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Abstract

Plastics have become a cornerstone of modern life, but they are also hazardous for the

environment. Manually collecting and sorting such recyclable plastic waste from a mix

of other refuse is tedious work, and has accompanying health hazards. This project

develops a prototype autonomous robot that can identify, and collect plastic bottles

from other waste, and return to recycling stations. The focus of this prototype is on

the recognition and separation of a particular type of plastic bottle commonly used for

packaging drinking water. In this work, the robot navigates to a general location where

such plastic waste is expected to be found via GPS based navigation. Then, the robot

recognizes recyclable plastic bottles, and computes the coordinates of the plastic bottle

with respect to the robot, using a stereo camera. Finally, using a robotic arm attached

to it, the robot collects the plastic bottle. This thesis does not focus on developing an

appropriate gripper to pick up a bottle as it is out of the scope of the current work.

To aid the picking process, the end-effector and bottles are fitted with small magnetic

attachments. Moreover, the robot developed is 80% and 67% successful, in indoor and

outdoor testing respectively. The future versions of the proposed robot may be advanced

to segregate the collected plastic bottle waste into appropriate bins located at a recycling

station.

Keywords: Plastic bottle recycling, autonomous robot, neural networks, computer

vision.
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Chapter 1: Introduction

Plastic has become a vital part of our lives. Plastics are light and relatively

strong, which makes them useful for many purposes. They used not only for food

packages but also for packing non-food items. Plastic is also widely used in the trans-

portation industry [1]. The sports industry is also heavily dependent on plastic. Most

sports equipment and clothing are crafted from plastics because plastics make the prod-

uct lighter, waterproof, and long-lasting. Plastic also plays an important role in the

medical sector; it is very essential for making common tools like syringes. However,

plastic waste is very dangerous for the environment. In addition, it is also dangerous for

human, and animal health.

It can take 450 years or more for a plastic bottle to decay [2]. Plastic bottles have

become a major public waste nuisance. Water bottles are made of Polyethylene Tereph-

thalate (PET) plastic, which after a long period of time, breaks down into smaller pieces

of plastic. These plastic pieces get absorbed into the sea via running water sources, or

get embedded into the land and stay embedded for years. Land and sea animals end

up consuming such plastic pieces which makes them sick and weak. If humans con-

sume them inadvertently, the toxic effects can be very harmful to our health [3]. This

increases the importance of reprocessing and reusing plastics. Segregating the differ-

ent plastics autonomously is a challenging problem. This is because of the variety of

plastics available, and also due to challenges presented by autonomous identification.

So, this work focuses on specifically identifying and segregating plastic bottles from a

mix of other items. The particular type of plastic bottles used in this work is the one

commonly used for packaging drinking water. Manually sorting such recyclable plas-

tic bottles from the trash can be labor-intensive, and poses health concerns. Thus, this

work proposes the development of a robot that autonomously navigates to known loca-

tions and scans the vicinity for recyclable plastic bottles. It then uses neural networks to

identify plastic bottles and collect them using a robotic arm. In future updated versions

the robot may be advanced to segregate the waste collected into bins. This work has

the potential to promote and achieve in the future, a cleaner environment by creating
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automated trash segregating, and recycling robots. In the following section, a review of

some literature related to the topics of this work is presented.

1.1. Literature Review

There have been many works along the line of detecting plastics using computer

vision. For example, the authors in [4] detect plastic bottles using unmanned aerial ve-

hicles (UAVs). They take pictures of plastic bottles in eight different backgrounds and

create a large data set of images, called UAV-BD. This dataset is used to train a con-

volutional neural network (CNN). This CNN detects objects which are oriented either

vertically or horizontally, with respect to the x-axis of the camera image. Furthermore,

[5] compared Faster Region-CNN (R-CNN), Single Shot Multibox Detector (SSD) and

You only look once (YOLOv2) methods for object detection. The average precision

values of Faster R-CNN, SSD, and YOLOv2 90.3%, 90.1%, and 77.4% respectively on

the UAV-BD dataset. For detecting objects which are not oriented perfectly vertically

or horizontally with respect to the x-axis of the camera image, [4] used Rotation Region

Proposal Networks (RRPNs).

In [5], a two-stage plastic bottle sorting system was presented. Firstly, feature

extraction was done using Near Infrared (NIR) Imaging and then, for the classification

process, linear, quadratic and diag-quadratic classifiers were used. This process of clas-

sifying plastic bottles was 94.1% accurate for clear and opaque plastic bottles. In the

second stage, they used a Charged Coupled Device (CCD) camera to classify plastic

bottles based on their colors. This process was 92% accurate for clear bottles and 96%

accurate for opaque bottles. Therefore, the entire system had 83.5% accurate rate of

detection.

In another study [6], the researchers used a Support Vector Machine (SVM) to

differentiate between PET and non-PET plastic bottles. They used color moment and

structural edge-based features. The identification process using SVM resulted in more

than 90% accuracy.

In article [7], the identification of the objects is started after the feature extrac-

tion is completed. The plastic bottle was extracted from the background in the images
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using Otsus threshold method before the feature extraction process. For the feature ex-

traction, Principal Component Analysis (PCA), Kernel Principal Component Analysis

(KPCA), Fisher’s Linear Discriminant Analysis (FLDA), Singular Value Decomposi-

tion (SVD), and Laplacian Eigenmaps (LEMAP) were used. In the experiment, the au-

thors in [7] used three types of plastic bottles which were made of PET, High-Density

Polyethylene (HDPE) and Polypropylene (PP). In the first process, the plastic bottles

were categorized as PET and non-PET with the help of SVM classification which was

96% accurate. In the second process, the non-PET bottles were classified as HPDE or

PP with 92% classification accuracy. It was observed in this experiment that Linear

Discriminant Analysis (LDA) based features gave better accuracy than PCA, KPCA,

FLDA, SVD, and LEMAP based feature extraction.

In another experiment [8], samples of flowery, dendritic, and feathery patterns

with 200 by 200 pixel size were used as a dataset. These three patterns were named as

class A, B and C respectively. Twenty five training datasets from each class were taken.

These samples were preprocessed with the help of PCA for dimensionality reduction.

Then using this dataset the artificial neural network was trained and tested. The results

show that the system could identify with 75%, 87.50% and 77.78% accuracy, samples

in classes A, B and C respectively. This system classified 25% samples of class A as

samples of class B and distinguished 12.5% samples of class B as of class A. Thus, the

system had an overall accuracy of 80.09%. The misclassification was primarily due to

the similarity between class A and class B.

The work in [9] uses four different types of neural networks to detect plastic de-

bris underwater. Open and available databases [10] of all the debris found underwater

were used for training their neural network architectures. The YOLOv2, Tiny-YOLO,

Faster R-CNN, and SSD networks were trained for plastic debris detection, and the

results were compared based on accuracy and processing time. Parameters like mean

Average Precision (mAP) and Intersection over Union (IoU) were used to evaluate the

network and models [9]. The average precision percentage in detecting plastic using

YOLOv2, Tiny-YOLO, Faster R-CNN, and SSD were 82.3, 70.3, 83.3 and 69.8 respec-

tively. Thus, faster R-CNN was more accurate compared to the other networks in [9].

While the above paragraphs surveyed results of neural network based classification, the
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following paragraphs are geared mostly towards reviewing autonomous robotic naviga-

tion. A robot prototype presented in [11] collects floating waste from oceans, ponds or

canals. This design is created using two propellers that are controlled by a Bluetooth

based application and a conveyor belt that collects the waste in the trash box. But, this

was not tested in a real environment and the motion of the robot was operated from a

distance.

In [12] authors used forward-looking sonar (FLS) on an autonomous underwater

vehicle with a trained deep convolutional neural network to detect debris in the ocean.

