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Abstract. The valuation of American options is an optimal stop-
ping time problem which typically leads to a free boundary prob-
lem. We introduce here the randomization of the exercisability of
the option. This method considerably simplifies the problematic
by transforming the free boundary problem into an evolution equa-
tion. This evolution equation can be transformed in a way that
decomposes the value of the randomized option into a European
option and the present value of continuously paid benefits. This
yields a new binomial approximation for American options. We
prove that the method is accurate and numerical results illustrate
that it is computationally efficient.

1. Introduction

American options are a fundamental financial tool of modern finan-
cial markets and millions of them are traded every day. In the last
two decades, the problem of valuing American options has become the
subject of an extensive literature. While various enhancement of the
traditional Black-Scholes model are at the center of abundant pub-
lications, the later remains a benchmark both for practitioners and
theoreticians, and the new models are still facing the same difficul-
ties inherent to the nature of American options. Such a core difficulty
comes from the fact that the American option’s value is the solution of
a problem which involves finding the optimal boundary at which the
option should be exercised, as part of the solution. Such problems are
called free boundary problems.
One of the earliest successful method developed to address the val-

uation of American options in the Black-Scholes setting is the finite
difference method with pioneer works by Brennan and Schwartz [1].
Still today, the most widely used valuation technique is certainly the
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binomial method due to Cox, Ross and Rubinstein [2]. Geske and
Johnson [3] derived the compound options approach. MacMillan [4]
and Barone-Adesi and Whaley [5] developed a quadratic approxima-
tion method. Kim [6], Jacka [7], Carr et al. [8] found integral-equation
methods for the location of the optimal boundary which lead to fur-
ther numerical methods in Huang, Subrahmanyam, and Yu [9] and
approximation methods in Ju [10]. Another fundamental approach is
the randomization of the option in Carr [11] which yields to simpler
approximations, or the randomization of the underlying asset in Leisen
[12], [13] yielding a smoother convergence of the numerical implemen-
tation.
The valuation of American options in the Black-Scholes setting is

an optimal stopping time problem and, as such, has an interest that
extends beyond the mere valuation of the derivative products. The
question remains the subject of several publications. To name some
recent papers, let us mention: Alobaidi and Mallier [14], Bunch and
Johnson [15], AitShalia and Lai [16], Allegretto et al. [17], Alobaidi and
Mallier [18], Longstaff and Schwartz [19], Zvan et al. [20], Allegretto
et al. [21], Coleman et al. [22], Rogers [23], Wu and Ding [24], Zhu
[25], Borici and Luthi [26], Cruz-Baez and Gonzalez-Rodriguez [27],
Peskir [28], Schroder [29], Widdicks et al. [30], Camara and Chung [31],
Gaudenzi and Lepellere [32], Zhu [33], Armadaa et al. [34], Chen and
Chadam [35], Lin and Liang [36], Zhao et al. [37]. In a recent paper,
Zhu [38] solved a "holy grail" of financial mathematics by finding a
closed form solution to the American put option.
A central difficulty in research dealing with American options is that,

to get the value of the option, one should also identify a free optimal
boundary for which no simple form exists. This paper addresses that
core issue. Its purpose is to develop a new approach for determining
American option values, based on randomization, which eliminates the
need for finding a free optimal boundary.
While a European option entitles his owner to exercise at maturity

and an American option at any time up to maturity, a middle ground
between these two extremes is an option which is exercisable at some
but not all times up to maturity. A randomly exercisable American op-
tion gives the right to his owner to exercise at some random dates prior
or up to maturity. In this paper the exercisable dates independently
follow each other by waiting an exponentially distributed time. Note
that these exercisable dates are completely independent of the stock
process which is traded continuously.
The value of the exercisability randomized American option approxi-

mates the value of its American counterpart. For randomly exercisable
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option, the problem of finding the solution is simplified by the fact that
the optimization problem that should be solved at time zero, to find
the value of the option, has the same form as the one that should be
solved at the time of the first exercisable date, thus yielding an ordi-
nary evolution equation. Clearly, the shorter the average time between
two exercisable dates is made, the better the approximation becomes.
As the average waiting time between two exercisable dates approaches
zero, the loss of opportunity vanishes and the value of the randomly
exercisable option converges to the true American option value.
Randomization of the American option was introduced in Carr [11]

where the maturity of the option is randomized. The maturity being
the nth jump of an independent Poisson process the solution is simpli-
fied by the memoryless property of exponential variables as, before the
first jump, the horizon remains the same so that the optimal boundary
remains constant. Randomization of the underlying asset as a mean
of approaching the Black-Scholes setting was also studied in Follmer
and Sondermann [39], Sondermann [40], Dengler and Jarrow [41] and
Rogers and Stapleton [42]. But in the case of the American option, the
complexity of identifying the optimal boundary remains unchanged.
Leisen [12] studied the binomial asset pricing model with a random
number of steps and obtained a smoother convergence.
In Kim [6], Jacka [7] and Carr, Jarrow and Myneni [8], natural de-

compositions of the American option into a European option and an
early exercise premium expressed in terms of the optimal boundary
not only reveals a fundamental feature of American options but is also
at the heart of numerical techniques for valuing the option. In this
paper, the randomization of the exercisability yields a natural break
down of the option into a European option and the present value of
some continuously paid early exercise benefits. At any given time this
instantaneous benefit is equal to the excess of intrinsic value over the
present value of the optimal deferred exercise.
The rigorous study of the convergence of some of the classical nu-

