET
n

(∫ I

1

(
ErrnT

(
I2h′′

)
(xu)

) (I − u)

u2
du

)
(1) .

But h − Ih′ ∈ C(0) ∩ K(2)
p+2, and I2h′′ ∈ K(1)

p+2. Hence, from Proposition 2
below, ∣∣ErrnT

(
h− Ih′

)
(x)
∣∣ ≤ O (n−0.5

)
χp (h)

(
1 + (x)p+3

)
,∣∣ErrnT

(
I2h′′

)
(xu)

∣∣ ≤ O (n−0.5
)
χp (h)

(
1 + (xu)p+3

)
.

Now ∣∣∣∣∫ I

1

(
1 + (xu)p+3

) (I − u)

u2
du

∣∣∣∣ =

∫ I

1

(
1 + (xu)p+3

) (I − u)

u2
du,

and since, by P5,

ET
n

(∫ I

1

(
1 + (xu)p+3

) (I − u)

u2
du

)
= O

(
n−1

) (
1 + xp+3

)
,

we obtain

ET
n

(∫ I

1
ErrnT

(
I2h′′

)
(xu)

(I − u)

u2
du

)
(1) = O

(
n−

3
2

)
χp (h)

(
1 + xp+3

)
.

�
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6. Auxiliary results

We list here basic properties satisfied by all flexible CRR Schemes. Here

F
ξ
(n)
t

and Fξt denote the cumulative distribution functions of ξ
(n)
t and ξt,

with ξ
(n)
0 = ξ0. Proofs are left to the reader.

Lemma 2 (Properties of {ξ(n)}). Every flexible CRR Scheme {ξ(n)}∞n=1

satisfies the following properties:

P1 (Berry-Esseen): There exists a constant Q such that for every
t ∈ T

nN, with T
2 ≤ t ≤ T ,

sup
z

∣∣∣F
ξ
(n)
t

(z)− Fξt (z)
∣∣∣ ≤ Qn− 1

2 .

P2 (local estimate of the distance to 1): For integers k ≥ 0,

δ
(n)
k := EnT

n

(
|I − 1|k

)
(1) = O

(
n−

k
2

)
.

P3 (local error of the difference from 1): For integers k = 2, 3, 4,
there exist ∆k such that

∆
(n)
k := ErrnT

n

(
(I − 1)k

)
(1) =

∆k

n2
+O(n−

5
2 ).

P4 (local and global estimates for log and power functions):

EnT
n

(|ln (I)|) (1) = O
(
n−

1
2

)
.

Furthermore, for every fixed real number γ,

EnT
n

(Iγ) = ET
n

(Iγ) +O
(
n−2

)
,

and (consequently)

EnT
n

(|Iγ − 1|) (1) = O
(
n−

1
2

)
,

max
j=0,...,n

∣∣∣EnjT
n

(Iγ) (x)− E jT
n

(Iγ) (x)
∣∣∣ = xγO

(
n−1

)
,

max
j=0,...,n

∣∣∣EnjT
n

(Iγ) (x)
∣∣∣ = xγO (1) .

P5 (Remainder related local estimate): For any integer β and any
integer N ≥ 0,

EnT
n

(

∣∣∣∣∫ I

1
uβ (I − u)N du

∣∣∣∣) (1) = O(n−
N+1

2 ).

Remark 7. All the properties P1-P5 remain valid if ξ(n) is replaced by ξ.

Recall the notation of section 4. The following lemma is a practical and
simple result.
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Lemma 3. Let integer k ≥ 0. For every h ∈ C(k−1)∩ K(k), s > 0 and
x ≥ 0,

xk
dk

dxk
Esh (x) = Es

(
Ik

dk

dxk
h

)
(x) .

Proof. Since Esh (x) = e−rs
∫∞
−∞ h (xζs (z))φ(z)dz, one writes

xk (Esh)(k) (x) = xke−rs
dk

dxk

∫ ∞
−∞

h (xζs (z))φ(z)dz

= xke−rs
∫ ∞
−∞

(ζs (z))k h(k) (xζs (z))φ(z)dz

= e−rs
∫ ∞
−∞

(xζs (z))k h(k) (xζs (z))φ(z)dz

= Es
(
Ikh(k)

)
(x) .

�

The result below extends the Berry-Esseen property P1.

Proposition 2. If ϕ ∈ K(1)
p then,

max
T
2
≤tm≤T

∣∣Errntm ϕ (x)
∣∣ ≤ (‖ϕ‖(1)

p +
∑
|∆ϕ|)

(
1 + xp+1

)
O(n−

1
2 ).

Proof. If ϕ belongs to K(1)
p , but is not continuous, then it can be decomposed

into a (finite) sum of piecewise constant functions and a continuous function

ϕ∗ in K(1)
p . Note that ‖ϕ∗‖(1)

p ≤ ‖ϕ‖
(1)
p +

∑
|∆ϕ|. Since the convergence of

option values occurs at a rate of a least n−
1
2 when the payoff is piecewise

constant, due to property P1 in section 6, we can assume, without loss of

generality, that ϕ ∈ C(0) ∩ K(1)
p . Recall that, due to the European option

derivative representation formulae, there exists a constant Q such that, for
0 < s ≤ T and for k = 2, ..., 5,∣∣∣E〈k〉s (ϕ) (x)

∣∣∣ ≤ Q‖ϕ‖(1)
p

√
s
k−1

(
1 + xp+1

)
.

Let tm be a time step in the interval
[
T
2 , T

]
. Substituting the above estimate

in the error localization expansion formula (with M = 0 and N = 4) we get,
invoking Remark 3 and property P3 in section 6,

MErrntm ϕ (x) = m

4∑
k=2

O
(
n−2

)
k!