The authors in [12] reported 80 percent accuracy in classifying marine debris. Marine

data, which were the images captured inside a water tank containing different types

of debris, like cans, valves, bottles, and cartons were used for testing. There were

six classes, where class 0, class 1, class 2, class 3, class 4, class 5, and class 6 had

images of metal objects, glass objects, cardboard, rubber, plastic materials, crops in

the background respectively. This resulted in 80.8% accurate detection with a binary

sensor and 70.8% accuracy with a multi-class sensor. But the system did not use real

environmental data and as mentioned above, was only evaluated in a tank.

In another experiment [13], initial results on an autonomous indoor garbage

detection and collection system using a robot was presented. It used two ultrasonic

sensors for identifying the object location and the object of interest. In another research

[14], a design of an indoor automated robot was presented. The robot collected waste

from dustbins which are full. With the help of sensors that were fixed in the dustbins,

the robot was notified when a dustbin is full. The robot then moved to the full dustbin

and collected the waste from it.

In [15], the authors designed a road garbage cleaning vehicle that consisted of

a power module, robotic arm, camera, and GPS module mounted on a vehicle. They

tested identifying the waste using a camera and picking the waste by a robotic arm.

However, [15] did not present any tests with the complete integrated system.

The following paragraph explores manual plastic segregation techniques, and

presents the motivation for using neural network based techniques onboard a robot, for

the work in this thesis.In addition to automated approaches, there are several manual ap-

proaches for separating plastics. These include color-based classification, electrostatic
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separation, gravity segregation, froth flotation, and near-infrared ray techniques [16,17].

The gravity-based and froth flotation based separation techniques are costlier than other

methods [17]. Likewise, the separation techniques involving lasers, X-rays, and spec-

trometers, have expensive experimental setups but the accuracy of segregation of plas-

tics is better. Thus, computer vision and machine learning-based approaches appear to

outshine other approaches for the segregation of plastic bottles, in terms of cost, ac-

curacy, and ease of setting up and implementing a segregation technique. Hence, this

work proposes the use of neural networks based approaches to identify plastic bottles

and develop a complete system prototype.

1.2. Motivation

The motivation behind this thesis is to use robotics to help the environment

be waste-free. Also, robotics can be used in areas where it is risky for humans to

reach and clean the environment. The major components of the developed autonomous

robotic system for collecting recyclable plastic bottles are a Kobuki robot base, stereo

camera, and a robotic arm. The remainder of this thesis is organized as follows. Chapter

two provides background information related to the developed robotic system. Chapter

three describes the details of the developed robotic system for plastic bottle collection.

Chapter four presents the experimental results. Chapter five concludes the thesis and

discusses future work.
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Chapter 2: Background

This chapter presents some preliminary information required for this work. This

information is related to the robot operating system (ROS), computer vision, object

detection with help of neural networks and forward, inverse kinematics of a robotic

arm. The developed robot can detect and pick the plastic bottles from the waste au-

tonomously. To achieve this, the robot works as follows. Firstly, to move the robot to

the garbage collection point, path planning with known poses is used. Secondly, com-

puter vision algorithms are used to detect the plastic bottles from the waste. And the

arm located on the robot picks the plastic bottles. The discussion of various components

is as follows.

2.1. Navigation using ROS

ROS is an open-source program, which has helped researchers as well as con-

sumers operate robots. Another advantage of using ROS is that one can reuse libraries

already created by other users and modify them according to requirements. The peer-

to-peer topology of ROS makes network connectivity easier [18]. ROS is considered to

be language-neutral as different programming languages can be mixed and modified to

get the desired result. ROS has many tools to manage complicated tasks efficiently.

To use ROS, it is very important to get familiar with the basic terms used in the

ROS which are nodes, messages, topics, and services. Nodes are processes that do com-

putational work. A system comprises of many nodes and each node communicates with

another node using messages. A message can be an integer, floating-point, Boolean or

any other primitive type of data. The mechanism is such that when a node sends a mes-

sage, it publishes the message to a specific topic. The node can use a subscribe/publish

system to identify and connect to the desired topic. Multiple publishers and subscribers

can be running for the same topic simultaneously, and one node can publish and/or sub-

scribe to multiple topics. Another terminology of ROS is bags, which are very essential

for storing ROS message data [19]. The ROS Master is very important as it assigns

names and makes it possible for nodes to find other nodes and pass messages. The
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Master includes the Parameter Server which stores data in the main location by key.

The Master is responsible for the name service and saves information about the topics

and services registration.

Figure 1: Kobuki’s ROS package architecture [20].

For navigation using the Kobuki robot base in this work, the Kobuki node pack-

age from [21] is used. This package provides access to turning on/off the Kobuki robots
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motors and allows getting readings from wheel encoders and the gyro. As shown in

Figure 1, the Kobuki has nodelets that allow multiple programmed files to run simulta-

neously [20].

For outdoor navigation, a GPS module is used to get the latitude and longitude

of the robot’s position. The latitude and longitude are extracted from the NMEA format

data received from GPS readings. Also, a magnetometer from in an inertial measure-

ment unit (IMU) measures the orientation of the robot.

2.2. Computer Vision

To detect and find the location of a plastic bottle with respect to the center of

a camera module, computer vision techniques are used. This is a two-step process.

Firstly, R-CNNs are being used in this work to detect plastic bottles. Secondly, a depth

map of the image is created with the help of images taken with a stereo camera.

Both of the above processes provide the Cartesian coordinates of the plastic

bottle in 3D space. To train the R-CNN used for plastic bottle detection, the transfer

learning technique is used. In transfer learning, a CNN which is pre-trained on a large

set of images is fine-tuned, with inputs of plastic bottle images to be detected, and

corresponding labels. This method reduces the training time and size of the training

data set [22] compared to training a model from scratch.

A CNN can be thought of as a feed-forward network that involves convolutional

operations with learned filters. It is commonly used to evaluate images or videos in

machine learning and computer vision. A typical CNN may have four kinds of layers:

convolutional layer, rectified linear unit (ReLU) layer, pooling layer and fully connected

(FC) layer [23]. The convolutional layer is used to carry out convolutions and is the

first layer after the input layer whereas, the ReLU layer comes after the convolutional

layer and introduces non-linearities in the network. The pooling layer is then used to

downsample the data in the network to reduce the processing complexity. These layers

may be replicated and are then followed by FC layers. Finally, the last layer assigns

scores that determine the probability of the input belonging to each class. One of the

pioneering models of CNN was LeNet [24]. Recently more complex variants such as
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AlexNet [25], ZFNet [26], GoogLeNet [27], VGGNet [28] and ResNet [29] have been

developed.

However, CNN is mostly used for classification and identifications of objects in

an image. That’s why region-based CNN (R-CNN) is used in this thesis. It works with

images having multiple objects and determines the location of the target object [30]. R-

CNN is used in applications where detection of the object, segmentation of an image and

categorization of an image is required. The R-CNN uses selective search to recognize

a region of interest (RoI) from the labeled images and it differentiates between the

foreground and background using CNN [31].

Figure 2 shows the architecture of R-CNN. There are three steps to create this

architecture which are listed as:

1. Possible objects are browsed from the input using selective search. This returns

around 2000 proposed regions [31].

2. These proposed regions are tested using CNN.

3. The outputs of the CNN go through a support vector machine that identifies parts

of items in an image. Then a fit bounding box is created around the identified

object using linear regression.

Figure 2: Architecture of R-CNN [30].

To train a R-CNN for plastic bottles with less training images, transfer learning

is used. In this method, a CNN which is pre-trained on a large set of images is fine-
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tuned with inputs of labeled plastic bottle images that are supposed to be detected. This

method reduces the training time and size of the training data set [22] compared to

training a CNN from scratch.