merical method for valuing American options -among others Carr’s
maturity randomization- has been the specific subject of recent pub-
lications: as pointed out in Deng et al. [43], the convergence to the
true American option value of many of the important classical methods
for valuing American options had not been rigorously established and,
they proved the convergence of Carr’s method of lines and maturity
randomization. In Dupuis and Wang [44] and in Bouchard, El Karoui
and Touzi [45] this convergence is recognized as an important issue
part of a broader problematic. Note that the non-triviality of proving
the convergence in free boundary problem settings was pointed out in
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Carr [11]. Here the convergence is established by breaking down the
error into a discretization error, a randomization error and a law error
which are shown to converge to zero. Numerical results are provided
to illustrate the computational efficiency of the method.
The paper is organized as follows. In section 2 we collect the basic

assumptions and notations used in this paper. Section 3 deals with
the optimal stopping time for the randomized option. In section 4
we prove that the value of the randomly exercisable American option
converges to the value of the ordinary American option. In section 5
we derive an evolution equation having the value of the randomized
American option as its unique solution. We use Dynkin’s generalized
Feynman-Kac formula in Section 6 to transform this evolution equa-
tion in way that decomposes the value of the randomized American
option into a European option and the present value of continuously
paid early exercise benefits. This second evolution equation is the basis
for a numerical implementation described in section 8. In Section 9
we show that our numerical method converges to the true value of the
American option and in section 10, numerical results are provided to
illustrate the efficiency of the method. As for section 7, it connects the
ordinary American option to the randomly exercisable American op-
tion by exhibiting a suboptimal strategy for the owner of an American
option which yields the value of the randomized option.

2. Basic settings

Throughout this paper we work with a strong Markov right process
ξ = (ξ,F , πt,x) where F is the usual filtration and πt,x is the conditional
expectation knowing that ξt = x. We assume that

πr,x (f (ξt)) = πr,1 (f (xξt))

Indeed we are mostly interested in ξ a Geometric-Brownian motion
with parameters ρ and σ, that is, for every 0 ≤ r ≤ t and every x > 0,
πr,x (f (ξt)) = π (f (xξt−r)) and

π (f (xξt−r)) = π

µ
x exp

µ
σWt−r +

µ
ρ− 1

2
σ2
¶
(t− r)

¶¶
where W is a Brownian motion and π := π0,1.
A time T > 0, representing the time to maturity, is fixed throughout

the paper.
A function h(x) ≥ 0 representing the intrinsic value of the option is

also fixed. We assume that h(x) is Lipschitz and has compact support.
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Hence there exists K,L > 0 such that

h(x) = h(x)1[0,K](x)

|h(x)− h(y)| ≤ L |x− y| .

Note that the American put with strike K, is a particular case of this
with h(x) = max(K − x, 0).
On the same space as ξ, an independent Poisson processes Nλ with

parameter λ are realized, for λ = 1, 2, 3, .... We denote by Nλ(a, b] the
number of jumps in interval (a, b]. We will refer to λ as the exercisability
intensity.
In our setting, an option bought at time t is exercisable at any of

the jumps of Nλ in (t, T ] or, at the latest, at time T . We denote by

eT := eTλ,t,T = nTλ,t,T1 ,Tλ,t,T2 , ...
o

the set of all Exercisable Dates in the interval (t, T ], that is the times in
this interval at which the option is exercisable (the time of the jumps
of Nλ). Obviously,

(2.1) Tn := Tλ,t,Tn ∼
¡
t+ τλ1 + τλ2 + ...+ τλn

¢
∧ T, for n = 1, 2, ...

where the variables τλi , i = 1, 2, ... are independent and identically
exponentially distributed with parameter λ, and models the “Waiting”
Time one has to wait in between two Exercisable Dates.
Clearly, developing a strategy to optimize the value of an American

Option with random exercisable dates, involves the set of stopping
times matching one of the values of eT. We denote by T [t, T ] the set of
all t-stopping times bounded by T and by T λ[t, T ] the t-stopping times
bounded by T whose value always coincide with one exercisable time
Tn. Recall that τ is a t-stopping times bounded by T if t ≤ τ ≤ T and
if τ is a stopping time with respect to the filtration (T [t, s])s∈[t,T ].
Note that T [t, T ] can be mapped into T λ[t, T ] through the formula

(2.2) τ → T(τ , eT) := ∞X
n=0

Tn+11[Tn,Tn+1) (τ)

where T0 := t. Hence T(τ , eT) is the first Exercisable Date after τ .
We denote, for any value x of the underlying stock ξ and any time

t up to maturity T , the value vλh,T (t, x) of the randomly exercisable
American Option which is given by the formula

vλh,T (t, x) := sup
τ∈T λ[t,T ]

πt,x(e
−ρ(τ−t)h(ξτ ))
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We also denote the value of the European option by vEh,T (t, x) and the
value of the American option by vh,T (t, x).
We are interested in the first Exercisable Date after time t for which

the intrinsic value h(ξs) is at least as big as the expected discounted
value of the optimal future exercises of the option, vλh,T (s, ξs). That is
we are interested in

(2.3) τλ∗ = inf
n
s ∈ eT : h(ξs) ≥ vλh,T (s, ξs)

o
.

We are also interested in the optimal exercise time after t of the Amer-
ican option

τ∗ = inf {s ≥ t : h(ξs) ≥ vh,T (s, ξs)} .
As expected, τλ∗ is the optimal exercise of the randomly exercisable
option. This is established next.

