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Abstract—The use of echogenic liposomes to deliver 

chemotherapeutic agents for cancer treatment has gained 
wide recognition in the last 20 years. Cancerous cells can 
develop multiple drug resistance (MDR), in part, due to the 
drop in concentration of chemotherapeutic agents below 
the therapeutic levels inside the tumor. This suggests that 
MDR can be reduced by controlling the level of drug release 
in the diseased area. In this paper, a model predictive 
controller based on neural networks is proposed to 
maintain a constant chemotherapeutic release at the cancer 
site. The proposed system was able to follow the set point 
by varying the U.S. intensity within preset constraints. The 
system simulated model is viable and it showed a high 
average fit when stimulated with variable input variations, 
indicating the robustness of the nonlinear model. By 
maintaining a constant release of the drug so that the 
concentration level is above a certain threshold, we hope to 
reduce cancer resistance towards chemotherapeutic 
agents. 

IndexTerms—Model predictive control(MPC),drug 
delivery, echogenic liposomes, neural networks (NN), NN-
MPC. 

I. INTRODUCTION

ANCER is a devastating disease that affects the lives of 
millions of patients worldwide. One of the mostly utilized 

medical treatments for this life-threatening ailment is 
chemotherapy, which involves the administration of therapeutic 
drugs that cause the death of malignant cells and tissues. 
However, chemotherapy is usually associated with multiple 
adverse side effects caused by the lack of specificity, as the drug 
does not differentiate between healthy and cancerous tissues 
[1]. Recently, efforts have been directed towards finding 
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a solution to the non-specificity problem of anti-neoplastic 
agents. Encapsulating chemotherapeutic agents inside 
nanocarriers before injecting them into the patients body have 
shown promise in reducing these side effects. Some examples 
of these nanocarriers are micelles, dendrimers, archaeosomes, 
solid nanoparticles, and liposomes [2]. These carriers represent 
drug delivery systems (DDSs) that minimize the circulation of 
free drug in the body, which in turn reduces its interaction with 
healthy cells. The nanocapsules can circulate in the blood for 
an extended period of time and, with the help of various 
targeting techniques, the drug can accumulate preferentially at 
the tumor site. Once at the desired location, the drug release can 
be induced by external or internal means [3]. Liposomes and 
micelles are two of the most widely researched carriers in the 
field of drug delivery. They can be actively targeted using 
external (including light, temperature and ultrasound) or 
internal means (including pH, enzyme and ligand targeting) [4]. 
Since Liposomes are FDA approved in cancer treatment since 
1995, we opted to use these nanocarriers in this work. 
Liposomes are spherical nanovehicles made up of a 
phospholipid bi-layer capable of encapsulating hydrophobic 
drugs in their shell and hydrophilic drugs within their core. 
They are small in size (100-500 nm in diameter) and are capable 
of diffusing through blood capillaries into the tumor. Their 
physical characteristics, including their semi-solid nature, make 
them vulnerable to mechanical waves of certain frequencies; 
hence, their sensitivity to ultrasound [5], [6], [10]. What makes 
liposomes more appealing, for drug delivery applications, is 
their composition. Constructed using naturally occurring lipids, 
they have a structure resembling the human cell membrane, 