After detecting the object, its centroid is found and the average depth around the

centroid is computed. This is achieved by computing a disparity map using the left and

right images from a stereo camera [32]. Hence, this gives the coordinates of the plastic

bottles in the 3D space.

2.3. Robotics Arm Kinematics

A robotic arm is used in this work for picking up plastic bottles once they have

been detected. Note that the work in this thesis does not focus on the appropriate gripper

development, or the gripping technique to be used to pick up a bottle. This is because

gripper development is a separate area of research by itself, and is very far out of the

scope of the current work. So the end-effector and bottles to be picked up in this work

are magnetized with small magnetic attachments, which aid the picking up process.

Therefore, to use a robotic arm for the purpose of picking up plastic bottles, the robot

arm model needs to be known.

A robotic arm is made of multiple links which are connected by joints. These

rigid bodies are fixed at the base and the last link is connected to an end-effector which

is mostly the wrist. Each joint is connected to a motor. To understand the kinematics

of the robotic arm, knowledge of transformation from one frame to another is essential.

Every joint in the robotic arm has a frame which has a certain orientation and position.

To pick and place any object using the end-effector, the initial orientation and position

of the end-effector should be known. This pose of the wrist should be represented

in terms of the base reference frame. This coordinate transformation can be done by

using Euler angles, RPY ( Roll, Pitch, and Yaw) Angles, Axis-angle Representation

and Quaternions. The Euler angles based approach involves a series of rotations.

There are open chain manipulator where a single joint is joined by a link and

closed chain manipulator where every link is attached to adjoining links by joints. In

this thesis, an open-chain manipulator was used. It has n joints, n+1 links and the link
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fixed to the ground in this manipulator is Link 0. Each link has its respective frame from

Link 0 to Link n. The position and orientation of Frame n can be expressed in Frame

0 using Eq. (1), where each n−1
n A related the current joint’s orientation to the previous

joint. Eq. (2) is used to express the pose of end-effector to the Frame n and then Frame

n’s position and orientation to Frame of the base.

0
nT(q) =0

1 A1
2A...n−1

n A (1)

e
bT(q) =b

0 T0
nT(q)n

eT (2)

As shown in Figure 3, Link i−1 and Link i are connected by Axis i.

Figure 3: Denavit-Hartenberg notation.

There are rules to establish a Frame on a link i based on the Denavit-Hartenberg

(DH) convention, which are as follows:

• The zi axis should be selected along the Joint i+1 axis.

• The origin Oi should be at the intersection of zi and the normal vector between

zi−1 and zi axes.
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• The xi axis should be selected as the normal vector between zi−1 and zi axes going

in the direction from Joint i to i+1.

• The yi axis is selected using the right-hand rule.

After the frames are assigned to the links, the DH parameters such as link length,

twist angle, joint angle and link offset represented as ai−1, αi−1, θ i and di respectively,

are used to represent the position and orientation of Frame i in terms of Frame i−1.

As shown in Figure 3, link length, ai−1, is the length between zi−1 and zi axes,

measured along the xi axis. The twist angle, αi−1, is the angle between the zi−1 and

zi axes, measured about the xi axis. Joint angle, θi, is angle between xi−1 and xi axes,

measured along the zi−1 axis. Link offset, di, is the distance between xi−1 and xi axes,

measured along the zi−1 axis from the origin of frame Ti−1 [33].

The remaining parameters, αi−1 and ai−1 are based on the Link i configuration

between the joints and are mostly constant. θi and di are the parameters that constantly

change. di is variable when the Joint i is prismatic, which is a sliding joint, whereas, θi

is variable when the Joint i is revolute, which is a rotating joint, [33].

A transformation matrix between frame Ti−1 and frame Ti expresses the coordi-

nates of joint i with respect to the previous frame. This is done by using Eq. (3) with

known DH parameters. A product of each transformation matrix for individual links

from the base of the robot arm to the last link joining the end-effector using Eq. (4), can

give the complete system transformation matrix. This overall matrix is represented as
0
nT , which expresses the frame of the end-effector in terms of the frame of the robot arm

base. This process of getting the position and orientation of the end-effector for given

joint angles using Eq. (4), is called forward kinematics.

i−1
i A =


cosθi −sinθi cosαi sinθi sinαi ai cosθi

sinθi cosθi cosαi −cosθi sinαi ai sinθi

0 sinαi cosαi di

0 0 0 1

 (3)

0
nT =0

1 A1
2A...n−1

n A = K(q) (4)
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The procedure for developing forward kinematics of a system, as mentioned in [34] is

as follows:

1. Number the axes of each joints starting as z0 to zn−1 where n is the number of

joints.

2. Select the origin of axis z0 as Frame 0. x0 and y0 are assigned based on right-hand

frame rule. Mostly Frame 0 is selected as the base frame.

Repeat steps 3 to 5 for joints from i = 1 to n−1 as mentioned in [34].

3. The origin Oi is located at the intersection of common perpendicular to zi−1 and

zi axes and zi. If the Joint i is revolute, the Oi is located such that di is zero and

if the Joint i is prismatic, the Oi is located based on the mechanical range of the

joint.

4. Assign xi axis from Joint i to i + 1 direction with the common perpendicular

between zi−1 and zi.

5. Select yi axis based on right-hand frame rule.

The following steps are from [34] to complete the process:

6. If the Joint n is revolute, align zn with zn−1. If the Joint n is prismatic, align zn

randomly. Then assign xn using step 4.

7. Create table as shown in Table 4 for ai−1, αi−1, θi and di parameters for i = 1 to

n.

8. Based on values from step 7, create transformation matrix Ai−1
i (qi) for i = 1 to n.

9. Calculate the pose of Frame n to 0 using Eq. (3).

10. Calculate the direct kinematics using Eq. (4).

However, for the robotic arm to move to a known position and orientation, in-

verse kinematics is used. For any reachable location, the inverse kinematic model re-

turns the joint angles for the robotic arms motors.

Inverse kinematics is complicated due to the following factors:
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• Due to the non-linearity of the problem, the solution does not always exist.

• There is a possibility of many solutions.

• There can be no solution available, especially if the pose of the end-effector is

outside of the manipulator’s workspace.

For the bottle collection system, a robotic arm with five degrees of freedom is

used. The end-effector is magnetized. The reason behind using a magnet is to demon-

strate the working of the overall prototype plastic bottle collection robotic system. This

is justified from the perspective of the scope of this work, because developing a gripper

that can grasp a bottle laying on the ground in any orientation is a separate problem of

research. The focus of this work is not on developing grippers for a robotic arm, but on

developing a robotic system that uses GPS coordinates to navigate to a known location

where recyclable plastics are expected to be found (e.g. near a recyclable waste bin).

And, then using RCNN based object detection to identify plastic bottles, and further use

stereo vision for localization of the plastic bottle relative to the robot. The next chapter

provides the details of the robotic system developed in this work.
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Chapter 3: Developed Robotic System for Plastic Bottle Collection

This chapter presents the complete hardware and software structure for the de-

veloped robot.

3.1. Hardware

As shown in Figure 4, the hardware consists of a Kobuki base, a Raspberry Pi 3,

a stereo camera, a robotic arm, a laptop, a GPS and an IMU. The developed robot has

three main modules, they are i) the navigation control module, ii) the computer vision

module and iii) the arm kinematics module. The navigation control module consists

of a Raspberry Pi 3, GPS and IMU. The computer vision module consists of a stereo

camera and a laptop computer. The arm kinematics module is a robotic arm. The stereo

camera is mounted on the Kobuki base. The robotic arm is mounted above the stereo

camera holder as illustrated in Figure 4. The laptop is kept on a Plexiglass sheet which

is held by metallic rods attached to the Kobuki base. On the edge of the Plexiglass sheet,

a GPS is attached. An IMU is mounted on a holder which is attached at the center of

the laptop. This prevents the IMU from being affected by any stray magnetic fields

produced by the equipment below the Plexiglass sheet.

