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We study a second-order difference equation of the form 𝑧
𝑛+1

= 𝑧
𝑛
𝐹(𝑧
𝑛−1

) + ℎ, where both 𝐹(𝑧) and 𝑧𝐹(𝑧) are decreasing. We
consider a set of invariant curves at ℎ = 1 and use it to characterize the behaviour of solutions when ℎ > 1 and when 0 < ℎ < 1. The
case ℎ > 1 is related to the Y2K problem. For 0 < ℎ < 1, we study the stability of the equilibrium solutions and find an invariant
region where solutions are attracted to the stable equilibrium. In particular, for certain range of the parameters, a subset of the basin
of attraction of the stable equilibrium is achieved by bounding positive solutions using the iteration of dominant functions with
attracting equilibria.

1. Introduction

Second-order difference equations of the form

𝑧
𝑛+1 = 𝑧

𝑛
𝐹 (𝑧
𝑛−1) , 𝑛 ∈ N := Z

+

∪ {0} , (1)

where 𝐹(𝑧) is a continuous function, have been widely
used in applications [1–4]. Several models in mathematical
biology take the form of (1) under the assumptions that
𝐹(𝑧) is decreasing and 𝑧𝐹(𝑧) is bounded and increasing
[4, 5]. A well-known example is Pielou’s difference equation
which has been suggested to model the growth of a single
species with delayed-density dependence [4, 6]. In Pielou’s
equation, 𝐹 takes the form 𝐹(𝑧) = 𝜆/(1 + 𝛼𝑧). Adding
or subtracting a constant ℎ from (1) can be interpreted
mathematically as a perturbation of themodel, or biologically
as constant stocking or constant yield harvesting [7–9].These
meaningful applications motivate investigating the dynamics
of the difference equation

𝑧
𝑛+1 = 𝑧

𝑛
𝐹 (𝑧
𝑛−1) ± ℎ, 𝑛 ∈ N, ℎ > 0. (2)

However, when the functions 𝐹(𝑧) and 𝑧𝐹(𝑧) are both
decreasing, the corresponding difference equation becomes
more abstract and so far little work has been done to

investigate its dynamics. Although our ultimate goal is to
reach a general theory for this type of difference equation, we
find it interesting to consider𝐹(𝑧) = 𝑏/(−1+𝑧) as a prototype,
and so we focus this work on the dynamics of the equation

𝑧
𝑛+1 = 𝑧

𝑛
𝐹 (𝑧
𝑛−1) + ℎ,

𝐹 (𝑧) =

𝑏

−1 + 𝑧

,

𝑛 ∈ N, ℎ, 𝑏 > 0.

(3)

Among the important aspects of solutions of a difference
equation are boundedness and global stability. On several
occasions, the question of boundedness of all solutions of a
particular difference equationwas settled by finding invariant
curves. Invariant curves of a second-order difference equa-
tion are plane curves on which forward orbits that start on a
curve remain on the curve. Finding invariant curves, studying
their properties and their relation with Liapunov functions is
an active area of research [10–13].

In recent years, several results that give sufficient condi-
tions for global stability or global attractivity of equilibrium
solutions of difference equations have been established. Most
of the results rely on the monotonicity of the function
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defined by the difference equation under investigation; see,
for instance, [1, 11, 14, 15] and the references therein. Another
approach of establishing global attractivity is to relate solu-
tions of the difference equation to the solutions of a one-
dimensional map where (under some conditions) the global
attractivity of the equilibrium of the map implies the global
attractivity of the equilibrium of the difference equation.
This technique, which is sometimes called enveloping or
dominance, is well-known in first-order difference equations
[16], and it has been extended recently to tackle some higher
order difference equations [17, 18].

In this paper, we focus on (3), where 𝑏, ℎ > 0 and the
initial conditions are restricted to assure the existence of pos-
itive solutions (persistent solutions). Throughout our work,
solutions aremeant to be well-defined solutions.We consider
a set of invariant curves and verify certain inequalities they
satisfy. The inequalities describe the movement of solutions
in the phase plane, which are ultimately used to prove that
the larger positive equilibrium of (3) is a global attractor for
a certain range of the parameter ℎ. When ℎ > 1, (3) is related
(via a change of variables) to the Y2K difference equation
where the global attractivity of its positive equilibrium was
an open problem for several years till it was settled recently
by Merino [19]. Also, the case ℎ = 1 is related (via a change of
variables) to Lyness equation in which solutions remain on
invariant curves. The case 0 < ℎ < 1 of (3) exhibits very
interesting dynamics and is discussed in Section 3.

2. The Case ℎ > 1

In this section, we consider (3) and assume ℎ > 1. Thus,
throughout this section, we refer to the equation

𝑧
𝑛+1 = 𝑧

𝑛
𝐹 (𝑧
𝑛−1) + ℎ =

𝑏𝑧
𝑛

−1 + 𝑧
𝑛−1

+ ℎ,

𝑏 > 0, ℎ > 1.
(4)

The substitutions

𝑧
𝑛

=

1
𝑝 − 𝑞

(𝑞𝑥
𝑛
+𝑝) ,

𝑏 =

𝑞
2

𝑝 − 𝑞

,

ℎ =

𝑝

𝑝 − 𝑞

(5)

transform (4) to

𝑥
𝑛+1 =

𝑝 + 𝑞𝑥
𝑛

1 + 𝑥
𝑛−1

, 𝑥
−1, 𝑥0 ≥ 0, 𝑛 ∈ N. (6)

Equation (6) is known in the literature as the Y2K problem
[18]. Observe that, for 𝑏 > 0 and ℎ > 1, we have 𝑧

𝑛
> ℎ if

and only if 𝑥
𝑛

> 0. Also, the restriction 𝑏 > 0, ℎ > 1 on the
(𝑏, ℎ)-parameters is equivalent to the restriction 0 < 𝑞 < 𝑝

on the (𝑝, 𝑞)-parameters. In (6), it is obvious that positive
initial conditions give rise to positive solutions, and there
exists a unique positive equilibrium. Proving that the positive

equilibrium is a global attractor with respect to the positive
quadrant was an open question for over a decade till it was
settled by Merino [19]. Merino transformed (6) into

𝑦
𝑛+1 =

𝑝/𝑞
2
+ 𝑦
𝑛

1/𝑞 + 𝑦
𝑛−1

, 𝑦
−1, 𝑦0 > 0, 𝑛 ∈ N, (7)

where 𝑞𝑦
𝑛

= 𝑥
𝑛
. Then he used the function

𝐼
𝑛

:= 𝐼 (𝑦
𝑛−1, 𝑦𝑛)

= (1+

1
𝑦
𝑛−1

)(1+

1
𝑦
𝑛

) (𝑢
2
−𝑢+𝑦

𝑛−1 +𝑦
𝑛
) ,

(8)

to prove the next crucial lemma, where 𝑢 is the positive
equilibrium of (7), which is given by

𝑦 = 𝑢 =

1
2𝑞

(𝑞 − 1+√(𝑞 − 1)2 + 4𝑝) . (9)

Lemma 1 (see [19]). Consider 𝑦
𝑛−1, 𝑦𝑛 > 0, and then either

𝐼
𝑛+1 ≤ 𝐼

𝑛
or 𝐼
𝑛+2 ≤ 𝐼

𝑛
.

Merino used this crucial lemma to show that the positive
equilibrium of (7) is a global attractor. However, the given
proof of Lemma 1 depends heavily on Mathematica code. So
here, we present an alternative proof of Lemma 1, which is
more trackable. But in order to keep things within the context
of our work, we translate the curves 𝐼

𝑛
of (7) to the curves 𝐽

𝑛

of (4), which are given by

𝐽
𝑛

:= 𝐽 (𝑧
𝑛−1, 𝑧𝑛) = (1+

𝑏

𝑧
𝑛−1 − ℎ

)(1+

𝑏

𝑧
𝑛
− ℎ

)

⋅ (−ℎ + (1− ℎ) 𝐵+ 𝑧
𝑛−1 + 𝑧

𝑛
) ,

(10)

where 𝐵 = (1/𝑏)(𝑧2 − ℎ) and 𝑧2 is the large equilibrium of
(4). Observe that at ℎ = 1, 𝐽(𝑧

𝑛−1, 𝑧𝑛) = constant is in fact an
invariant curve for Lyness equation after a transformation.

