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Abstract  
 

The coral reef ecosystems of the Arabian/Persian Gulf (the Gulf ) are facing profound pressure from 
climate change (extreme temperatures) and anthropogenic (land-use and population-related) stressors. 
Increasing degradation at local and regional scales has already resulted in widespread coral cover 
reduction. Connectivity, the transport and exchange of larvae among geographically separated 
populations, plays an essential role in recovery and maintenance of biodiversity and resilience of coral 
reef populations. 

Here, an oceanographic model in 3-D high-resolution was used to simulate particle dispersion of “virtual 
larvae.” We investigated the potential physical connectivity of coral reefs among different regions in the 
Gulf. Simulations reveal that basin-scale circulation is responsible for broader spatial dispersion of the 
larvae in the central region of the Gulf, and tidally-driven currents characterized the more localized 
connectivity pattern in regions along the shores in the Gulf’s southern part. Results suggest 
predominant self-recruitment of reefs with highest source and sink ratios along the Bahrain and western 
Qatar coasts, followed by the south eastern Qatar and continental Abu Dhabi coast. The central sector 
of the Gulf is suggested as recruitment source in a stepping-stone dynamics. Recruitment intensity 
declined moving away from the Straits of Hormuz. Connectivity varied in models assuming passive 
versus active mode of larvae movement. This suggests that larval behaviour needs to be taken into 
consideration when establishing dispersion models, and establishing conservation strategies for these 
vulnerable ecosystems. 

Introduction  
Significant fluctuations of population sizes are increasingly common in coral reef organisms. These can 
be outbreaks of predators, like Crown-of Thorns Starfish (Shafir et al., 2008) or coral-eating snails 
(De’ath et al., 2012), or competitors such as brown algae (Mumby et al., 2007; Van den Hoek et al., 
1995). Population collapses of fishes, corals or other organisms are increasing and frequently 
demonstrated (McClanahan et al., 2008; Robbins et al., 2006). An ever-growing human footprint leads to 
more resource-extraction by capture (fisheries, collection of ornamentals, etc.) or resource removal 
either by mortality events or by destruction of viable habitat (Cinner et al., 2018). Changes in 
populations of reproducing organisms have obvious repercussions on population dynamics and lead to 
feedbacks into upward or downward cycles, or in the worst case, one-way trajectories of decline (Case, 
2000; Caswell, 2001). Corals and fishes are organisms that show tendencies to get ever rarer on reefs as 
natural and man-made environmental impacts increase (Kayal et al., 2012). 

If organismic populations on coral reefs are to survive in such difficult settings, first principles of 
population dynamics suggest that replenishment by natural recruitment will be key to survival (Case, 
2000; Caswell, 2001; Hutchinson, 1978). Population fecundity, connectivity among populations, and 
levels of recruitment must, therefore, be known to understand and model the potential survival of coral 
reef organisms (Paris et al., 2007). This is no trivial task since recruits of virtually all organisms are small 
and difficult, if not impossible, to track unless sophisticated genetic tools are at hand (Baums et al., 
2014; Berumen et al., 2019) to determine the provenance of propagules. While much progress has been 
made by using traditional field methods (settlement plates, larval capture, etc.; Bauman et al., 2012; 
Burt and Bauman, 2019), there remains a need to know more details and to better evaluate future 



scenarios. Also, some predictions regarding the likelihood of population connectivity based on 
demographic models (Riegl and Purkis, 2015; Riegl et al., 2017) can only be verified by sophisticated 
analyses of propagule flow among these populations. Biophysical models of larval dispersion that 
integrate particle transport with physical oceanographic models have been used with much success to 
explain patterns in biodiversity (Cowen et al., 2000; Paris et al., 2007; Werner et al., 2007), invasion 
dynamics (Johnston and Akins, 2016; Johnston and Purkis, 2015), and potential pathways of larvae for 
population recovery (Cavalcante and Burt, 2016; Riegl et al., 2017, 2018). Such approaches bear much 
promise for understanding and predicting the future of marine resources in increasingly depleted coral 
reefs. The Arabian/Persian Gulf (hereafter termed “Gulf”) is a peripheral, epicontinental sea connected 
to the Indian Ocean and was, until relatively recently, home to large reef areas that have since been 
severely restricted (Riegl et al., 2018; Sale et al., 2011; Sheppard, 2016; Sheppard et al., 2010). A thriving 
economy and growing human population put massive pressure on the reefs of the region (Riegl and 
Glynn, 2020), which is home to some of the world’s largest coastal alteration (dredge-and-fill) and 
desalination projects (Sale et al., 2011; Sheppard et al., 2010; Van Lavieren et al., 2011). With habitat 
rapidly disappearing and the region being highly sensitive to climate extremes (Bauman et al., 2015; Burt 
et al., 2014; Riegl and Purkis, 2012), the future of most coral reef taxa and reef areas seems to depend 
on recruitment to replenish the frequent and severe losses (Pratchett et al., 2017; Riegl et al., 2017). The 
status, whether extant or soon extinct, of some ecosystem engineering species depends on the 
availability of upstream populations to seed and allow replenishment of depleted populations (Riegl et 
al., 2018).  

This study uses a three-dimensional oceanographic model at 1 km resolution to model particle transport 
within the Gulf and to develop predictions of population connectivity. Previous biophysical models of 
settlement and population replenishment dynamics in this region were two-dimensional and considered 
only the ocean’s surface layer with low resolution in the coastal areas (Cavalcante and Burt, 2016; Riegl 
et al., 2017, 2018). However, large areas of the Gulf harbour deeper (to >30m) coral populations and the 
densest reef assemblages are close to the shoreline. This new model therefore represents an 
advancement in technical capability to develop much finer-grained scenario-models and predictions. In 
this paper we use a 3D high-resolution model that reproduces the circulation features of the Gulf, 
together with an agent-based model that reproduces the transport and biological processes of spawned 
eggs to first, (i) understand whether the larvae spawned at a certain area can travel to form coral 
colonies at other areas and, second (ii) to explore how distinct coral populations are connected within 
the Gulf, which is crucial to coral conservation efforts. 

Conclusions 
In this study, the developed 3D hydrodynamic model performed as expected for the simulated period. 
The model was able to simulate the basin-scale circulation and reproduce the observed characteristics 
of the eddies typical for the period of study, and agreed with in situ observations, the HYCOM database, 
and other studies on the circulation-driven mechanisms in the Gulf. The 3D model highlighted the 
importance of atmospheric fields on circulation patterns and the understanding of local circulation 
characteristics. The hydrodynamic simulations demonstrated the potential for interpreting the key 
identified physical connectivity pathways of the distinct regions with regards to coral reefs in the Gulf. 
Coral larvae have the potential to be dispersed long distances under basin-scale currents and eddies, but 
tend to shorten the travel distance under localized tidal-driven currents. 
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