rendering them both stable and non-toxic when injected in the 
patient body. Nonetheless, without modifying their surface, the 
carriers are easily detected by the reticuloendothelial system 
and classified as foreign invaders leading to their opsonization 
and clearance by the liver [6]. To overcome this shortcoming, 
liposomes are chemically modified, using polyethylene glycol 
(PEG), to enhance their circulation time, and hence their ability 
to target cancer cells while sparing healthy cells. The liposomes 
used in this work are designed to be echogenic; i.e. activated by 
ultrasound. This type of liposomes is known as acoustically 
activated liposomes (AAL) [4], [7]. In addition to echogenicity, 
these liposomes are also designed to be stealthy, meaning that 
they can circumvent the body’s defense mechanisms. Their 
radius range between 12.5 and 150 nm allowing them to utilize 
the enhance permeability and retention effect (EPR), also 
known as passive targeting, to accumulate preferentially at the 
tumor site [8]. The EPR effect ensures the preferential 
accumulation of drugloaded nanocarriers at the tumor site due 
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to the leaky nature of blood capillaries found in tumors, which 
in turn allows liposomes to get trapped in those capillaries and 
eventually diffuse into the cancer tissue [9]. Once enough time 
has passed (to allow for the carriers extravasation at the tumor 
site), ultrasound is focused on the tumor to induce the temporal 
and spatial release of the anti-neoplastic agent to the diseased 
tissue. To achieve optimal release, the proper parameters 
(including ultrasonic frequency, power density and pulse 
duration) have to be optimized. A comprehensive survey on 
triggered drug release from liposomes can be found in [10]. An 
important factor that is critical to the effectiveness of the 
chemotherapy treatment is the drug concentration level. In 
order to guarantee a successful treatment and to reduce the 
chance of developing multi-drug resistance (MDR), the drug 
concentration has to be kept above a therapeutic level. Hence, 
when using a combination of liposomes and ultrasound as a 
DDS, it is advantageous to have a mechanism by which the drug 
concentration at the diseased site is carefully monitored and 
controlled (i.e.; if the drug level drops below the therapeutic 
window, more release can be induced and vice versa). In the 
present work, the level of release can be readily controlled by 
controlling the acoustic parameters employed. A model 
predictive controller (MPC) is used to develop a control system 
that is capable of controlling the release rate of a model drug 
(i.e. calcein) from liposomes by controlling the acoustic 
parameters employed. By measuring the concentration level 
and feeding it to the controller as a feedback signal, the desired 
drug concentration can be maintained. Since experiments were 
conducted under in vitro conditions with no cancer cells under 
treatment, drug concentration level was translated into 
percentage release from the liposomes. The MPC model 
presented herein is developed using in vitro drug release data 
using multiple input-output curves from which an approximate 
model was extracted [11]–[15]. The paper is organized as 
follows. Section 2 lists the methodology used to synthesize the 
loaded liposomes as well as provide some background on US 
as a drug release modality. Section 3 details the experimental 
setup used to collect the input-output curves used to design the 
system model. Section 4 discusses the proposed system. Section 
5 presents background information on neural networks, 
followed by a discussion of the results and a brief conclusion in 
section 6. 