For typographical reasons, we define 𝑥 := 𝑧
−1, 𝑦 := 𝑧0,

and 𝑧 := 𝑧1 in (4). Without further mention, we consider
(𝑥, 𝑦) to be in the region R = {(𝑠, 𝑡) : 𝑠, 𝑡 > ℎ}, which is
in fact the positive quadrant of (6). We find

𝐽
𝑛+1 − 𝐽

𝑛

= 𝐽(𝑦,

𝑏𝑦

𝑥 − 1
+ ℎ)− 𝐽 (𝑥, 𝑦)

=

− (ℎ − 1) (𝑦 − ℎ + 𝑏)

(𝑦 − ℎ) 𝑦 (𝑥 − 1) (𝑥 − ℎ)

(𝑏𝑦 −𝑓 (𝑥)) (𝑦 − 𝑔 (𝑥)) ,

(11)

where 𝑓(𝑥) = (𝑥 − 1)(𝑥 − ℎ) and 𝑔(𝑥) = 𝐵(𝑥 − 1). Because
ℎ > 1 and 𝑏 > 0, we have 𝐽

𝑛+1 > 𝐽
𝑛
whenever

min {𝑔 (𝑥) ,

1
𝑏

𝑓 (𝑥)} < 𝑦 < max {𝑔 (𝑥) ,

1
𝑏

𝑓 (𝑥)} , (12)

while 𝐽
𝑛+1 ≤ 𝐽

𝑛
otherwise. It is worth mentioning here that if

(𝑥
−1, 𝑥0) = (𝑥, 𝑦) is located in the region between 𝑔(𝑥) and

(1/𝑏)𝑓(𝑥), then the point (𝑥0, 𝑥1) = (𝑦, 𝑧) = (𝑦, 𝑏𝑦/(𝑥−1)+ℎ)

is guaranteed to be out of the region. Now, we are in a position
to give our trackable proof of Lemma 1 translated in terms of
𝐽
𝑛
.



Discrete Dynamics in Nature and Society 3

Proof. Weconsider 𝐽
𝑛+1 > 𝐽

𝑛
and show that 𝐽

𝑛+2 ≤ 𝐽
𝑛
. Because

𝐽
𝑛+2 − 𝐽

𝑛
= (𝐽
𝑛+1 − 𝐽

𝑛
) (

− (𝐽
𝑛+1 − 𝐽

𝑛+2)

(𝐽
𝑛+1 − 𝐽

𝑛
)

+ 1) , (13)

then we need to show that

(𝐽
𝑛+1 − 𝐽

𝑛+2)

(𝐽
𝑛+1 − 𝐽

𝑛
)

≥ 1. (14)

We write

(𝐽
𝑛+1 − 𝐽

𝑛+2)

(𝐽
𝑛+1 − 𝐽

𝑛
)

=

𝐽 (𝑦, 𝑧) − 𝐽 (𝑧, 𝑏𝑧/ (𝑦 − 1) + ℎ)

𝐽 (𝑦, 𝑏𝑦/ (𝑥 − 1) + ℎ) − 𝐽 (𝑥, 𝑦)

=

𝑦 (𝑥 − 1) (𝑥 − ℎ) (𝑧 − ℎ + 𝑏) [𝑧 − 𝑔 (𝑦)] [𝑏𝑧 − 𝑓 (𝑦)]

𝑧 (𝑦 − 1) (𝑧 − ℎ) (𝑦 − ℎ + 𝑏) [𝑦 − 𝑔 (𝑥)] [𝑓 (𝑥) − 𝑏𝑦]

.

(15)

Our aim here is to show that the R.H.S. is larger than or equal
to 1. We proceed by taking two cases, namely, the following.

Case 1. Consider

(𝑥, 𝑦) ∈ R
𝑟
:= {(𝑠, 𝑡) : 𝑠 > 𝑧2, 𝑔 (𝑠) < 𝑡 <

1
𝑏

𝑓 (𝑠)} . (16)

Case 2. Consider

(𝑥, 𝑦) ∈ R
ℓ

:= {(𝑠, 𝑡) : ℎ < 𝑠 < 𝑧2,
1
𝑏

𝑓 (𝑠) < 𝑡 < 𝑔 (𝑠)} .

(17)

Case 1. Observe that the conditions we have on 𝑥, 𝑦, and
𝑧 force all factors in the numerator and denominator to be
positive. Furthermore, we have 𝑦 > 𝑥 and the fact that 𝑦 <

(1/𝑏)𝑓(𝑥) gives 𝑧 < 𝑥. Next, write (15) as

(𝐽
𝑛+1 − 𝐽

𝑛+2)

(𝐽
𝑛+1 − 𝐽

𝑛
)

=

𝑦

𝑧

⋅

(1 − 𝑏𝑧/𝑓 (𝑦))

(1 − 𝑏𝑦/𝑓 (𝑥))

⋅

(1 + 𝑏/ (𝑧 − ℎ))

(1 + 𝑏/ (𝑦 − ℎ))

⋅

(𝑔 (𝑦) − 𝑧)

(𝑦 − 𝑔 (𝑥))

(18)

and observe that each one of the first three factors in the
R.H.S. is larger than 1. Thus, we obtain

(𝐽
𝑛+1 − 𝐽

𝑛+2)

(𝐽
𝑛+1 − 𝐽

𝑛
)

>

(𝑔 (𝑦) − 𝑧)

(𝑦 − 𝑔 (𝑥))

. (19)

Use Figure 1(a) to conclude that

𝑔 (𝑦) − 𝑧 > 𝑦− 𝑧 > 𝑦−𝑥 > 𝑦−𝑔 (𝑥) . (20)

So, the R.H.S. of Inq. (19) is larger than one which completes
the proof of Case 1.

Case 2. In this case, we have 𝑥 > 𝑦, and since 𝑧 = 𝑏𝑦/(𝑥−1)+
ℎ, we obtain 𝑧 > 𝑥. To make all factors in both the numerator
and denominator of (15) positives, we rewrite the equation as

(𝐽
𝑛+1 − 𝐽

𝑛+2)

(𝐽
𝑛+1 − 𝐽

𝑛
)

=

𝑦 (𝑥 − 1) (𝑥 − ℎ) (𝑧 − ℎ + 𝑏) [𝑧 − 𝑔 (𝑦)] [𝑏𝑧 − 𝑓 (𝑦)]

𝑧 (𝑦 − 1) (𝑧 − ℎ) (𝑦 − ℎ + 𝑏) [𝑔 (𝑥) − 𝑦] [𝑏𝑦 − 𝑓 (𝑥)]

.

(21)

Again we show that the R.H.S. is larger than 1. To achieve this
task, we rewrite (21) as

(𝐽
𝑛+1 − 𝐽

𝑛+2)

(𝐽
𝑛+1 − 𝐽

𝑛
)

=

(𝑥 − 1)
(𝑦 − 1)

⋅

(𝑥 − ℎ) (𝑧 − ℎ + 𝑏) (𝑧 − 𝑔 (𝑦))

(𝑧 − ℎ) (𝑦 − ℎ + 𝑏) (𝑔 (𝑥) − 𝑦)

⋅

[𝑏 − 𝑓 (𝑦) /𝑧]

[𝑏 − 𝑓 (𝑥) /𝑦]

.

