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In this paper, we compare the use of Bayesian filters for the estimation of release and re-
encapsulation rates of a chemotherapeutic agent (namely Doxorubicin) from nanocarriers in an
acoustically activated drug release system. The study is implemented using an advanced kinetic
model that takes into account cavitation events causing the antineoplastic agent’s release from
polymeric micelles upon exposure to ultrasound. This model is an improvement over the previous
representations of acoustic release that used simple zero-, first- and second-order release and re-
encapsulation kinetics to study acoustically triggered drug release from polymeric micelles. The new
model incorporates drug release and micellar reassembly events caused by cavitation allowing for
the controlled release of chemotherapeutics specially and temporally. Different Bayesian estimators
are tested for this purpose including Kalman filters (KF), Extended Kalman filters (EKF), Particle
filters (PF), and multi-model KF and EKF. Simulated and experimental results are used to verify the
performance of the above-mentioned estimators. The proposed methods demonstrate the utility and
high-accuracy of using estimation methods in modeling this drug delivery technique. The results
show that, in both cases (linear and non-linear dynamics), the modeling errors are expensive but
can be minimized using a multi-model approach. In addition, particle filters are more flexible filters
that perform reasonably well compared to the other two filters. The study improved the accuracy
of the kinetic models used to capture acoustically activated drug release from polymeric micelles,
which may in turn help in designing hardware and software capable of precisely controlling the
delivered amount of chemotherapeutics to cancerous tissue.
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Particle Filter.

1. INTRODUCTION

Chemotherapeutic agents have adverse side effects due to
their cytotoxic effects on healthy tissue. These side effects
include but are not limited to nausea, leukopenia, alopecia,
a reaction at the site of injection and cardiotoxicity.! Hence
the need arises for scientist and engineers to synthesize
drug delivery systems capable of preferentially targeting
diseased cells. There are three broad types of targeting
in the area of drug delivery: passive, ligand (active) and
triggered. These three targeting techniques are utilized to
design a ‘guided missile’ or a “magic bullet” for can-
cer treatment. “Passive” targeting refers to the increased
accumulation of the carrier inside the leaky vasculature
of tumors due to the enhanced permeability and retention
effect. “Active-" or “ligand-" targeting is used to describe
ligand-receptor interactions and allows for the increased
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accumulation of the carrier via endocytosis. Finally, trig-
gered targeting involves the release of the chemothera-
peutic in response to external or internal stimuli. External
means include temperature, magnetic fields, light, ultra-
sound, and electromagnetic waves, while internal stim-
uli include pH, enzymes, electron affinity and reduction
potentials.

The drug delivery system under investigation involves
the sequestration of chemotherapeutic agents inside the
core of polymeric micelles and then the use of ultrasound
to release the nanocarriers’ contents."? Those nanocarri-
ers (10-100 nm) are micellar in structure and can serve
as a possible drug carrier to hydrophobic agents used in
chemotherapy. Micelles are composed of amphiphilic di-
and tri-block copolymers.** The amphiphilic copolymers
are composed of hydrophobic heads and hydrophilic tails
that allow the encapsulation of hydrophobic agents. An
added advantage of the hydrophilic polymeric tails is their
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poly-ethylene glycol (PEG) structure which renders them
unrecognized by the reticulo-endothelial system (RES) and
hence allows for a long circulation time in the blood.’
The nanovehicles used in this study are composed of
Pluronic® P105. Pluronic® P105 micelles are formed when
the triblock copolymer (composed of polyethylene oxide-
polypropylene oxide-polyethylene oxide) is dissolved in
water to a concentration above its critical micelle con-
centration (CMC).%7 During the micellization process, the
hydrophobic polypropylene blocks form the core region
of the micelle and the hydrophilic polyethylene glycol
blocks act as the interface between the core spherical
region and the external aqueous medium. Once Pluronic
P105 micelles are formed, the hydrophobic chemothera-
peutic agents accumulate inside its core. The premise of
this drug delivery system is that the drug is encapsulated
and is allowed to circulate in the body until it reaches the
cancerous site. Once there, a trigger mechanism is needed
to release the chemotherapeutic agents to the desired tis-
sue, and ultrasound appears to ideally fulfil this role.®-?

