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This paper models the acoustic drug release of chemotherapeutics from liposomes using a kinetic model that accounts
for systematic biases affecting the drug delivery process. An optimal stochastic filter is then proposed to provide robust
estimates of the percent drug released. Optimality is guaranteed by accurately identifying the underlying statistical noise
characteristics in experimental data. The estimator also quantifies the bias in the release, exhibited by the experimental
data. Drug release is experimentally measured as a change in fluorescence upon the application of ultrasound. First,
a first-order kinetic model is proposed to model the release, which is aided by a bias term to account for the fact that full
release is not achieved under the conditions explored in this study. The noise structure affecting the process dynamics
and the measurement process is then identified in terms of the statistical covariance of the measured quantities. The
identified covariance magnitudes are then utilized to estimate the dynamics of drug release as well as the bias term.
The identified a priori knowledge is used to implement an optimal Kalman filter, which was initially tested in a simulation
environment. The experimental datasets are then fed into the filter to estimate the state and identify the bias. Experiments
span a number of ultrasonic power densities for liposomes. The results suggest that the proposed algorithm, the optimal
Kalman filter, performs well in modeling acoustically activated drug release from liposomes.
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INTRODUCTION
The need to alleviate the side effects associated with
chemotherapy has pushed the envelope of nanotechnol-
ogy to develop nanocarrier-based drug delivery systems
(DDS) capable of precise and targeted treatment of malig-
nant tumors. Examples of such DDSs include solid lipid
nanoparticles, liposomes, niosomes, micelles, archaeo-
somes, dendrimers and other carrier systems.1–4 Our DDS
makes use of ultrasound (US) as a trigger to release the
contents of liposomal nanocarriers. Several reports have
demonstrated the mechanism by which ultrasound actua-
tion stimulates the nanocarriers to release their encapsu-
lated agents.5–12

The measurement of ultrasound-triggered release of
drugs from nanocarriers, similar to other dynamic systems,
suffers from noise that affect the experimental results.
This noise not only hinders the accurate delivery of
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chemotherapeutics, but also interferes with the dynamics
of the DDS as well as the measurement process. The dis-
turbances affect both the dynamics and measurement mod-
els. Dynamic system noises are utilized to account for
uncertainties in the mathematical model used to describe
the drug delivery process as well as the disturbances
inherent to the process itself. Dynamics noise gets prop-
agated along with the state in the mathematical model
which helps account for the unmodeled dynamics. On the
other hand, measurement noise in a process is utilized to
describe disturbances and uncertainty inherent to the mea-
surement apparatus. Accounting for the two types of noises
is crucial to accurately estimate the states of any dynamic
system. Failure to appropriately consider dynamics and
measurements noises breaches the optimality of any esti-
mation algorithm, which translates to inaccurate estimates
of the states of the considered dynamic system. Identifying
noise statistics associated with a given dynamic system is
addressed in literature, and some of the methods that aim
to characterize the statistics include Bayesian, Maximum
Likelihood, Correlation, and Autocovariance Least-squares
techniques.13�14 Maximum Likelihood estimation is used
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here to identify the noise covariance magnitudes affecting
the process.15

The acoustic release of calcein from liposomes
has been studied using mechanistic and probabilistic
models.9–11�16�17 Modeling methods range from statisti-
cal methods, model dependent methods, and model inde-
pendent methods.18 This work models and predicts the
behavior of acoustically-activated calcein release from
stealth liposomes by proposing a suitable model-dependent
kinetic model that best fits experimental release data, per-
forming system identification on the proposed model to
find the model parameters that describe the experimental
data, and applying a stochastic-based approach to realize a
prediction that is a robust to the existence of bias, imper-
fections, and noise in the drug delivery process.

The Kalman filter is a stochastic algorithm that makes
use of the information available about the dynamics and
measurements of a dynamic system and estimates the
states of the dynamic system. The information fed into
the algorithm is the mathematical model describing the
dynamics of the system as well as the undertaken measure-
ments. A Kalman filter then produces optimal estimates of
drug release and identifies systematic errors in the drug
delivery system in the form of a bias. The Kalman fil-
ter is a minimum-mean-square-error (MMSE) technique
which minimizes the expected value of the squared error
between the estimate and the true value of release (mea-
sured as a percent).19 The application of a bias identi-
fying drug release state using a stochastic filter, as well
as, the identification of the uncertainty structure in the
system is a novel effort. It is worth mentioning that
we successfully attempted to estimate the chemotherapeu-
tic release of another drug delivery system that uses poly-
meric micelles (as the drug delivery vehicle) using Kalman
filter variants.13 It is also worth mentioning that this work
is targeted at employing the filter to identify the systematic
bias present in the DDSs.