3. Optimal stopping time

First, for τλ∗ to be a stopping time we need s 7→ vλh,T (s, ξs) to be right
continuous. But this is guaranteed by the fact that if τn is a sequence
of decreasing t-stopping times converging to τ∞, then, clearly,

lim
n→∞

πt,x
¡
vλh,T (τn, ξτn)

¢
= πt,x

¡
vλh,T (τ∞, ξτ∞)

¢
which guaranties almost sure right continuity according to [46, VI.48].
The fact that τλ∗ is an optimal stopping time is common to all Amer-

ican style option. An adaptation of a similar argument in [47, Th.
4.4.5] is drawn here for the sake of completeness.
Let σ be a t-stopping time. Let us first show that exercising at

σ∧ τλ∗ is at least as good as exercising as σ. To see this, first note that
exercising at τλ∗ is, by definition, at least as good as keeping the option,
so

πt,x
³
e−ρσ∧τ

λ∗ h
¡
ξσ∧τλ∗

¢´
≥ πt,x

¡
e−ρσ1σ≤τλ∗ h (ξσ)

¢
(3.1)

+ πt,x
³
e−ρτ

λ∗ 1σ>τλ∗ v
λ
h,T

¡
τλ∗ , ξτλ∗

¢´
But

vλh,T
¡
τλ∗ , ξτλ∗

¢
≥ πτλ∗ ,ξτλ∗

³
e−ρ(σ∨τ

λ∗−τλ∗ )h
¡
ξσ∨τλ∗

¢´
thus, using the strong Markov property, we can continue (3.1) with

πt,x
³
e−ρσ∧τ

λ∗ h
¡
ξσ∧τλ∗

¢´
≥ πt,x

¡
e−ρσ

¡
1σ≤τλ∗ h (ξσ) + 1σ>τλ∗ h (ξσ)

¢¢
= πt,x

¡
e−ρσh (ξσ)

¢
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Thus no optimal strategy can impose us to wait longer than τλ∗ . So
let σ be a stopping time bounded by τλ∗ . We need to show that

(3.2) πt,x
¡
e−ρσh (ξσ)

¢
≤ πt,x

³
e−ρτ

λ∗ h
¡
ξτλ∗
¢´

.

In order to do so, we will first show that, for every n, the opti-
mal strategy for the option maturing at the nth exercisable date Tn
is to exercise at the first exercisable date eτλ,n∗ where exercising h has
more value than the expected discounted deferred optimal exercise,evλ,nh,T . More precisely, we define

evλ,nh,T (t, x) = sup
τ∈T λ[t,T ]

πt,x(e
−ρτ∧Tnh(ξτ∧Tn))

eτλ,n∗ = inf
n
Ti ∈ eT : h(ξTi) ≥ vλ,n−ih,T (Ti, ξTi)

o
σn = σ ∧ eτλ,n∗ .

Note that evλ,nh,T (t, x) % vλh,T (t, x) as n tends to infinity and, therefore,eτλ,n∗ % τλ∗ and σn % σ as n tends to infinity.
Obviously, for an option that matures at the first exercisable date

(that is evλ,1h,T ) the optimal (and unique) strategy is to exercise at eτλ,1∗ =

T1. Now assume that, for k = 1, 2, .., n− 1, eτλ,k∗ is an optimal strategy
for the option maturing at the kth exercisable dates. Consider an option
maturing at the nth exercisable date. We have

πt,x
¡
e−ρσnh (ξσn)

¢
= πt,x

³
e−ρσn1σn=eτλ,n∗ h (ξσn)

´
+

n−1X
i=1

πt,x
³
e−ρσn1σn<eτλ,n∗ 1σn=Tih (ξσn)

´
But on the set

©
σn < eτλ,n∗ ª

∩{σn = Ti} only n− i exercisable dates are
left and since, (1) by induction hypothesis, it is optimal to exercise at
the first transaction date Tj after Ti, j ∈ {i+ 1, i+ 2, ..., n}, for which

(3.3) h(ξTj) ≥ vλ,n−jh,T (Tj, ξTj),

since, (2) on that set, eτλ,n∗ > Ti, and since, (3) eτλ,n∗ is the first trans-
action date for which (3.3) occurs, it follows that eτλ,n∗ is optimal. And
this yields

πt,x
¡
e−ρσnh (ξσn)

¢
≤ πt,x

³
e−ρeτλ,n∗ h

³
ξeτλ,n∗

´´
.

Letting n tends to infinity we get (3.2), as desired.
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4. Convergence of the model

It is intuitively clear that the value of the exercisability randomized
American option with exercisability intensity λ converges to the value
of the American option when the exercisability intensity λ blows up to
infinity and virtually no time has to be waited in between exercisable
dates.
First note that since the American option can be traded without re-

strictions before maturity we clearly have vh,T (t, x) ≥ vλh,T (t, x). On the
other hand, recall that τ∗ is the optimal stopping time of the American
option, let bτλ∗ ∈ T λ[t, T ] be the first exercisable date after τ∗ as given
by (2.2) and let

bvλh,T (t, x) := πt,x

³
e−ρ(bτλ∗−t)h(ξbτλ∗ )

´
Then, obviously, by suboptimality,bvλh,T (t, x) ≤ vλh,T (t, x) ≤ vh,T (t, x)

Now

t ≤ τ∗ ≤ bτλ∗ ≤ T

and

0 ≤ vh,T (t, x)− bvλh,T (t, x)
= πt,x

¡
e−ρ(τ∗−t)h(ξτ∗)− e−ρ(τ∗−t)h(ξbτλ∗ )¢

+ πt,x
³³

e−ρ(τ∗−t) − e−ρ(bτλ∗−t)´h(ξbτλ∗ )´ .
But by the memoryless property of exponential variables, the time to
wait for the first exercisable date after τ∗, that is bτλ∗−τ∗, is exponentially
distributed with average 1

λ
, so we have

πt,x
³³

e−ρ(τ∗−t) − e−ρ(bτλ∗−t)´h(ξbτλ∗ )´ ≤ πt,x
¡
ρ
¡bτλ∗ − τ∗

¢¢
khk∞

≤ ρ khk∞
λ

and therefore

0 ≤ vh,T (t, x)− bvλh,T (t, x)
≤ πt,x

¡
e−ρ(τ∗−t)

¡
h(ξτ∗)− πτ∗,ξτ∗h(ξbτλ∗ )¢¢+ ρ khk∞

λ

≤ πt,x

¯̄̄̄
h(ξτ∗)−

Z ∞

0

Sτ∗
(τ∗+u)∧T (h)(ξτ∗)e

−λuλdu

¯̄̄̄
+

ρ khk∞
λ

(4.1)
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which converges to zero as λ goes to infinity, where St1
t2 is the semigroup

of ξ, that is

St1
t2 (h)(x) := πt1,xh(ξt2), for 0 ≤ t1 ≤ t2, and x ≥ 0.