Ultrasound waves are high-frequency sound waves, with
frequencies typically greater than 20 kHz. Ultrasound is
used as an imaging technique to produce images of body
organs. These images are created by converting the echoes
of the sound waves into sonograms. These acoustic waves
can penetrate deep into the body without a surgical inci-
sion. In addition to its non-invasive nature, ultrasound has
many advantages that render it useful as a trigger mech-
anism in drug delivery, including: the fact that ultrasound
waves can be controlled and focused on the tumor site, the
well-documented synergistic effect that exists between the
activity of drugs and ultrasound,'®!" the ability of ultra-
sound to enhance the transport of drugs through tissues and
other membranes,'? and that ultrasound-induced hyper-
thermia has the ability to eradicate cancerous cells.!>!
Ultrasound-based drug release may occur due to two phe-
nomena: sonoporation, and collapse cavitation. In sono-
poration, ultrasound causes temporal permeability in the
membrane of cells allowing for subsequent drug uptake.
In the collapse cavitation stage, ultrasound intensity causes
the collapse of microbubbles which causes the formation
of ultrasound shock waves. When these shock waves reach
the micelles, they shear the micellar structure open, releas-
ing the encapsulated drug in the process.'>!”

In addition to passive- and triggered-targeting, ligand-/
active-targeting can be achieved via the conjugation of
targeting moieties to the surface of the carriers. One of
the most important ligands used in drug delivery is the
folate/folic acid moiety because its receptors are overex-
pressed on the surface of many cancer cells (including
breast and ovarian cancers).

We have reported earlier the release of Doxorubicin
and Ruboxyl from Pluronic® P105 micelles and have ana-
lyzed its release kinetics using mechanistic-deterministic
models'® ! and stochastic models.?*?> In a previous paper,
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the drug release was mathematically modeled and the esti-
mation of the drug release and encapsulation was captured
using Kalman filters.” The estimation performance was
also enhanced using an adaptive Kalman filter that is more
resistant to modeling errors. In this work, we take it a step
further with a more realistic drug release model and use
several Bayesian filters. Both Kalman and particle filters
belong to the class of Bayesian estimators. Kalman filters
are optimal estimators when used in linear and Gaussian
models,>* however, they work only under these constraints.
For non-linear models, extended Kalman filters are widely
used. EKFs use the standard Kalman filter formulation for
non-linear estimates by linearizing about the estimate at
each step. EKFs have the capability of producing accurate
results when used in the solution of many problems, yet
diverge for others because the optimality of EKF depends
on the degree of the non-linearity of the model.”> There-
fore, we investigate the more general Bayesian estimators
known as particle filters. A particle filter is a sequential
Monte Carlo-based mathematical tool also known as a
Bootstrap Filter. Particle filters are powerful tools when
used for nonlinear and non-Gaussian distributed systems.
Although particle filters are counted as sub-optimal filters
when compared to other Bayesian filters, they approach
optimality as the number of particles is increased.”® The
performance of the Kalman filter and the adaptive Kalman
filter proposed in a previous publication?® will be com-
pared against the performance of particle filters. The drug
release model used in this work will also be extended to
include non-linearities that account for the reconstruction
of micelles addressed earlier.?° For that model, EKF, adap-
tive EKF and particle filters will be used to estimate the
drug encapsulation percent. Our objective in this paper
is to study and analyze those Bayesian estimators when
applied to our drug delivery system. More specifically, the
study aims to improve the accuracy of the kinetic models
used to capture acoustically activated drug release from
polymeric micelles, which may in turn help in design-
ing hardware and software capable of precisely controlling
the delivered amounts of chemotherapeutics to cancerous
tissue.

2. MATERIALS AND METHODS

2.1. Drug Encapsulation in Pluronic Micelles

Stock solutions of Pluronic® P105 (a gift from BASF,
Mount Olive, NJ) were prepared by dissolving the poly-
mer in a PBS (phosphate buffered saline) solution to a
final concentration of 10% wt. Doxorubicin-Dox (Phar-
macia and Upjohn Company Kalamazoo MI), in dosage
form (1:5, Dox: lactose), was dissolved in the P105 solu-
tions at room temperature to produce a final Dox concen-
tration of 4.5 ug/ml in 5% wt. Pluronic®. The drug was
encapsulated inside both non-targeted and folate-targeted
Pluronic® P105 micelles.!' As a control, the same drug
concentration was also prepared in PBS.
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Figure 1. Fluorescence detection in an ultrasound exposure chamber.