Figure 4: Schematic diagram showing hardware components
of the developed robot.
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3.2. Software Architecture

Figure 5 shows the software system schematics for the developed robotic sys-

tem. The software system has two main modules which are the navigation control

module and computer vision and arm kinematics (CVAK) module. The software used

for the navigation control module is ROS and the CVAK module is programmed in

MATLAB. The Raspberry Pi 3 in the navigation control module receives the GPS and

IMU readings continuously.

Figure 5: Schematic diagram showing software components of
the developed robot.

Suppose (x1,y1) represents the commanded GPS goal location, and (xs,ys) rep-

resents the robots location at the start of GPS navigation, and the robots current location

respectively. Let θs be the angle given by tan−1(y1−ys
x1−xs

), and similarly let θ represents

the angle given by tan−1( y1−y
x1−x). At every time step, the robot receives the GPS and
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IMU readings which provide the coordinates of the robot (x,y) and also the robots

current heading. All of the above-mentioned quantities are with respect to a common

inertial reference frame. Then at each time step the GPS navigation code checks to see

if the angle θ is within ±5 degrees of the desired heading angle θs. If yes, the robot

simply moves straight along its current heading. Or else, the code issues appropriate

commands to the wheel motors such that the robot turns until the difference between

θ and θs is less than ±5 degrees. Once this is achieved, then the robot moves straight

ahead as described above, until it reaches its commanded GPS goal location. To exit

the GPS based navigation, and pass control to image-based navigation, the distance of

the GPS goal location to the robots current position is compared at every time step to

a preset threshold around 1.5 m. Once this threshold is reached, the robot stops. The

information below relates to image-based navigation.

The motion control algorithm written in Python operates under the ROS frame-

work. The images from the stereo camera are used for detection and 3D mapping of the

plastic bottle which are processed in MATLAB on the laptop shown in Figures 4 and

5. A MATLAB program is developed to find the Cartesian coordinates of the identified

plastic bottle w.r.t the center of the robots stereo camera. This information is then used

by the navigation module to switch from GPS based navigation to image-based naviga-

tion for completing the task of moving to a plastic bottle. Once the robot reaches the

bottle, then certain MATLAB commands are issued to the robotic arm to pick up the

plastic bottle. The details of each module are discussed in the next chapter.

3.3. Methodology

This section discusses navigation, computer vision, and robotic arm kinematics

modules in detail. It also represents the developed robot and its main components.

Figure 6 shows the real-life hardware assembly based on the schematic presented in

Figure 4. After assembly of the entire hardware, as shown above, the frames and DH

matrix parameters, which are link length, twist angle, joint angle and link offset, are

identified for the 5 degrees of freedom (DOF) manipulator. Moreover, calibration is

done for each servo motor in the robotic arm separately to ensure that the joint angles
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and corresponding pulse width commands required for accurate control are correctly

known. Likewise, the onboard stereo camera is also calibrated using MATLABs Stereo

Camera Calibration tool. The following section presents the results of experimentation

using the above developed robotic plastic bottle collection system.

Figure 6: The developed robot.

3.3.1. Navigation module. For the navigation process, GPS and IMU are

inetgrated with the Kobuki base. The GPS and IMU readings are continuously read and

based on those reading the Kobuki motors are controlled as discussed in section 2.1.

These latitude and longitude readings from the GPS were converted to Cartesian x and

y coordinates using Eq. (5) and Eq. (6), where Lonc, Lono, Latc, and Lato are current

longitude, origin longitude, current latitude, and origin latitude respectively.

x = (Lonc−Lono)×3.14×63710× cos(Latc× (3.14/180)) (5)

y = (Latc−Lato)×6371000× (3.14/180) (6)

To test the navigation module, ten tests were conducted in different outdoor

locations. Figure 7 represents one of the tracks of the GPS based navigation outside

the main building of the university with 2 meters stopping threshold value from the
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final GPS given goal location. The blue line in Figure 7 is the actual navigation route,

whereas the red line is expected navigation route. Figure 8 represents one of the tracks

of the GPS based navigation outside the main building of the university with 1 meter

stopping threshold value from the final GPS given goal location.

Figure 7: Preliminary testing of navigation module with 2
meters stopping threshold.

Figure 8: Preliminary testing of navigation module with 1
meter stopping threshold.
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Figure 9 shows the GPS based navigation for two points in the parking area

of university with 1 meter stopping threshold value from the both GPS points. The

problem faced during the two GPS points test was that it took longer than expected to

complete the test due to ±5 meters error in GPS readings.

Figure 9: Preliminary testing of navigation module with two
GPS points and 1 meter stopping threshold.

Furthermore, Figures 38 to 44 are the remaining preliminary tests to verify nav-

igation module which can be found in Appendix.
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Moreover, Table 1 contains the latitude and longitude of each test conducted to

verify the working of the navigation module individually.

Table 1: Navigation module preliminary tests’ initial and goal locations.

Outdoor
test number

Initial
latitude

(degrees)

Initial
longitude
(degrees)

Goal
latitude

(degrees)

Goal
longitude
(degrees)

Distance
(meters)

A1 25.0092222 55.007187 25.009323 55.0072628 13.57
A2 25.0092923 55.0072097 25.009323 55.0072628 6.35
A3 25.0092792 55.0072137 25.009323 55.0072628 6.95
A4 25.0092607 55.0072293 25.009323 55.0072628 7.71
A5 25.309293 55.490544 25.3093702 55.490608 10.74
A6 25.3093153 55.4905207 25.3093702 55.490608 10.69
A7 25.3093493 55.4906753 25.309394 55.4906573 5.29
A8 25.3092953 55.4905768 25.3092548 55.4905525 5.12
A9 25.3091063 55.4905692 25.3092012 55.4905947 10.85

A10 25.305981 55.4907145 25.3058673 55.4906882 12.91

Table 2 demonstrates the expected stopping distance of the robot from the goal

location, the actual stopping distance of the robot from the goal location, and the dis-

tance error. Therefore, the average mean distance error of Table 2 is 0.09 meters. Thus,

the navigation module is verified to be working properly.

Table 2: Navigation module preliminary tests.

Outdoor
test number

Expected stop distance
(meters)

Actual stop distance
(meters)

Distance error
(meters)

A1 2 1.93 0.07
A2 2 1.84 0.16
A3 2 1.89 0.11
A4 1 0.91 0.09
A5 1 0.88 0.12
A6 1 1 0
A7 1 0.97 0.03
A8 1 0.98 0.02
A9 1 0.87 0.13

A10 1 0.83 0.17

33



3.3.2. Computer vision module. The computer vision module is created us-

ing a two-step process. The first step is detecting the plastic bottle from the image and

then finding the 3D coordinate values of the detected plastic bottle.

The plastic bottle detection process is completed using two steps. Firstly, the

CNN is trained on an existing online image data set. And then, using transfer learning

techniques, the pre-trained network’s weights are updated using a few labeled images

of plastic bottles.

We used a CIFAR-10 image data set to train our initial model. CIFAR-10 set

consists of 10 different categories where each has 6,000 32x32 pixels size images.

These 10 classes are of airplanes, birds, cars, cats, dogs, deer, horses, trucks, ships

and frogs. Therefore, there are a total of 60,000 color images, out of which 50,000 im-

ages are used for training and 10,000 images are used for testing [35]. Using the image

set of CIFAR-10, a CNN is trained with 50,000 images. This pre-trained network is

then used to train for detecting plastic bottles using 80 training images. This way, we

were able to train for the new class of plastic bottles with far fewer images.

