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In order to gain insight into the experimental observation of ultrasound-induced release of drugs 
from micelles, we modeled the dynamic oscillations of a 10-lm-diameter bubble insonated at 70 
kHz. The Parlitz modification of the Keller–Miksis model was employed to generate bubble 
dynamics over a wide range of mechanical index values. The resulting Poincaré maps and 
bifurcation diagram show that bubble oscillations bifurcate at a MI value of 0.32, then return 
apparently to a single mode before displaying a sudden onset of chaotic behavior at 0.35. The 
experimental release of drug from micelles occurs at a MI value of 0.37 and correlates with the 
intensity of the subharmonic in (lW/cm2) of the acoustic spectrum. The dynamic model shows the 
return to single mode at a MI value of 0.43, and bifurcation leading to chaos at values above 0.5. 
The correlation between the chaotic behavior predicted by the model and drug release hints at 
insonation conditions that could facilitate drug delivery. 

 2012 Elsevier B.V. All rights reserved. 

1. Introduction

The study of polymeric micelles as drug delivery vehicles has 
revealed a number of advantages over other vehicles, including (1) 
structural stability, or slow dissolution levels below their critical micelle 
concentration; (2) prolonged shelf life; (3) long circulation time in blood 
and stability in biological fluids; (4) an appropriately large size to 
prevent renal excretion and yet (5) small enough to allow extravasation 
at the tumor site; (6) simplicity in drug incorporation (no need for 
covalent bonding to the carrier); and (7) drug delivery independent of 
drug character. Our investigation into the nature of ultrasonically 
activated drug release from polymeric micelles [1–8] revealed that there 
is an acoustic pressure threshold required to initiate drug release, and 
that beyond this threshold the amount of drug release correlates with the 
intensity of the subharmonic of the applied ultrasonic frequency [9,10]. 
We have performed extensive experimental research to find the 
parameters that maximize ultrasonic-induced drug release including 
frequency (20 kHz to 1.5 MHz), power density (for example at 70 kHz 
the power density was varied between 0.1 W/cm2 and 0.8 W/cm2), 
temperature (25 C, 37 C and 56 C), and micelle crosslinking. Among 
our experiments, the most release was observed at 70 kHz and 0.8 
W/cm2. The correlation of drug release with the subharmonic amplitude 
was previously unknown until we performed these more detailed 
acoustic experiments at 70 kHz in which acoustic collection was 
combined with fluorescence detection of the drug release. The 
correlation with the subharmonic implicated the role of bubble 
cavitation, as others had also correlated stable and inertial cavitation 
with the subharmonic signal [11–22]. These results raise questions 
about the nature of the bubble oscillations that generate the subharmonic 

signal (and correlate with drug release) at 70 kHz and their potential 
interaction with drug-carrying micelles. We address these questions in 
this paper using the tools of bubble dynamics. Hopefully this study will 
shed light on the optimum insonation to apply to micelles for controlled 
drug delivery using ultrasound. 

All theoretical investigations of the dynamics of bubble oscillations 
begin with the classic Rayleigh–Plesset equations (essentially a form of 
the momentum conservations equations) and its numerous 
modifications, which are reviewed in detail in [15]. The basic equations 
assume a spherical, isolated, internally homogeneous bubble in an 
infinite liquid medium in the absence of thermal and mass transfer 
effects. Modifications to that formulation address these limitations and 
include the assumption of polytropic gas behavior, the addition of liquid 
compressibility effects, and the inclusion of heat and mass transfer 
effects [15,23–28]. Further work addresses the behavior of bubble 
clouds or clusters [29–31] and sonoluminescence [32,33]. 

Treatments that approach the bubble equations from a dynamical 
systems perspective [23,34–40] are relevant to our drug delivery 
system, as they are among those that have reproduced subharmonic 
emission thresholds [19,23,30,33–36,40–44]. In particular, Lauterborn 
used the qualitative tools of chaos physics (dynamical systems) [23] to 
interpret the behavior of bubble oscillations [24], revealing a glimpse of 
the rich, complex dynamics inherent within the governing equations. In 
this paper, we similarly analyze bubble oscillations at 70 kHz. 
Specifically, we seek to find the same (or analogous) experimental 
acoustic signatures through modeling and to explore bubble behavior in 
a neighborhood of the drug release thresholds found previously [9,10]. 
Our overall goal is to answer two significant questions: (1) what type of 
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bubble behavior is responsible for drug release in our in vitro system 
and (2) precisely under what conditions can drug release be engineered? 

2. Methods and materials 

2.1. Drug encapsulation in Pluronic micelles 

Doxorubicin (Dox) was obtained from the University of Utah 
Hospital (Salt Lake City, UT) in a 1:5 mixture with lactose; it was 
dissolved in phosphate buffered saline (PBS) and sterilized by filtration 
through a 0.2 μm filter. 

Stock solutions of Pluronic P105 (BASF, Mount Olive, NJ) were 
prepared by dissolving P105 in a PBS solution to a final concentration 
of 10 wt%. Dox was dissolved into the P105 solutions at room 
temperature to produce a final Dox concentration of 10 mg/ml in 10 
wt% Pluronic. The same drug concentration was also prepared in PBS. 