Finally, since

(4.2) 0 ≤ vh,T − vλh,T ≤ vh,T − bvλh,T ,
our claim that vλh,T → vh,T as λ→∞ follows.

5. Evolution equation of the option value vλh,T

The benefit of randomizing the exercisability of an American option
is that it transforms the free boundary problem solved by its value vh,T
into an ordinary evolution equation. And it is considerably easier to
work with such integral equations than with the original problem. As
we will see now, it is simple to derive this evolution equation.
Let T1 be the first exercisable date of the option, as defined by (2.1).

Then

vλh,T (t, x) = πt,x
³
e−ρτ

λ∗ h
¡
ξτλ∗
¢´

= πt,x
³
1τλ∗=T1e

−ρτλ∗ h
¡
ξτλ∗
¢
+ 1τλ∗>T1e

−ρτλ∗ h
¡
ξτλ∗
¢´

= πt,x
¡
1τλ∗=T1e

−ρT1h (ξT1)
¢

+ πt,x
³
1τλ∗>T1e

−ρT1πT1,ξT1

³
e−ρ(τ

λ∗−T1)h
¡
ξτλ∗
¢´´

= πt,x
¡
1τλ∗=T1e

−ρT1h (ξT1) + 1τλ∗>T1e
−ρT1vλh,T (T1, ξT1)

¢
.

Since, τλ∗ = T1 iff it is optimal to exercise at T1, we obtain

vλh,T (t, x) = πt,x
¡
e−ρT1max(h (ξT1) , v

λ
h,T (T1, ξT1))

¢
.

Recall from (2.1) that the first exercisable date T1 after t is defined by
T1 =

¡
t+ τλ1

¢
∧ T where τλ1 is and independent exponential variable

with mean 1
λ
. Therefore

vλh,T (t, x) = πt,x
¡
e−(λ+ρ)(T−t)h(ξT )

¢
(5.1)

+ πt,x

Z T

t

e−(λ+ρ)(s−t)max(h(ξs), v
λ
h,T (s, ξs))λds.
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Note that, rewriting the first member of the right-hand side in terms
of the European option vEh,T , this is obviously the same as

vλh,T (t, x) = e−λtvEh,T (t, x)(5.2)

+ πt,x

Z T

t

e−(λ+ρ)(s−t)1{h(ξs)≥vλh,T (s,ξs)}h(ξs)λds

+ πt,x

Z T

t

e−(λ+ρ)(s−t)1{h(ξs)<vλh,T (s,ξs)}v
λ
h,T (s, ξs)λds.

6. Decomposition into a European option and an early
exercise premium

A powerful tool for analyzing evolution equations is Dynkin’s gen-
eralized Feynman-Kac formula (see [48, Th. 4.1.1- 4.1.4]). We will
use this to get a natural relation between the exercisability random-
ized American option and the European option. It breaks down the
randomly exercisable option into a European option and the expected
present value of the continuously paid excess of its intrinsic value over
the expected present value of the optimal deferred exercise. More pre-
cisely, we show in this section that

vλh,T (t, x) = vEh,T (t, x)(6.1)

+ πt,x

Z T

t

e−ρ(s−t)max
¡
h(ξs)− vλh,T (s, ξs), 0

¢
λds.

where vEh,T denote the European option with maturity T and intrinsic
value h.
Recall that a random non-negative measure A(ds) is called an ad-

ditive functional of ξ if, for every time interval (α, β), A(., (α, β)) is
measurable with respect to the completion of F(α, β) with respect to
πα,x for every x. A particular case of Dynkin’s generalized Feynman-
Kac formula is stated in Theorem 1 below. For f a measurable non-
negative function and some fixed time T , it is typical (such as in [48]
or [49] for instance) to use this formula with additive functionals of ξ
having the form C(I) :=

R
I
f(s, ξs)ds or B(I) := 1I(T )f(T, ξT ), for I a

time interval.

Theorem 1. Let C be a non-negative additive functional of ξ. Put
H(I) := expC(I), for any interval I. Let B be a signed additive func-
tional of ξ. Assume that

πr,x |B| (r, t] <∞
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The function

(6.2) g(r, x) = πr,x

Z
(r,t]

H(r, s)−1B(ds)

satisfies the equation

(6.3) g(r, x) = πr,xB(r, t]− πr,x

Z t

r

g(s, ξs)C(ds)

If g is finite and if the left side of (6.3) is well-defined then (6.3) implies
(6.2).

We will use this result to find a explicit solution to (5.2) using this
result. To do this, let the additive functional B(ds) be defined, for any
time interval I, by

B(I) := 1I(T )h(ξT ) +

Z
I

1{h(ξs)≥vλh,T (s,ξs)}h(ξs)λds

+

Z
I

1{h(ξs)<vλh,T (s,ξs)}v
λ
h,T (s, ξs)λds

Then (5.2) precisely says that

vλh,T (t, x) = πt,x

Z T

t

e−(λ+ρ)(s−t)B(ds)

Therefore, according to Theorem 1,

vλh,T (t, x) = πt,x (B(t, T ))− πt,x

Z T

t

vλh,T (s, ξs) (λ+ ρ) ds

Or, said otherwise,

vλh,T (t, x) = πt,x (h(ξT )) + πt,x

Z T

t

1{h(ξs)≥vλh,T (s,ξs)}h(ξs)λds(6.4)

− πt,x

Z T

t

vλh,T (s, ξs)ρds

− πt,x

Z T

t

1{h(ξs)≥vλh,T (s,ξs)}v
λ
h,T (s, ξs)λds

Which is the same as

vλh,T (t, x) = πt,x (h(ξT )) + πt,x

Z T

t

max
¡
h(ξs)− vλh,T (s, ξs), 0

¢
λds

− πt,x

Z T

t

vλh,T (s, ξs)ρds.
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Involving the generalized Feynman-Kac formula with B(ds) and C(ds)
defined, for any time interval I, by

B(I) := 1I(T )h(ξT ) +

Z
I

max
¡
h(ξs)− vλh,T (s, ξs), 0

¢
λds

C(I) :=

Z
I

ρds

we obtain (6.1) as desired.