The CNN used in this thesis consists of three main types of layers with a total

of 15 layers, as shown in Table 3 and Figure 10. The first is the input layer which is

created for 32x32 pixels size images because the existing online dataset CIFAR-10 is

used for training which has images of size 32x32 pixels. Then we have a combination

of convolutional layers, rectified linear units, and pooling layers. In the convolutional

layers, the weights of filters are updated during training. The use of the ReLU layer is to

introduce non-linearities to learn richer and more complex representations. The pooling

layer is used throughout the network to downsample the information. We used three

sets of convolutional, ReLu, and max-pooling layers, consecutively. The convolutional

layer has 2-pixel padding to keep the output of the convolution the same as that of

the input. The pooling is done on a 3x3 pixels neighborhood with strides of 2 pixels,

such that 32x32 pixels are downsampled to 15x15 pixels dimensions. The final section

of the network contains fully connected layers and a softmax loss activation function.

We had one fully connected layer with 64 outputs. This is then followed with another

fully connected layer with 10 nodes which decides the class of the input image. A
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probabilistic value to an input image for each class is assigned at the fully connected

layer output using a softmax function.

Table 3: Details of CNN layers.

Name Type Activations Learnables

1
imageinput
32x32x3 images with ’zerocenter’ normalization Image Input 32x32x3 -

2
conv
32 5x5x3 convolutions with stride [1 1] and padding [2 2 2 2] Convolution 32x32x32

Weights 5x5x3x32
Bias 1x1x32

3
relu
ReLU ReLU 32x32x32 -

4
maxpool
3x3 max pooling with stride [2 2] and padding [0 0 0 0] Max Pooling 15x15x32 -

5
conv 1
32 5x5x32 convolutions with stride [1 1] and padding [2 2 2 2] Convolution 15x15x32

Weights 5x5x32x32
Bias 1x1x32

6
relu 1
ReLU ReLU 15x15x32 -

7
maxpool 1
3x3 max pooing with stride [2 2] and padding [0 0 0 0] Max Pooling 7x7x32 -

8
conv 2
64 5x3x32 convolutions with stride [1 1] and padding [2 2 2 2] Convolution 7x7x64

Weights 5x5x32x64
Bias 1x1x64

9
relu 2
ReLU ReLU 7x7x64 -

10
maxpool 2
3x3 max pooling with stride [2 2] and padding [0 0 0 0] Max Pooling 3x3x64 -

11
fc
64 fully connected layer Fully Connected 1x1x64

Weights 64x576
Bias 64x1

12
relu 3
ReLU ReLU 1x1x64 -

13
rcnnFC
2 fully connected layer Fully Connected 1x1x2

Weights 2x64
Bias 2x1

14
rcnn
Softmaxsoftmax Softmax 1x1x2 -

15
rcnnClassification
crossentropyex with classes ’PlasticBottle’ and ’Background’ Classification Output - -

Figure 10: Layers of CNN.

The weights of the network are set using a random distribution with a 0.0001

standard deviation. This CNN is trained on CIFAR-10 with Stochastic Gradient De-
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scent with Momentum (SGDM) training algorithm using 0.001 initial learning rate.

Also, this initial learning rate decreases each time after 8 epochs are completed, which

means the complete dataset has passed through the entire neural network process eight

times during the testing. The maximum number of epochs was 40. After the training

is completed, the CNN is verified by checking the filters’ weights of the first layer as

seen in Figure 11. The weights of the neural network changes during the training pro-

cess. These weights are the filter of the first layer of the network, each filter is used to

extract some edge of arch like features of the training dataset, plastic bottles similar to

Figure 12. Since the network architecture was limited to having only 32 filters, the 32

different features of the training dataset are illustrated in Figure 11. Furthermore, once

the visual filters’ weights of the first layer have some edge like structure as observed in

Figure 11, the network does not need more training. Therefore, the CNN is ready to be

tested on the test data.

Figure 11: First layer filters structure.
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For the second part of creating R-CNN, ground truth data for the plastic bottle

is collected. Around 80 images of the plastic bottles in the different backgrounds are

taken. The location of the plastic bottle, which is the RoI, in the images is then labeled

using a labeling tool in MATLAB as shown in Figure 12. This ground truth data is then

used to further train the pre-trained model for object detection.

Figure 12: RoI labelled Plastic Bottle in an image.

The original CNN for CIFAR-10 set is used to train R-CNN for the Plastic Bottle

detection. This network classifies images into two categories: Plastic Bottle and general
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items. Using the data from the ground truth table, the weights of the input network are

tuned at the time of training. There are positive and negative training samples which

are used during the training. For this thesis, the range of positive overlap was set from

0.5 to 1.0 and negative overlap has range from 0 to 0.3. When the image is being tested

using this R-CNN, pixel locations of the bounding box in the image containing plastic

bottles are returned along with a score that determines the confidence of detecting the

plastic bottle.

The original CNN for CIFAR-10 set is used to train R-CNN for the Plastic Bottle

detection. This network classifies images into two categories: Plastic Bottle and general

items. Using the data from the ground truth table, the weights of the input network are

tuned at the time of training. There are positive and negative training samples which

are used during the training. For this thesis, the range of positive overlap was set from

0.5 to 1.0 and negative overlap has range from 0 to 0.3. When the image is being tested

using this R-CNN, pixel locations of the bounding box in the image containing plastic

bottles are returned along with a score that determines the confidence of detecting the

plastic bottle.

After identifying the location of plastic bottles in the images, we needed to

determine how far are the plastic bottles are from the robot. This is achieved by using a

stereo camera, where two cameras were placed 0.4 meters distance apart. To start this

process, the stereo camera is calibrated. There are two cameras in the stereo system,

the calibration process measures the pose of the second camera with respect to the first

camera. The calibration process is as follows:

1. A checkerboard image, which is not in square shape, is printed. This pattern

should have an even number of squares on one side and an odd number of squares

on the other side. One side of the pattern should have black boxes in the corners

whereas the other side should have white boxes in the corner. The longer side of

the image should be in the direction of x as shown in Figure 13. This helps to rec-

ognize the pattern’s orientation. We fix this printed checkerboard square pattern

on a flat surface for accurate calibration. We follow the calibration instructions

from [36].
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2. We then set up the camera such that the patterns in Figure 13 do not go out of

focus and do not zoom in or out as this may affect the focal length.

3. We take more than 10 images for better calibration. We also take the image of

the checkerboard around the same distance at which the object to be detected is

expected to, be from the camera. Moreover, we do not tilt the checkerboard more

than 45 degrees with respect to the camera’s vertical axis. The whole checker-

board is required to appear in the captured image. Also, the x-axis and y-axis of

the checkerboard does not have to be aligned with the robot’s camera.

Figure 13: Checkerboard pattern for stereo camera’s
calibration.
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After completing the calibration process using a “StereoCameraCalibrator” app in MAT-

LAB, the camera extrinsic features can be seen in Figure 14. The rectangular boxes in

Figure 14 represent different pose of checkerboard pictures that were used for calibra-

tion, whereas the blue and red camera like shapes are the stereo camera. The extrinsic

features convert the 3D coordinates of the real world to the 3D coordinates of a camera.

Figure 14: Extrinsic parameters of the stereo camera.

In order to create a 3D image of the detected plastic bottle, the images from the

stereo camera are split into left and right images. These images are then rectified to

have lines that are epipolar and aligned in a row. This helps to create a disparity map

easier. These rectified images in anaglyph give 3D effect when seen with the red-cyan

glasses as seen in Figure 15.

The disparity map which is shown in Figure 16 is then used to construct a point

cloud as shown in Figure 17. This point of cloud represents each pixel of the disparity

map to a 3D real-life value.
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Figure 15: Rectified images in red-cyan anaglyph.

Figure 16: Disparity map.
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Figure 17: Reconstructed 3D values of a scene.