In this work, a kinetics model is first proposed to
model the release of chemotherapeutics from liposomes
and account for systematic errors in the process in the
form of biases in the delivery. The noise structure of the
dynamics is then identified through a maximum likeli-
hood approach. Consequently, an optimal Kalman filter,
which uses the identified a priori information, is used
to estimate the percent of the drug released and the bias
affecting the process. The drug release estimation approach
presented here is essential to the design of control sys-
tems that make use of the structural information of the
model, as well as, the accurate estimates of the filter to
deliver chemotherapeutics to patients.20�21 The treatment
process controller could also make use of the predicted
state of percent drug release at times when measurements
are not available. This is where the proposed model and
high-accuracy percent drug release estimation methods are
vital.

METHODS AND MATHEMATICAL MODEL
Experimental Methods
The lipid used to prepare the liposomes was DSPE (1,2-
distearoyl-sn-glycero-3-phosphoethanolamine), which was
conjugated to polyethylene glycol (PEG) to prolong the
circulation time of the nanocarrier-encapsulated model
drug, namely calcein. The liposomes were prepared by
modifying the lipid with estrone, and adding cholesterol,
and 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC)
which resulted in the synthesis of DSPE-PEG-NH2.
Cyanuric chloride (2,4,6 trichloro-1,3,5 triazine (CC)) was
used to conjugate estrone (ES) to DSPE-PEG2000-NH2.
ES was reacted with CC in a 1:1 molar ratio, in the pres-
ence of trimethylamine (TEA). This type is referred to as
DSPE-PEG-ES, hereafter.

Measurement Technique
The percent release of calcin from the liposomes is related
to the change in the fluorescence intensity of the envi-
ronment surrounding the liposomes as they release the
model drug. Calcein is a fluorescent molecule with exci-
tation and emission wavelengths of 495 and 515 nm,
respectively.22 It is also loaded at a self-quenching con-
centration. The application of US releases calcein from
the liposomes to the surrounding medium, which relieves
the self-quenching of the dye resulting in an observable
increase in fluorescence. Equation (1) is used to calculate
the percent release of the drug from these nanocarriers.

%DrugRelease =
F −F0
Fmax−F0

(1)

where F is the fluorescence intensity of the drug, F0 is
the average baseline fluorescence intensity of the solution
under sonication, Fmax is the fluorescence intensity of the
drug when the entire drug content is released, and the
%Release ∈ �0�1�.
Low-frequency ultrasound actuation was used to release

the drug from the liposomes, which was achieved through
the use of a 20-kHz piezoelectric ultrasonic transducer.
In our research experiments, a 3-mm probe connected to
a VCX 750 actuator (Vibra cells, Sonics and Material)
is used to trigger drug release.23�24 The probe is tapered
and produces 20-kHz ultrasonic waves. The probe tip is
water-resistant and is inserted into the solution immedi-
ately before sonication. The solution is placed in a cuvette
with a 1 cm×1 cm opening, allowing the probe to vibrate
freely which ensures maximum energy transfer into the
liposomal solution. For more information, please refer to
Ref. [25].

Modeling Drug Release
Literature presents a multitude of dynamic models to
describe the kinetic release of model drugs/dye/drugs
from nanocarriers. Examples of these models include
zero- and first-order release models, the Higuchi model,

J. Biomed. Nanotechnol. 15, 162–169, 2019 163



Modeling and Bias-Robust Estimation of the Acoustic Release of Chemotherapeutics from Liposomes Wadi et al.

Figure 1. Drug release for the liposome types.

the Korsmeyer-Peppas model, or other models that
rely on chemical or physical attributes of the release
process.26�27

After examining our experimental data and fitting it
against the zero-order, the first-order, the Higuchi model,
and the Korsmeyer-Peppas model,28 we conclude that the
first-order model is the most suitable at modeling the expo-
nential behavior of US-assisted drug release from lipo-
somes. A steady state value corresponding to 100% release
is attained for every test upon the addition of a surfactant
(Triton X) that dissolves the liposomal structure releas-
ing all its contents. A first-order release kinetics model is
proposed.

