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Abstract—This paper estimates the acoustic drug release from micelles after accurately identifying the underlying 

statistical noise characteristics in experimental data. The drug release is measured as a change in fluorescence as 
ultrasound is applied. First, the noise structure affecting the process dynamics and the measurement process is identified 
in terms of statistical covariance of the aforementioned quantities. Then, the identified covariance magnitudes are utilized 
to estimate the dynamics of drug release. The performance of different filters is investigated. The identified apriori 
knowledge is used to implement an optimal Kalman filter, a multi-hypothesis Kalman filter, and a variant of the full 
information estimator (moving horizon estimator) to the problem at hand. The proposed algorithms are initially deployed 
in a simulation environment, and then the experimental datasets are fed into the algorithms to validate their performance. 
Experiments span a number of ultrasonic power densities for both non-targeted and targeted polymeric  micelles(the 
targeting being accomplished using the folate moiety). The results suggest that the proposed algorithm, the optimal 
Kalman filter, performs better than the other two in all tests performed. 

IndexTerms—Chemotherapy, drug release, full information estimator, moving horizon estimator, Kalman filter, 
modeling, pluronic micelles, ultrasound. 

I. INTRODUCTION

ANY cancers are treated using anti-neoplastic agents that usually target the fast growing property of these malignant tissues. 
Those chemicals are administered intravenously, and they circulate systemically until they reach the diseased location. 

Advances in nanotechnology have allowed for the spatial and temporal release of chemotherapeutics from nanocarriers upon 
reaching the cancerous site. These nanocarriers, including micelles and liposomes, are examples of the utility of nanotechnology 
in this area of medicine [1]. Our system specifically uses ultrasound as a trigger to release their contents. Several reports have 
demonstrated the mechanism by which ultrasound actuation stimulates the carriers to release their encapsulated agents [2]–[9]. 

Disturbances that plague dynamic systems not only degrade control performance, but also interfere with the dynamics of a 
given system as well as the measurement process. Those disturbances, which will be referred to as noise, affect both the dynamics 
and measurement models. Noise, in the dynamics of a system, represent uncertainty in the mathematical model as well as 
disturbances arising from the process itself. This type of noise gets propagated along with the state in the mathematical model to 
account for unmodeled dynamics. Noise in the measurement process represents disturbances and uncertainty attributed to the 
measurement apparatus. Knowledge of both types of noise is crucial in estimating the states of any system. Failure to properly 
account for noise will breach the optimality of an implemented estimator, and that will result in inaccurate estimates of the state 
of interest. Identifying the noise statistics associated with a given dynamic system is addressed in literature, and some of the 
methods that aim to characterize the statistics include Bayesian, Maximum Likelihood, Correlation, and Autocovariance Least-
squares techniques [10]. Maximum Likelihood estimation is used here to identify the noise covariance magnitudes affecting the 
process. 

The release of Doxorubicin (Dox) from Pluronic P105 (P105) micelles has been studied using both mechanistic and probabilistic 
models [11]–[13]. This work attempts to accurately predict the behavior of this drug delivery process through multiple stochastic 
and optimization-based approaches. The Kalman filter is a stochastic approach that fuses the dynamics and the measurements of 
the system to produce an estimate of the state of interest. Knowledge of the drug encapsulation dynamics system model, alongside 
the measurements undertaken, is used to obtain an optimal estimate of drug encapsulation. The Kalman filter is a minimum-mean 
square-error technique that minimizes the expected value of the square error between the estimate and the true value of the drug 
encapsulation (measured as a percent). The Moving Horizon estimator is an optimization-based maximum likelihood approach, 
which attempts to produce an estimate through finding the set of states that maximizes the probabilistic likelihood of that state 
based on measurements [14], [15]. Application of the aforementioned filters on our drug delivery system as well as the 
identification of the uncertainty structure in the system is a novel effort. It is worth mentioning, however, that an attempt to 
estimate the state of this drug delivery system using a variant of the Kalman filter is reported by Abdel-Hafez and Husseini [16]. 

In this work, the noise structure of the dynamics of our system is first identified through a maximum likelihood approach. 
Consequently, a number of estimators, which use the identified a priori information, are used to acquire an optimal estimate for 
the percent of the drug released. The proposed drug release estimation approach is crucial to designing a model-predictive 
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controller for cancer treatment. A high-accuracy estimate of percent drug release is needed to enhance the optimality of the 
controller. Additionally, to control the treatment process, the predicted state of percent drug release is needed at times when 
measurements are not available. This is where the proposed high-accuracy percent drug release estimation method is vital. 