7. Connection with the ordinary American option

We put here in an aside a representation of vλh,T as the value of an
American option under a suboptimal strategy, thus obtaining another
formula for the value of vλh,T . A simple lattice calculation of v

λ
h,T using

this representation is possible yielding, we believe, a somehow exotic
implementation of the option price calculation!
This representation is obtained by making use of Dynkin’s general-

ized Feynman-Kac formula in order to get

vλh,T (t, x) = πt,x
¡
e−ρ(T−t)e−C(t,T )h(ξT )

¢
(7.1)

+ πt,x

Z T

t

e−ρ(s−t)e−C(t,s)h(ξs)C(ds)

where C(ds) is the continuous additive functional defined for any time
subinterval I of [0, t] by

C(I) =

Z
I

1{h(ξu)≥vλh,T (u,ξu)}λdu

Now if τ1 is an independent variable which is exponentially distrib-
uted with mean 1 and if we define at time t the variable

τ = inf {s ≥ t : C(t, s) ≥ τ1}
then (7.1) precisely says that

vλh,T (t, x) = πt,x
¡
e−ρτh(ξτ)

¢
Multiplying τ and C by 1

λ
, this can be interpreted as saying that,

starting at time t, if the owner of an ordinary American option waits,
before exercising, that the total time after t,

R s
t
1{h(ξu)≥vλh,T (u,ξu)}du

spent within the exercise region of vλh,T , is as long as the time until the
first exercisable date T1, then, this suboptimal strategy is equivalent
to holding the randomly exercisable option. Note that this strategy is
unavailable to the owner of the randomized option since his option may
not be exercisable at that time.
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8. An Early Exercise Premium implementation

In this section we show how equation (6.1) can be solved numerically.
But first let us write

bλh,T (t, x) = h(x)− vλh,T (t, x)(8.1)

aλh,T (t, x) = πt,x

Z T

t

e−ρ(s−t)max
¡
bλh,T (s, ξs), 0

¢
λds

and for 0 < ∆ < T − t

∆|aλh,T (t, x) = e−ρ∆πt,xa
λ
h,T (t+∆, ξt+∆)

aλh,T (t, x)∆| = πt,x

Z t+∆

t

e−ρ(s−t)max
¡
bλh,T (s, ξs), 0

¢
λds

These quantities have clear financial meanings: max
¡
bλh,T (t, x), 0

¢
is

the instantaneous early exercise benefit resulting from exercising at
time t (as opposed to keeping the option); aλh,T (t, x) is the present
value of these continuously paid benefits until maturity; ∆|aλh,T (t, x) is
the present value of these benefits when the payments are deferred by
∆ and aλh,T (t, x)∆| is the present value of these benefits paid during a
temporary period of ∆.
Note that (6.1) can be rewritten as

(8.2) vλh,T (t, x) = vEh,T (t, x) + aλh,T (t, x)

and for any Markov process ξ and any time step 0 < ∆ < t, the
continuous payments aλh,T (t, x) can be decomposed into the temporary
payments aλh,T (t, x)∆| and the deferred ones ∆|aλh,T (t, x) yielding

(8.3) aλh,T (t, x) = aλh,T (t, x)∆| + ∆|aλh,T (t, x).

Now in order to evaluate the integral aλh,T (t, x), we need to discretize
ξ. The simplest way to do so is to replace ξ by the binomial asset
price process ξn. That is we divide the time into steps of size ∆n =

T
n

and, starting at time t0 = 0 at position ξn0 = x, process ξn jumps
at each time ti = i∆n, i = 1, 2, ... from its current state ξni−1 to the
state ξni = uξni−1 with probability pu and to the state ξni = dξni−1 with
probability pd where

u = exp(σ
p
∆n), d =

1

u
, pu =

exp(ρ∆n)− d

u− d
, pd = 1− pu.

This yields

(8.4) vn,λh,T (t, x) = vn,Eh,T (t, x) + an,λh,T (t, x)
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where the superscript n indicates that ξ has been replaced by the bi-
nomial asset process ξn in (8.2).
In order to recursively estimate the members of (8.4) define for every

x,

ban,λh,T (T, x) = 0bbn,λh,T (T, x) = 0bvn,λh,T (T, x) = h(x),

and, for 0 ≤ t < T ,

bbn,λh,T (t, x) =
n−1X
i=0

1[ti,ti+1) (t)
³
h(x)− bvn,λh,T (ti, x)

´
(8.5)

ban,λh,T (t, x) = πt,x

Z T

t

e−ρ(s−t)max
³bbn,λh,T (s, ξ

n
s ), 0

´
λds

bvn,λh,T (t, x) = vn,Eh,T (t, x) + ban,λh,T (t, x).(8.6)

Again ban,λh,T can be decomposed into the temporary and deferred pay-
ments

ban,λh,T (t, x)∆| = πt,x

Z t+∆

t

e−ρ(s−t)max
³bbn,λh,T (s, ξ

n
s ), 0

´
λds

∆|ban,λh,T (t, x) = e−ρ∆πt,xban,λh,T

¡
t+∆, ξnt+∆

¢
so that

(8.7) ban,λh,T (t, x) = ban,λh,T (t, x)∆| + ∆|ban,λh,T (t, x).

