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Abstract 

In this study, we present an artificial neural network (ANN) model that attempts to predict the dynamic 
release of doxorubicin (Dox) from P105 micelles under different ultrasonic power densities at 20kHz. The 
goal is to utilize the developed ANN model in optimizing the ultrasound application to achieve a target drug 
release at the tumor site by controlling power density and ultrasound duration via an ANN-based model 
predictive control. The parameters of the controller are then tuned to achieve good reference signal tracking. 
& 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

Polymers have received ample attention in recent years for their use as drug delivery devices. 
The drug is usually mixed into a biodegradable polymer matrix allowing for its slow release as it 
diffuses from the polymer and/or the polymer matrix degrades. The main 
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disadvantages of such a system are the complications associated with the surgery needed to 
implant such a device. To overcome such a problem, drug delivery systems that can be injected 
into the blood stream are an attractive option [1,2]. These systems include liposomes [3], solid 
particles [4], polymersomes [5] and polymeric micelles [6,7]. A polymeric drug carrier capable 
of forming micelles was investigated as a drug delivery carrier to minimize the side effects of 
conventional chemotherapy. This carrier was capable of retaining hydrophobic drugs and then 
releasing them by application of ultrasound. We have shown that the DNA damage induced by 
the drug doxorubicin (Dox) delivered to human leukemia cells (HL-60) from Pluronic P105 
micelles, with and without the application of ultrasound, was at an optimum when cells were 
exposed to ultrasound and micelles containing the anti-neoplastic agent [8]. Using an ultrasonic 
exposure chamber with real-time fluorescence detection, our group measured acoustically 
activated drug release from Pluronic P105 micelles under continuous wave (CW) or pulsed 
ultrasound [9]. The percentage of drug release was highest at 20kHz ultrasound and decreased 
with increasing ultrasound frequency despite much higher power densities. Later, experiments 
showed an important role of transient cavitation in drug release [10]. 

Conventional linear modeling techniques are incapable of capturing the transients of highly 
nonlinear processes. Black-box modeling algorithms are receiving wide popularity for such 
situations due to their simplicity and high prediction performance [11]. No prior knowledge of 
the process mechanism is needed to perform this task. Process engineers need only to gather 
input–output data from the process under consideration and use them for model training and 
validation. 

Nonlinear modeling techniques can be utilized to predict process dynamics more accurately 
and can cover wider spectrum of operating conditions. Among these are the neural networks 
which have the capability of capturing and approximating the behavior of a system under different 
operating conditions. ANNs have attracted researchers in versatile disciplines to use them for 
modeling purposes [12–14]. Acoustic release of doxorubicin from unstabilized Pluronic P105 
modeling problem was considered in a recent work [15]. This study revealed the great ability of 
ANNs to model such a complex process. Recently, neural networks are applied as controllers in 
many industrial applications. They are either directly implemented where the network controller 
is trained to learn the inverse of the process dynamics, or indirectly by training the neural network 
to predict future outputs from past and present inputs and outputs. In the former case, the process 
is modeled with a separate neural network, the controller does not invert the exact process model, 
and the offset cannot be eliminated. The indirect method is more suitable for control applications. 
The trained process model is used with a control algorithm to calculate the controller output. 
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During the past few years, several ANN-based control algorithms have been proposed and 

some of them were implemented in model predictive control (MPC) [16,17], internal model 
control (IMC) [18] , dynamic matrix control (DMC) [19] and adaptive control [20]. 

The application of nonlinear control design techniques for the drug release problem is a 
demanding research area and needs special attention. In the present study, an ANN dynamic 
modeling strategy of the drug release process is adopted due to the high nonlinearity and its noisy 
response of the processes. The validated ANN model is then used to train an ANN-based model 
predictive controller as previously described [21–27]. The parameters of the controller are later 
tuned to achieve good reference signal tracking. The application of neural networks based control 
algorithms such as model predictive algorithm and feedback linearization algorithm is justified 
by the success of these techniques to control complex nonlinear dynamics chemical and physical 
processes. 

2. Materials 

Pluronics P 105 was provided by BASF Corp. (Mount Olive, NJ). Doxorubicin was obtained 
from the University of Utah Hospital (Salt Lake City, UT) in a 1:5 mixture with lactose and from 
Pharmacia & Upjohn Company (Kalamazoo MI), in dosage form; it was dissolved in phosphate 
buffered saline (PBS) and sterilized by filtration through a 0.2mm filter. 