2.2. Measuring the Acoustic Release from Micelles

To quantify drug release, a custom-made chamber was
built to measure the change in fluorescence and hence the
Dox release in the presence and absence of ultrasound.?’
The chamber is illustrated in Figure 1. Micelles encap-
sulating Dox were pipetted in an acoustically transpar-
ent tube in a sonicating bath filled with degased water
(Sonicor SC-50, Copiaque, NY) with the sample placed
directly above the transducer. The signal generated by the
transducer can be described as a 70-kHz wave amplitude-
modulated sinusoidally at about 0.12 kHz. A fiber optic
probe was inserted inside the sample-containing chamber
to direct the laser excitation beam into the sample and
collect the emitted fluorescence from the Dox molecules.
A Bruel and Kjaer hydrophone (# 8103, Decatur, GA)
was used to measure the acoustic power density delivered.
The release was examined at several power densities corre-
sponding to mechanical indices in the stable and transient
cavitation regions. Calculations showed that 99% of the
collected fluorescence originated within 3 mm of the tip of
the fiber optic bundle. The % Dox release was calculated
from the fluorescence measurements using the equation
below and assuming a linear behavior:

%release = Tpros = us x 100%
pios — {pBs
where [ is the fluorescence intensity upon exposure to
ultrasound, I,5g is the fluorescence intensity in a solution
of Dox in PBS, and I,y is the intensity recorded when
the drug is encapsulated in Pluronic® P105 (which corre-
sponds to 0% release or 100% encapsulation).

3. MECHANISTIC DYNAMIC MODEL

The first model used in this paper is based on the math-
ematical formulation proposed earlier,'® which suggests
that the drug is acoustically released from micelles at
a constant rate. When ultrasound is turned off the re-
encapsulation rate is first-order with respect to the released
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drug concentration.”* The model is represented by the fol-
lowing equation:

PO k(- B0)

where E(t) is the encapsulated drug amount at time ¢ and
dE(t)/dt is the rate of change of drug encapsulation. T is
the drug concentration in the solution (inside and outside
micelles), k, is a zero-order release rate constant, and k, is
a first order re-encapsulation rate constant.”*> The above is
discretized at a sampling time At = 0.2 sec.?* The system
model is then given by:

E(k)=e—kAtE(k—1)+Bd+w(k—1)

where Bd = (e — kAt —1)(k,— 1) and w(k) is the system
noise modeled as zero-mean Gaussian white noise with
covariance R. The measurement model equation is shown
below:

y(k) = E(k) +v(k)

where v(k) is the measurement noise modeled as zero-
mean Gaussian white noise with covariance Q.

The second model used in this paper is an extension
to the dynamics of the drug encapsulation in dE(t)/dt =
—k,+ k. (T — E(¢)) to involve a competing mechanism to
the drug release, which is the drug reassembly. The model
is based on transient cavitation events causing shock waves
to shear open these nanovehicles. Upon the termination of
sonication, the polymeric chains will reassemble into the
micellar structure again. Doxorubicin will reaccumulate
inside the hydrophobic poly-propylene core of the micelles
resulting in drug “re-encapsulation.” The formulation of
the drug release process and its counteract can be derived
from the micelles destruction and reassembly formulas.
The latter is apparent in the rate of change of the number
of micelles:

dM;  (dM,; M,
_J | L + |
dt dt destruction dt assembly

Using our previous report,”® the above expression can be
expressed as:

dM, _ " M.D3
—j=[—aDijefk"[]+ %)(1_,12:/’37]3/
dt D; >i-1 D;

The first part of the above equation is attributed to the
destruction of micelles where « is a non-zero constant and
D ; is the size of the micelle. The exponential expression,
however, represents the cavitating nuclei which decreases
exponentially over time with a non-zero constant factor
equal to k,. The second part of the formula, on the other
hand, represents the reassembly of the destructed micelles,
where 3 is a non-zero constant and the inverse of the size
of the micelle cubed Df. are multiplied by an expression
for the concentration volume.?



Measuring the Acoustic Release of a Chemotherapeutic Agent from Folate-Targeted Polymeric Micelles

Abusara et al.