2.2. Measuring ultrasound-triggered release of Dox from Pluronic 
P105 micelles 

The experimental system employed in this research was presented 
previously [9,10]. The 488 nm beam of an argon ion laser (Ion Laser 
Technology, Model 5500 A) was directed through a beam splitter 
attenuator (metal film neutral density attenuator). The intensity of the 
split portion of the beam was measured by a photo detector (Newport 
Model 818-SL with 835 display) and was used to monitor the laser 
power throughout our experiments. In the newly modified apparatus, the 
other portion of the beam was directed into one branch of a dual branch 
fiber optic bundle (# DF13036M, Edmunds Optics, Barrington, NJ) that 
directed the light into an acoustically transparent plastic (cellulose 
butyrate) (Tulox Plastics, Marion, Indiana) tube, with a diameter of 2.54 
cm, filled with the Dox solution. The laser light exited the fiber optic 
bundle in a cone of light. Any Dox within the cone of light absorbs at 
488 nm and emits fluorescent light centered at 580 nm in all directions. 
In the same fiber optic bundle are fibers that collect and direct the 
fluorescence to a detector. The geometry of the fiber optic is such that 
99% of the collected fluorescence originated from within 3 mm of the 
fiber optic tip. The fluorescence signal was directed through the second 
branch of the fiber optic bundle through a multimode dielectric band 
and filter (Omega Optical Model 535DF35) to a silicon detector (EGSG 
Model 450-1). The filter was used to cut off any emissions with a 
wavelength below 500 nm, including any Rayleigh-scattered laser light. 
The photo detector signal was sent to an oscilloscope (Tektronix Model 
TDS 3012) from which it was captured and subsequently stored on a 
computer for further processing. This apparatus can measure the amount 
of acoustically-activated Dox release from micelles because Dox 
exhibits a decrease in fluorescence in contact with an aqueous solution. 

This is precisely the case when Dox is released from Pluronic micelles, 
and it follows that the magnitude of decrease in fluorescence intensity 
upon application of ultrasound provides a quantifiable measure of drug 
release. 
 

The decrease in fluorescence of the encapsulated drug solution 
was assumed to be directly proportional to the amount of drug 
released relative to a known baseline. The fluorescence of Dox in 
PBS, in the absence of Pluronic, was measured to simulate 100% 
release. Then the percent release was calculated using the following 
equation: 

%𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝐼𝐼𝑝𝑝105 − 𝐼𝐼𝑈𝑈𝑈𝑈
𝐼𝐼𝑃𝑃105 − 𝐼𝐼𝑃𝑃𝑃𝑃𝑈𝑈

 

  
where IUS is the fluorescence intensity upon exposure to ultrasound, 
IPBS is the fluorescence intensity in a solution of free Dox in PBS, and 
IP105 is the intensity recorded when the drug was encapsulated in 
Pluronic P105 (which corresponds to 0% release or 100% 
encapsulation). 
In these experiments, the fluorescence intensity of the drug in PBS 
was measured both with and without application of ultrasound. 
Ultrasound was applied using a 70-kHz ultrasonicating bath (SC-40, 
Sonicor, Copiaque, NY) equipped with a single piezoceramic 
transducer that is driven at about 70 kHz. The sonicating bath 
chamber was 12.7 cm  12.7 cm and filled with water to a height of 
approximately 11 cm. Attached at the center of the underside of the 
bath was a piezoelectric transducer of 7.5 cm diameter. The best 
description of the waveform is that of a 70-kHz wave that is 
amplitude modulated sinusoidally at about 0.12 kHz. The bath was 
powered by 60 Hz AC voltage coming from a variable AC 
transformer (variac). The voltage from the variac to the sonicating 
bath was varied to produce differing intensities of ultrasound. To exe- 
cute the experiments, the end of the fiber optic was positioned at an 
acoustically intense position in the ultrasonicating bath. The bath was 
filled with degassed water and the tube surrounding the fiber optic 
was filled with the solution of Dox in PBS. Fluorescence emissions 
were collected for different voltages applied to the ultrasonicating 
bath. Then, without changes in the experimental set-up, the Dox 
solution in PBS was carefully removed and replaced with a Dox 
solution of the same concentration in Pluronic micelles. During 
insonation, fluorescence dropped due to Dox coming in contact with 
the surrounding aqueous environment. Several fluorescence 
measurements were made at each intensity setting and averaged (n = 
8 when I > 0.27 W/cm2 and n = 4 when I < 0.27 W/cm2).

 

 

 

 

 

 

2.3. Acoustic measurements 

Ultrasonic power density measurements were obtained using a 
calibrated hydrophone (Bruel and Kjaer model 8103, Decatur, GA) 
whose response was measured with an oscilloscope. After 
measurements of Dox fluorescence, the fiber optic was replaced 
with the hydrophone in the same location, and the hydrophone  
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response was recorded at the same settings as used for the 
fluorescence measurements. The average acoustic intensity was 
calculated from I ¼ V2rmsQ2=Z where Q is the calibration factor, Z 
is the acoustic impedance (1.5  106 kg/m2 s), and Vrms is the 
rootmean-squared voltage of the hydrophone signal. 

Acoustic spectroscopy was used to monitor the vibrations of 
the cavitating bubbles in the ultrasonic field at the power settings 
used in the release measurements. The hydrophone signal was 
directed to a spectrum analyzer (Agilent E4401B), from which the 
acoustic spectrum was obtained. Because the hydrophone had 
about the same diameter (9.5 mm) as the fiber optic bundle (9 mm), 
any measured perturbation in the acoustic field caused by the 
presence of the hydrophone would be similar to those caused by 
the fiber optic bundle. 

We selected 70-kHz insonation in this study for several 
reasons. Not only are 70-kHz transducers available in our lab, but 
this frequency has been used successfully for drug delivery to cells 
and animals [5,8]. Furthermore, this frequency has been studied by 
Parlitz [35], and we could check our numerical results against his 
to validate our equations and execution of the numerical model. 