3. Drug encapsulation in Pluronics unstabilized/stabilized micelles 

Stock solutions of Pluronics (BASF, Mount Olive, NJ) were prepared by dissolving P105 in a 
PBS solution to a final concentration of 10 wt%. Dox was dissolved into the P105 solutions at 
room temperature to produce a final Dox concentration of 10mg/ml in 10% wt Pluronics. The 
same drug concentration was also prepared in phosphate buffered saline (PBS) [9]. 

3.1. Experimental setup 

A chamber was built to measure the change of fluorescence upon application of ultrasound. 
The apparatus employed an argon ion laser (Ion Laser Technology, Model 5500 A) mounted on 
an optical bench. The laser beam was directed to a beam splitter attenuator (metal film neutral 
density attenuator). The intensity of the split portion of the beam was measured by a photodetector 
and was used to monitor the laser power. Photodetector measurements were digitized for storage 
in a computer. 

The drug concentration was quantified by measuring the fluorescence emissions produced by 
an excitation wavelength of 488nm. A fiber optic probe (100 bundled multinode fibers, 
approximately 40cm in length) was used to collect fluorescence emissions. The emitted light was 
directed through a multinode dielectric band and filter (Omega Optical Model 535DF35, 
Brattleboro, VT) to a silicon detector (Model EGSG). The filter was used to cut off any emissions 
with a wavelength below 535nm. The detector signal was digitized with an A/D converter 
(National Instruments, Austin, TX) and sent to a Macintosh computer (Apple Computers, 
Cupertino, CA) for storage and processing. The temperature of the ultrasonic exposure chamber 
was maintained at 371C using a thermostated bath. 

The chamber described above was used to measure the kinetics of acoustically activated drug 
release (DOX) from P105 micelles. The drug exhibited a large decrease in fluorescence when 
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transferred from the hydrophobic core of the micelle to the surrounding aqueous solution. 
Therefore, the release was manifested by a decrease in fluorescence intensity. 

The power density was measured using a hydrophone (Bruel and Kjaer model 8103, Decatur, 
GA), which sent a voltage signal to an oscilloscope. The power density was determined by 
measuring the peak-to-peak voltage of the signal appearing on the oscilloscope. The power 
density was reported by the manufacturer to be directly proportional to the square of the output 
voltage recorded on the oscilloscope. For example, the power density at 70kHz was calculated 
using the following formula:  

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 16.6 𝑚𝑚𝑚𝑚

𝑐𝑐𝑐𝑐2𝑉𝑉2
𝑥𝑥(𝑉𝑉𝑉𝑉𝑉𝑉)2                    (1) 

In Eq. (1), VPP is the peak-to-peak voltage measured by the oscilloscope. To quantify the 
amount of drug released, the decrease in fluorescence after the drug was released from micelles 
was assumed to be directly proportional to the amount of the drug released relative to a known 
baseline. For instance, the fluorescence from the drug in PBS was measured in the absence of 
Pluronic to simulate 100% release into an aqueous solution. The percentage release was 
calculated using Eq. (2) 

%𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =   𝐼𝐼𝑝𝑝105−𝐼𝐼
𝐼𝐼𝑃𝑃105−𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃

                   (2) 

In Eq. (2), I is the instantaneous fluorescence intensity, IPBS refers to the fluorescence intensity 
recorded when the drug was introduced in a solution of PBS which corresponds to 100% release 
or no encapsulation, while IP105 refers to the intensity recorded when the drug was encapsulated 
in Pluronic P105 which corresponds to 0% release or 100% encapsulation. 

The experimental procedure proceeded as follows. First, the fluorescence intensity of the drug 
in PBS was measured both with and without ultrasound exposure, and no difference in 
fluorescence was observed. This value was used for IPBS. Then, without changes in the 
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Fig. 1. Raw (grey line) and smoothed (black line) experimentally generated fluorescence data and the corresponding 
power density signals. 
experimental set-up, the PBS solution was carefully removed and replaced with the drug solution 
of the same concentration in Pluronic micelles. 