II. METHODS AND MATHEMATICAL MODEL 
A.Experimental Methods 

The carrier, Pluronic® P105, is prepared when the polymeric micelles are dissolved in a phosphate buffered saline solution. The 
Pluronic® P105 solution is then used to dissolve Doxorubicin, at a concentration of 4.5μg/ml in 5% copolymer wt. concentration. 
Two Pluronic® P105 solutions are used; non-targeted as well as targeted (using the folate moiety as a target) ones. The exact 
details pertaining to how the drug delivery system is prepared are detailed in [16]. 

B.Measurement Technique 
Since Dox release can be measured as a function of a change in fluorescence, a chamber was constructed to quantify this change 

upon the application of ultrasound. The chamber is in a thermostated bath that maintains a constant temperature of 37°C, 
simulating a physiologically relevant temperature. An argon ion laser emits a beam that gets split by a beam splitter attenuator 
into two portions. The first portion is directed to a photodetector that measures the power of the laser, while the other portion is 
directed into a fiber optic bundle. For an excitation wavelength of 488 nm, the concentration of Dox can be quantified through the 
measurement of fluorescence at 535 nm. The means to deliver and collect the emissions is a multimode fibre optic probe. A filter 
is used to cut off emissions/scattered light that is less than 517 nm in wavelength [15]. 

The percent ultrasonic release of Dox from the core of these micelles is related to the change in the fluorescence intensity of 
the environment surrounding Pluronic® P105 micelles as they release the Dox. This release results in a decrease in the measured 
fluorescence intensity because water molecules quench the fluorescence of our anti-neoplastic agent. The data are then normalized 
with respect to the intensity when full encapsulation of the drug is in effect. Since Dox is linear in concentration below a 
concentration of 15 μg, Equation 1 is used to calculate the percent release of the drug from these nanocarriers [16]. 

 

where IP105 is the fluorescence intensity of the P105- encapsulated drug, IUS is the fluorescence intensity when sonication is in 
effect, IPBS is the fluorescence intensity of the drug in the phosphate buffered saline solution, and the %Release ∈ [0,1]. 

Ultrasound actuation to release the drug from the micelles is realized through a 70−kHz piezoelectric transducer embedded in 
an ultrasonicating bath. The frequency-modulated input waveform has a resolution of 0.12kHz. The manually driven ultrasound 
is applied every 10 seconds. When actuation stops, the fluorescence level rebounds to the original value (before ultrasound was 
turned on) suggesting that doxorubicin molecules are re-encapsulated back in the core of the micelles once the external stimulus 
(acoustic power) stops. It is of interest to indicate that the release on happens when ultrasound is applied [12], [17], [18]. 

C.Mechanistic Dynamic Model 
The mathematical model describing the release and re-encapsulation processes used in this study is formulated by Husseini et 

al. [13]. It models the release of Dox from polymeric micelles to be of a constant rate when ultrasound is applied, and estimates 
the re-encapsulation as having firstorder kinetics with respect to the concentration of the free drug. The model implies that the 
application of ultrasound breaks down or disrupts the micelles at a rate that is constant and independent of micellar concentration. 
Consequently, the drug is released. As Dox leaves the micelles, free Dox molecules that are not taken up by the cancerous cells 
are re-encapsulated inside the micelles at a rate proportional to the concentration of the free drug. The drug can either be re-
encapsulated inside micelles that were not destroyed, or into newly-formed nanocarriers. 

The mathematical model is expressed as shown in equation (2), where E is the amount of drug encapsulated, F is the amount 
of free drug, T is the total amount of the drug in solution, kr is the zero-order release rate constant, and ke is the first order re-
encapsulation rate constant. 

E˙|US = −kr + keF = −kr + ke (T − E) (2) 

Numerous experiments were conducted with different ultrasonic power densities for both folate-targeted and non-targeted 
micelles. Folated-micelles target several cancer cell lines, including MCF7 (a breast cancer cell line). The experimental conditions 
and the corresponding re-encapsulation constants of the experiments are presented in Table I [13]. To elaborate on the 
nomenclature used, PF125 represents the use of Folated Pluronic P105 micelles at a variac setting of 125 V. This corresponds to 
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a power density of 3.54 W/cm2, which are the conditions used to collect data for experiment 1. Similarly, POH135 represents the 
use of nonfolated Pluronic 

TABLE I 
EXPERIMENTAL CONDITIONS FOR CONDUCTED TESTS 

 

P105 micelles at a variac setting of 135 V. This corresponds to a power density of 5.43 W/cm2, which are the conditions used to 
collect data for experiment 7. The experimental conditions in Table I are then easily deciphered. 