(22)

Observe that the first and last factors are larger than 1, and
therefore, we obtain

(𝐽
𝑛+1 − 𝐽

𝑛+2)

(𝐽
𝑛+1 − 𝐽

𝑛
)

>

(𝑥 − ℎ) (𝑧 − ℎ + 𝑏) (𝑧 − 𝑔 (𝑦))

(𝑧 − ℎ) (𝑦 − ℎ + 𝑏) (𝑔 (𝑥) − 𝑦)

. (23)

Since 𝑔(𝑦) < 𝑦 and 𝑔(𝑥) < 𝑥 (see Figure 1(b)), we obtain

(𝐽
𝑛+1 − 𝐽

𝑛+2)

(𝐽
𝑛+1 − 𝐽

𝑛
)

>

(𝑥 − ℎ) (𝑧 − ℎ + 𝑏) (𝑧 − 𝑦)

(𝑧 − ℎ) (𝑦 − ℎ + 𝑏) (𝑥 − 𝑦)

. (24)

Because the function

𝐺 (𝑧) =

(𝑧 − ℎ + 𝑏) (𝑧 − 𝑦)

(𝑧 − ℎ)

(25)

is increasing on the interval [𝑦,∞) as long as 𝑦 ≥ ℎ, then
𝑧 > 𝑥 implies 𝐺(𝑧) > 𝐺(𝑥). Therefore,

(𝐽
𝑛+1 − 𝐽

𝑛+2)

(𝐽
𝑛+1 − 𝐽

𝑛
)

>

(𝑥 − ℎ + 𝑏)

(𝑦 − ℎ + 𝑏)

> 1 (26)

as required, which completes the proof.

3. The Case 0 < ℎ < 1

In this section, we consider (3) and let 0 < ℎ < 1. Thus,
throughout this section, we refer to the equation

𝑧
𝑛+1 = 𝑧

𝑛
𝐹 (𝑧
𝑛−1) + ℎ =

𝑏𝑧
𝑛

−1 + 𝑧
𝑛−1

+ ℎ, 0 < ℎ < 1. (27)

We investigate the stability of equilibrium solutions, the
existence of periodic solutions, and the boundedness and per-
sistence of solutions. Throughout our work, we use stability
to denote local stability and persistence to denote positive
solutions. We also find an invariant region and give a range
of the parameters for which the region is part of the basin of
attraction of the stable equilibrium.
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)
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)
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Figure 1: (a) clarifies the proof of Case 1 while (b) clarifies the proof of Case 2. The scale on the axes is intentionally missing because the
graphs represent the general situation.

3.1. Stability of Equilibria and Periodic Solutions. The two
equilibriumpoints 𝑧1, 𝑧2 of (27) satisfy 0 < 𝑧1 < ℎ and 𝑧2 > 1;
furthermore, they are increasing in ℎ and satisfy 𝑧1𝑧2 = ℎ.The
linearized form of (27) at 𝑧2 is given by

𝑢
𝑛+2 −𝐹 (𝑧2) 𝑢

𝑛+1 − 𝑧2𝐹


(𝑧2) 𝑢
𝑛

= 0. (28)

Because

−𝐹 (𝑧2) = −

𝑧2 − ℎ

𝑧2
= − 1+

ℎ

𝑧2
= 𝑧1 − 1,

− 𝑧2𝐹


(𝑧2) =

𝑧2 − ℎ

𝑧2 − 1
= 1+

1 − ℎ

𝑧2 − 1
,

(29)

then

− 1 < −𝐹 (𝑧2) < 0,

− 𝑧2𝐹


(𝑧2) > 1.
(30)

Thus, the eigenvalues of the linearized equation at 𝑧2 are
complex and out of the unit circle which make 𝑧2 a repeller.
Similarly, we find the eigenvalues of the linearized equation
at 𝑧1. We have

𝑀 := −𝐹 (𝑧
1
) = −

𝑧1 − ℎ

𝑧1
= − 1+

ℎ

𝑧1
= 𝑧2 − 1,

𝑁 := − 𝑧1𝐹


(𝑧1) =

𝑧1 − ℎ

𝑧1 − 1
= 1−

1 − ℎ

1 − 𝑧1
.

(31)

Hence, 𝑀 > 0 and 0 < 𝑁 < 1, which give us that 𝑧1 is either
locally stable or a saddle. Figure 2 illustrates this case in the
parameter space.

Before we address the issue of boundedness, let us have
a look at the possibility of periodic solutions. We always use

b

h

h = 1

1

h1(b)
h2(b)

||𝜆1|| < 1

||𝜆2|| < 1
|𝜆1| > 1

|𝜆2| < 1
|𝜆1| < 1

|𝜆2| < 1

Figure 2: This figure illustrates the magnitude of the eigenvalues
associated with 𝑧1 in the (𝑏, ℎ)-plane. ‖ ⋅ ‖ denotes the magnitude
when the eigenvalue is nonreal, while | ⋅ | denotes the magnitude
when the eigenvalue is real. ℎ1(𝑏) = 1 − 𝑏 + 2√𝑏(𝑏 − 1) comes from
the condition𝑁 = 𝑀−1, and ℎ2(𝑏) = 𝑏(4+3𝑏)/4(4−𝑏) comes from
the condition 𝑀

2
− 4𝑁 = 0.

period to denote the prime period. We start with period-two
solutions by considering the equations

(𝜙 − ℎ) (𝜙 − 1) − 𝑏𝜓 = 0,

(𝜓 − ℎ) (𝜓− 1) − 𝑏𝜙 = 0.
(32)

Observe that the two parabolas intersect in either two or four
points and 𝑧1, 𝑧2 must be among them. We substitute and
eliminate the factor that gives 𝑧1 and 𝑧2 to obtain

𝜙
2
− (ℎ + 1− 𝑏) 𝜙 + (𝑏 − 1) (𝑏 − ℎ) = 0. (33)
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This equation has two real solutions when (ℎ+1−𝑏)
2
> 4(𝑏−

1)(𝑏 − ℎ), which gives the region to the left of the curve ℎ1(𝑏)

in Figure 2. So, suppose (ℎ + 1 − 𝑏)
2

> 4(𝑏 − 1)(𝑏 − ℎ) and
name the period-two solution {𝜙, 𝜓}. If we go back to the case
ℎ > 1, we find that min{𝜙, 𝜓} < ℎ, which is obviously not in
the region of global stability considered in [19]. For 0 < ℎ < 1,
it is possible thatmin{𝜙, 𝜓} < 0whilemax{𝜙, 𝜓} > 0; however
this is beyond our interest in this paper. On the other hand, it
is possible that min{𝜙, 𝜓} > 0. In fact, this takes place when
0 < 𝑏 < 1 and ℎ ≥ 𝑏, or when 𝑏 ≥ 1 and ℎ1(b) ≤ ℎ ≤ 𝑏. We
formalize this discussion in the following result.

Proposition 2. Let 0 < ℎ < 1 and 𝑏 ≤ (1/3)(ℎ + 1 +

2√ℎ
2
− ℎ + 1). Equation (27) has period-two solution {𝜙, 𝜓}

that satisfies one of the following:

(i) min{𝜙, 𝜓} ≥ 0 and max{𝜙, 𝜓} ≤ ℎ/𝑏 when 0 < 𝑏 ≤ ℎ

or ℎ1(𝑏) ≤ ℎ ≤ 𝑏.

(ii) min{𝜙, 𝜓} < 0 andmax{𝜙, 𝜓} > ℎ/𝑏 when ℎ < 𝑏 < 1.

Next, by algebraic manipulations of the equations

𝑧 = 𝑦𝐹 (𝑥) + ℎ,

𝑥 = 𝑧𝐹 (𝑦) + ℎ,

𝑦 = 𝑥𝐹 (𝑧) + ℎ,

(34)

we find that period-three solutions exist and can be positive.
However, we avoid high level of computations and just give
an interesting example of period-three solution that we use
in the sequel. Let ℎ := 1 − 𝑏(1 − 𝑏) and consider 𝑥

−1 = 0, 𝑥0 =

ℎ, we obtain a period-three solution given by {0, ℎ, ℎ(1 − 𝑏)},
which is nonnegative whenever 𝑏 ≤ 1.

Finally, as a consequence of the boundedness and oscil-
lation results that we establish later on, no periodic solutions
of period higher than four exist. Thus, our discussion about
the existence of periodic solutions ends by investigating
the existence of period-four solutions. In fact, algebraic
manipulations show that positive period-four solutions do
not exist within the range of our parameters.