Fig. 1 shows the 5374 collected experimental data points. The observation that the three pulses 
produced a nonlinear response in fluorescence quenching indicates a nonlinear behavior for the 
drug release process. The three acoustic power density pulses of sizes 
0.033, 0.048 and 0.058W/cm2 resulted in the new fluorescence steady-state values of 0.9542, 
0.9123 and 0.9057, respectively. It is clear that the second and third pulses achieved steady states 
that are not comparable in size to that of the excitations introduced. The amount of released drug 
calculated from Eq. (2) created by the three pulses are not proportional to the magnitudes of the 
acoustic power. This nonlinearity triggers the need to use a control technique that is capable of 
handling such process complexities efficiently. Another interesting aspect of Fig. 1 is the fact that 
the fluorescence level recovers to its original level after the ultrasound is turned off. This suggests 
that the drug is going back inside the core of the micelles and, therefore, will only interact with 
tissue where ultrasound is focused (the tumor) and not downstream of the focal volume. 

4. Modeling and controller design results 

A nonlinear model based control strategy is used to provide good reference tracking with the 
least number of controller moves for complex processes such as the drug release process. The 
input (power densities used in the experiments) and output (percent encapsulated doxorubicin) 
data were first smoothed to reduce noise associated with the experiments and prepare for ANN 
training. A moving average smoothing strategy was used with a sampling proportion of 0.01 (Fig. 
1) which revealed the drug release nonlinearity, especially within the periods of pulse dampening 
where unusual response jumps occur. 
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A feedforward ANN with output feedback was constructed with one hidden layer. For more 

information on the general structure of this network please refer to our previous publication [15]. 
The Matlab software implementation of the Levenberg–Marquardt backpropagation 

optimization algorithm (LMBP) was used for this purpose. This algorithm converges to optimum 
solution with the least optimization steps. The 53,741 input/output pairs were then divided into 
three subsets with the ratio of 2:1:1 (training, validation and testing, respectively). 

A total of 427 epochs (training steps) were used to achieve a prediction error of 2.17107, 
3.70107 and 2.2106 for the three respective subsets within a search time of 104s. With this 
performance the trained ANN can predict process dynamics accurately. Fig. 2 shows the 
simulation of the trained ANN for the three subsets as well as the original data. The ANN 
predictions are very close to the actual drug release data. 

After modeling the drug release process dynamics by tracking the percent of encapsulated drug, 
the generated trained ANN was implemented in the NN-MPC controller. The controller structure 
of the model is based on feedforward neural networks given by Liu et al. (1998) [28]. 

The tuning parameters for this controller are: the prediction horizon (N2), the control horizon 
(Nu), the control weighting factor (l) and the search parameter (a). The prediction and control 
horizons were set at their best values of 10 and 5, respectively. These values showed moderate 
aggressiveness and good stability of the controller response. The effect of 

 

Fig. 2. Simulated ANN predictions and experimental data. 
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Fig. 3. Effect of control weighting factor on the performance of the NN-MPC. 

control weighting factor value on the performance of the NN-MPC for a drug release step (0.9–
0.96) is shown in Fig. 3. Choosing a high value (l=1) causes oscillations in the predicted drug 
release while selecting a small value (l=0.001) results in oscillatory power density input. Hence 
a value of (l=0.1) was selected which gave very good tracking with low oscillatory behavior. 

The search parameter a is used to control the optimization speed and performance and 
determines when the search process stops. The optimization algorithm used in this work 
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Fig. 4. NN-MPC setpoint tracking performance and the corresponding controller moves. 

utilizes this scale factor to minimize the performance training function along the search direction. 
In this work a was set to a value of 0.001. 

To test the final design of the NN-MPC controller, a series of random set-points in the drug 
release setpoint were introduced in the process control loop and the controller performance was 
recorded. Fig. 4 shows the resulting profile of the process as well as the corresponding controller 
moves. In terms of controller moves the NN-MPC configuration produced smooth and non-
aggressive changes in the power density. The controller output was bounded within the allowable 
limits of power density used experimentally at 20kHz. The figure indicates that the controller was 
able to follow the reference signals excitations within a reasonable response time. 

5. Conclusions 

NN-MPC was shown to be an effective tool to model, optimize, and control the release of 
doxorubicin from P105 micelles under different ultrasonic power densities at 20kHz. The feed-
foreword neural network was able to capture accurately the drug release dynamic data. Tuning of 
MPC-NN controller was performed to achieve satisfactory reference signal tracking in terms of 
smoothness and response speed. 
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