 

2.4. Mathematical model of bubble oscillator 

In this research, we used several models of spherical bubble 
oscillation dynamics with various levels of complexity, which we 
present below. The Noltingk–Neppiras–Poritsky modification of 
the classic Rayleigh–Plesset equation is given as [15]: 

 

All terms are defined in Table 1. This modification to the original 
Rayleigh–Plesset formulation accounts for the bubble contents as a 
polytropic gas. We are interested in a bubble driven by a sinusoidal 
driving pressure 

 

We solved the following system of differential equations by means 
of MATLAB’s adaptive ODE solver ode45: 
  

 

Fig. 1. Acoustic spectra for 70 kHz insonation at (a) power density (I) = 0.005 W/cm2, MI = 0.05; (b) I = 0.25 W/cm2, MI = 0.33; (c) I = 0.28 
W/cm2, MI = 0.35; and (d) I = 0.52 W/ cm2, MI = 0.47. 
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where the velocity of the gas–liquid interface is u = R_ and Ѳ = f t 
mod 1. 

Unfortunately, this formulation is incapable of yielding reliable 
information around the moment of collapse (when high temperatures 
and pressures are generated) since it fails to account for liquid 
compressibility [15]. Keller and Kolodner [45] and later Keller and 
Miksis [46] rectified this problem by introducing the 

 
 

Mach number. Their versions, however, require the driving pressure 
expression shown above to contain a retarding term in its argument, 
that is 

 
where c is the speed of sound in water which complicates the 
definition of the subsequent Poincaré map. Parlitz et al. [35] ignore 
this term in their analysis and show that their modification and the 

Keller and Miksis equation are equivalent up to terms of order (c-2), 
which terms are ignored during the derivation of Parlitz. Accordingly, 
we used the Parlitz modification of the Keller–Miksis model for the 
results presented in this paper. The modification comes in the 
pressure driving term. This modification preserves the equation as an 
autonomous system that is solvable while also keeping the nonlinear 
representation of our system. The equation is 

 

 
 

We can now introduce the variables is u = R_ and Ѳ = f t mod 1. 
just as before to transform the Keller–Miksis–Parlitz equation into a 
system of three autonomous differential equations: 
 

 
(c) Spectrum, 70 kHz, MI=0.10  

Fig. 2. For a single 10-lm bubble at 70 kHz applied pressure and at a MI = 0.10: (a) trajectory in state space projection, (b) Poincaré section plot, 
and (c) frequency spectrum. 
 

             (a) Orbit, 70 kHz,  MI =0.10           (b) Poincar ́ e, 70 kHz,  MI =0.10   
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The dynamics of this system were calculated using a Runga–Kutta 
routine in a standard MATLAB adaptive solver (ode45). 

Difficulties in the integration of the system above arise when 
the oscillations in bubble radius contain the sharp downward peaks 
that are characteristic of bubble collapse. Either more sophisticated 
algorithms or a smaller time step can resolve this difficulty, adding 
to the computation time [35]. Parlitz et al. circumvented this 
problem by integrating a topologically equivalent system that 
smoothed out the singularities. Their approach was used in this 
research whenever the integration procedure was unable to handle 
the singularities arising in the Keller–Miksis–Parlitz model and it 
inevitably ‘‘blew up.’’ Briefly, the original system is transformed 

into a new one that allowed for smoother oscillations but also 
retained all of its qualitative, topological properties. This is 
accomplished by means of the following diffeomorphism 
from the state space [35] into its topologically equivalent space: 

 

where the parameters α, β and γ  control the smoothness of the 
oscillations in the new space. Time is also rescaled: t’ =  f0t, where f0 

= αβ/γR0, and differentiation is with respect to rescaled time. 
A MATLAB program was written to solve this system whenever 

the inward oscillations leading to collapse calculated from Equation 
7 became so pronounced that the standard solver (ode45) was unable 
to yield reasonable values. The details are found elsewhere [47]. The 
values used for the control parameters in the transformation were: α 
= 1, β = 2, and γ = 0.001, as reported by Parlitz et al. [35]. 

The initial conditions used in the dynamic calculations were R0 = 
10 μm, u = 0 m/s, and Ѳ = 0. The driving frequency was set at 70 
kHz, the parameters in Table 1 were those for water at 25 C, and the 
oscillations were assumed adiabatic with k = 1.4 [35]. Trajectories 
were plotted once transients disappeared, which normally occurred 

 
(c) Spectrum, 70 kHz, MI=0.32  

Fig. 3. For a single 10-lm bubble at 70 kHz applied pressure and at a MI = 0.32: (a) trajectory in state space projection, (b) Poincaré section plot, 
and (c) frequency spectrum. 
 

      (a) Orbit, 70 kHz,  MI =0.32   ( b) Poincar ́e, 70 kHz,  MI =0.32   
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after about 250 ls. The calculations were done as a function of the 
mechanical index (MI) parameter. The MI is often used by 
experimentalists and radiologists to estimate the probability of 
inertial cavitation events, and is given by MI = (P/MPa)/ (f/MHz)1/2 

[48,49], where P is the peak negative pressure, and is equivalent to A 
(for a sinusoidal wave) in Table 1. 