3.2. Boundedness of Nonnegative Solutions. In this section, we
prove that the only positive solution of (27) that satisfies 𝑧

𝑛
>

1 for all 𝑛 ≥ −1 is the equilibrium solution 𝑧2. Then we show
that the remaining positive solutions are bounded. To achieve
this task, we first establish a reversed form of the inequalities
given in Lemma 1.We can follow the technique used to prove
Lemma 1 (when ℎ > 1), but for the readers convenience, we
give another elegant technique that serves as a handy tool for
similar scenarios. We handle the expression 𝐽

𝑛+2 − 𝐽
𝑛
using

the points (𝑦, 𝑧). Thus, we need to consider

𝑇 (R
𝑟
) = R

∗

𝑟
,

𝑇 (R
ℓ
) = R

∗

ℓ
,

(35)

1

1

xn−1

xn

z2

g(
x)

f
−1 (by)

ℛ

ℛ∗


ℛr

ℛ∗
r

(1
/b
)f
(x
)

Figure 3: This figure illustrates the regions R
ℓ
, 𝑇(R

ℓ
) = R∗

ℓ
, R
𝑟

and 𝑇(R
𝑟
) = R∗

𝑟
, where 0 < ℎ < 1.

where 𝑇 is the map defined by 𝑇(𝑥
𝑛−1, 𝑥𝑛) = (𝑥

𝑛
, 𝑥
𝑛+1). We

illustrate these sets in Figure 3, and it is straightforward to
check that

R
∗

𝑟
= {(𝑦, 𝑧) : 𝑦 > 𝑧2, 𝑧2 < 𝑧<𝑓

−1
(𝑏𝑦)} (36)

while

R
∗

ℓ
⊂ {(𝑦, 𝑧) : 1<𝑦< 𝑧2, 𝑓

−1
(𝑏𝑦) < 𝑧 < 𝑧2} . (37)

Now, write

𝐽
𝑛+2 − 𝐽

𝑛
= 𝐽 (𝑥

𝑛+1, 𝑥𝑛+2) − 𝐽 (𝑥
𝑛−1, 𝑥𝑛)

= [𝐽 (𝑧,

𝑏𝑧

𝑦 − 1
+ ℎ)− 𝐽 (𝑦, 𝑧)]

+ [𝐽 (𝑦, 𝑧) − 𝐽 (

𝑏𝑦

𝑧 − ℎ

+ 1, 𝑦)] ,

(38)

in which

𝐽 (𝑧,

𝑏𝑧

𝑦 − 1
+ ℎ)− 𝐽 (𝑦, 𝑧) =

(ℎ − 1)
(𝑦 − ℎ) (𝑧 − ℎ)

⋅

(𝑧 − ℎ + 𝑏) (𝑏𝑧 − 𝑓 (𝑦)) (𝑔 (𝑦) − 𝑧)

𝑧 (𝑦 − 1)
,

𝐽 (𝑦, 𝑧) − 𝐽 (

𝑏𝑦

𝑧 − ℎ

+ 1, 𝑦) =

(ℎ − 1)
(𝑦 − ℎ) (𝑧 − ℎ)

⋅

(𝑦 − ℎ + 𝑏) (𝑏𝑦 − 𝑓 (𝑧)) (𝑧 − 𝑧2)

[𝑏𝑦 − (ℎ − 1) (𝑧 − ℎ)]

.

(39)
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Ignore the common factors and keep in mind that (ℎ − 1) is
negative and then define

𝑄1 (𝑦, 𝑧) = 𝜆 (𝑓 (𝑦) − 𝑏𝑧) (𝑔 (𝑦) − 𝑧) ,

𝑄2 (𝑦, 𝑧) = − (𝑏𝑦−𝑓 (𝑧)) (𝑧 − 𝑧2) ,

𝜆 = 𝜆 (𝑦, 𝑧)

=

(𝑧 − ℎ + 𝑏) (𝑏𝑦 − (ℎ − 1) (𝑧 − ℎ))

(𝑦 − ℎ + 𝑏) 𝑧 (𝑦 − 1)
.

(40)

Now, the following two basic results will be used in the
sequel.

Proposition 3. Let 0 < ℎ < 1. Each of the following holds
true.

(i) If (𝑦, 𝑧) ∈ R∗
𝑟
, then 𝜆 ≥ ((𝑧−ℎ+𝑏)/(𝑦−ℎ+𝑏)) ⋅ (𝑦/𝑧) ⋅

(𝑏/(𝑦 − 1)); furthermore, if 𝑏 ≥ ℎ then 𝜆 ≥ 𝑏/(𝑦 − 1).
(ii) If (𝑦, 𝑧) ∈ R∗

ℓ
, then 𝜆 ≥ 1/𝐵.

Proof. (i) Because 𝑏𝑦 − (ℎ − 1)(𝑧 − ℎ) > 𝑏𝑦, then we obtain
the first part of the statement. To show the second part of the
statement, we use the assumption 𝑏 ≥ ℎ and the fact that 𝑦 ≥

𝑧 ≥ 𝑧2 to conclude that

(𝑧 − ℎ + 𝑏)

(𝑦 − ℎ + 𝑏)

⋅

𝑦

𝑧

=

1 − (ℎ − 𝑏) /𝑧

1 − (ℎ − 𝑏) /𝑦

> 1, (41)

which completes the proof of part (i).
(ii) Because we have 𝑧2 ≥ 𝑧 ≥ 𝑦 > 1, then

𝜆 =

(𝑧 − ℎ + 𝑏) (𝑏𝑦 − (ℎ − 1) (𝑧 − ℎ))

(𝑦 − ℎ + 𝑏) 𝑧 (𝑦 − 1)

≥

(𝑏𝑦 − (ℎ − 1) (𝑧 − ℎ))

𝑧 (𝑦 − 1)

=

(𝑏𝑦 + (1 − ℎ) (𝑧 − ℎ))

𝑏𝑦

⋅

𝑏𝑦

(𝑦 − 1)
⋅

1
𝑧

,

(42)

and consequently,

𝜆 ≥

𝑏𝑦

(𝑦 − 1)
⋅

1
𝑧

≥

𝑏𝑧

(𝑧 − 1)
⋅

1
𝑧

=

𝑏

(𝑧 − 1)
. (43)

Now, 𝑧 ≤ 𝑧2 implies 𝑏/(𝑧 − 1) ≥ 𝑏/(𝑧2 − 1), and hence

𝜆 ≥

𝑏

(𝑧2 − ℎ)

=

1
𝐵

. (44)

Proposition 4. Let (𝑦, 𝑧) ∈ R∗
𝑟
and consider 0 < 𝑏 < ℎ < 1.

Define

𝐴1 := 𝜆 (𝑦 − 1+ 𝑧2 − ℎ) ,

𝐴2 := 𝜆 (𝑦 − 1) − 𝑏,

𝐴3 := 𝑧2 − 𝑏+𝐵 (𝑧2 − ℎ) .

(45)

Then𝐴1 and𝐴3 are positive; furthermore,𝐴2 +2√𝐴1𝐴3 > 0.

Proof. It is obvious that𝐴1 and𝐴3 are both positive. To show
that 𝐴2 + 2√𝐴1𝐴3 > 0, we use part (i) of Proposition 3 to
obtain

𝐴2 ≥ 𝑏

(𝑧 − ℎ + 𝑏)

(𝑦 − ℎ + 𝑏)

⋅

𝑦

𝑧

− 𝑏 ≥ 𝑏

(𝑧 − ℎ + 𝑏)

𝑧

− 𝑏

≥ 𝑏

(𝑧2 − ℎ + 𝑏)

𝑧2
− 𝑏,

𝐴1 ≥

(𝑧 − ℎ + 𝑏)

(𝑦 − ℎ + 𝑏)

⋅

𝑦

𝑧

⋅

𝑏 (𝑦 − 1 + 𝑧2 − ℎ)

(𝑦 − 1)

≥

𝑏 (𝑧 − ℎ + 𝑏)

𝑧

≥ 𝑏

(𝑧2 − ℎ + 𝑏)

𝑧2
.

(46)

Then, we obtain

𝐴2 + 2√𝐴1𝐴3

≥ 𝑏

(𝑧2 − ℎ + 𝑏)

𝑧2
− 𝑏

+ 2√𝑏

(𝑧2 − ℎ + 𝑏)

𝑧2
√𝑧2 − 𝑏 + 𝐵 (𝑧2 − ℎ).