In the same manner, the drug encapsulation rate is for-
mulated as:

dE; (dEj> (dEJ)
_ | L + 2
dt dt release dt encapsulation

where,
dE, D3
—L =[—aD,M,e™™"E ]+ [)\FM-%}
dl J J J JD] Z;:I D;)

The relation between drug release and the destruction of
micelles is evident in the above formula. The same applies
to the drug encapsulation and micellar reassembly, where
F represents the free drug and A is a non-zero constant.
Obtaining the system dynamic equation from the equation
above is not straightforward. Hence, MATLAB® fitting
tools were deployed for this purpose. Simulation results
showed that the model that best fits the data generated by
the above differential equations is a quadratic model with
the following structure:

E(k)=a(E(k—1))>+BE(k—1)+y+w(k—1)

where 3 and +y are non-zero constants. Since, the encap-
sulation rate can be measured directly, the measurement
equation remains as:

y(k) = E(k) +v(k)

4. THE PROPOSED ESTIMATION
APPROACHES
4.1. Kalman Filter
Kalman filters are Bayesian filters that are used to predict
the state of a system given online measurements of that
state. The state estimation is achieved by investigating the
probability p(E | Y¥) of the state, in our case the encap-
sulation rate E, which results in the online observations,
where Y* = [y(0), y(1),...,y(k)] are the state observa-
tions (measurements) up to time k. Kalman filters provide
the MMSE estimate that maximizes argmax, p(E | Y¥)
which happens to be the mean (E|Y*). With every
new observation, the filter propagates the mean and the
covariance of a system state to provide a new esti-
mate. Therefore, the Kalman filter is suitable for the real
time processing of data.** The system state is usually
expressed as:

E,=F_E_ +w_,
while the observed system is given by:
Ve =HE +v,

The random processes w, and v, are the system and the
observation noises, respectively, which are assumed to be
independent of each other with covariance matrices Q, and
R,. F is a matrix that relates the previous to the current
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estimates, while the H matrix defines the relation between
the measurement and the desired estimate. In the linear
model of the drug release, F,_, is constant and it is equal
to e %A while H, is equal to 1.

Based on the system and measurements models, the fil-
ter is supposed to estimate the true encapsulation rate.
A posteriori estimate E* of the state can be found if all
the measurements up to the kth time are available. On the
other hand, if all the measurements up to time k — 1 are
available, a priori £~ estimate of the state value at time
k is found. In addition, Kalman filters provide a measure
of the uncertainty in the state estimate at each iteration
which is calculated by the estimation error covariance P.
The filter algorithms can be summarized using the follow-
ing equations:*®

L =e*YE" +B,,
= P 0,
K, =P (P, +R)",
P/j: (I1-=K)P,
Ef =E + Ky~ E)

4.2. Extended Kalman Filter

As stated previously, a non-linear model is used to capture
the dynamics of this drug delivery system with its two seg-
ments, drug release and drug re-encapsulation. We propose
the use of Extended Kalman Filters (EKF) to estimate the
encapsulation rate E for this non-linear model. The EKF
exploits the framework of Kalman filters to estimate the
encapsulation rate at each iteration.” Series expansion and
linearization techniques are employed by EKF to handle
the non-linear dynamics of the state, expressed as

E =f(k=1,E_)+w_,
and the measurement equation is given by
Vi = h(kE,) + v,

Both f(-) and A(-) are non-linear functions. The EKF fol-
lows the same structure as the Kalman filter except that
it has one more linearization step. For each iteration the
EKF carries an evaluation of the Jacobians, F(k — 1) and
H (k), using the following:

af(k—1)]
F(k—1)=7f(aE )iE_E+,
oh(k
H“‘):%)
E:E;

In the model, in E(k) = a(E(k —1))> +BE(k — 1) +
v+ w(k—1, f() is a quadratic function of the state
E whereas h(-) is a constant equal to 1. Hence,
linearization is needed for the state equation only.
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Using (k—1)=0f(k—1)/IE|_g+ . the state Jacobean
F(k—1) is calculated as:

Fk—1)=2a(E(k—1))+pB

It is important to note that the performance of EKF is
dependent on the non-linearity of the model. If the model
is highly non-linear, the linearization will poorly approxi-
mate the Jacobians which causes EKF to be a non-optimal
solution.”