It is important to note that these models are, of course, an overly 
simplified reflection of the experimental conditions. First and 
foremost, the models trace the behavior of only a single bubble under 
an external applied pressure, ignoring the coupling effects found in 
bubble clusters [29–31] and the possibility that some Pluronic 
polymer may have accumulated at the gas–liquid interface. We found 
this acceptable since we seek only a qualitative sketch of how a 
bubble behaves at the parameters at which the experiments were run. 
Second, the initial bubble size is kept constant for all frequencies and 
pressures used in these calculations. The objective was to observe the 
qualitative bubble behavior at 70 kHz; the 10-lm bubble size is typical 
of naturally occurring air bubbles in water [34,35]. In effect, by doing 
so, we are looking at a slice of parameter space, a space which is vast 
and highly complex [24]. Additionally, by considering a single 
bubble of a given initial size, it is easier to study an acoustic signal in 
particular. This helps to separate behavior directly related to drug 
subharmonic) from acoustic signals that may not be directly related 

to it 
(such 

as 

baseline shift). This is exemplified in the acoustic spectra shown in 
Fig. 1, where only the subharmonic correlates with drug release [9,10] 
and the background noise shift is more likely a result of collapsing 
bubbles of a different resonant size. Furthermore, even though the 
micellar drug carrier was present as a surfactant in the experiments, 
its effect on bubble size distribution was not considered for this initial 
study. 

We realize that gas bubbles in the presence of micelles will collect 
some of the Pluronic block copolymer at the gas liquid interface. 
However, the literature contains no reports of experiments or models 
regarding the phenomenon for block copolymers at the interface of 
oscillating gas bubbles. As a first approximation, 
we expect that the surface energy would be lower and the fluid 
viscosity at the interface greater, but it is difficult to predict the extent. 
Therefore, this model of oscillations did not include these 
complications. The dynamics of bubble oscillations can change with 
the presence of a surfactant, and more research is needed to further 
explore this point. The implications are that the actual bubbles are 
probably damped in their oscillation by the polymers at their 
interface; this will probably require a higher acoustic pressure than 
predicted in models without polymers at the interface, which is in the 
correct direction of the experimental observation in that the 
experimental MI for subharmonic bubble behavior is higher than the 

 

(c) Spectrum, 70 kHz, MI=0.3435  

Fig. 4. For a single 10-lm bubble at 70 kHz applied pressure and at a MI = 0.3435: (a) trajectory in state space projection, (b) Poincaré 
section lot, and (c) frequency spectrum. 

         (a) Orbit, 70 kHz,  MI =0.3435            ( b) Poincar ́ e, 70 kHz,  MI =0.3435   
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MI calculated from the bubble dynamic model. However, since this 
is pure speculation without support, we will not discuss it further in 
this paper. 

Finally, we must remember that the experimental signal generated 
by the 70-kHz source is actually a 70-kHz (continuous) wave 
amplitude modulated sinusoidally at about 0.12 kHz. This might 
explain the noisy appearance of the 70 kHz spectra (Fig. 1) compared 
to other experimental spectra generated at 500 kHz [47]. The clean 
driving pressure model used for the calculations at 70 kHz is thus an 
approximation deemed appropriate since we are interested solely in 
exploring the dynamics arising at this frequency. It is also important 
to note here that the noisiness observed in the hydrophone was similar 
to the noisiness observed when measuring the voltage output from the 

circuit driving the piezoelectric transducer. Therefore, it may be safe 
to conclude that the noisiness is coming from the circuit and is 
independent of the bath geometry. 

The state space given by the equations described above is 
threedimensional, so trajectories of any given initial conditions 
should trace a three-dimensional shape. The definition of the 
variable H leads to a convenient state space: the conic section 
traced by the smooth oscillations gives a torus-like state space [35]. 
Hence, the evolution of the variable H reflects the number of 
revolutions of a particular trajectory around this state space. One 
can then generate a projection of both R and u, eliminating H and 

investigating the resulting phase portraits two-dimensionally. The 
result is a limit cycle (an isolated closed trajectory) that appears 
(incorrectly) to cross itself, a consequence of the elimination of the 
extra dimension. 

We employ the Poincaré map from Strogatz [50]. Poincaré 
maps are a convenient visual tool to identify the periodicity of each 
point in the domain. These maps make it trivial to identify the 
signature, and to identify whether the system exhibits a smear or a 
fractal behavior/representation. The measurement of spectra and 
the Poincaré maps complement each other, the latter allowing one 
to move from the realm of continuous dynamical systems to the 
more intuitive world of discrete maps. Unfortunately, it is rarely 
possible to find an explicit form of the map and here we rely on the 

numerical approximations of the ODE solver. Note that if x is a 
fixed point (i.e., P (x) = x), then a trajectory starting at x returns to 
x after some time T and is therefore a closed orbit for the original 
system. Hence, when plotting the Poincaré map, any attracting 
limit cycles generated by the bubble equations will result in single 
points. For example, if the bubble is oscillating at the driving 
frequency f, a single point should appear. If the bubble, however, 
begins oscillations at twice the period of the applied pressure (that 
is to say, at half the frequency, f/2), then two points should appear 
on the plane, and so forth. In nonlinear dynamical systems such as 
the one analyzed here, it is common to find another type of 

 

(c) Spectrum, 70 kHz, MI=0.35  

Fig. 5. For a single 10-lm bubble at 70 kHz applied pressure and at a MI = 0.35: (a) trajectory in state space projection, (b) Poincaré section plot, 
and (c) frequency spectrum. 

( a) Orbit, 70 kHz,  MI =0.35     ( b) Poincar ́ e, 70 kHz,  MI =0.35   
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attractor, called a strange attractor. This is no longer a point, curve, 
or surface, but a fractal, and will reveal itself on the Poincaré cross-
section as a type of ‘‘smearing’’ of points with self-similar 
structure [34,35,50]. 