(47)

Because 0 < 𝑏 < ℎ < 1 < 𝑧2 and 𝑞(𝑡) = (𝑡 − ℎ + 𝑏)/𝑡 is
increasing in 𝑡, we obtain

𝐴2 + 2√𝐴1𝐴3

≥ 𝑏

(1 − ℎ + 𝑏)

1
− 𝑏

+ 2√𝑏

(1 − ℎ + 𝑏)

1
√𝑧2 − 𝑏 + 𝐵 (𝑧2 − ℎ)

= 𝑏 (𝑏 − ℎ) + 2√𝑏 (1 − ℎ + 𝑏)√𝑧2 − 𝑏 + 𝐵 (𝑧2 − ℎ)

≥ 𝑏 (𝑏 − ℎ) + 2𝑏√𝑧2 − 𝑏 + 𝐵 (𝑧2 − ℎ).

(48)

Finally, observe that

𝑧2 − 𝑏+𝐵 (𝑧2 − ℎ) ≥ 𝑧2 − 𝑏+𝐵 (𝑧2 − 1) = 2𝑧2 − 𝑏

> 1,
(49)

which implies

𝐴2 + 2√𝐴1𝐴3 ≥ 𝑏 (𝑏 − ℎ) + 2𝑏 = 𝑏 (ℎ − 𝑏 + 2) > 0. (50)

Hence, the proof is complete.

Next, we proceed to show that either 𝐽
𝑛+1 ≥ 𝐽

𝑛
or 𝐽
𝑛+2 >

𝐽
𝑛
. So, we consider 𝐽

𝑛+1 < 𝐽
𝑛
and then show that 𝐽

𝑛+2 > 𝐽
𝑛
.

Lemma 5. Consider (27) with 0 < ℎ < 1. Let {𝑧
𝑛
}
∞

𝑛=−1 be a
nonequilibrium solution that satisfies 𝑧

𝑛
> 1 for all 𝑛 ≥ −1.

Either 𝐽
𝑛+1 ≥ 𝐽

𝑛
or 𝐽
𝑛+2 > 𝐽

𝑛
.
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Proof. Let 0 < ℎ < 1 and assume 𝐽
𝑛+1 < 𝐽

𝑛
. Because the

common factor (ℎ − 1) that we ignored in (39) is negative, it
is sufficient to show that

𝑄1 (𝑦, 𝑧) +𝑄2 (𝑦, 𝑧) ≥ 0 ∀ (𝑦, 𝑧) ∈ R
∗

𝑟
∪ R
∗

ℓ
. (51)

Again, we take two cases as follows.

Case 1. Let (𝑦, 𝑧) ∈ R∗
𝑟
. We transform (𝑦, 𝑧) into (𝑠, 𝑡) as

follows: Let 𝑔(𝑦) − 𝑧2 = 𝑠 and 𝑧 − 𝑧2 = (1 − 𝑡)𝑠. We prove
that 𝑄1(𝑦, 𝑧) + 𝑄2(𝑦, 𝑧) ≥ 0 for all 0 ≤ 𝑡 ≤ 1 and 𝑠 ≥ 0.
Because 𝑔(𝑦) ≥ 𝑓

−1
(𝑏𝑦) for all 𝑦 ≥ 𝑧2, then the (𝑠, 𝑡)-region

gives us more thanR∗
𝑟
. Use Taylor’s expansion about (𝑧2, 𝑧2)

to obtain

𝑄1 (𝑦, 𝑧) = 𝜆 [(2𝑧2 − 1− ℎ) 𝐵𝑌
2

+ (−3𝑧2 + 1+ 2ℎ) 𝑌𝑍+ 𝑏𝑍
2
+𝐵𝑌

3
−𝑍𝑌

2
] ,

𝑄2 (𝑦, 𝑧) = − 𝑏𝑌𝑍+ (2𝑧2 − 1− ℎ)𝑍
2
+𝑍

3
,

(52)

where 𝑌 = 𝑦 − 𝑧2 and 𝑍 = 𝑧 − 𝑧2, and then substitute
𝑌 = 𝑦 − 𝑧2 = 𝑠/𝐵 and 𝑍 = 𝑧 − 𝑧2 = (1 − 𝑡)𝑠 to obtain
after simplifications

𝑄1 (

𝑠

𝐵

+ 𝑧2, (1− 𝑡) 𝑠 + 𝑧2) = 𝜆

𝑠
2

𝐵

⋅ 𝑡 (𝑧2 +

𝑠

𝐵

− 1+ 𝑏𝐵𝑡) ,

𝑄2 (

𝑠

𝐵

+ 𝑧2, (1− 𝑡) 𝑠 + 𝑧2) =

𝑠
2

𝐵

(1− 𝑡)

⋅ [−𝑏 + (2𝑧2 − 1− ℎ) 𝐵 (1− 𝑡) + 𝑠𝐵 (1− 𝑡)
2
] .

(53)

Ignore the positive common factors, and then our task will be
to prove that

𝜆𝑡 (𝑧2 +

𝑠

𝐵

− 1+ 𝑏𝐵𝑡) + (1− 𝑡)

⋅ [−𝑏 + (2𝑧2 − 1− ℎ) 𝐵 (1− 𝑡) + 𝑠𝐵 (1− 𝑡)
2
]

(54)

is positive for all 0 ≤ 𝑡 ≤ 1 and 𝑠 ≥ 0. Indeed, we rewrite the
expression as

𝜆 (2𝑧2 +

𝑠

𝐵

− ℎ− 1) 𝑡
2

+ (𝑧2 − 𝑏+𝐵 (𝑧2 − ℎ)) (1− 𝑡)
2

+(𝜆(𝑧2 +

𝑠

𝐵

− 1)− 𝑏) 𝑡 (1− 𝑡) + 𝑠𝐵 (1− 𝑡)
3
,

(55)

and then based on the established notations and facts of
Proposition 4, we have

𝐴1𝑡
2
+𝐴3 (1− 𝑡)

2
+𝐴2𝑡 (1− 𝑡) + 𝑠𝐵 (1− 𝑡)

3
, (56)

and all terms of this expression are positives except possibly
𝐴2𝑡(1− 𝑡). If 𝑏 ≥ ℎ, then part (i) of Proposition 3 makes𝐴2 ≥

0. On the other hand, if 0 < 𝑏 < ℎ < 1, then we can add and
subtract 2√𝐴1𝐴3𝑡(1 − 𝑡) and then write

𝐴1𝑡
2
+𝐴3 (1− 𝑡)

2
− 2√𝐴1𝐴3𝑡 (1− 𝑡)

= (√𝐴1𝑡 −√𝐴3 (1− 𝑡))

2
.

(57)

Next, use the fact that 𝐴2 + 2√𝐴1𝐴3 ≥ 0 from Proposition 4
to conclude that the expression is again positive. Hence, the
proof of Case 1 is complete.

Case 2. Let (𝑦, 𝑧) ∈ R∗
ℓ
. Although the proof follows ideas of

Case 1, the technicalities make the proof not obvious, which
motivates us to write the complete proof here again.Wemake
the transformations 𝑧2 − 𝑔

−1
(𝑦) = 𝑠 and 𝑧2 − 𝑧 = 𝑡𝑠 while

𝑧 − 𝑔
−1

(𝑦) = (1 − 𝑡)𝑠. Thus, we obtain 𝑧2 − 𝑦 = 𝐵𝑠. Again,
we prove that 𝑄1(𝑦, 𝑧) + 𝑄2(𝑦, 𝑧) ≥ 0 for all 0 ≤ 𝑡 ≤ 1 and
0 ≤ 𝑠 < 𝑧2. Because 𝑔

−1
(𝑦) ≤ 𝑓

−1
(𝑏𝑦) for all 1 < 𝑦 ≤ 𝑧2, then

the (𝑠, 𝑡)-region gives us more than R∗
ℓ
. Write 𝑄1(𝑦, 𝑧) and

𝑄2(𝑦, 𝑧) as in Case 1, and then

𝑄1 (−𝑠𝐵 + 𝑧2, − 𝑠𝑡 + 𝑧2)

= 𝐵𝜆𝑠
2
(𝐵

2
− 𝑡) [(2𝑧2 − 1− ℎ− 𝑠𝐵) −

𝑏

𝐵

𝑡] ,

𝑄2 (−𝑠𝐵 + 𝑧2, − 𝑠𝑡 + 𝑧2)

= − 𝑠
2
𝑡 [𝑠𝑡

2
− (2𝑧2 − 1− ℎ) 𝑡 + 𝑧2 − ℎ] .