D. Data Acquisition 
The release was acquired via the manual pulsation of the ultrasonic transduce housed in a sonicating bath. The fluorescence 

measurements as well as the imperfections in the inherent nature of the manual acoustic application resulted in a significantly 
noisy response. Multiple experiments were carried out, and multiple measurements were taken at different conditions. The kinetic 
constants of release, kr, and encapsulation, ke, that govern the dynamics of Equation 2 are derived in [13]. 

III. UNCERTAINTY AND ENCAPSULATION ESTIMATION 

A. Uncertainty Structure Identification 
The underlying uncertainty structure arise from two sources; a system dynamic noise coming from the process and a 

measurement noise coming from the measurement method/device. These two noise sequences are modeled to be zero-mean normal 
Gaussian white noise processes. The magnitudes of the process and measurement noise covariance processes are needed for 
optimal estimation of the percent drug encapsulation. 

The model is discretized at a sampling frequency of 50 Hz, and it can be written as a dynamic equation and a measurement 
equation in linear state space form as shown in equations (3) and (4). EK is the amount of drug encapsulated at time step k, uK is 
the input between time steps k and k + 1, t is the sampling time period equal to 0.02 s, and wk and vk+1 are the dynamics and 
measurement noises at times tk and tk+1. 

 

Equation (3) is stable and the system represented in equations (3) and (4) is observable. The measurement equation can be written 
in terms of the drug encapsulation at time 0 as in equation (5): 



  

 

As the dynamics equation in (3) is stable, a less than unity in value, ∀k > τ time steps, Aτ< δ. where δ is a small threshold δ 
chosen to be less than 1x10−5. It is necessary for the value of δ to be small enough for subsequent time steps to be dominated in 
magnitude by the noises in the system. The chosen value for δ was one such that smaller values did not affect the solution of the 
solver used. Consequently, the measurements after τ time steps may be assumed to be independent of the initial state. This 
allows equation (5) to be rearranged as in equation (6). The vector Y contains measurements and inputs after time step τ and is 
seen to be a function of the dynamics and measurement noise sequences only.  

 

 

As a result of the normal distribution of the noise sequences, Y is a multivariate Gaussian distributed vector described as Y ∼ N 
(0, P) with covariance matrix P given by (7): 
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where Qw and Rvare the covariance magnitudes of the dynamics and measurement noises, respectively, the matrix multiplying the 
dynamic noise vector w in equation (6) is labeled as , and T is the transpose of . 

The maximum likelihood estimation (MLE) problem is formulated by constructing the maximum likelihood equation of the 
multivariate normal distribution vector Y in equation (8) as: 

Therefore, the process and measurement covariance magnitudes, that minimize the MLE cost function in equation (8). represent 
the true statistics of the process and measurement noise sequences, denoted as QMLE, RMLE, respectively. The estimate of the percent 
drug encapsulation is described next. 

B.EncapsulationStateEstimation 
The encapsulated drug amount is calculated in percentage form as the difference between the total amount (100% encapsulated 

drug) and the released drug amount: 

 E (t) = 100%Encapsulation − % release (9) 

The identified process uncertainty structure from equation (8) allows for an optimal estimate of the percent drug encapsulation 
to be acquired using a Kalman filter approach. The approach starts with the initial conditions of the expected value of encapsulation 
given the measurement and its covariance presented below: 

 

The state is propagated in time to get an a priori estimate, E¯K+1, using the dynamic model and an a priori state covariance, P¯K+1, 
given by: 

 

The innovation and the innovation covariance are defined as follows: 

 

The optimal Kalman gain as well as the updated a posteriori state and covariance estimates are then shown to be: 

Wk+1 = P¯K+1Sk
−+1

1 

Eˆk+1 = E¯K+1 + Wk+1z˜k+1 

 Pk+1 = P¯k+1 − Wk+1Sk+1Wk
T+1 (14) 

The Kalman filter’s estimate is optimal here; the identified covariance is representative of the statistics of the noise sequences, 
and no assumptions about these statistics were made. Therefore, this method is referred to as the Optimized Kalman filter. 



  

To demonstrate the enhancement in the accuracy of the estimate of the drug encapsulation, in the next section, the proposed 
algorithm will be compared with two methods used in literature. 