From (8.5), (8.6) and (8.7), we obtain the following equation for
i = 0, ..., n− 1

bvn,λh,T (ti, x) = h(x)−bbλh,T (ti, x)
= vn,Eh,T (ti, x) + ban,λh,T (ti, x)

= vn,Eh,T (ti, x) + ban,λh,T (ti, x)∆n| + ∆n|ban,λh,T (ti, x).

But obviously

∆n|ban,λh,T (ti, x) = πti,x
³
e−ρ∆nban,λh,T (ti+1, ξti+1)

´
= e−ρ∆n

³ban,λh,T (ti+1, xu)pu + ban,λh,T (ti+1, xd)pd

´
(8.8)
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and since ξs and bbn,λh,T are constant on each time interval [ti, ti+1) we also
have

ban,λh,T (ti, x)∆n| = πti,x

Z ti+1

ti

e−ρ(s−t)max
³bbλh,T (ti, x), 0´λds

= max
³bbλh,T (ti, x), 0´ fλ∆n,ρ

where

fλ∆n,ρ =
1− exp (−ρ∆n)

ρ
λ.

Hence

h(x)−bbλh,T (ti, x) = max³bbλh,T (ti, x), 0´ fλ∆n,ρ

+ vn,Eh,T (t, x) + ∆n|ban,λh,T (ti, x)

Which is solved by

(8.9) bbλh,T (ti, x) = 1

1 + fλ∆n,ρ

max(h(x)− vn,Eh,T (t, x)− ∆n|ban,λh,T (ti, x), 0)

from which we can set

(8.10) ban,λh,T (ti, x) = max
³bbλh,T (ti, x), 0´ fλ∆n,ρ + ∆n|ban,λh,T (ti, x).

The method for solvingbbn,λh,T , ban,λh,T and bvn,λh,T recursively is now simple to
describe. Let ξni,j be the values that can take ξ

n at time ti, for i = 0, ..., n
and j = 0, ..., i. The present value of the benefits, ban,λh,T (ti, ξ

n
i,j), are

calculated recursively first by ban,λh,T (tn, ξ
n
n,j) = 0 for j = 0, ..., n and,

assuming ban,λh,T (ti, ξ
n
i,j) has already been calculated for j = 0, ..., i, the

values ∆n|ban,λh (ti−1, ξ
n
i−1,j) and bbλh,T (ti−1, ξni−1,j), for j = 0, ..., i − 1, are

obtained through (8.8) and (8.9). ban,λh,T (ti−1, ξ
n
i−1,j) and bvn,λh,T (ti−1, ξ

n
i−1,j)

are then given by (8.10) and (8.6). Finally, at i = 0, (t0, ξn0,0) = (0, x),
yielding the desired estimate bvn,λh,T (0, x) of the randomized American
option value. Taking λ = n makes bvn,nh,T converge to the value vh,T of
the American option, as shown in the next section.

9. Convergence of the numerical method

All that remains to be shown now is that bvn,nh,T (0, x) converges to
vh,T (0, x) . This is going to be done by breaking down the approxi-
mation error into three part, a law error Ln, a randomization error
Rn,n and a discretization error Dn,n. The latter is itself bounded by a
modulus of continuity ωn,n defined in the next section.
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In addition to the previously defined notation for vn,λh,T and vλh,T we
will use vn,∞h,T to denote the value of the American option when the
underlying stock process ξn is the binomial asset pricing model. We
will also use v∞,∞

h,T to denote the value of the American option with
underlying ξ, that is v∞,∞

h,T = vh,T .

9.1. Modulus of continuity over one time step ωn,λ. We define
the following modulus of continuity over one time step by

ωn,λ = max
i=0,...,n−1

sup
δ∈[0,T

n
)

sup
x≥0

¯̄̄
vn,λh,T (ti, x)− vn,λh,T (ti + δ, x)

¯̄̄
where ti = iT

n
, i = 1, ..., n. In this section we show that

(9.1) ωn,λ ≤
³
1− e−ρ

T
n

´
khk∞ .

To see this, take t in {t1, ..., tn} and δ in [0, T
n
). Since ξn is constant

on the interval [t, t+ T
n
), it follows that, for any s in [t+ δ, T ),

πt+δ,x (f(ξs)) = πt,x (f(ξs))

and therefore

vn,λh,T (t+ δ, x) = sup
σ∈[t,T ]

eρδπt,x
¡
e−ρσ∨(t+δ)h(ξnσ∨(t+δ))

¢
.

Note that

0 ≤ vn,λh,T (t, x)− vn,λh,T (t+ δ, x)

≤ vn,λh,T (t, x)− e−ρδvn,λh,T (t+ δ, x)

≤ sup
σ∈[t,T ]

eρtπt,x
¡
e−ρσh(ξnσ)− e−ρσ∨(t+δ)h(ξnσ∨(t+δ))

¢
.

Now on the set {σ > t+ δ},

e−ρσh(ξnσ)− e−ρσ∨(t+δ)h(ξnσ∨(t+δ)) = 0,

and therfore we can continue with

= sup
σ∈[t,T ]

eρtπt,x
¡
e−ρσ∧(t+δ)h(ξnσ∧(t+δ))− e−ρ(t+δ)h(ξn(t+δ))

¢
.

But, because t is in {t1, ..., tn} and ξn is constant on the interval [t, t+
T
n
), we can continue with

= sup
σ∈[t,T ]

eρtπt,x
¡
e−ρσ∧(t+δ) − e−ρ(t+δ)

¢
h(x).
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Now σ ∧ (t+ δ) ≥ t, so we can continue with

≤ eρt
¡
e−ρt − e−ρ(t+δ)

¢
khk∞

=
¡
1− e−ρδ

¢
khk∞

and (9.1) follows.