Therefore, after the bounding box containing the plastic bottle in a test image is

detected as in Figure 18, the pixel value of the center of the box is determined. After

that using the disparity map, the distance of the bottle from the camera is calculated in

meters which is illustrated in Figure 19. Thus, the actual distance from the plastic bottle

during this computer vision test was 1.12 meters, whereas the detected distance of the

plastic bottle from the camera was 1.10 meters. Therefore, there was 2 cm error in this

preliminary test.
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Figure 18: The detected plastic bottle.

Figure 19: The depth of the plastic bottle from the camera.

3.3.3. Robotic arm kinematics module. For the robotic arm, a robotic arm

produced by Lynxmotion with five degrees of freedom was used. After assembling the

hardware of the arm, the DH parameters for the 5 DOF manipulator were identified.

Figure 20 and Figure 21 show each joint and the assigned frames of reference for each
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joint respectively. The fifth motor can be used to grab bottles in different orientations

by utilizing an appropriate end-effector.

Figure 20: Labelled assembled robotic arm.

Figure 21: Assembled robotic arm.

Here, the DH convention was followed to set the x and z axes for each joint

frame. The parameters, shown in Table 4, were obtained by considering the twist be-
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tween each z axis for α , measuring the lengths for di and ai, and the joint angles are

free to change.

Table 4: DH parameters for each joint frame of the 5 DOF arm robot.

Joint i Θi di ai αi
1 Θ1 0.07 0 −π

2
2 Θ2 0 0.147 0
3 Θ3 0 0.185 0
4 Θ4 0 0 π

2
5 Θ5 0.152 0 0

The robot with DH parameters defined in Table 4 was simulated in MATLAB

using Peter Corke’s Robotics Toolbox [37] as shown in Figure 22. This was done to

verify if the simulated robotic arm was similar to the actual robotic arm. Limits were

defined for the joint angles to restrict the angles to Θi ∈
[
−π

2 ,
π

2

]
for all i and offsets

for joints 2, 3, and 4 are defined as −π

2 , −π

2 and −π

2 respectively for the arm to be in

the configuration shown in Figure 22 at the home position, that is when the angles of

all the joints are zero. To make sure the angles of all joints were zero, an offset was

introduced.

Figure 22: Simulated robotic arm [37].
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3.3.4. Operation of the developed plastic bottle collection robot. Figure 23

briefly explains the complete operational process of the developed robot.

Figure 23: Schematic of the general operational process of the
developed robot.
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Firstly, if the test is outdoors, the GPS based navigation module is activated.

Then, as shown above, the Kobuki base moves until it is 1.5 meters away from the given

GPS location. Further, the computer vision module is used to detect and estimate the

distance of the plastic bottle from the center of the stereo camera. The general process

includes two steps, which are as described in Section 2.2. However, the detailed steps

are as follows. In the beginning, a plastic bottle is detected by the R-CNN and the pixel

location of the center of the box bounding the detected plastic bottle is saved. Then a

lookup operation is performed at the above saved pixel location, within the depth map

generated using the image of the scene containing the detected plastic bottle. This gives

the distance of the plastic bottle from the center of the camera. Knowing the camera

placement w.r.t the center of the Kobuki base, the robot is made to move straight ahead,

till the robot reaches 0.1 meters away from the estimated location of the plastic bottle

straight ahead. Because the motion executed at this phase is simply a straight line

motion, encoder readings are used to determine when the robot should stop moving.

Once, the robot reaches the desired location 0.1m away from the detected plastic

bottle, code in MATLAB commands the robotic arm to pick the plastic bottle up. It is

also worth noting that the length of the arm (elbow to wrist) as seen in Figure 21 is

15 cm. It is also noticed that as long as the bottle is in the field of view of the stereo

camera when the bottle is 1.5 m away from the center of the robot, moving straight

ahead following the last known orientation of the robot at the end of GPS navigation,

vision-based guidance successfully leads the robot close enough to the bottle so that the

arm can pick it up. In case, GPS navigation leaves the robot 1.5 m away from the bottle

and orientated such that the bottle is not in the view of the stereo camera then it is very

easy to update the software to include code that rotates the robot around its position

until the bottle is visible, identified, its distance from the center of the camera detected,

and then the robot can simply move straight ahead.

47



Chapter 4: Experimental Results

In this chapter, indoor and outdoor experiments and their results are presented.

Before conducting the experiments, the arm and the plastic bottle are attached with

small piece of magnet as shown in Figure 24.

Figure 24: Magnetized arm and bottle cap.

4.1. Indoor testing

Figures 25, 26 and 27 are related to an indoor test, where a bottle is seen next

to a trash can, along with some other recyclable plastic items.

Figure 25: (a) Left: Initial position of the developed robot away from plastic bottle
indoors (b) Right: Final stage of indoor testing showing successful bottle pickup.
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Figures 26 and 27 show the results obtained from the computer vision module.

Figure 26 is the disparity map for the indoor Test 1 and Figure 27 illustrates the esti-

mated distance of the plastic bottle from the center of the camera, after accounting for

the fixed offset errors.

Figure 26: Disparity Map.

Figure 27: Detected plastic bottle during the indoor test shown
in Figure 25.

As seen in the left image in Figure 25, the plastic bottle is 1.45m away from

the robot and 1.53m away from the center of the camera. The right image in Figure 25
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shows the bottle is picked up using a magnetized arm. The distance of the bottle ob-

tained from the computer vision processing module is not very accurate as there is an

error of 0.22 m. The computer vision module estimated the plastic bottle to be 1.31 m

away as shown in Figure 27 whereas, the actual distance is 1.53 m. However, this dis-

crepancy turns out to be a constant offset, hence this error was fixed by adding an offset

of 22 cm to the detected position for remaining tests. The robotic arm also has small

errors in the joint angles, i.e. the actual angle is not exactly equal to the commanded

angle, however, this does not affect the picking up process because the magnetized arm

picks the bottle if it is in the vicinity of the magnetized bottle cap. Thus it is clear from

the above figures that the preliminary indoor test was successful.

This indoor test was repeated 10 times to check its success rate which is shown

in Table 5. Thus, the successful pickup using this robot in the indoor scenario was 80%.

Table 5: Indoor tests’ success rate.

Indoor test number Succeeded

1 Yes
2 Yes
3 Yes
4 Yes
5 No
6 No
7 Yes
8 Yes
9 Yes

10 Yes

Furthermore, the actual distance of the plastic bottle from the camera, the esti-

mated distance of the plastic bottle from the camera, and the distance error for each 10

indoor test is illustrated in Table 6. Also, the average mean distance error for the indoor

tests is 0.253 meters. Figure 45, and Figure 46 are some other indoor tests in different

setup environment, whereas Figure 47, and Figure 48 are images of some of the remain-

ing indoor tests in another experimental setup location. These images of indoor tests

can be found in the Appendix of the thesis.
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Table 6: Indoor tests’ details.

Indoor
test number

Measured distance
(meters)

Detected distance
(meters)

Distance error
(meters)

1 1.7 1.41 0.29
2 1.7 1.43 0.27
3 1.7 1.41 0.29
4 1.7 1.39 0.31
5 1.7 1.4 0.3
6 1.7 1.44 0.26
7 1.7 1.45 0.25
8 1.7 1.4 0.3
9 1.45 1.33 0.12

10 1.45 1.31 0.14

4.2. Outdoor testing

Figures 28, 29 and 30 show the results of an outdoor test where the robot is ini-

tially guided by GPS based navigation to a location where recyclable waste is expected,

and the final stage of navigation is performed using image processing.