Ṙ�US =−krR (2)

where R is the state of drug release, and kr is
the release constant that governs the dynamics of the
model.
It is, however, observed that the drug release steady state

value does not correspond to the 100% release of the drug
due to experimental errors that could relate to the batch
prepared, the way the release was triggered, or the incom-
plete destruction of the nanocarriers. Therefore, a bias term
is added to the first-order model. This way, the steady-
state value of the drug release is more representative of a
realistic setting. This decision is inspired by the fact that

Table I. Release constants for the conducted experiments.

Liposome Power density
Exp type (W/cm2� kr ±1�96� b±1�96�

1 PEG-ES 6�08 0�259±6�0×10−4 0�242±6�5×10−4

2 6�97 0�305±6�0×10−4 0�283±6�5×10−4

3 11�83 0�426±8�5×10−4 0�412±9�5×10−4

4 NH2 6�08 0�159±3�0×10−4 0�144±2�5×10−4

5 6�97 0�257±4�5×10−4 0�238±3�5×10−4

6 11�83 0�306±6�5×10−4 0�297±6�0×10−4

the drug release in the proposed model will have a steady
state value of R� = b/kr .

Ṙ�US =−krR+b (3)

where b is the bias.
The mathematical model is expressed as shown in

Eq. (2), where R is the amount of drug released, b is the
bias term accounting for the sub-full release of the drug,
kr is the release rate constant of the drug. Experiments
were conducted with different ultrasonic power densities
for the two types of liposomes, ES and NH2. Figure 1
presents the data collected for various ultrasonic power
densities.
The experimental constants, kr and b are shown in

Table I alongside the standard deviation corresponding to
a 95% confidence interval. The variance of the constants
representing the dynamic behavior of the drug delivery
system appears to be very small in magnitude.

Data Acquisition
The release was observed during the “on” pulse of ultra-
sound. A significantly noisy response was observed due to
fluorescence detection and ultrasound application. A num-
ber of experiments were carried out at different ultra-
sonic power densities. The true biases, b, that affect the
dynamics of release are identified through the postpro-
cessing of the data to compare against the algorithm
estimate.

UNCERTAINTY IDENTIFICATION AND
DRUG RELEASE ESTIMATION
Identification of the Uncertainty Structure
The system dynamics noise as well as the measurements
noise are the two sources of uncertainty disturbing the
process dynamics and the measurement apparatus, respec-
tively. This uncertainty structure is modeled as zero-mean
additive Gaussian white noise sequences. Identifying the
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uncertainty structure entails finding the process and mea-
surement noise covariance magnitudes. Knowledge of the
covariance magnitudes is vital to the optimal estimation of
the percent drug encapsulation. Figure 1 shows the noisy
behavior, especially towards the end of the response where
the drug has almost been fully delivered.

To apply the estimation algorithm and to identify the
uncertainties affecting the release, the model is discretized
at a sampling frequency of 100 Hz. The discretized linear
model is written in state space form, and is comprised of
a dynamic and a measurement equations form as shown
in Eqs. (4) and (5). RK is the amount of drug released
at time step k, bK is the bias at time step k, �t is the
sampling time period equal to 0.01 s, and wk and vk+1 are
the dynamics and measurement noises at times tk and tk+1.
The state vector xk = �Rk bk�

T

[
Rk+1

bk+1

]
=
[
1−�tkr �t

0 1

][
Rk

bk

]
+
[
1 0

0 1

][
w1k

w2k

]

=A xk+B Wk

(4)

zk+1 = �1 0�

[
Rk+1

bk+1

]
+ vk+1 = Cxk+vk+1 (5)

The dynamic equation in (4) is stable as 1−�tkr < 1.
Also, the system represented in Eqs. (4) and (5) is
observable as the observability Gramian is full rank.
It is necessary to write the measurement equation in
terms of the state of drug release at time 0 as shown
in Eq. (6).

As a consequence of the stability of the dynamics in (3),
∀k > � time steps, �A� �< � for � > 0 being a small mag-
nitude threshold that is designed to be less than 1×10−5.
� should be small in magnitude such that subsequent time
steps are dominated by the noises in the system. Choosing
� properly translates to the independence of the measure-
ments after � time of the initial state.⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z0

z1

���

zN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C

CA1

���

CAN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
	x0
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

���

vN+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 � � � 0

C 0 � � � 0

���
���

� � �
���

CAN−1 CAN−2 � � � C

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w0

w1

���

wN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

This assumption allows Eq. (6) to be rewritten as in
Eq. (7). The vector of measurements occurring after time
step � is seen on the L.H.S. of Eq. (7). It is observed that

the vector of measurements is exclusively a function of
the dynamics and measurement noise sequences, as seen
on the R.H.S. of Eq. (7).