4.3. Particle Filter

A particle filter is also proposed to estimate the drug
encapsulation. This Bayesian estimator is more flexible
compared to the two other filters, it imposes no restriction
on the system dynamics. Hence, particle filters can be used
for both the linear and non-linear models. The key idea of
this filter is to recursively calculate the required posterior
probability p(E | Y*) using “importance sampling” and
discrete random samples (particles). The particles used by
the filter are associated with weights that are used to esti-
mate the desired state.’® In this section a detailed deriva-
tion of particle filter is provided.

Let {Ei . wi}¥ be a set N, particles {E},,i =
1,..., N} associated with weights {w,’;, i=1,...,N,;} for
encapsulation states £ up to time k. The posterior PDF at
time k can be then approximated by the following equation

N
P(Eo | y1a) = D wi 8(Egy — Epy)

i=1
The above equation is true under one constraint which is
Y% wi = 1. Using the dirac delta function, a discretized
approximation of the density is achieved. This approxima-
tion simplifies the computation of the desired density as it
replaces all integrals by summations.*® The next step is to
choose the values of the w} in what is called importance
sampling. Now assume that the desired PDF p(E) from
which direct sampling is not possible. Moreover, assume
another PDF ¢(E) from which samples are generated, this
PDF is known as the importance density.?> Therefore, the
approximation density can be given by

p(E)~ Y wid(E - EY)

i=1
where the normalized weights are given by
W o p(E")
q(E)
The above equation can be expanded for all E;
: Ej,
W p( ?k)
q(Egy)
Using posterior representation, the weights can be given by

¢ q(Eo | yi)
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The posterior density equals to:

POk | Egies Vi) P(Eo | Y1i—1)
PO [ Yia1)

P(Eoy | yix) =

Since the posterior density is recursively estimated, then
all states up to time k — 1 are available.

Hence, p(E,, | y,.4_) equals to:

P(Egy | Yisu—1) = P(Eg | Egsmrs Yia—1) P(Eg—y | Yise—1)

The posterior density then becomes:

P(Eox | y10)
_ PO Eoses Vi) PCE L Egg— 15 Y1k ) P(Egi—1 | Y14-1)
PO yia-1)

The above representation can be simplified to

_ PO [ EDP(E | Ex—)P(Eg—1 | Y1s-1)
PO | Yia1)

where p(y, | ¥1.._;) is always true. Following from there,
the posterior density becomes:

P(Eos | yi) < pi | EQP(E; | Ex_)P(Eo—i | Yi4—1)

Then we substitute the above equation in w] o
P(EL, | v14)/q(ES, | ¥1.) to obtain the updated weights:
W o PO EDP(E; | Ei_)P(Epyy | Yis—t)

¢ q(E(I)k | yl:k)

Since the importance density can also be written in terms
of previous states, the updated weights become:

i PO EDPEL I E_)P(Ejy | Yis)
q(E; | Egy_1> i) q(Egyy | Yia—1)

The above can be simplified to:

. E: E! | E!
<xw,i,1p(y"|i k)zi( L E )
q(E; | Egy_ys Y1)

To further simplify the above equation, we can assume that
the importance density is only dependent on the previous
samples E,_, and the current observation y,. Therefore,
the update weight equation can be reduced to:

‘ ‘ E)p(E! | E!
w o wllc—lp(yk | ik)p(i k | k—l)
q(E} | Ei 1, ye)

To simplify the above equation even further, the impor-
tance sampling density function can be chosen to be:

q(Ey | Elic—l’ yo) = p(E; | Elic—l)

Hence, the weight update equation can be simplified to:

wlic & wlic—lp(yk | Ell()
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ALGORITHM 1  (GENERAL  PARTICLE  FILTER
ALGORITHM).
l.for i=1to N, do
2. Using q(E| | E._,,y;), draw particles
3. Assign the particles weights using Eq. (28)

4. end for

5. Sum all weights § =Y W/
6.fori=1to N, do

7. Normalize weights using wj = w'/S,
8. end for

9. Resample using Algorithm 2

10. Find estimate E,.

With this, we complete the basic Particle Filter equa-
tions. However, the procedure above is not enough for a
particle filter to work, this is due to a degeneracy prob-
lem. This problem arises because, after few iterations of
the above algorithm, all but few particles will have sig-
nificant weight.?' This means that few particles only will
be contributing to the approximation of the density while
the rest particles are useless.”> Therefore, a resampling
step is needed to ensure that samples with small weights
are eliminated and the large weights are distributed over
new samples such that all particle weights are equal.’' The
resampling step is shown in Figure 2. As is shown in the
figure, the randomly drawn particles are weighted using
the likelihood density. In the resampling step, the origi-
nal particles are distributed such that they are concentrated
around points with significant weights.