Figure 28: (a) Left: Initial position of the developed robot away from plastic bottle
outdoors (b) Right: Final stage of outdoor testing showing successful bottle pickup.
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The left and right images in Figure 28 show the initial and final stage of plastic

bottle collection respectively. Figure 29 is the disparity map used to detect the depth of

the plastic bottle ahead of the robot, and Figure 30 shows the estimated distance of the

plastic bottle from the center of the camera once the robot reaches a given GPS point

near an area where recyclable plastic waste is expected to be found.

Figure 29: Disparity Map for outdoor Test B1.

Figure 30: Detected plastic bottle.
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Figures 31 and 32 summarize the results of two outdoor navigation tests on the

robot, Test B1 and Test B2 respectively. The green graph represents the position of the

robot during GPS based motion control to follow the assigned path shown in blue, and

the orange graph represents the stereo camera based motion.

Figure 31: Navigation map of Test B1.

Figure 32: Navigation map of Test B2.
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The results of navigation based on the computer vision for Test B1 and Test B2

are zoomed and shown in Figure 33 and Figure 34 respectively for clarity.

Figure 33: Navigation based on computer vision, for outdoor
Test B1.

Figure 34: Navigation based on computer vision, for outdoor
Test B2.

As visible in Figures 33 and 34 during both tests, the GPS navigation does not

end with the bottle straight ahead of the robot, but as long as the camera can see the
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bottle, the image processing based navigation module is able to guide the robot to the

bottle. Also, in each case, the GPS based navigation goal is assigned to be about 1.5 m

away from the position of a plastic bottle.

Figures 35 and 36 are the distance of the robot from the plastic bottle as it

performs GPS based navigation, before the robot starts the camera based navigation for

Test B1 and Test B2 respectively.

Figure 35: Distance error for outdoor Test B1.

Figure 36: Distance error for outdoor Test B2.
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This outdoor test was repeated 6 times to check its success rate which is shown

in Table 7. Thus, the successful pickup using the developed robot in an outdoor setting

was 67%.

Table 7: Outdoor tests’ success.

Outdoor test number Succeeded

B1 Yes
B2 Yes
B3 Yes
B4 No
B5 Yes
B6 No

Table 8 contains initial and final location of the developed robot in six outdoor

tests. The location for all the outdoor tests was outside the library of American Univer-

sity of Sharjah, Sharjah, United Arab Emirates.

Table 8: Outdoor tests initial and goal latitude and longitude.

Outdoor
test number

Initial
latitude

(degrees)

Initial
longitude
(degrees)

Goal
latitude

(degrees)

Goal
longitude
(degrees)

Distance
(meters)

B1 25.3119543 55.4918777 25.3120357 55.4919697 12.94
B2 25.3119078 55.4919067 25.3120357 55.4919697 15.57
B3 25.3119185 55.4919 25.3120357 55.4919697 14.8
B4 25.3119552 55.491873 25.3120357 55.4919697 13.21
B5 25.311907 55.491913 25.3120357 55.4919697 15.4
B6 25.3119545 55.4918758 25.3120357 55.4919697 13.06

Moreover, Table 9 refers to image based navigation and displays actual distance

of the plastic bottle from the developed robot, the estimated distance of the plastic

bottle from the developed robot using navigation module, and the distance error. The

‘-’ in Table 9 represents that Test B4, and B6 were not successful as the computer

vision module failed to recognize the plastic bottle. The average mean distance error of

stereo camera based navigation is 0.583 meters. The main reason for less success of the
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outdoor tests was the inaccuracy of the GPS reading as the GPS had a ±5 meters error

in the readings. To avoid this a more accurate GPS can be used.

Table 9: Outdoor tests’ computer vision navigation analysis.

Outdoor
test number

Actual distance from bottle
(meters)

Estimated distance
(meters)

Distance error
(meters)

B1 1.49 1.25 0.24
B2 1.45 1.51 0.06
B3 1.48 1.64 0.16
B4 - - -
B5 1.48 1.44 0.04
B6 - - -

Figure 37 also shows the results of four other outdoor tests detecting and com-

puting depth of the plastic bottles in different orientations. Also, Figure 49 and Fig-

ure 50 show the remaining outdoor tests which can be found in the Appendix.

Figure 37: Detection of the plastic bottle’s depth in different orientation.

57



Chapter 5: Conclusion

To conclude, this work has presented an autonomous robotic system for auto-

mated identification and collection of plastic bottles. Also, results of several indoor

and outdoor tests have been presented, where the robot was able to successfully iden-

tify and locate recyclable plastic bottles, and then pick it up. Here, the GPS location

of a point where recyclable waste is expected to be found is assumed to be known

beforehand. Then the Kobuki robot uses GPS based navigation, followed by the com-

puter vision-based navigation to identify, locate and reach a plastic bottle among the

recyclable waste. The computer vision module also detects plastic bottles in different

orientations. Once the plastic bottle is identified, the arm kinematics module makes the

arm move to the location of the plastic bottle and picks it up. The importance of this

work is that it can reach and pick plastic bottles in areas where humans may not easily

be able to go, or operate in conditions unfavorable for humans e.g. extreme heat as is

common in the UAE. In future, a further developed prototype can be used to help clean

plastics from the natural habitat of animals to ensure they do not swallow the plastic

pieces and get severely infected. This prototype may help achieve upon development, a

final goal towards a solution that can reduce filling landfills with otherwise recyclable

plastic waste material, that may go unnoticed or not collected for recycling by humans.

Hence, keeping the providing hopefully for a sustainable and clean environment for

better life of humans and animals. In future work, various types of plastic bottles can be

detected by training a CNN with different types of plastic bottles having various shapes,

sizes, and colours. Furthermore, these bottles can, be separated by type into bins, and

then later be transported to a recycling station automatically. This may help increase

the efficiency of the overall recycling process from collection to generation of recycled

material.

58



References

[1] L. Adane and D. Muleta, “Survey on the usage of plastic bags, their disposal
and adverse impacts on environment: A case study in Jimma City, Southwestern
Ethiopia,” Journal of Toxicology and Environmental Health Sciences, vol. 3, no. 8,
pp. 234–248, 2011.

[2] T. Opeolu Olukunle, “Plastic waste awareness and practices among young envi-
ronmentalists in the faculty of environmental sciences.” Master’s thesis, University
of Lagos, Akoka, Yaba, Lagos state, 5 2019.

[3] S. Karbalaei, P. Hanachi, T. R. Walker, and M. Cole, “Occurrence, sources, human
health impacts and mitigation of microplastic pollution,” Environmental Science
and Pollution Research, vol. 25, no. 36, pp. 36 046–36 063, 2018.

[4] J. Wang, W. Guo, T. Pan, H. Yu, L. Duan, and W. Yang, “Bottle detection in
the wild using low-altitude unmanned aerial vehicles,” in 2018 21st International
Conference on Information Fusion (FUSION). Cambridge, UK: IEEE, July 2018,
pp. 439–444.

[5] Y. Tachwali, Y. Al-Assaf, and A. Al-Ali, “Automatic multistage classification sys-
tem for plastic bottles recycling,” Resources, Conservation and Recycling, vol. 52,
no. 2, pp. 266–285, 2007.

[6] S. Shahbudin, A. Hussain, D. A. Wahab, M. Marzuki, and S. Ramli, “Support
vector machines for automated classification of plastic bottles,” in 6th Interna-
tional Colloquium on Signal Processing and Its Applications (CSPA), Mallaca
City, Malaysia, 2010, pp. 1–5.

[7] K. Ozkan, S. Ergin, S. Isik, and I. Isikli, “A new classification scheme of plastic
wastes based upon recycling labels,” Waste Management, vol. 35, pp. 29–35, Jan.
2015.

[8] V. Singh and R. Mishra, “Developing a machine vision system for spangle classifi-
cation using image processing and artificial neural network,” Surface and Coatings
Technology, vol. 201, no. 6, pp. 2813–2817, 2006.