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

z�

z�+1

���

zN+�−1

⎤
⎥⎥⎥⎥⎥⎥⎦
≈

⎡
⎢⎢⎢⎢⎢⎢⎣

v�

v�+1

���

vN+�

⎤
⎥⎥⎥⎥⎥⎥⎦
+� ∗

⎡
⎢⎢⎢⎢⎢⎢⎣

w0

w1

���

wN+�−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

where the details pertaining to the formulation of the
matrix � from the dynamics and measurement models are
available in our previous publication.13

As a consequence of the noise sequences being normally
distributed, Y is a multivariate Gaussian vector described
as Y ∼ N	0� P
 with covariance matrix P given by (8):

P =�

⎡
⎢⎢⎢⎣
Qw

� � �

Qw

⎤
⎥⎥⎥⎦�T +

⎡
⎢⎢⎢⎣
Rv

� � �

Rv

⎤
⎥⎥⎥⎦ (8)

where Qw and Rv are the covariance matrices for the
dynamics and measurement noises, respectively, and �T is
the transpose of �.
One can formulate a maximum likelihood estimation

(MLE) problem by exploiting the maximum likelihood
equation of the multivariate normal distribution, which
describes how Y is distributed, as shown in Eq. (9):

min
Qw−Rv

� ln 	�P �
+Y
′ ∗P−1 ∗Y � (9)

where the Cholesky decomposition was used to evaluate
the determinant as the matrix P is sparse and straight eval-
uation of the determinant leads to numerical divergence.
Therefore, the process and measurement covariance

magnitudes that minimize the MLE cost function in Eq. (9)
represent the true statistics of the process and measurement
noise sequences, denoted as QMLE, RMLE, respectively. The
estimate of the percent drug release as well as the bias is
described next.

Release and Bias State Estimation
The released was calculated using Eq. (1). The identified
process uncertainty structure from Eq. (9) allows for the
optimal estimate of the released drug amount as well as the
correct bias present in the process to be estimated using
a Kalman filter approach. The approach is summarized in
Figure 2.
Starting with the initial conditions of the expected value

of encapsulation given the measurement and its covari-
ance; the a priori estimate of the state is realized through
propagating (in time) the previous estimate of the drug
release state through the dynamic model, and the a priori
state covariance is also realized through propagating the
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Figure 2. Kalman filter algorithm diagram.

previous covariance estimate through the model. The opti-
mal gain is then computed to obtain the optimal a posteri-
ori release state and covariance estimates from the Kalman
filter. As discussed earlier, the drug release estimate from
our algorithm is the optimal one, and the identified noise
statistics are representative of the real data.

RESULTS
Uncertainty Identification
The proposed MLE method was applied to the experi-
ments shown in Table I to identify the statistics of the
measurement and process noise sequences. A numerical
solver in the MATLAB environment was used to iden-
tify the global minimizing solution to the MLE problem.
The constraints imposed on the solver are: (1) the solution
should be positive and (2) a lower limit of 1×10−5 is set
for the covariance magnitudes. A sample contour plot for
the cost function is shown in Figure 3, where the diagonal
elements of the covariance matrix Q are the same allow-
ing for the generation of a two-dimensional representation
of the cost function. For experiments 1→ 6, the obtained

Figure 3. Contour plot of cost function �.

Table II. MLE identified dynamics and measurement NOISE
covariance values for experiments 1→ 6.

Dynamics noise Measurement noise
Exp # covariance �QMLE� covariance �RMLE�

1→ 6
[
1�00 0
0 1�00

]
×10−5 1�00×10−5

MLE solution to the cost function happens to be at the
lower limit. The solution to the optimization problem is
presented in Table II.

Simulation Results
The algorithm was first implemented in a simulation envi-
ronment. Equations (3) and (4) were used to simulate the
dynamic as well as the measurement process of our sys-
tem. A Kalman filter was used to estimate the drug release
percent and the release bias affecting the drug delivery
system. The true state, which was simulated, is known in
this case, and hence the performance validation is possible.
Figure 4 presents the estimation results on an experimen-
tal run. The exaggerated noise magnitudes used here were
w = 4�5×10−3, and v = 4�5×10−3.