‖ϕ‖(1)
p

√
tm

k−1

(
1 + xp+1

)
+m

‖ϕ‖(1)
p

√
tm

k−1

(
1 + xp+1

)
O(n−

5
2 )

= ‖ϕ‖(1)
p

(
1 + xp+1

)
O
(
n−1

)
.
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Using additionally the fact that Errnt` and Rn,NT
n

commute, we similarly get

CErrntm ϕ (x) =
m−1∑
j=1

4∑
k=2

O
(
n−2

)
k!

‖ϕ‖(1)
p

√
tj
k−1

(
1 + xp+1

)
+

m−1∑
j=1

‖ϕ‖(1)
p

√
tj

4

(
1 + xp+1

)
O(n−

5
2 )

+ ‖ϕ‖(1)
p

(
1 + xp+1

)
O(n−

1
2 )

= ‖ϕ‖(1)
p

(
1 + xp+1

)
O(n−

1
2 ).

�

The result below is used in the proof of Theorem 4.

Lemma 4. Let k ≥ 2 be an integer and g ∈ C(1) ∩ K(3)
p . Then,∣∣∣ErrnT−tm(E〈k〉tm g) (x)

∣∣∣ ≤ χp (g)
√
tm

k−1
O
(
n−1

) (
1 + xp+3

)
,

for all time steps 0 < tm < T and x ≥ 0.

Proof. Note that, by Lemma 3, for every s, t ≥ 0,

EsE〈k〉t g (x) = E〈k〉s Etg (x) = E〈k〉s+tg (x) .

The error localization expansion formula (with M = N = 4) gives

MErrnT−tm E
〈k〉
tm g (x) = m

4∑
`=2

∆
(n)
`

`!
x`

∂`

∂x`
E〈k〉T−t1g (x)

+mRn,4T
n

(
I5 ∂

5

∂x5
E〈k〉T−t1g

)
(x)

CErrnT−tm E
〈k〉
tm g (x) =

m−1∑
j=0

4∑
`=2

∆
(n)
`

`!
ErrnT−tm−tj+1

(
x`

∂`

∂x`
E〈k〉tj+tmg

)
(x)

(6.1)

+

m−1∑
j=0

Rn,4T
n

(
ErrnT−tm−tj+1

(
x5 ∂

5

∂x5
E〈k〉tj+tmg

))
(x) .

By the European option derivative representation formulae, there exists a
constant Q, such that for k, ` = 2, ..., 5,∣∣∣∣x` ∂`∂x`E〈k〉s g

∣∣∣∣ ≤ Q ‖g‖(2)
p

√
s

(k+`−2)

(
1 + xp+1

)
.

Using Remark 3 and property P3 in section 6, replacing this estimate in the
above formulae one gets not only that

max
0<tm<T

∣∣∣MErrnT−tm E
〈k〉
tm g (x)

∣∣∣ = ‖g‖(2)
p

(
1 + xp+2

)
O
(
n−1

)
,
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but also, that the contribution in
∣∣∣CErrnT−tm E

〈k〉
tm g (x)

∣∣∣ of those tj ’s for which

T

2
≤ tj + tm ≤ T,

amounts to ‖g‖(2)
p

(
1 + xp+2

)
O
(
n−1

)
. Hence we are left to consider the tj ’s

for which 0 < tj + tm < T
2 , in which case

T

2
≤ T − tm − tj+1 < T.

Let us write s := s(j,m, n) = tj + tm and t := t(j,m, n) = T − tm −
tj+1. Recall that, by the European option derivative representation formulae,

x` ∂
`

∂x`
E〈k〉s g (x) is a linear combination of terms of the form s−

j
2E

(j)
s (Ig′) (x)

and s−
j
2E

(j)
s

(
I2g′′

)
(x), with j ∈ {0, .., k + `− 2}. Now

E(j)
s

(
I2g′′

)
(x) = Es

(
(xI)2 g′′ (xI)

φ(j)(ηs (I))

φ(ηs (I))

)
(1) ,

so that

Errnt (E(j)
s

(
I2g′′

)
) (x) = E(j)

s

(
Errnt (I2g′′)

)
(x) ,

and (recall that T
2 ≤ t < T ) our extension to the Berry-Esseen theorem,

Proposition 2, yields∣∣Errnt (I2g′′) (x)
∣∣ = χp (g)O(n−

1
2 )
(
1 + xp+3

)
.

Since the same is true for the terms E
(j)
s (Ig′) (x), it follows that

(6.2) Errnt (I`
∂`

∂x`
E〈k〉s g) (x) =

√
s
−(k+`−2)

χp (g)O(n−
1
2 )
(
1 + xp+3

)
.

Noticing that, with constant Q := 2 (1 + T )4,

‖g‖(2)
p

(
1 + xp+2

)
≤ Q
√
s
−(k+`−2)

χp (g)
(
1 + xp+3

)
,

for every s, x > 0, and k, ` = 2, ..., 5, we can use the estimate (6.2) in formula
(6.1), to obtain∣∣∣CErrnT−tm E

〈k〉
tm g (x)

∣∣∣
=

n−m−1∑
j=0

4∑
`=2

(
O
(
n−2.5

)
√
tm + tj

k+`−2
+

O
(
n−3

)
√
tm + tj

k+3
)χp (g)

(
1 + xp+3

)
.

From this one easily gets∣∣∣CErrnT−tm E
〈k〉
tm g (x)

∣∣∣ =
O
(
n−1

)
√
tm

k−1
χp (g)

(
1 + xp+3

)
.

�
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