9.2. Randomization error Rn,λ. We estimate here the randomiza-
tion error Rn,λ resulting from approximating the value vn,∞h,T (t, x) of
an ordinary American option with underlying process ξn by the value
vn,λh,T (t, x) of its randomized counterpart. More formally, we define the
Randomization error Rn,λ by

(9.2) Rn,λ =
¯̄̄
vn,λh,T (t, x)− vn,∞h,T (t, x)

¯̄̄
and, in this section, we show that

(9.3) lim
(n,λ)→∞

Rn,λ = 0.

Recall from (4.1) and (4.2) that

0 ≤ vn,∞h,T (t, x)− vn,λh,T

≤ πt,x

¯̄̄̄
h(ξτ∗)−

Z ∞

0

nSτ∗
(τ∗+u)∧T (h)(ξ

n
τ∗)e

−λuλdu

¯̄̄̄
+

ρ khk∞
λ

= πt,x

¯̄̄̄Z ∞

0

³
h(ξτ∗)− nSτ∗

(τ∗+u)∧T (h)(ξ
n
τ∗)
´
e−λuλdu

¯̄̄̄
+

ρ khk∞
λ

where nSt1
t2 is the semigroup of ξ

n, that is

nSt1
t2 (h)(x) := πt1,xh(ξ

n
t2
), for 0 ≤ t1 ≤ t2, and x ≥ 0.

Now, since τ∗ is optimal, ξnτ∗ must be "in the money" (that is h(ξ
n
τ∗) >

0) or τ∗ = T . In the later case

h(ξnτ∗)−
Z ∞

0

nSτ∗
(τ∗+u)∧T (h)(ξ

n
τ∗)e

−λuλdu = 0,

so we just have to treat the case where h(ξnτ∗) > 0. To do that, fix ω,

let x∗ = ξnτ∗(ω)(ω), t∗ = τ∗(ω), let u ∈ [0, T − t∗] and let ∆n =
T
n
and

un∗ = u+frac( t∗
∆n
) where frac(z) is the fractional part of z. Note that

nSt∗
t∗+u(h)(x∗) =

nS0un∗ (h)(x∗).

Furthermore, since the support of h is contained in [0,K] and x∗ is "in
the money" then 0 ≤ x∗ ≤ K. Denoting π := π0,1 and using the fact



18 GUILLAUME LEDUC

that h is Lipschitz with constant L, we get¯̄
h(x∗)− nS0un∗ (h)(x∗)

¯̄
≤ π

¡¯̄
h (x∗)− h

¡
x∗ξ

n
un∗

¢¯̄¢
≤ Lx∗π

¡¯̄
1− ξnun∗

¯̄
∧ khk∞

¢
≤ LKπ( sup

0≤s≤un∗
ξns ∧ (1 + khk∞)− inf

0≤s≤un∗
ξns ).

Obviously,

un∗ ≤ u+
T

n
and therefore¯̄

h(x∗)− nS0un∗ (h)(x∗)
¯̄
≤ LK

Z ∞

0

¡
nSu∧T − nSu∧T

¢
e−λuλdu

where
nSu = π( sup

0≤s≤u+T
n

ξns ∧ (1 + khk∞))

nSu = π( inf
0≤s≤u+T

n

ξns ).

Hence,

(9.4)
°°°vn,λh,T − vn,∞h,T

°°°
∞
≤ LK

Z ∞

0

¡
nSu∧T − nSu∧T

¢
e−λuλdu+

ρ khk∞
λ

.

Now it is well known that the laws of ξn in the Skorokhod space of
càdlàg trajectories converge weakly to the law of the geometric Brown-
ian motion ξ, see Coquet and Toldo [50]. By mean of taking a subse-
quence, the convergence can be assumed to be uniform almost surely.
This implies that the laws of

ξ
n

u = sup
0≤s≤u+T

n

ξns

ξn
u
= inf

0≤s≤u+T
n

ξns

converge to the laws of

ξu = sup
0≤s≤u

ξs

ξ
u
= inf

0≤s≤u
ξs

and thus, if

nS
∗
u = sup

k≥n
π
³
ξ
k

u ∧ (1 + khk∞)
´

nS∗u = inf
k≥n

π
³
ξk
u

´
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then, from (9.4), we have

lim
(n,λ)→∞

Rn,λ = lim
(n,λ)→∞

LK
Z ∞

0

³
nS

∗
u − nS∗u

´
e−λuλdu+

ρ khk∞
λ

= 0.

9.3. Law error Ln. We define the law error Ln by

(9.5) Ln = |vn,∞(t, x)− v∞,∞(t, x)| .
Since, the laws of ξn on the Skorokhod converge weakly to the law of
ξ, it follows immediately that

(9.6) lim
n→∞

Ln = 0

see for instance Coquet and Toldo [50].

9.4. Discretization error Dn,λ. We define the discretization error as

(9.7) Dn,λ = max
i=0,...,n−1

sup
x≥0

¯̄̄
vn,λh,T (ti, x)− bvn,λh,T (ti, x)

¯̄̄
and, in this section, we show that

(9.8) lim
n→∞

Dn,n = 0.

In order to shorten the expressions, we will use the following nota-
tion, for functions f and g, and numbers α, β:

(αf − βh) (t, x) = αf(t, x)− βh(t, x)

|αf − βh| (t, x) = |αf(t, x)− βh(t, x)| .
Take some t = iT

n
< T , i = 0, ..., n− 1, and write

vn,λh,T (t, x)− bvn,λh,T (t, x) = an,λh,T (t, x)− ban,λh,T (t, x)(9.9)

= T
n
|an,λh,T (t, x)− T

n
|ban,λh,T (t, x)

+ aλ,nh,T (t, x)T
n
| − baλ,nh,T (t, x)T

n
|.