Figure 4. Simulated environment drug release and bias
estimation.

Table III. Estimation mean square error in simulated environ-
ments for all experimental conditions.

Experiment M.S.E.

Exp 1 1�673×10−5

Exp 2 1�594×10−5

Exp 3 1�657×10−5

Exp 4 1�645×10−5

Exp 5 1�615×10−5

Exp 6 1�649×10−5
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Figure 5. Drug release and bias estimation results for DSPE-PEG-ES. The ultrasonic power densities used for the experiments
are 6�08, 6�97, and 11.83 W/m2 (from left to right).

The exaggerated injected noise sequences, while some-
what unrealistic, serve to test proof the algorithm and vali-
date performance. Figure 4 shows that the measurement is
around the vicinity of the true noisy state, the drug release

Figure 6. Drug release and bias estimation results for DSPE-PEG-NH2. The ultrasonic power densities used for the experiments
are 6�08, 6�97, and 11.83 W/m2 (from left to right).

estimate is close to the truth state, and the bias was quickly
identified. The variation in the bias is due to the very high
magnitude of the noise affecting the process in the simu-
lated environment.
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Table IV. Estimation mean square error of experimental
measurements.

Experiment M.S.E.

Exp 1 5�876×10−6

Exp 2 5�175×10−6

Exp 3 6�904×10−6

Exp 4 6�608×10−6

Exp 5 8�156×10−6

Exp 6 6�827×10−6

To present a qualitative analysis in a simulated setting,
a measure of the performance of the filter in the form of
the mean square error of the estimate with respect to the
available true state of drug release follows. For the sake of
brevity, we do not present simulation responses other than
those of Figure 4, which utilize the identified constants of
experiment 1 (Table I). Also, Table III presents the mean
square error for all the simulated experimental conditions.
The filter proves successful at both estimating the drug
release as well as identifying the bias affecting the process.
The numbers show the consistency of the optimal Kalman
filter at estimating both the drug release and the systematic
error affecting the delivery system, which is attributed to
the fact that the correct statistical information for both the
dynamics and measurement noises is available initially in
the optimal filter. It is of interest to note that the differ-
ences between the experiments lie solely in the difference
in the release constant and the bias and having the cor-
rect information to initialize the Kalman filter ensures its
proper function and improves the accuracy of our runs.

Experimental Results
After validating the performance of the method in the
simulation environment, the algorithm was applied to the
experimental data obtained at different ultrasonic power
densities for both types of liposomes, given in Table I.
Figures 5 and 6 present the drug release and bias estima-
tion results for the experimental conditions investigated.
The bias true state was identified through post-processing
of the data to check the validity of the Kalman estimate.
The optimum Kalman filter exhibits very good tracking
performance of the measurements. It also enables the accu-
rate identification of the bias affecting the drug delivery
system early on through the response thus allowing for
precise delivery of chemotherapeutics to the patient.
Table IV summarizes the performance of the filter oper-

ating under all the experimental conditions available. The
Kalman filter, then, gives a small mean square error of the
release estimates.

DISCUSSION AND CONCLUSION
The accurate prediction of the systematic error in the form
of biases affecting the release of chemotherapeutics from
liposome carriers is vital in modeling and predicting the

behavior of the drug delivery process. This work mod-
els the acoustic release of calcein from liposomes using
a first-order kinetics model that is augmented with a bias
term which accounts for errors in the drug delivery pro-
cess. Numerical fitting of experimental data sets allowed
the identification of the kinetic release constants and the
true bias terms. The statistics of the noise sequences affect-
ing the dynamics and measurement of the chemothera-
peutic drug delivery system were also identified using a
maximum likelihood approach. Subsequently, a resulting
optimal stochastic filter, the Kalman filter, enabled the esti-
mation of the drug release and the bias error.
The proposed algorithm was first tested in a simula-

tion setting. To validate the performance of the estimators,
experiments were conducted, where the drug release was
measured, and the true bias was identified through post-
processing. The true drug release state is unknown, but
the bias term is known through the performed numerical
modeling and fitting. The optimal filter proved successful
at capturing the correct bias term in all experiments, and
it tracked the measurements well. The algorithm proved
capable of identifying the bias term early in the response
while still filtering the recorded measurement. By improv-
ing the prediction in the modeling of drug delivery sys-
tems, we inch closer to fully understand the physical and
chemical mechanisms that govern acoustic drug release
from liposomes.
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