ALGORITHM 2 (SYSTEMATIC RESAMPLING ALGORITHM).

. Initialize a variable ¢(1) =0
.fori=2to N, do

q(i) = q(i—1)+w;

. end for

. Initialize another variable u(1) =rand/N,
.for j=1to N, do

. Initialize i = 1

N N T N

Figure 2. Illustration of the resampling step in particle filtering.

6

8. u(j)=u(l)+(j—1)/N;
9. While u(j) > c(i) do

10. i=i+1
11. end While
12. E| = E|

13. w) =1/N,

5. ADAPTIVE FILTERS

The high noise in the encapsulation measurement struc-
ture makes it hard to characterize the measurement noise
covariance accurately, hence modeling errors are expected.
Adaptive filters can be used to enhance the estimation per-
formance of the filters for this case. An adaptive filter
implements a multi-model filter approach that probabilis-
tically determines the measurement noise covariance.?* In
the multi-model, several Kalman filters with different noise
statistics assumptions will be used to estimate the state of
encapsulation. The estimate of the state is found by proba-
bilistically summing up the estimate from all filters in the
model. The probability of each assumption is updated at
each iteration by:

a k) = expl—(1/2)y" Ry}
W(y(k)) N p

where R,, is the noise covariance assumption for the Ath
filter and y(k) is the observation at time k. The probability
that the assumption is correct given the measurements is
also updated as:

A=) xa,(y(k)
A, (k) = L Ay(k—1) x a,(y(k))

From the above, the estimate state and covariance are
found by:

E(k) =}_ Ay (k) x E, (k).

h=1

P =Y A,(K) x P,(K)

h=1

A multi-model extended Kalman filter is implemented in
this work for the non-linear model and particle filters
are excluded from the multi-model analysis since they
already embed an importance sampling technique in their
algorithm.

6. EXPERIMENTAL RESULTS

In this section, we present the performance evaluation of
Bayesian filters used to estimate the encapsulation rate for
both true and simulated environments. Our experiments are
implemented for the linear and nonlinear system dynamics.
The simulated data are retrieved directly from the mathe-
matical models while the real data are recorded from the
customized experimental chamber. The real linear data are

J. Nanosci. Nanotechnol. 18, 1-9, 2018
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obtained exclusively during sonication and the nonlinear
data are recorded during and after sonication.

For comparisons in simulated environments, the mod-
els E(k) =e—k AtE(k—1)+Bd+w(k—1) and y(k) =
E(k)+v(k) are used to test the performance of Kalman fil-
ters, multi-model Kalman filters and particle filters. Then,
extended Kalman filters, multi-model extended Kalman fil-
ters and particle filters are used to estimate the encapsula-
tion rate for the nonlinear model (quadratic model) given
by E(k) = a(E(k—1))*+BE(k—1)+y+w(k—1) and
v(k) = E(k) +v(k). In both scenarios, the same system
and measurement covariances are assumed for all filters, a
system noise covariance of 0.5 and a measurement noise
covariance of 0.02. For the multi-model adaptive filters, 5
measurement assumption covariances in the range of 0.06—
0.02 were used with an initial 1/5 probability for each
assumption.

Figure 3 shows the estimation results for the Kalman
filter against the performance of the adaptive filter when
used for predicting a linear system model in the simulated
environment. Our results confirm previous findings® as is
shown in the figure whereby the adaptive Kalman filter
provides better results. Hence, the optimality of Kalman
filters is achieved only when the correct modeling is guar-
anteed, which is achieved by using adaptive Kalman filters.

The performance of adaptive Kalman filter is then com-
pared to the performance of the particle filter in a sim-
ulated environment. Particle filter performance is plotted
against the adaptive Kalman filter in Figure 4. To achieve
a good performance of the particle filter, 5000 particles are
used to find the estimate which is computationally exhaus-
tive. Although the particle filter performs reasonably well,
the adaptive Kalman filter is optimal in this case since it
is computationally less expensive.