II. MATERIALS AND METHODS

A.Synthesis of PEGylated Liposomes
The liposomes used in this work, which were designed to be

passively targeted (by ensuring that their radius is below 250 
nm) and acoustically activated, are PEGylated liposomes. To 
prepare these carriers, an amphiphilic PEG derivative group 
(para-nitrophenylcarbonyl-PEG-paranitrophenylcarbonyl; 
(pNP-PEG-pNP)) is used to prepare DOPE (1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine)- 
PEG-pNP conjugates which are then mixed with a lipid-
cholesterol solution. The liposomal bilayer shell is made up of 
three chemicals. The first is the 1,2-dipalmitoyl-snglycero-3-
phosphocholine (DPPC). Phosphatidylcholine (PC) lipids 
contribute, along with DOPE, to the ability of liposomes to 

encapsulate hydrophobic and hydrophilic drugs [16]. 
Cholesterol is also an ingredient in liposomal formation and is 
used to enhance the stability of the liposomes by restraining the 
presence of liquids. Cholesterol also minimizes the 
permeability of the liposomal membrane, accordingly, making 
it less leaky and having lower rates of lipid exchange with other 
structures in the blood circulation (such as red blood cells and 
lipoproteins). Most importantly, cholesterol effectively reduces 
drug bio-distribution and facilitates the elimination of 
liposomal residues after release [17], [18]. The third component 
used for liposomal formation is the DOPE-PEG-pNP conjugate. 
DOPE is one of the phospholipids that belong to the 
phosphatidylethanolamine (PE) family. Similar to PC and 
cholesterol, PE lipids are also naturally found in biological 
membranes, and the ratio of the PC to PE lipids is responsible 
for regulating the integrity of the membrane [19]. PEG chains 
act as spacer arms and are responsible for the stealthy nature of 
the liposomes, as it repels macrophages, decreases opsonization 
and increases the circulation time of these nanoparticles in the 
body. The procedure used to make the liposomes, based on a 
protocol by Torchilin and co-workers [5], is as follows: pNP-
PEG-pNP group is synthesized first, by reacting PEG2000-diol 
(HO-PEG-OH) with two molar equivalents of 4-nitrophenyl 
chloroformate (p-NPC) (Sigma-Aldrich Chemie GmbH, 
Munich, Germany) in the presence of dichloromethane and 
pyridine (Scharlau Chemie, Barcelona, Spain) in a flask placed 
in an ice bath (p-NPC solution added drop wise under argon). 
The reactants are then allowed to react for 20 hours at room 
temperature with continuous stirring. Finally, pNP-PEG-pNP is 
precipitated using cold diethyl ether and dried overnight in a 
desiccator. This product is then reacted (in a round bottom 
flask) with one molar equivalent of DOPE (Sigma-Aldrich 
Chemie GmbH, Munich, Germany or Avanti Polar Lipids, Inc., 
Alabaster, AL, USA), both reactants are dissolved in dry 
chloroform with continuous stirring, in the presence of 
triethylamine (TEA). The reactants are allowed to react 
overnight at room temperature under argon to form the DOPE-
PEG-pNP conjugates. Chloroform is then evaporated in a rotary 
evaporator. The lipid residue is hydrated with 2 ml of a 0.01 M 
HCl-0.15 M NaCl solution and sonicated at in 40-kHz 
sonicating bath (Elma D-78224, Melrose Park, IL, USA) for 10 
minutes. The solution is then purified to separate the micelles 
formed during the sonication process from the unbound PEG 
and released pNP, using a Sephadex G-25 PD-10 desalting 
column (GE Healthcare Life Sciences, Pittsburgh, PA, USA). 
Finally, the solution is evaporated for 2 hours at high speed 
under vacuum in a rotary evaporator, and the DOPE-PEG-pNP 
is extracted 4 times with chloroform. The salt residues are 
precipitated on ice and removed by centrifugation. The 
produced DOPE-PEG-pNP is stored at -20°C as a chloroform 
solution, with a concentration of 8.4 mM. DPPC (Sigma-
Aldrich Chemie GmbH, Munich, Germany), cholesterol 
(AlfaAesar, Ward Hill, MA, USA), and DOPE-PEG-pNP are 
all dissolved in 2 ml of chloroform, using a molar ratio of 
68:30:2 (DPPC:Chol:DOPE-PEG-pNP). Chloroform is then 
evaporated under vacuum in a rotary evaporator to allow a 
lipidic film to form on the walls of the flask. The film is 
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hydrated with a solution of calcein (Sigma-Aldrich Chemie 
GmbH, Munich, Germany) at a self-quenching concentration 
(i.e. 30 mM in a phosphatebuffered saline (PBS) buffer), with 
the pH adjusted to 7.4. The resulting solution is sonicated at 
maximum power using 40-kHz ultrasound for 15 min. The 
sample is then extruded three times (10 x) through 0.45 µm 
polycarbonate filters using an Avanti mini-extruder (Avanti 
Polar Lipids, Inc., Alabaster, AL, USA). The liposomes are 
cleaned using Sephadex G-25 PD-10 desalting columns (GE 
Healthcare Life Sciences, Pittsburgh, PA, USA) and suspended 
in PBS before being stored at 4°C until use. Our samples were 
characterized using a particle sizer. The results show that the 
synthesized liposomes are spherical in shape with a diameter 
ranging from 180 nm to 230 nm. More details on 
characterizations can be found in [5] and [42]. 