C.Comparison 
The performance of the proposed algorithm will be compared with the two methods published in literature: the moving horizon 

estimator and the multiple model approach.  

1)Moving Horizon Estimator (MHE): This method is an optimization technique applied to stochastic estimation. The benefit of 
the optimization structure is to utilize all available a priori information such as the bounds on the estimated states, knowledge of 
the feasible trajectory of the state and knowledge of the bounds of the disturbances [15], [19]. The technique is based on 
maximizing the conditional probability density function of the states given the measurements px|z (xk|zk) to form a maximum 
likelihood problem. Starting with the aforementioned density, one can write: 

 

The resulting densities are those of the normally distributed noises pv (vk), pw (w) and the density describing the distribution of 
the initial state, pE0 (E0). The statistical properties of the first two densities are known, but the last density is assumed to be normally 
distributed around a guess of the initial condition with state covariance equal to that of the predicted Kalman filter covariance. 
The above assumptions are valid in light of the considered linear system whose densities do not exhibit significant deviation from 
the Gaussian assumption. Taking the negative log of above conditional density, one obtains the maximum likelihood minimization 
problem shown in (16). The L2 norm is defined as α2β−1 = α’β−1α. 
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Equation (16) can be written as in equation (17). The first term in (17) costs deviations of the state from the initial guess, the 
second term costs deviations of the measurement from the predicted measurement, and the last term costs the magnitude of the 
dynamic noise vector. The optimization problem takes in the entire trajectory of the measurement and minimizes the cost function, 

φ, by choosing the initial state, Eo, as well as the entire dynamic process noise vector, {w}0T . The state can then be reconstructed 
based on the output of the solver through equations (2-3). The MATLAB nonlinear solver, “fmincon”, is used to solve the 
optimization problem. 

  

The full information estimator is an offline post-processing tool. This is where the Moving Horizon Estimator comes into play; 
it is a full information estimator applied only to a window when a certain number of measurements have been logged [19]–[21]. 
This enables the problem to be solved online at the cost of losing some accuracy due to not utilizing the full trajectory of the 
state. The derivation of (15) changes for the initial state probability density function, which is called the arrival cost in the 
context of MHE. The arrival cost describes the prior information from the previous sequence of measurements. For the 
considered linear system with normally distributed density functions, the arrival cost, ZK(ET ), is given by (18), where EˆK−1 is 
the estimate of the previous time step and P (K) is the covariance update recursion from the Kalman filter [22]–[24]. 

 

The arrival cost penalizes deviations from the previously estimated state, which is assumed to best describe the preceding 
measurement window [25]. 

2)A Multiple Model Approach: This approach was devised in [16], and it was compared against a Kalman filter with guessed 
statistical noise characteristics. In this approach, several Kalman filters operate in parallel, and each filter operates with a 
hypothesized measurement noise covariance. On the other hand, the dynamics noise statistics are assumed to be known. 
Uncertainty in the ultrasound frequency, amplitude, time, pulse time, and distance from target are the reasons that motivated the 
use of this approach. Each assumption yields an estimate for the encapsulated drug state, and the final estimate is a probabilistic 
sum of the estimates of the Kalman filters. The process is detailed in [16], and it will not be derived here. However, the proposed 
method improves on the previous method in that both the covariance of the measurement noise and the covariance of the dynamics 
noise are estimated. This will realize the optimal property of the Kalman filter. Consequently, the filter will be stable with bounded 
errors in the estimated state. 



  

 

Fig. 1. Test bed schematic. 

 

Fig. 2. Cost function variation with changing Q and R. 

TABLE II 
MLE IDENTIFIED DYNAMICS AND MEASUREMENT NOISE 

COVARIANCE VALUES FOR EXPERIMENTS 1, 2 AND 5 

 

IV. RESULTS 
A. Uncertainty Identification 

The proposed MLE method was applied to the experiments shown in Table I to identify the statistics of the measurement and 
process noise sequences. The numerical solver in the MATLAB environment was used to identify the global minimum based on 
the constraints and limits imposed. The cost function was found to be smooth and convex under the aforementioned settings. For 
experiment 1, the surface response of the obtained MLE cost function is shown in figure 2. 

From figure 2, it is evident through inspection of the surface response and by examining the solution that the constraints played 
a role in the obtained covariance values. The reason being that the minimizing solution of the measurement covariance value 
happens to be the lower bound. The minimizing solution takes the values documented in Table II. 
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(Experiment 1). 