[9] M. Fulton, J. Hong, M. J. Islam, and J. Sattar, “Robotic detection of marine
litter using deep visual detection models,” in 2019 International Conference on
Robotics and Automation (ICRA), Montreal, QC, Canada, May 2019, pp. 5752–
5758.

[10] “Deep-sea Debris Database,” library Catalog: www.godac.jamstec.go.jp. [On-
line]. Available: http://www.godac.jamstec.go.jp/catalog/dsdebris/e/ [Accessed:
2020-03-06].

[11] A. Akib, F. Tasnim, D. Biswas, M. B. Hashem, K. Rahman, A. Bhattacharjee,
and S. A. Fattah, “Unmanned floating waste collecting robot,” in TENCON 2019
- 2019 IEEE Region 10 Conference (TENCON), 2019, pp. 2645–2650.

59

http://www.godac.jamstec.go.jp/catalog/dsdebris/e/


[12] M. Valdenegro, “Submerged marine debris detection with autonomous underwa-
ter vehicles,” in 2016 International Conference on Robotics and Automation for
Humanitarian Applications (RAHA), Kollam, India, Dec. 2016, pp. 1–7.

[13] S. Kulkarni and S. Junghare, “Robot based indoor autonomous trash detection
algorithm using ultrasonic sensors,” in 2013 International Conference on Control,
Automation, Robotics and Embedded Systems (CARE), Jabalpur, India, Dec. 2013,
pp. 1–5.

[14] P. Ravindhiran, P. Gopal, S. J. Gladwin, and R. Rajavel, “Automated indoor waste
management system employing wavefront algorithm and received signal strength
indicator values-based mobile robot,” in 2017 IEEE Region 10 Humanitarian
Technology Conference (R10-HTC), Dhaka, Bangladesh, 2017, pp. 284–289.

[15] L. Cui, T. Zhang, X. Yin, and Y. Qi, “Road garbage cleaning device based on
zigbee gateway and image recognition,” in 2019 Chinese Control And Decision
Conference (CCDC), Nanchang, China, 2019, pp. 5603–5607.

[16] R. Pascoe, “Development of a method for separation of pvc and pet using flame
treatment and flotation,” Minerals Engineering - MINER ENG, vol. 16, pp. 1205–
1212, 11 2003.

[17] C.-H. Park, H.-S. Jeon, H.-S. Yu, O.-H. Han, and J.-K. Park, “Application of Elec-
trostatic Separation to the Recycling of Plastic Wastes: Separation of PVC, PET,
and ABS,” Environmental Science & Technology, vol. 42, no. 1, pp. 249–255, Jan.
2008, publisher: American Chemical Society.

[18] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. C. Wheeler,
and A. Y. Ng, “ROS: an open-source Robot Operating System,” ICRA Workshop
on Open Source Software, 1 2009.

[19] “ROS/Concepts - ROS Wiki.” [Online]. Available: http://wiki.ros.org/ROS/
Concepts [Accessed: 2020-03-06].

[20] “kobuki/Tutorials/Kobuki’s Control System - ROS Wiki.” [Online]. Available:
http://wiki.ros.org/kobuki/Tutorials/Kobuki’s%20Control%20System [Accessed:
2020-04-29].

[21] “kobuki node - ROS Wiki.” [Online]. Available: http://wiki.ros.org/kobuki node?
distro=kinetic [Accessed: 2020-03-06].

[22] B. Zhao, B. Huang, and Y. Zhong, “Transfer Learning With Fully Pretrained Deep
Convolution Networks for Land-Use Classification,” IEEE Geoscience and Re-
mote Sensing Letters, vol. 14, no. 9, pp. 1436–1440, Sep. 2017.

[23] P. Bharati and A. Pramanik, “Deep Learning TechniquesR-CNN to Mask R-CNN:
A Survey,” in Computational Intelligence in Pattern Recognition, ser. Advances
in Intelligent Systems and Computing, A. K. Das, J. Nayak, B. Naik, S. K. Pati,
and D. Pelusi, Eds. Singapore: Springer, 2020, pp. 657–668.

60

http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/kobuki/Tutorials/Kobuki's%20Control%20System
http://wiki.ros.org/kobuki_node?distro=kinetic
http://wiki.ros.org/kobuki_node?distro=kinetic


[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems, 2012, pp. 1097–1105.

[26] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Net-
works,” in Computer Vision ECCV 2014. Cham: Springer International Publish-
ing, 2014, pp. 818–833.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA,
USA, 2015, pp. 1–9.

[28] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” arXiv:1409.1556 [cs], Apr. 2015. [Online].
Available: http://arxiv.org/abs/1409.1556 [Accessed: 2020-03-30].

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 2016, pp. 770–778.

[30] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA,
2014, pp. 580–587.

[31] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective
search for object recognition,” International Journal of Computer Vision, vol. 104,
no. 2, pp. 154–171, 2013.

[32] “Depth estimation from stereo video.” [Online]. Available: https://www.
mathworks.com/help/vision/examples/depth-estimation-from-stereo-video.html

[33] P. Corke, Robotics, Vision and Control: Fundamental Algorithms In MAT-
LAB Second, Completely Revised, Extended And Updated Edition, 2nd ed., ser.
Springer Tracts in Advanced Robotics. Springer International Publishing, 2017.

[34] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Plan-
ning and Control. Springer Science & Business Media, Nov. 2008.

[35] “CIFAR-10 and CIFAR-100 datasets.” [Online]. Available: https://www.cs.
toronto.edu/∼kriz/cifar.html [Accessed: 2020-03-27].

[36] “Camera calibrator.” [Online]. Available: https://www.mathworks.com/help/
vision/ug/stereo-camera-calibrator-app.html [Accessed: 2020-04-20].

61

http://arxiv.org/abs/1409.1556
https://www.mathworks.com/help/vision/examples/depth-estimation-from-stereo-video.html
https://www.mathworks.com/help/vision/examples/depth-estimation-from-stereo-video.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.mathworks.com/help/vision/ug/stereo-camera-calibrator-app.html
https://www.mathworks.com/help/vision/ug/stereo-camera-calibrator-app.html


[37] “Robotics toolbox for matlab.” [Online]. Available: https://www.mathworks.com/
matlabcentral/fileexchange/68542-robotics-toolbox-for-matlab [Accessed: 2020-
04-29].

62

https://www.mathworks.com/matlabcentral/fileexchange/68542-robotics-toolbox-for-matlab
https://www.mathworks.com/matlabcentral/fileexchange/68542-robotics-toolbox-for-matlab


Appendix: Detailed Experimental Results

Navigation Module Testing

The preliminary tests of navigation module are shown in Figures 38 to 44. The

blue line in the figures is the actual navigation path on the google map, whereas the red

line is expected navigation path on the google map.

Figure 38: Preliminary navigation module Test A2.
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Figure 39: Preliminary navigation module Test A3.

Figure 40: Preliminary navigation module Test A4.
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Figure 41: Preliminary navigation module Test A6.

Figure 42: Preliminary navigation module Test A7.
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Figure 43: Preliminary navigation module Test A8.

Figure 44: Preliminary navigation module Test A9.
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Indoor Testing

The indoor tests are shown in Figures 45 to 48.

Figure 45: The developed robot before picking up the bottle in indoor Test 2.

Figure 46: The developed robot picked up the bottle in indoor Test 2.
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Figure 47: The developed robot before picking up the bottle in indoor Test 4.

Figure 48: The developed robot after picking up the bottle in indoor Test 4.

Outdoor Testing

Figure 49 and Figure 50 are the outdoor tests.
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Figure 49: The experimental setup before starting the outdoor Test B3.

Figure 50: The developed robot after picking up the bottle in outdoor Test B3.
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