B.Ultrasound 

Ultrasound is widely researched as an effective triggering 
modality for drug release from echogenic nanoparticles [20]. 
US waves can be generated at different frequencies, intensities, 
duty cycles, etc. [21]. Echogenic liposomes are designed based 
on these parameters in order to obtain the desired drug release 
profile. There are four possible mechanisms that cause release 
from liposomes based on the US parameters used. The first 
mechanism is hyperthermia, which is usually associated with 
high intensity focused ultrasound (HIFU) at frequencies higher 
than 0.5 MHz [22]–[27]. The second mechanism is capable of 
inducing release through the formation of microbubbles that 
undergo collapse cavitation events, the latter producing 
microjets and shockwaves sufficient to disturb the liposomal 
membrane, leading to the release of the encapsulated agent 
[28]–[30]. The third mechanism arises from the mechanical 
nature of US waves, the latter causing the liposomes to 
accelerate and collide with each other and/or their surroundings, 
leading in some instances to deformities in their membrane 
structures and allowing the encapsulated drug to diffuse out 
[31]. The fourth mechanism is the mechanism behind drug 
release from emulsion-liposomes (eLiposomes), which are the 
newest generation of echogenic liposomes that contain 
lowboiling point nanoemulsions [32]–[34]. In this work, low 
frequency ultrasound is used (at 20 kHz), hence the main 
physical mechanism behind the model drug release is acoustic 
cavitation; however, since the experiments are done in cuvettes, 
mechanical tiring due to collisions might have also contributed 
to the release [10]. In this work, a 3-mm probe connected to a 
VCX 750 actuator (Vibra cells, Sonics and Material) is used to 
trigger release from liposomes. The probe is tapered and 
produces an ultrasonic beam with a frequency of 20 kHz. The 
probe tip is water-resistant and is inserted into the solution in 
preparation for sonication. The solution is placed in a cuvette 
with an opening of dimensions 1 cm x 1 cm. This allows for an 
ample space for the probe to vibrate freely ensuring maximum 
energy transfer into the solution. 

 

Fig. 1. Release percentage of calcein from liposomes. 

III. EXPERIMENTAL SETUP 

The experimental setup is as follows. An aliquot of the 
liposomal sample is first diluted in a cuvette using PBS (75 l 
liposomes diluted with 2 ml PBS). The cuvette is then placed in 
a QuantaMaster 30 Fluorescence Spectrofluorimeter (Photon 
Technology International, Birmingham, NJ, USA), which is 
used to measure the initial fluorescence level that corresponds 
to the baseline (F0), with the excitation and emission 
wavelengths of calcein set at 494 nm and 515 nm, respectively, 
and a sampling rate of 10 points/seconds. This baseline is then 
used to normalize the collected data as will be discussed next. 
It is worth noting that the used liposomes showed no release in 
the absence of ultrasound. This result confirms previously 
published results showing zero drug release from liposomes 
when US is not applied [40]. The sample is then subjected to 
20-kHz US generated using a 3-mm probe connected to a VCX 
750 actuator. Three US powers were used (6.09, 7.8, and 11.7 
W). Since high intensities of ultrasound were applied, and to 
avoid over heating the sample, pulsed US was used rather than 
continuous wave US. The pulsed behavior was controlled by 
adjusting the duration of the ON and OFF periods to one of 2 
settings: 50% ON cycle and 50% OFF cycle or 66% ON cycle 
and 34% OFF cycle. A slight temperature increase (< 2°C) was 
measured at 11.7 W. It is important to note here that no 
statistically significant release was measured when the sample 
was heated to 42°C using a thermostatic bath (in the absence of 
ultrasound). Hence, we concluded that the acoustic release of 
calcein from liposomes was not due to hyperthermia but due to 
other effects (i.e. mechanical effects). The samples were 
sonicated for 5 minutes. A full pulsed ON-OFF cycle is 30 
seconds during which the fluorescence level is continuously 
recorded. Figure 1 shows a sample curve of the results. The 
graph captures the release dynamics versus time. There is an 
evident increase in the fluorescence during the ON cycle of the 
ultrasound, while the release level plateaus when the US is 
switched off. The sonication is repeated at each setting 3 times 
and the average release calculated. At the end of each sonication 
cycle, the detergent Tx100 is added to each sample, to a final 
concentration of 0.48 mM, to lyse the remaining liposomes, 
allowing for the determination of a fluorescence level that 
represents 100% release. The recorded curves corresponding to 
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the fluorescence level versus time are then converted to percent 
release curves versus time using the 

 

Fig. 2. Block diagram of the MPC. 

equation below. 
%Drugrelease  100% 
 
 
where, Ft= the instantaneous fluorescence level after subjecting 
the sample to t insonation time; F0= initial fluorescence before 
insonation (baseline); Fmax= maximum fluorescence intensity 
after adding detergent Tx100. 