(58)

Ignore the positive common factors and use the fact that𝐵𝜆 ≥

1 and 𝐵 > 1, and then our task will be to prove that

𝑄 (𝑠, 𝑡) = (1− 𝑡) [(2𝑧2 − 1− ℎ− 𝑠𝐵) −

𝑏

𝐵

𝑡]

− 𝑡 [𝑠𝑡
2
− (2𝑧2 − 1− ℎ) 𝑡 + 𝑧2 − ℎ]

(59)

is positive for all 0 ≤ 𝑡 ≤ 1 and 0 ≤ 𝑠 < 𝑧2. We manipulate the
terms of 𝑄(𝑠, 𝑡) and write it as

𝑄 (𝑠, 𝑡) = 𝛽1 (1− 𝑡)
2
+𝛽2𝑡

2
, (60)

where

𝛽1 = [2𝑧2 − ℎ−𝐵𝑠 − 1+(𝑧2 −𝐵𝑠 − 1−

𝑏

𝐵

) 𝑡] ,

𝛽2 = [𝑧2 −𝐵𝑠 − 1+ 𝑠 (𝐵 − 𝑡)

+ (𝑧2 −𝐵𝑠 − 1−

𝑏

𝐵

) (1− 𝑡)] .

(61)
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Because 𝑧2 − 𝐵𝑠 = 𝑦 and 𝑔(𝑦) = 𝐵(𝑦 − 1), we write

𝛽1 = [𝑧2 − ℎ+𝑦− 1+(𝑦− 1−

𝑏

𝐵

) 𝑡]

=

1
𝐵

[𝑧2 − 𝑏+ (𝑦 − ℎ) 𝐵+𝑔 (𝑦) 𝑡 + 𝑏 (1− 𝑡)] ,

𝛽2 = [𝑦− 1+ 𝑠 (𝐵 − 𝑡) + (𝑦− 1−

𝑏

𝐵

) (1− 𝑡)]

=

1
𝐵

[𝑦𝑡 + (𝑔 (𝑦) + 𝑧2 − 𝑏) (1− 𝑡)] ,

(62)

and then we have 𝛽1, 𝛽2 > 0, and consequently we obtain
𝑄(𝑠, 𝑡) positive, which completes the proof.

Lemma 6. A solution {𝑧
𝑛
}
∞

𝑛=−1 of (27) that satisfies 𝑧
𝑛

> 1 for
all 𝑛 ≥ −1 must be bounded; furthermore, it must be bounded
below by 1 + 𝜖0 for some fixed 𝜖0 > 0.

Proof. Recall that a point (𝑧
−1, 𝑧0) = (𝑥, 𝑦) is mapped to the

point (𝑧0, 𝑧1) under the map 𝑇; that is, 𝑇(𝑥, 𝑦) = (𝑦, 𝑏𝑦/(𝑥 −

1) + ℎ). We use the map 𝑇 to give a visualization of the set
of initial points that we are interested in. For a given constant
𝑐 > 1, we have

𝐿1 := {(𝑡, 𝑐) : 𝑡 > 1}

𝑇

→ 𝐿2 := {(𝑐,

𝑏𝑐

𝑡 − 1
+ ℎ) : 𝑡 > 1} .

(63)

Next, we choose a suitable value for 𝑐 so that𝑇(𝑇(𝐿2)) gets
out of the region 𝑥, 𝑦 > 1. Observe that 𝐿1 is a horizontal
line segment while 𝐿2 = 𝑇(𝐿1) is a vertical line segment.
On the other hand, the initial points on the line (1 − ℎ)(𝑥 −

1) = 𝑏𝑦 belong to the forbidden set (which is the set of
initial conditions that make 𝑧

𝑛
= −1 for some 𝑛 ≥ −1).

Thus, we need the line segment 𝑇(𝐿2) to be below 𝑦 =

max{((1−ℎ)/𝑏)(𝑥−1), 1}.We achieve this condition by taking
𝑐 := 1 + 𝑏/(1 − ℎ) + 𝑏

2
/(1 − ℎ)

2. In this way, any initial
point (𝑧

−1, 𝑧0) ̸= (𝑧2, 𝑧2) that satisfies 𝑧
−1 > 1, 𝑧0 > 𝑐, or

𝑧
−1 > 𝑐, 𝑧0 > 1 does not give a positive solution. Hence, the
solutions that we are interested in must be within the square
1 < 𝑥, 𝑦 < 𝑐. Finally, if 𝑧

𝑛−1 is close to 1 while 𝑧
𝑛

> 1, then
𝑧
𝑛+1 = (𝑏/(𝑧

𝑛−1 − 1))𝑧
𝑛
+ ℎ will blow up beyond our choice of

𝑐. Thus, there must be 𝜖0 > 0 such that 𝑧
𝑛

> 1 + 𝜖0 for some
fixed 𝜖0 > 0, which completes the proof.

Now, we give the following result.

Theorem 7. Let 0 < ℎ < 1. The only solution {𝑧
𝑛
} of (27) that

satisfies 𝑧
𝑛

> 1 for all 𝑛 ≥ −1 is the large equilibrium 𝑧2.

Proof. Suppose that {𝑧
𝑛
} is a nonequilibrium solution of (27)

that satisfies 𝑧
𝑛

> 1 for all 𝑛 ≥ −1. From Lemma 5,
we can filter the points that do not obey the monotonicity,
and consequently, the sequence {𝐽

𝑛
} = {𝐽(𝑧

𝑛−1, 𝑧𝑛)} has
an increasing subsequence {𝐽

𝑛𝑘
}. {𝐽
𝑛𝑘

} must be bounded by
Lemma 6, and, therefore, {𝐽

𝑛𝑘
} converges to a limit, say, 𝐽0. On

the other hand, the sequence 𝑍
𝑛

:= (𝑧
𝑛−1, 𝑧𝑛), 𝑛 = 0, 1, . . .,

belongs to a compact set, and therefore, it has a convergent

subsequence; say 𝑍
𝑛𝑗

= (𝑧
𝑛𝑗−1, 𝑧𝑛𝑗), 𝑗 = 0, 1, . . ., converges to

(𝑎0, 𝑎1). Next, we must have 𝐽(𝑎0, 𝑎1) = 𝐽0. Because (𝑧2, 𝑧2)
is a repeller, then (𝑎0, 𝑎1) ̸= (𝑧2, 𝑧2), which together with
𝐽(𝑎0, 𝑎1) = 𝐽0 contradicts Lemma 5. Hence, a nonequilibrium
positive solution cannot stay above one.

Theorem 8. Positive solutions {𝑧
𝑛
}
∞

𝑛=−1 of (27) are bounded.

Proof. Let {𝑧
𝑛
}
∞

𝑛=−1 be a positive solution of (27). Based on
Lemma 6, we need only to handle the case when 𝑧

𝑛
gets

between 0 and 1 for some 𝑛 = 𝑛0. In this case, we must have
𝑧
𝑛0+1 ≤ (ℎ/𝑏)(1−𝑧

𝑛0
), because, otherwise, we use the fact that

−1 + 𝑧
𝑛0

< 0 to obtain

𝑧
𝑛0+2 <

𝑏 (ℎ/𝑏) (1 − 𝑧
𝑛0

)

−1 + 𝑧
𝑛0

+ ℎ < 0. (64)

Up to this end, we have

𝑧
𝑛0+1 ≤

ℎ

𝑏

(1− 𝑧
𝑛0

) ≤

ℎ

𝑏

,

𝑧
𝑛0+2 =

𝑏𝑧
𝑛0+1

−1 + 𝑧
𝑛0

+ ℎ ≤ ℎ.

(65)

Now, an induction argument shows that 𝑧
𝑛

≤ max{ℎ, ℎ/𝑏} for
all 𝑛 ≥ 𝑛0 + 1, which completes the proof.