3. Results 

A stable limit cycle is created for low pressures as Fig. 2 reveals, 
which is a representative case with a pressure of 26.5 kPa (MI = 0.10). 
The orbit shown in Fig. 2a has a slight pinching near R/R0 = 1. The 
Poincaré cross-section (Fig. 2b) and frequency spectrum (Fig. 2c) 
show that the bubble is oscillating at the driving frequency and hence 
a single fixed point appears and the fundamental and second 
harmonic peaks are visible. 

The ‘‘pinching’’ of the orbit reflects velocity variations as the 
bubble contracts and expands. In particular, the bubble achieves its 
highest velocities when R > R0, a rather unusual observation. Also, 
the bubble tends to momentarily slow down whenever it reaches a 
radius of about 99 % of its equilibrium radius R0, We suspect that this 
behavior is a consequence of the low driving frequency for this size 
of bubble. A first-order estimate for the resonance frequency of an air 
bubble in water is [51]  

fres = 3.3m/s/Ro 

and thus our bubble has a resonance frequency of about 330 kHz, 
which is greater than the applied frequency. The bubble dynamics at 
this frequency are under what Leighton [51] calls ‘‘stiffness control’’, 
and the bubble, in general after initial transients, expands when 
pressure decreases. The compressibility of the gas, not the 
momentum of the fluid, dominates the bubble dynamics. 

The solutions continue to show this ‘‘pinching’’ as the pressure 
amplitude is increased and the bubble oscillates at a frequency less 
than its resonance. Eventually, the acceleration of the bubble wall at 
low radii begins to dominate and we see a different orbit wherein the 
highest velocities are achieved at low radii, as seen in Fig. 3a. The 
pressure amplitude in Fig. 3 is 84.7 kPa with a MI = 0.32. The orbit 
looks like a complicated series of twists and turns, and the Poincaré 
cross-section (Fig. 3b) reveals a surprising detail: the period has 
doubled, showing two clear isolated points. The frequency spectrum 
(Fig. 3c) confirms this, showing the appearance of the subharmonic 
(f/2 = 35 kHz) signal. The ‘‘velocity pinching’’ mentioned above 
remains as well. In fact, it seems that, as the pressure increases, the 
bubble struggles with being out of phase with the incoming wave 
more and more, leading to a jagged velocity profile. 

The period doubles at MI = 0.32, the computational subharmonic 
threshold. Note that the experimental threshold (in MI) was found to 
occur between 0.35 and 0.40 [9,10]. Considering the limitations of 
the model presented here, especially the fact that a single bubble is 
being modeled and not a more realistic cluster of bubbles, the values 
show remarkable agreement. This suggests that, at least as far as 
subharmonics go, the bubble–bubble interaction is not the dominant 
parameter at these conditions. 
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Slightly increasing the driving pressure after the seeming 
disappearance of the double-period orbit unexpectedly sends the 
system into chaos. Fig. 5 presents results for a slightly higher pressure 
of 92.6 kPa (MI = 0.35) almost immediately following the stable 
double-period orbit shown above. The orbit projection (Fig. 5a) 
reveals the strange attractor that is created. Although the Poincaré 
cross-section (Fig. 5b) does not yet show a complete fractal shape, 
the frequency spectrum confirms the chaos created with its noisy, 
raised baseline (Fig. 5c). 

The results shown in Fig. 5 find the bubble eschewing the 
conventional route to chaos by a series of infinitely many period 
doublings seen in other systems [52]. Instead, the bubble oscillation 
develops a double period for a short time before creating all periods 
almost instantly. This apparently direct and sudden transition from 
some type of stable oscillation into a strange attractor is generally 
known as the intermittent route to chaos [53]. It arises out of a kind 
of bifurcation known as a saddle-node bifurcation of cycles (or fold), 
which, roughly, is concerned with the birth and/or destruction of 
stable and unstable limit cycles [50,54]. All it takes to reach chaos is 
a single saddle-node bifurcation, although it could be the result of a 
series of them; the presence of this type of route to chaos in bubble 
oscillators has been reported by Lauterborn and 
Parlitz [34]. 

The resulting chaotic oscillations persist before ending as abruptly 
as they commenced. At approximately 114 kPa 

(MI  0.43), a stable limit cycle is created out of the strange attractor 
(Fig. 6a). The Poincaré cross-section (Fig. 6b) accordingly shows 
a fixed point while the return of the fundamental peak (and its 
integer harmonics) is seen in the frequency spectrum (Fig. 6c). It 
is noteworthy not only that the strange attractor disappears and a 
single-period stable limit cycle is created but that this new 
oscillation is not necessarily a return to the original fundamental 
oscillation (for MI < 0.32). A comparison of Figs. 3a and 6a shows 
that the new cycle is not only wider but also much faster, with 
dramatic accelerations at low radii. The maximum inward velocity 
in Fig. 5a is revealing in that it has exceeded the speed of sound in 
air at the simulation conditions, which is approximately 350 m/s. 
This is most likely evidence of a bubble collapse as the incoming 
bubble wall is moving faster than the speed of sound in the gas 
phase, creating a density discontinuity and a shock wave. The 
model predicts a symmetric collapse and so mathematically the 
bubble bounces back to continue oscillating. In reality, bubble–
bubble interactions will cause the bubble to collapse 
asymmetrically and fragment into smaller bubbles, whose smaller 
sizes would place their resonance frequency even further from the 
applied 70 kHz. Although probably no longer representing 

 
(c) Spectrum, 70 kHz, MI=0.43  

Fig. 6. For a single 10-lm bubble at 70 kHz applied pressure and at a MI = 0.43: (a) trajectory in state space projection, (b) Poincaré section plot, 
and (c) frequency spectrum. 