The main drawback associated with chemotherapy treatment 
is the development of MDR. The level of the chemotherapeutic 
agents present at the tumor site should be kept at or above a 
certain therapeutic level to reduce the chance of developing 
drug resistance; hence, it is critical to keep the drug 
concentration at or above these therapeutic levels [41]. To do 
so, the following system, described in section 4, is proposed 
utilizing a neural network model predictive controller (NN-
MPC). 

IV. NN-MPC (PROPOSED SYSTEM) 
The objective of the proposed system is to control drug 

release from liposomes using ultrasound. The system can be 
thought of as a single-input single-output system, where the 
ultrasonic pattern is the input while drug concentration level is 
the output. The system is a closed-loop control system with 
feedback that propagates information about current drug release 
level back to the controller as an error signal. In this work, we 
use a NN-MPC based control system to monitor and control 
drug levels by controlling the release rate from liposomes. The 
proposed system block diagram is shown in Figure 2. 

In the context of drug delivery, a tumor site that is injected 
with liposomes filled with a chemotherapeutic drug can be 
thought of as the system under control and will be referred to as 
the liposomal drug delivery system for the rest of this work. The 
liposomal drug delivery system is subjected to US pattern to 
cause drug release from the liposomes. As the drug is released, 
the drug concentration level is measured and propagated back 
to the predictor. The predictor is a block that captures the 

inverse behavior of the body, i.e. it takes in drug release level 
as its input and produced US pattern as its output. 
Consequently, at any point in time, by creating an accurate 
model and uploading its inverse into the controller, 

 

Fig. 3. Sample of the Input signal where the US power is set to 6 W 
and the ON cycle to 20 seconds, while the OFF cycle is 10 seconds. 

the proposed MPC is assumed to be capable of predicting the 
utmost matched US parameters that incorporates the effect of 
the medium (the human tissues) on the wave, while efficiently 
minimizing the error between the set point and the current 
concentration level. As shown in Figure 2, an MPC is made up 
of three main blocks; namely: the controlled plant (liposomal 
drug delivery system), the inverse plant (predictor), and the 
optimizer [35]. The liposomal drug delivery model and the 
inverse model for the predictor were simulated using in vitro 
release data. The experiments utilized a cuvette filled with 30 
mM of the liposomal solution in 2 ml of PBS and a 20-kHz 
probe to measure the acoustic release of a model drug from 
liposomes. US probe was inserted directly into the solution to 
cause drug release. Since chemotherapeutic drugs, such as 
DOX, are intrinsically fluorescent, the higher the measured 
fluorescence level, the higher the drug concentration level. 
Therefore, by recording the fluorescence level of the sample as 
it is being insonated, an estimate of the release percent can be 
measured. Multiple experiments were conducted using different 
US patterns, each had a different intensity and duty cycle, and 
liposomal concentrations. A large database of inputoutput 
curves was collected and used to develop a model that closely 
captures the behavior of the liposomes under different acoustic 
trigger signals. The model is used as an approximation for the 
liposomal drug delivery system in the proposed MPC [5], [42]. 
Since only in vitro release data were used in this work, the 
model can be further enhanced if in vivo experimental data are 
available which would allow us to include other parameters 
including cellular uptake to achieve a more realistic model. The 
output curves were then switched with the inputs and were used 
to estimate an inverse model that was used as the predictor. 
Various US patterns were used. Figure 3 shows an example of 
an acoustic input. To increase the accuracy of the estimated 
models, US patterns used had intensities ranging from 6.07 W 
to 11.7 W. Also, the ON and OFF durations were varied. As is 
discussed earlier, artificial neural networks are the modeling 
technique of choice used to estimate the models. 
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However, due to possible outliers within the data, numerous 
models were estimated from multiple input-output curves 
combination, and an average model that generates the best 
response to all inputs was derived. The same technique was 
used to approximate the inverse model; however, some 
difficulties were faced as the estimated models were unstable 

 

Fig. 4. SIMULINK generated schematic of the proposed/ simulated 
system. 

due to fast changing edges in the output (the US pattern). 
Therefore, an equalization method was used to compensate for 
this behavior as is explained in the results section. As for the 
optimizer, a built-in MATLAB block is used (with minor 
parameter manipulation) to achieve optimal performance. The 
final system is built using SIMULINK; as shown in Figure 4. 
The function of the optimizer is to adjust the predicted US 
parameters produced by the inverse model based on the input 
reference signal. Essentially, an optimizer predicts several 
controller inputs (referred to as the control horizon), yet only 
the first predicted controller move is implemented. Based on 
these predictions, the calculated US input based on the inverse 
plant model is refined and passed on to the plant model. The 
corresponding output is then calculated and propagated back to 
the MPC, and the process is repeated until the reference curve 
is completely exhausted. 