The comparison between the adaptive Kalman filter and
particle filter was extended to the real environment. Real
data were used in Figure 5, where the adaptive Kalman
and particle filter are used to predict drug encapsulation.

Figure 3. Simulated environment: The performance of adaptive
Kalman versus Kalman filters.
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Figure 4. Simulated environment: The performance of adaptive
Kalman versus particle filters.

The figure shows that, for real data, the adaptive Kalman
filter is more stable than the particle filter. Therefore, adap-
tive Kalman filters outperform particle filters based on
their computational requirements and stability.

The second part of our simulations is dedicated to
the non-linear model (quadratic model) analysis. For this
part of the study, extended Kalman filters were used for
the non-linear model. In Figure 6, the performance of
extended Kalman filter is plotted against the performance
of adaptive extended Kalman filters. Both filters are used
to estimate the non-linear states in a simulated environ-
ment. It is clear, from the results, that the adaptive filter
outperforms the conventional extended Kalman filter.

Next, the particle filter is used to predict the encapsu-
lation for the simulated data and its performance is com-
pared to that of the adaptive extended Kalman filter. The
results are shown in Figure 7. Similar to the linear model
case, the good performance of the particle filter was only
achieved after increasing the number of particles to 5000.

Figure 5. Real data: The performance of adaptive Kalman versus par-
ticle filters.
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Figure 6. Simulated environment: The performance of adaptive
extended Kalman versus extended Kalman filters.

Although adaptive filters are known to outperform Kalman
filters in predicting non-linear models, they are outper-
formed by Kalman filters for this specific model (repre-
senting drug release).

Finally, real non-linear experimental data are used, and
the achieved estimation performances by the filters are
depicted in Figure 8. With the real data, the adaptive
extended Kalman filter is found to be more stable than
the particle filter, indicating that for non-linear models
extended Kalman filter is more stable and less computa-
tionally expensive than the particle filter.

It is worth mentioning that for the purpose of predicting
drug release, the particle filter is advantageous for having
the flexibility to predict both linear and non-linear models
with the same code, unlike Kalman filters. However, the
flexibility of particle filters comes at the expense of high
computational complexity.

Figure 7. Simulated environment: The performance of adaptive
extended Kalman versus particle filters.
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Figure 8. Real data: The performance of adaptive extended Kalman
versus particle filters.

7. CONCLUSIONS

This paper has discussed drug release estimation in an
ultrasound-based drug delivery system. Two models of
acoustically activated drug delivery systems were dis-
cussed and simulated; a linear and non-linear system mod-
els. The linear model describes the drug release process
only whereas the non-linear model describes the whole
drug delivery process. Several Bayesian filters were used
to estimate the drug encapsulation rate. The filters per-
formances were reported under real and simulated condi-
tions. First, a Kalman filter and its adaptive (multi-model
based) version were used to estimate the drug encapsula-
tion rate. Our results show that the adaptive filter is more
immune to modeling errors. The performance of the filters
was checked when a linear model of the system was used.
Using our results, we concluded that while a particle filter
performed well, a Kalman filter is more stable and more
computationally reliable. Additionally, the performance of
the proposed filters was shown when a nonlinear model
of the encapsulation was used. The results show that for
the non-linear model an adaptive extended Kalman filter
performs better than a normal extended Kalman filter. The
adaptive extended Kalman filters, also, outperform particle
filters. As part of our future work, the sensitivity and the
consistency of the filters estimation performance will be
studied.

Particle filters are very powerful Bayesian estimators
that have no restrictions when it comes to the system and
measurements dynamics. The objective of this paper was
to study the possibility of replacing optimal Kalman fil-
ters with particle filters. The reason behind this objective
is to eliminate the restrictions imposed by Kalman filters
and provide a more flexible estimator (i.e., particle filter).
Our results showed that a Kalman filter is indeed an opti-
mal filter in linear and Gaussian problems. In addition, our
results demonstrate that using a small number of particle
Kalman filter performs better than particle filters.

J. Nanosci. Nanotechnol. 18, 1-9, 2018
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The main goal of this drug delivery system is to
reduce the side effects of conventional chemotherapy,
hence improving the lives of cancer patients worldwide.
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