         (a) Orbit, 70 kHz,  MI =0.43              ( b) Poincar ́ e, 70 kHz,  MI =0.43   
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experimental bubble behavior, we will still continue our description 
of this very interesting bubble dynamic behavior. 

As will be shown shortly, for increasing pressures, the bubble wall 
velocity will continue to exhibit this behavior, and we can say that 
the bubble is in a collapsing regime. The oscillations, however, do 
not remain as a stable limit cycle and so we investigate how the new 
chaotic regime is achieved. 

First, at some point just before A = 132 kPa (MI = 0.50), the 
system undergoes another period-doubling bifurcation (Fig. 7). A 
close examination of the resulting limit cycle in Fig. 7a reveals the 
second loop trailing closely to the original cycle, leading to a second 
point on the Poincaré plot (Fig. 7b) and the reemergence of the 
subharmonic peak in the frequency spectrum (Fig. 7c). 

The bubble’s motions keep increasing in velocity as the bubble 
collapses, as the projected orbit shows in Fig. 7a. The velocity is close 
to zero at the equilibrium radius with most of the acceleration 
concentrated at very low radii (R/R0 < 0.1), close to collapse. Also, 
the bubble wall achieves its maximum velocity as it contracts close 
to collapse, at almost twice the velocity attained as when it expands. 

The bubble’s behavior is starting to look familiar. Instead of 
creating a single-period oscillation before launching into chaos 
however, the two points on the Poincaré plot keep moving apart from 
each other. At a pressure of about 140 kPa (MI  0.53), the first 
indications of chaos begin to appear (Fig. 8). The strange attractor is 
not clearly visible yet (the cycle seems to be slowly winding into 

itself, see Fig. 8a), and the system appears to be stuck in the transition 
between stable double-period oscillations and chaos, as seen in the 
frequency spectrum (Fig. 8c), where the subharmonic remains amidst 
a raised and noisy baseline. This behavior is common in the 
intermittent route to chaos, where the system moves between stable 
oscillations (at the period immediately preceding chaos) and short 
bursts of chaotic motion (hence, ‘‘intermittent’’). These ‘‘laminar 
phases’’ eventually disappear into full chaos [13]. Predictably, the 
Poincaré cross-section (Fig. 8b) begins to show the stretching of 
periodic points as they start to form the fractal indicative of chaos. 

A new strange attractor is formed for values of A > 140 kPa (MI 
> 0.53) containing oscillations of all periods. There are several 
windows within the chaotic regime where oscillations of period three 
are present, such as at A = 148 kPa (MI = 0.56) (Fig. 9). The orbit 
(Fig. 9a) looks self-similar but without a multitude of winding 
trajectories within it resulting from all periods being present (hinting 
that they may be temporarily invisible to the computer). 

The frequency spectrum (Fig. 9c) reveals sharp peaks at f/ 3 = 23.3 
and 2f/3 = 46.6 with a small shoulder all that remains of the f/2 
subharmonic signal. This suggests the existence of periodic points of 
period three in discrete space, confirmed by the Poincaré cross-
section in Fig. 9b. Points of period three are important oddities in 
discrete dynamical systems, as expounded in the famous result of 
Sarkovskii [52]. In our case, if we restrict our Poincaré map to the 
real line (by, for example, collapsing it onto the radius or velocity 

 
(c) Spectrum, 70 kHz, MI=0.50  

Fig. 7. For a single 10-lm bubble at 70 kHz applied pressure and at a MI = 0.50: (a) trajectory in state space projection, (b) Poincaré section plot, 
and (c) frequency spectrum. 

      (a) Orbit, 70 kHz,  MI =0.50   ( b) Poincar ́e, 70 kHz,  MI =0.50   
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axis) and it is continuous, then a periodic point of period three implies 
the existence of points of all other periods, even if a numerical 
algorithm remains blind to them. Consider the following 

 

 

 ordering of N (known as Sarkovskii’s ordering of the natural 
numbers): 

 
where all odd numbers (except 1) are listed first, followed by 2 times 
the odds, 22 times the odds, and so forth, leaving the powers of 2 for 
last, followed by 1. The theorem is: 

Sarkovskii’s Theorem: Let f : R      R be continuous. Suppose f 
has a periodic point of prime period k. If k . l in the above ordering, 
then f also has a periodic point of period l. 

The theorem above is taken from Devaney [52], who also provides 
a basic proof. This theorem is remarkable for its simple hypothesis 
and strong result. The obvious corollary that concerns us is: 

Corollary. Let f :          R be continuous. Suppose f has a periodic 
point of period three. Then f has periodic points of all other periods. 

Thus, the existence of periodic points of period three implies the 
existence of periodic points of all periods, even if a numerical 
algorithm remains blind to them. 

This chaotic pattern continues up to and beyond MI = 0.70, with a  

 
strange attractor creating oscillations of all periods along with 

windows of periodic points of period three. An example of the chaos  
encountered at these values is given Fig. 10, where A = 153 kPa and 
MI = 0.58. 

As expected, the projected orbit (Fig. 10a) retains the basic 
shape seen before with the addition of self-similar windings and 
twists within it. The Poincaré plot (Fig. 10b) tells little, perhaps 
due to the time interval of integration not allowing for a full picture 
to form. The frequency spectrum confirms the chaotic nature of the 
system at this pressure value; Fig. 10c shows an increase in 
background noise, indicative of the presence of all frequencies. 

4. Discussion 

The results of the experimental observations of drug release at 
70 kHz show that there is a threshold at about MI = 0.37 for the 
onset of drug release from the micellar drug carriers as shown in 
Fig 11. At higher values of MI, the amount of drug released 
increases, and then levels off, which is considered to indicate a 
steady state balance of released and re-encapsulated drug [9,10]. 