V. BACKGROUND ON NEURAL NETWORKS MODELING 
MPCs were first thought to work best with linear models; 

however, with the new advancements in modeling techniques, 
the performance of nonlinear-modeling MPCs was enhanced 
significantly proving otherwise. In this work, Artificial Neural 
Networks as a nonlinear modeling technique was used to find 
the plant model from the collected empirical data [36], [37]. 
There are many types of ANNs based on their topology, with 
feedforward neural networks (FFNNs) being the most widely 
used and are the topology of choice in this work [38], [39]. In 
this work, there are two applications in which a FFNN is used. 
The first is to perform plant identification and modeling using 
empirical data. The plant is portrayed as a black box, the model 
of which is predicted using FFNN. Second, FFNNs are used to 
build the MPC controller by finding an inverse plant model. For 
the first application, the plant model is estimated using 
experimental data. The first stage is the training stage. As is the 
case with any system identification, the system at hand is dealt 

with as a box that has input and output ports. To identify the 
system transfer function, input ports are excited with a known 
input signal and the output is captured. By finding the output 
over the input equation, the transfer function of the box is 
identified. Same procedure is followed using NNs to perform 
system identification. First, the physical system, cuvette with 
the diluted liposomal solution, is subjected to a known input 
(the input is US in this work), 

TABLE I 
COMPARISON BETWEEN THE PERFORMANCES OF THE TWO DEVELOPED 

MODELS AGAINST VARIOUS INPUTS 

 

then the corresponding output (percentage release drug) is 
captured. After that, the input and output data are used to train 
the NN. It is worth mentioning that the higher the complexity in 
the system being identified, the more data needed to perform 
system identification. Although, this training process might be 
enough for most applications, a further training step called open 
loop training is usually utilized to assert the accuracy of the 
model compared to the actual system. As for the second 
application of FFNNs, the opposite process is done. The input 
to the NN is the output from the physical system (percent drug 
release) while the output is the input to the system (US power 
and duty cycle). The inverse plant model is estimated and used 
to achieve model predictive control. Since there are many 
variations that can be used as the input (in this study we used 
the acoustic power and the pulsing behavior), the physical 
system produced multiple versions of output each 
corresponding to a different input. Unfortunately, it was noticed 
that the system behaved differently for each input which implies 
that a global plant model does not exist. Hence, an average 
model was adopted that produced the best performance when 
excited with all the inputs. There were 9 different variations of 
inputs that were used to produce 9 different plant models from 
which the average model was chosen. The outcome is discussed 
in details in the results section. 

VI. RESULTS AND DISCUSSION 

Initially, the estimated liposomal drug delivery model was 
tested to ensure the accurate prediction of the output (release 
percent) for all variations of the input (US powers and duty 
cycles). As mentioned previously, 9 input-output relations were 
chosen to create 9 different models, from which an average 
approximate model was chosen to serve as the plant model. 
Table (1) shows the fitting percentages for the 9 different 
models under the name Actual Model. These models were 
tested against the data used to extract them. All models 
predicted the output with an accuracy of at least 83% which is 
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an indication of the accuracy by which NNs were able to capture 
the complex non-linear behavior of the training data. A single 
liposomal drug delivery model is required in the MPC and this 
model is supposed to perform well when excited with various 
input US patterns. To find such a model, each of the derived 9 
models was excited with a set of 
9 different inputs and the fitting performance was calculated. 
This step guarantees choosing the best model performance for 
all inputs. Our simulation results showed that model 8 (average 
model 2) had the best average performance against all inputs. 
This model predicted the fitting with a 71.1% accuracy. It 
performed the worst when simulated with input 7 settings 
(3.88% fitting) whereas, the best performance was achieved 
when simulated with input 5 settings (92.73% fitting) as shown 
in the Table. In pursuit of a better performing model, another 
average model was constructed. This model was generated 
using a randomly generated average input. This average input 
was then passed through model 8 and the corresponding output 
recorded. Then using the average input and the corresponding 
output, an average model was found. The model was tested 
against the 9 inputs and it achieved 77.7% average fitting which 
is a better performance compared to the performance of model 
8. Nonetheless, even for this model, the accuracy was very low 
when excited with input 4 which can be considered an outlier. 
By excluding it from the accuracy calculation, the average 
fitting of this model is approximately 86.6%. Therefore, this 
model was used as the liposomal drug delivery system for the 
MPC. Results are shown in Table 1 under Average Model 1. 
Similar procedures were followed to produce the inverse model, 
but using the drug release curves as the input while the US 
patterns as the output. Due to the edgy (step) nature of US 
patterns, the produced models were unstable. To solve this 
problem, moving average filtering was used to smooth the 
edges. The newly smoothed US patterns were used, and a stable 
inverse model was derived with an average accuracy of 72%. 