Assume that during its whole trajectory in between t and t+ T
n
, process

vn,λh,T (s, ξ
n
s ) = vn,λh,T (s, x) doesn’t cross the value bvn,λh,T (t, x). Then the

quantities vn,λh,T (t, x)− bvn,λh,T (t, x) and aλ,nh,T (t, x)T
n
| − baλ,nh,T (t, x)T

n
| have op-

posite signs. If indeed, to fix the ideas, vn,λh,T (t, x) − bvn,λh,T (t, x) > 0 and
vn,λh,T (s, x) > bvn,λh,T (t, x) for every s in [t, t+

T
n
) then

max
³
h (x)− vn,λh,T (s, x) , 0

´
< max

³
h (x)− bvn,λh,T (t, x), 0

´
for every s in [t, t+ T

n
) form which

aλ,nh,T (t, x)T
n
| < baλ,nh,T (t, x)T

n
|
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and the claim follows. We conclude that in this case¯̄̄
vn,λh,T − bvn,λh,T

¯̄̄
(t, x) ≤

¯̄̄
T
n
|an,λh,T − T

n
|ban,λh,T

¯̄̄
(t, x).

On the other hand suppose now that, indeed, vn,λh,T (s, ξs) = vn,λh,T (s, x)

crosses bvn,λh,T (t, x) for some s in [t, t+
T
n
). That means that vn,λh,T (t, x) is

within one modulus of continuity ωn,λ of bvn,λh,T (t, x), in other words,¯̄̄
vn,λh,T (t, x)− bvn,λh,T (t, x)

¯̄̄
≤ ωn,λ.

Therefore

(9.10)
¯̄̄
vn,λh,T − bvn,λh,T

¯̄̄
(t, x) ≤ max(

¯̄̄
T
n
|an,λh,T − T

n
|ban,λh,T

¯̄̄
(t, x), ωn,λ).

Now

T
n
|an,λh,T (t, x) = e−ρ

T
n

³
an,λh,T · pu + an,λh,T · pd

´
(t+

T

n
, xu)

T
n
|ban,λh,T (t, x) = e−ρ

T
n

³ban,λh,T · pu + ban,λh,T · pd
´
(t+

T

n
, xu)

hence³
T
n
|an,λh,T −T

n
|ban,λh,T

´
(t, x) = e−ρ

T
n pu

³
an,λh,T − ban,λh,T

´
(t+

T

n
, xu)

+ e−ρ
T
n pd

³
an,λh,T − ban,λh,T

´
(t+

T

n
, xd)

and, from (9.9) we get, taking the absolute value,¯̄̄
T
n
|an,λh,T −T

n
|ban,λh,T

¯̄̄
(t, x) ≤ e−ρ

T
n pu

¯̄̄
vn,λh,T − bvn,λh,T

¯̄̄
(t+

T

n
, xu)(9.11)

+ e−ρ
T
n pd

¯̄̄
vn,λh,T − bvn,λh,T

¯̄̄
(t+

T

n
, xd).

What (9.10) and (9.11) are saying is that if
¯̄̄
vn,λh,T − bvn,λh,T

¯̄̄
(t, x) is not

bounded by ωn,λ, it is then bounded by the expected present value of
terms which are themselves in the form

¯̄̄
vn,λh,T − bvn,λh,T

¯̄̄
, but with a time

to maturity shortened by T
n
. Each of these terms can be worked out

recursively in the same manner and, ultimately, the terms have to be
bounded by ωn,λ since, if maturity is reached, that is if t + T

n
= T in

(9.11), then the right hand side of (9.11) is zero. Hence,¯̄
vn,nh,T (t, x)− bvn,nh,T (t, x)

¯̄
≤ Dn,n ≤ ωn,n

and (9.8) follows.
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9.5. Convergence. Obviously, the error of estimating the value v∞,∞
h,T

of the American option by bvn,nh,T can be broken down into three parts: a
law error resulting from approximating v∞,∞

h,T by vn,∞h,T , a randomization
error coming from approximating vn,∞h,T by v

n,n
h,T and a discretization error

resulting from approximating vn,nh,T by bvn,nh,T . Recalling (9.7), (9.2) and
(9.5), we get ¯̄bvn,nh,T (t, x)− vh,T (t, x)

¯̄
≤ Dn,n +Rn,n + Ln

and thus from (9.8), (9.3) and (9.6) we have

lim
n→∞

bvn,nh,T (t, x) = vh,T (t, x)

as wanted.

10. Numerical results

The efficiency of the method described in section 8 is illustrated here
for the put option

h(x) = max(100− x, 0)

with

T = 1

ρ = 0.1

σ = 0.15

ξ0 = 100.

We define the error εn by

εn := v∞,∞
h,T (0, 100)− bvn,nh,T (0, 100)

based on the value

v∞,∞
h,T (0, 100) = 3.150699687

which we calculated with the classical binomial asset pricing model
value with n = 15000 time steps.
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Number of steps n Error εn

25 ≤ n ≤ 100 0.022340715 ≤ εn ≤ 0.110579023
100 < n ≤ 250 0.008185433 ≤ εn ≤ 0.028444563
250 < n ≤ 500 0.004122794 ≤ εn ≤ 0.011175892
500 < n ≤ 750 0.002773273 ≤ εn ≤ 0.005573383
750 < n ≤ 1000 0.002090356 ≤ εn ≤ 0.003734639
1000 < n ≤ 2500 0.000798636 ≤ εn ≤ 0.002776534
2500 < n ≤ 5000 0.000379865 ≤ εn ≤ 0.001073829
5000 < n ≤ 7500 0.000237743 ≤ εn ≤ 0.00051667
7500 < n ≤ 10000 0.000165286 ≤ εn ≤ 0.000328836
10000 < n εn ≤ 0.000233548
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