 
(c) Spectrum, 70 kHz, MI=0.53  

Fig. 8. For a single 10-lm bubble at 70 kHz applied pressure and at a MI = 0.53: (a) trajectory in state space projection, (b) Poincaré section plot, 
and (c) frequency spectrum. 

      (a) Orbit, 70 kHz,  MI =0.53   ( b) Poincar ́e, 70 kHz,  MI =0.53   
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The MI is used as a parameter in this paper because it is a value 
that can be interpreted in terms of the probability or intensity of 
inertial cavitation occurring. As a definition and equation (MI = P-

/√f) calculated for any frequency and acoustic pressure. However, 
the numerical data of Apfel and Holland [48] from which the MI 
is derived show that the MI as defined slightly underestimates the 
cavitation threshold at frequencies below 750 kHz. Thus at 70 kHz, 
the onset of chaotic cavitation in water may occur at higher 
acoustic pressures (and higher values of MI) than one would expect 
from the general correlation of thresholds at frequencies above 1 
MHz We find it remarkable that the experimental observation of 
drug 

release occurs at slightly higher acoustic pressures than one would 
expect from modeling the onset of chaotic behavior in this simplified 
system at 70 kHz. 

A closer examination of the subharmonic component of the 
experimental frequency spectrum (see Fig. 12) shows not only a 
threshold, but a log-linear relationship between the subharmonic (35 
kHz) intensity and the amount of drug released. The threshold in MI 
corresponds to a subharmonic threshold of about 0.002 lW/ cm2. 
Interestingly, there are three data points that lie to the right (higher 
values of MI) of the correlation line, and appear to be repeatable. 
These indicate the presence of a large subharmonic intensity (>0.35 
lW/cm2), but very little drug release (<1%). We will come back to 
this observation later. 

It is important to clarify here that the experiments were done at 
70 kHz, and drug release was observed at 70 kHz. The observation 
was that the amount of drug release correlated with the intensity 
of the f/2 subharmonic. We have no way of knowing if the release 
was related directly to the production of a 35-kHz frequency or 
related to the shear stress generated by bubbles that also produced 
the f/2 subharmonic. 

The foregoing results and accompanying analysis demonstrate 
that ultrasound induced drug release from polymeric micelles at 70 
kHz is, in general, independent of drug carrier (stabilized or not) 
and temperature, which solely affect the absolute amount of drug 
released but not the mechanism itself. The existence of a drug 

release threshold (between 0.35 and 0.40 in mechanical index) 
suggested that cavitation was responsible for drug release. 
Acoustic spectra confirmed this suspicion as subharmonic 
intensity correlates faithfully with drug release, the signal 
appearing at the same time as the onset of release. Bubble collapse 
occurred before drug release was detected, implying that the 
subharmonic oscillations involved in drug release are independent 
of the violent collapse associated with acoustic signatures such as 
the increase in background noise. We posit that shear waves 
caused by cavitation events that produced the f/2 subharmonic also 
aid in shearing micelles open, thus releasing their drug content to 
the surrounding solution. 

We summarize the findings of the dynamic simulation in what 
is called a bifurcation diagram. In the realm of discrete dynamical 

 
(c) Spectrum, 70 kHz, MI=0.56  

Fig. 9. For a single 10-lm bubble at 70 kHz applied pressure and at a MI = 0.56: (a) trajectory in state space projection, (b) Poincaré section plot, 
and (c) frequency spectrum. 

( a) Orbit, 70 kHz,  MI =0.56             ( b) Poincar ́ e, 70 kHz,  MI =0.56   
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systems, a bifurcation diagram simply plots the periodic points 
(including fixed points) of a map against a control parameter. 
Thus, they contain the entire dynamic history of the system for 
the parameter of interest. For the system of differential equations 
studied in this research, the link between the continuous and 
discrete is the Poincaré plot. Even if we cannot find its explicit 
analytic form, the qualitative results presented above allow us to 
create a rough sketch of the bifurcation diagram. We choose the 
bubble radius given by the Poincaré map (after Parlitz et al. [35]) 
as the state variable for the bifurcation diagram. 

Fig. 13 presents the bifurcation diagram as a function of the 
mechanical index (MI) for 70 kHz. This plot effectively summarizes 
the results previously presented in this paper and shows what is 

termed an intermittent route to chaos. Not only does classical period-
doubling never happen beyond points of period two, but the chaotic 
regime intervals are fairly narrow and seem to follow an increasing 
R/R0 pattern. 

The seemingly discontinuous jumps in R/R0 as the MI increases 
are unexpected and appear at the beginning and end of the first chaotic 
regime (MI  0.35 and 0.43). There are at least two possible 
explanations for this phenomenon. Either it is a result of the dy- 
Fig. 11. Experimental data showing average percent release of 
doxorubicin from Pluronic micelles, as a function of MI at 70 kHz. 
Error bars represent standard deviations (n > 4) from the mean. 

 
 (c) Spectrum, 70 kHz, MI = 0.58  

Fig. 10. For a single 10-lm bubble at 70 kHz applied pressure and at a MI = 0.58: (a) trajectory in state space projection, (b) Poincaré section plot, 
and (c) frequency spectrum. 

 

( a) Orbit, 70 kHz,  MI =0.58           ( b) Poincar ́ e, 70 kHz,  MI =0.58   
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namic structure of the oscillator or it is a numerical artifact arising 
from the integration algorithm used by MATLAB. Even if the latter 
is true, the qualitative bubble behavior may still yield valuable insight 
into bubble dynamics and their impact on drug release. 