The motivation behind this work is to develop a model 
predictive controller capable of controlling the drug level in 
vitro so that the chemotherapeutic concentration is kept within 
a therapeutic window (in an attempt to prevent cancer cells from 
developing multi-drug resistance). This system can be used to 
envision the practical scenario below: Assume a medical doctor 
recommended using targeted chemotherapy via liposomes and 
ultrasound in the treatment of a cancer patient. The following 
conditions should also be met: (1) the sonication power should 
not exceed 10 W and (2) Drug Concertation Level (DCL) in the 
vicinity of the tumor should be stabilized at a certain level 
(e.g.100 mg/m2). Therefore, in a real-life clinical setting, 
liposomes will be injected into the patients body, US will be 
applied to cause drug release until the concentration level is at 
the required value. To fulfill the maximum intensity 
requirement, a release trajectory is defined such that US 
intensity is kept within the limits while increasing the 
concentration until the set point is reached. Once the set point 
is reached, the MPC should make sure that the concentration 
level is kept at that pre-set level. Figure 5 shows an example of 
such release trajectory that was fed to the designed MPC as its 

reference input. The results of the MPC moves are shown in 
Figures 6, 7, 8. These figures show the controller moves (US 
parameters), system output (drug concentration), and both the 
reference and the system output overlapped, respectively. As 
can be seen, the controller response is not exceeding the 
specified power of 10 W. Furthermore, the controller is not 
giving clean pulses, but rather producing pulses mixed with ups 
and downs giving evidence that the developed MPC system is 
predicting the 

 

Fig. 5. Reference signal used as the set point or target in the controller. 

 

Fig. 6. Controller Moves versus time samples. 

 

Fig. 7. System output based on the predicted controller moves vs time 
samples. 

correct parameters necessary to keep the output on track with 
the reference. This is also evident in Figure 6 which compares 
the output with the references. 

Therefore, as the results suggest, the developed MPC and the 
estimated average model are capable of following the reference 
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signal and estimating the proper response of the model. The 
SSE difference between the output and the reference was 
calculated to be within an average of 5%. This shows the 
robustness of the developed control system and its ability to 
control chemotherapeutic levels in vitro. It also shows that the 
model is stable and able to respond to a variable input. 

The results of the system can be further improved by 
enhancing the model used in the MPC. Yet, in this work we 
present the concept of devising a control system capable of 

 

Fig. 8. Overlap between system output and the target curve. 

keeping the drug concentration level at the tumor site at a pre-
specified level. This, in turn, lowers the risk of the patient 
developing multidrug resistance and may shorten the treatment 
period. Furthermore, as a part of future work recommendation, 
the experimental setup could be enhanced to accommodate 
more realistic and representative characteristics that closely 
mimic the real life scenario of liposomes injected into the body 
and US applied across the skin and actual feedback sensing 
mechanism to measure the actual drug concentration level. 
Furthermore, a proper way by which the drug concentration 
level can be accurately measured when dealing with in vivo 
cases shall be researched. The current mechanism suggested 
assumes the availability of devices capable of detecting the 
fluorescence level of the drugs through human tissue. However, 
in the future, other techniques might be proposed to serve this 
purpose. 
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