Lemma 9. Let 0 < ℎ < 𝑏 < 1. The region bounded by the
triangle ̃D

𝑏,ℎ
of vertices (0, 0), (0, ℎ/𝑏), and (ℎ/𝑏, 0) forms an

invariant of (27). Furthermore, this invariant shrinks under
two iterates of 𝑇 to the invariantD

𝑏,ℎ
bounded by the quadri-

lateral of vertices (ℎ, 0), (0, 0), (0, ℎ), and (ℎ, ℎ(1 − 𝑏)).

Proof. Since ℎ < 𝑏 < 1, we obtain ℎ < ℎ/𝑏 < 1. Now, consider
(𝑠, 𝑡) belongs tõD

𝑏,ℎ
, and then 0 ≤ 𝑠 ≤ ℎ/𝑏 and 0 ≤ 𝑡 ≤ ℎ/𝑏−𝑠.

Now,

𝑇 (𝑠, 𝑡) = (𝑡,

𝑏𝑡

𝑠 − 1
+ ℎ) , (66)

which belongs to the triangular region Δ ⊂
̃D
𝑏,ℎ

of vertices
(0, 0), (0, ℎ) and (ℎ/𝑏, 0). Now, let (𝑠, 𝑡) ∈ Δ, and then 0 ≤

𝑠 ≤ ℎ/𝑏 and 0 ≤ 𝑡 ≤ ℎ − 𝑏𝑠, and consequently, 𝑇(𝑠, 𝑡) and
its forward iterates stay insideD

𝑏,ℎ
. This completes the proof.

3.3. Attractivity of the Small Equilibrium. After establishing
an invariant regionD

𝑏,ℎ
that contains 𝑧1 when 0 < ℎ < 𝑏 < 1,

we aim to characterize the behavior of solutions withinD
𝑏,ℎ
.

From the fact that

𝑧
𝑛+1 − 𝑧1 = (𝑧

𝑛
− 𝑧1) 𝐹 (𝑧

𝑛−1)

+ 𝑧1 (𝐹 (𝑧
𝑛−1) − 𝐹 (𝑧1)) ,

(67)

we observe that if 𝑧
𝑛−1, 𝑧𝑛 > 𝑧1 then 𝑧

𝑛+1 < 𝑧1. Similarly, if
𝑧
𝑛−1, 𝑧𝑛 < 𝑧1 then 𝑧

𝑛+1 > 𝑧1.Therefore, withinD
𝑏,ℎ
, solutions

oscillate about 𝑧1. Consecutive terms of a nonequilibrium
solution that satisfy 𝑧

𝑛
≥ 𝑧1 form what we call a positive
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semicycle. Similarly, consecutive terms of a nonequilibrium
solution that satisfy 𝑧

𝑛
< 𝑧1 form a negative semicycle. Thus,

from (67), we conclude that the length of a semicycle is at
most two.

When extrema of consecutive positive (and negative)
semicycles form monotonic sequences, we obtain subse-
quences of the orbit that aids us in characterizing the orbit.
This approach has been widely used to prove attractivity of
equilibria [1, 11, 14, 20]. However, if we follow the extrema of
positive semicycles of an orbit of (27), we find it is possible
for an extreme value to overshoot (or undershoot) a previous
one. For instance, let ℎ = 0.78, 𝑏 = 0.99, 𝑧

−1 = 0.06, and
𝑧0 = 0.23. In this case 𝑧1 ≈ 0.3181, and the orbit through
(𝑧
−1, 𝑧0) is

O
+

(𝑧
−1, 𝑧0) = {0.0600, 0.2300, 0.5378, 0.0886,

0.5903, 0.1388, . . .} ,

(68)

which shows that the extrema of positive semicycles do not
form a monotonic sequence.

Instead of bounding an orbit with the extrema of its
semicycles, here we develop a technique that bounds the
elements of semicycles by a monotonic sequence that does
not form a subsequence of the orbit itself, and then we use
the monotonic sequence to show the attractivity of 𝑧1. This
approach is closely related to the enveloping technique used
by [17, 18]; however, instead of finding one dominant function
that goes through the equilibrium, we find a sequence of
functions that evolve based on the semicycles of the solution.
We write

𝑧
𝑛+2 = 𝑧

𝑛+1𝐹 (𝑧
𝑛
) + ℎ

= 𝑧
𝑛
𝐹 (𝑧
𝑛−1) 𝐹 (𝑧

𝑛
) + ℎ𝐹 (𝑧

𝑛
) + ℎ,

(69)

and we define the maps 𝐺
𝑚
as

𝐺
𝑚

(𝑡) = 𝛼
𝑚
𝑡 |𝐹 (𝑡)| + ℎ𝐹 (𝑡) + ℎ

= |𝐹 (𝑡)| (𝛼
𝑚
𝑡 − ℎ) + ℎ,

(70)

in which 𝛼
𝑚

is a fixed value that will be determined by
an upper bound of |𝐹(𝑧

𝑛−1)|. In general, we need 𝐺
𝑚
to be

increasing with a unique fixed point inside a certain region.
Before we embark on our main result, we give some cha-
racteristics of 𝐺

𝑚
in the following proposition.

Proposition 10. Consider the function 𝐺
𝑚
as defined in (70)

in which 0 < ℎ < 𝑏 < 1 and 𝐹(𝑡) = 𝑏/(−1 + 𝑡). Each of the
following holds true:

(i) 𝐺
𝑚
is continuous on the interval [0, 1).

(ii) 𝐺
𝑚
(0) = ℎ(1 − 𝑏) and for all 𝛼

𝑚
≥ ℎ, 𝐺

𝑚
is increasing.

(iii) If (𝑏𝛼
𝑚

− ℎ − 1)2 > 4ℎ(1 − 𝑏), then 𝐺
𝑚
has two fixed

points 𝑢
𝛼𝑚

< V
𝛼𝑚
. In addition, if 𝛼

𝑚
≤ (1 + ℎ)/𝑏, then

𝑢
𝛼𝑚

is increasing while V
𝛼𝑚

is decreasing in 𝛼
𝑚
.

Proof. Parts (i) and (ii) are obvious. To verify part (iii),
observe that

𝐺
𝑚

(𝑡) − 𝑡 =

𝑡
2
+ (𝑏𝛼
𝑚

− ℎ − 1) 𝑡 + ℎ (1 − 𝑏)

1 − 𝑡

. (71)

The condition for the existence of two fixed points is obvious,
and to obtain 𝑢

𝛼𝑚
increasing in 𝛼

𝑚
, we must have 𝑏𝛼

𝑚
− ℎ− 1

negative.

The next result about the attractivity of the small fixed
point of 𝐺

𝑚
will be used in the sequel.

Lemma 11. Consider 𝐺
𝑚
as defined in (70), and let 𝑏 < 1. If

𝛼
𝑚

> ℎ and

(𝑏𝛼
𝑚

− ℎ− 1)2 > 4ℎ (1− 𝑏) , (72)

then the equilibrium solution 𝑢
𝛼𝑚

of the difference equation
𝑦
𝑛+1 = 𝐺

𝑚
(𝑦
𝑛
) is stable with a basin of attraction that con-

tains the interval [0, V
𝛼𝑚

). Furthermore, the convergence to the
equilibrium is monotonic.

Proof. Since𝐺
𝑚
(0) > 0 and𝐺

𝑚
(𝑡) is increasingwith two fixed

points 𝑢
𝛼𝑚

< V
𝛼𝑚
, a cobweb (stair-step) diagram shows the

result.