If the discontinuities are a characteristic of the system structure, 
they may arise out of saddle-node bifurcations. As explained before, 
saddle-node bifurcations govern the creation and destruction of limit 
cycles (through stability of orbits). Discontinuous jumps in 
bifurcation diagrams are precisely the destruction of a stable limit 
cycle and the creation of a new stable one (in this case, 

 

Fig. 12. Percent doxorubicin release from Pluronic micelles 
correlated with the acoustic intensity of the subharmonic peak. 
Error bars represent standard deviations from the mean. 

one whose conical trajectory has a larger radius). Lauterborn 
explains this type of bifurcation to some length [34] and presents 
bifurcation diagrams with similar (seemingly) discontinuous 
behavior for the bubble oscillator itself [34,35], using the driving 
frequency as the control parameter rather than the pressure ampli- 

 

Fig. 13. Bifurcation diagram as a function of mechanical index for 
a 10 lm bubble at f = 70 kHz. 

tude as in this work. Lauterborn was the first to report that the 
acoustic spectrum of cavitating bubbles approached an increased 
background noise (which he defined as chaos) through successive 
appearances of half-harmonics of the driving frequency (22.56 
kHz). This was the first experiment to physically show the famous 
period-doubling route to chaos predicted by dynamical systems 
theory, and which is characteristic of driven nonlinear oscillators. 
In the previous section we established that the route to chaos at 70 
kHz is intermittent, which route proceeds through a single or a 
series of saddle-node bifurcations. It is therefore reasonable to 
consider that such a bifurcation created the discontinuities at 70 
kHz. The bifurcation diagram in Fig. 13 elegantly illustrates the 
chaotic nature of the bubble oscillator, in particular, the chaotic 
map that is created when one moves to discrete space via the 
Poincaré plot [52]. 

Given that all periods (i.e., frequencies) are present at the onset 
of chaos, we can then directly relate the onset of chaos (the 
appearance of a strange attractor) to the shift in baseline seen in 
the experiments, which means that background noise does not 
necessarily imply a collapse event. In fact the low velocities and 
slight changes in bubble radii shown in Fig. 5 do not suggest that 
‘‘collapse’’ is happening. The literature lacks a well-defined 
criterion to identify a collapse event from the equations of bubble 
dynamics. The approaches differ by author and include defining 
the moment of collapse as the point at which the bubble contents 
reach a temperature of 5000 K [48] and when radial oscillations 
show ‘‘sharp peaks’’ in the direction of small values (R/R0 < 0.1) 
of the radius [35]. Using the criterion of bubble wall velocity 
exceeding the speed of sound in air (explained in the previous 
section) to identify collapse is sufficient for our qualitative 
purposes and reveals that the bubble starts collapsing at around a 
mechanical index of 0.40 at 70 kHz, but not at the lower MI of 
0.35 when chaos first appeared. In any case, we can see that 
collapse is approached by the increasingly violent behavior of the 
bubble (particularly in its inward movement) as the applied 
pressure amplitude increases, similar to its approach to chaos. 

Ultimately, drug release correlated with the subharmonic signal 
and not bubble collapse itself (background noise). This is why it is 
pertinent to focus on the long-term dynamic differences between 
frequencies and not exclusively on the moment of collapse. It is 
the subharmonic that still holds the answer. That the subharmonic 
signal should be intermittent at 70 kHz seems to be confirmed by 
the three experimental outliers seen in Fig. 12 and mentioned 
earlier [9]. It is possible that the experimental setup used for 70 
kHz (a water bath) created (through hysteresis and/or a distribution 
of bubble sizes) a wider window of intermittent 
subharmonic/chaotic oscillations than the bifurcation diagram 
predicts and that these ‘‘quasi-stable’’ oscillations eventually 
decreased drastically [34], characterized by the leveling off in 
percent drug release seen in Fig. 11. 
Another conjecture to consider is that there may have been 

standing waves in the bath, and that the hydrophone was hearing 
subharmonics from other regions of the acoustic field; but in the 
volume interrogated by the fiber optic probe, the bubble oscillations 
were not sufficient (not enough subharmonic intensity) to release 
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much drug. Such intricacies remain to be explored both 
experimentally and theoretically. 

5. Conclusion 

To summarize, drug release from micelles appears to correlate 
with the intensity of the subharmonic emission in these experiments. 
There is a threshold for commencement of drug release at a 
subharmonic intensity of 0.002 lW/cm2, and a MI of 0.37. This 
threshold in MI is very near the MI threshold value (MI = 0.3) at 
which subharmonic oscillations are predicted by mathematical 
models of bubble dynamics. In particular for a 10-lm bubble at 70 
kHz, the dynamic model predicts that bubble oscillations bifurcate 
between MI values of 0.32 and 0.34 and then sudden chaotic behavior 
appears at a MI of 0.35 Obviously, more work needs to be done, both 
in experiments and models. It would be of particular interest to 
examine the models of dynamic bubble behavior and drug release at 
other frequencies, particularly a higher frequency above the 
resonance frequency of the bubble. Such a case may show very 
different behavior since the bubble oscillations would be in 
Leighton’s ‘‘inertial-controlled’’ regime instead of the ‘‘stiffness-
controlled’’ regime [51]. Experimentally we have observed enhanced 
drug uptake by cells at 0.5 MHz [4], but we have not observed the 
same type of drug release from micelles that correlated with the 
subharmonic signal [47]. Apparently bubble dynamics are very 
different at 0.5 MHz, as will be discussed in a future paper. 
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