Because our goal is to be able to let 𝛼
𝑚
reach |𝐹(𝑧1)|, then

taking𝛼
𝑚

> 𝛾
𝑟
:= (1/𝑏)(1+ℎ+2√ℎ(1 − 𝑏)) from the condition

(𝑏𝛼
𝑚

− ℎ − 1)2 > 4ℎ(1 − 𝑏) makes it mandatory to have
|𝐹(𝑧1)| = 𝑧2 − 1 > 𝛾

𝑟
. However, simple computations show

that this is not a viable optionwithin our range of parameters.
On the other hand, taking𝛼

𝑚
< 𝛾
𝑙
:= (1/𝑏)(1+ℎ−2√ℎ(1 − 𝑏))

makes it necessary for us to have 𝑧2−1 < 𝛾
𝑙
, which is indeed a

viable option within our range of parameters. Also, since we
need 𝛼

𝑚
≥ ℎ to obtain an increasing function 𝐺

𝑚
, then we

must have |𝐹(𝑧1)| ≥ ℎ, However, considering 0 < ℎ < 𝑏 < 1
is sufficient to give |𝐹(𝑧1)| = 𝑧2 − 1 > ℎ. Thus, to give our
approach a chance of success, we need to be accompanied by
the following two conditions:

H1: 𝑧2 − 1 < 𝛾
𝑙
=

1
𝑏

(1+ ℎ− 2√ℎ (1 − 𝑏))

(so 𝛼
𝑚
can reach 




𝐹 (𝑧
1
)




) ,

(73)

H2: 0 < ℎ < 𝑏 < 1

(so 𝐺
𝑚

(𝑡) is increasing in 𝑡 for 0 ≤ 𝑡 < 1) .

(74)

Next, from the invariant regionD
𝑏,ℎ

of Lemma 9,we need
|𝐹(ℎ)| ≤ 𝛾

𝑙
so we can start 𝛼1 at |𝐹(ℎ)| and then be able to go

down to |𝐹(𝑧1)|. Therefore, |𝐹(ℎ)| ≤ 𝛾
𝑙
means that we need

the condition

H3: ℎ
2
+ 𝑏

2
≤ 1− 2 (1− ℎ)√ℎ (1 − 𝑏)

(existence, and 𝑢
𝛼𝑚

↑, V
𝛼𝑚

↓ in 𝛼
𝑚
) .

(75)

The next proposition gives the feasible region for the
inequalities in H1, H2, and H3. The proof is just algebraic
manipulations of the inequalities.

Proposition 12. The feasible region for the inequalities in H1,
H2, andH3 is the regionΔ

𝑏,ℎ
bounded by the triangle of vertices

(0, 0), (1/2, 1/2), (1, 0).



10 Discrete Dynamics in Nature and Society

Now, we established enough tools to give the following
result.

Theorem 13. Consider (27) with 𝐹(𝑡) = 𝑏/(−1 + 𝑡). If (𝑏, ℎ) ∈

Δ
𝑏,ℎ
, then all solutions that are attracted to the invariant region

̂D
𝑏,ℎ

converge to 𝑧1.

Proof. Based on Lemma 9, since ̂D
𝑏,ℎ

shrinks after two
iterates of 𝑇 into D

𝑏,ℎ
, we can start by (𝑧

−1, 𝑧0) ∈ D
𝑏,ℎ
.

Let 𝐶1𝑙 and 𝐶1𝑟 be the first negative and positive semicycles
(resp.) which belong to the initial condition (𝑧

−1, 𝑧0). Let𝐶1 =

𝐶1𝑙 ∪ 𝐶1𝑟 denote the first full cycle. Thus, by induction, we
consider 𝐶

𝑚
= 𝐶
𝑚𝑙

∪ 𝐶
𝑚𝑟

to be the 𝑚th cycle which belongs
to the initial condition (𝑧

−1, 𝑧0). Now, define 𝛼1 := |𝐹(ℎ)|, and
then by condition H3, 𝐺1 has a unique equilibrium, say, 𝑢

𝛼1
,

in the interval [0, ℎ] (the uniqueness follows from the fact that
𝐺1(ℎ) − ℎ ≤ 0 whenever ℎ ≤ 1 − 𝑏, which is obtainable from
H3). In fact, 0 < 𝑢

𝛼1
≤ ℎ ≤ V

𝛼1
. Since

𝑧
𝑛+2 = 𝑧

𝑛





𝐹 (𝑧
𝑛
)









𝐹 (𝑧
𝑛−1)





+ ℎ𝐹 (𝑧

𝑛
) + ℎ ≤ 𝐺1 (𝑧

𝑛
) , (76)

we depend on Lemma 11 to conclude that 𝑧
𝑛+2 ≤ 𝑢

𝛼𝑚
for all

elements of the solution passing the first cycle; that is,

𝑧
𝑛

≤ 𝑢
𝛼1

∀𝑧
𝑛

∈

∞

⋃

𝑗=2
𝐶
𝑗
. (77)

Next, we define 𝛼2 = |𝐹(𝑢
𝛼1

)|. Since 𝑢
𝛼1

< ℎ, we have

𝛼2 =






𝐹 (𝑢
𝛼1

)






< |𝐹 (ℎ)| = 𝛼1. (78)

Now, we use the dominant function 𝐺2 and its unique
equilibrium 𝑢

𝛼2
in the interval [0, 𝑢

𝛼1
] to conclude again that

𝑧
𝑛

≤ 𝑢
𝛼2

∀𝑧
𝑛

∈

∞

⋃

𝑗=3
𝐶
𝑗
. (79)

Observe that our function 𝐺
𝑚
evolves in 𝑚 after each cycle

of the oscillatory solution and becomes with a smaller fixed
point that dominates the rest of the solution {𝑧

𝑛
}. This

induction process follows the cycles of the solution {𝑧
𝑛
} and

keeps giving new upper bounds 𝑢
𝛼𝑚

that form a strictly
decreasing sequence. Since the sequence {𝑢

𝛼𝑚
} is bounded

below by |𝐹(𝑧1)|, consequently, it must converge to a value
𝛽 ≥ |𝐹(𝑧1)|. Since 𝛽 > |𝐹(𝑧1)| can take us to use 𝛽 as a
new starting point and repeat the same process again, we find
that the viable option is to take 𝛽 := |𝐹(𝑧1)|. Therefore, we
conclude that lim sup𝑧

𝑛
≤ 𝑧1, and because our solution {𝑧

𝑛
}

is oscillatory inside the regionD
𝑏,ℎ
, then we must have

lim sup 𝑧
𝑛

= lim inf 𝑧
𝑛

= 𝑧1, (80)

which completes the proof.

We close this section by the following remark.

Remark 14. It is worth mentioning that the method of this
section can be developed under more general settings to
handle a wider class of maps 𝐹. Also, we remark that relaxing

the condition 0 < ℎ < 𝑏 < 1 adds another factor of complexity
to the problem because periodic solutions of period two and
three come to the scene. For instance, when ℎ = 1 − 𝑏(1 − 𝑏),
the period-three solution {0, ℎ, ℎ(1 − 𝑏)} is located on the
boundary of the regionD

𝑏,ℎ
.

4. Conclusion and Discussion

In this paper, we considered the difference equation

𝑧
𝑛+1 =

𝑏𝑧
𝑛

−1 + 𝑧
𝑛−1

+ ℎ, 𝑏, ℎ > 0, (81)

which can be considered a prototype for the more general
form 𝑧

𝑛+1 = 𝑧
𝑛
𝐹(𝑧
𝑛−1) + ℎ where 𝐹(𝑧) and 𝑧𝐹(𝑧) are both

decreasing. For ℎ > 1, we established a connection between
(81) and the well-known Y2K difference equation. Prov-
ing global stability in the Y2K was settled by Merino in
[19]. However, we gave a new proof of the crucial lemma
used by Merino to prove the global stability of the positive
equilibrium with respect to the positive quadrant.

For (the new range of parameters) 0 < ℎ < 1, we restricted
our investigation to nonnegative solutions that exist for all
𝑛 ≥ −1, and we showed that such solutions (except the large
equilibrium which is a repeller) eventually go below one.
This fact makes all nonnegative solutions bounded.We found
subregions of the basin of attraction and gave conditions
under which nonnegative solutions converge to the stable
equilibrium 𝑧1.

Several aspects of solutions of (81) remain unexplored
and worth further investigation in future work, to name a
few, identifying the forbidden set, finding the exact basin of
attraction of 𝑧1, and investigating the behaviour of solutions
that take negative values. Finally, it is worth stressing that the
choice of the function 𝐹(𝑧) serves as an entry point for future
exploration of the difference equation 𝑧

𝑛+1 = 𝑧
𝑛
𝐹(𝑧
𝑛+1) + ℎ

when 𝑧𝐹(𝑧) is decreasing.
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