TABLE III 
ESTIMATION MEAN SQUARE ERROR IN SIMULATED ENVIRONMENTS 

 

All the filters were fed an initial encapsulation state of E0 = 1, and an initial encapsulation covariance of P0 = 1. The Moving 
Horizon Estimator is free to deviate from the suggested initialization depending on the cost imposed by the initialization in the 
optimization problem. The filters employ the noise statistics presented in Table II. 

B.Simulation Results 
The algorithms were first tested in simulation. Equations 3 and 4 were used to simulate the dynamic as well as the measurement 

process of our system. The MLE optimized Kalman filter, the Moving Horizon Estimator as well as the adaptive Kalman filter, 
were used to estimate the drug encapsulation percent. The true state, which was simulated, is known in this case, and performance 
validation is possible. Figures 3, 4 and 5 present the encapsulation estimation results for the various estimators for two 
experimental conditions. 

Figures 3, 4 and 5 show the simulated truth for encapsulation as well as the estimate of the filters. The MLE optimized Kalman 
filter seems to closely follow the truth; on the other hand, the adaptive Kalman and the MHE follow the general trend of the state 
trajectory. Table III quantitatively describes the performance of the filters through presenting the mean square error of 100 Monte-
Carlo simulations for each filter. The numbers confirm the observations. They suggest 



  

 

 

 
(Experiment 5). 

that the MLE optimized Kalman filter outperforms the other algorithms. The reason behind the difference can be attributed to the 
fact that the correct information for the statistics of both the dynamics noise and the measurement noise are available from the 
start in the optimal filter. This is contrary to the fact that the adaptive Kalman filter assumes the knowledge of the process noise 
covariance, and a mismatch in the process noise covariance will lead to significant error in the estimated state. 
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Fig. 7. Comparison of Estimators on PF125 (Tuned Adaptive Kalman). 

The MHE has comparable error in estimating the percent encapsulation to the adaptive Kalman approach, and that is partially due 
to the fact that a window size of 5 steps was taken to decrease the computational burden of the algorithm. Further, the numerical 
solver was not able to make the state converge to a global minimum at all time steps. 

C.Experimental Results 
After validating the performance of the method in the simulation environment, the algorithms were applied to the 



  

 

 

Fig. 8. Comparison of Estimators on PF130. 

 

Fig. 9. Comparison of Estimators on PF130 (Tuned Adaptive Kalman). 

experimental data obtained at the different ultrasonic power densities for both targeted and non-targeted micelles, given in Table 
I. It is worth mentioning that the adaptive Kalman filter was applied twice. First, an assumed value of the process noise covariance 
was used to run the algorithm. Then, a slightly tuned process noise covariance was used in the second time. Those are referred to 
as adaptive Kalman 1 and adaptive Kalman 2, respectively. Reasoning behind the application is to stress on the shortcomings of 
the adaptive 
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Fig. 10. Comparison of Estimators on POH125. 

 

Fig. 11. Comparison of Estimators on POH125 (Tuned Adaptive Kalman). 

Kalman in the sense that it only corrects for offsets in the measurement noise covariance. Figures 3, 4 and 5 present the 
encapsulation estimation results for the various estimators for two experimental conditions. Figures 5–11 depict the performance 
of the estimators when applied to the data obtained in experiments 1, 2 and 5. It can be seen that the MLE-optimized Kalman filter 
exhibits the best tracking 
 
 
 



  

 

TABLE IV 
ESTIMATION MEAN SQUARE ERROR OF EXPERIMENTAL MEASUREMENTS 

 

performance of the measurements. This is closely followed by the adaptive Kalman filter 2 when the process noise covariance is 
tuned to a value more representative of the system dynamics. Both the adaptive Kalman filter 1 and the Moving Horizon estimation 
exhibit inferior performance to the aforementioned filters. This is due to the fact that the adaptive Kalman filter 1 only estimates 
the measurement noise statistics and assumes the dynamics noise statistics. Also, the nonlinear solver in the MHE does not always 
reach a solution within an acceptable time. Table IV summarizes the performance of the various algorithms presented in this 
paper. As discussed earlier, the MLE-optimized Kalman filter gives the smallest mean square error of the encapsulation estimates. 

V. DISCUSSION AND CONCLUSION 

The accurate prediction of percent re-encapsulation and hence release of chemotherapeutics from polymeric carriers is essential 
in the subsequent model predictive control of this novel drug delivery process. This work tackles the issue of identifying the 
statistics of the noise sequences affecting the dynamics and measurement of the release/re-encapsulation of the chemotherapeutic 
drug delivery system. After identifying the underlying uncertainty structure of the noise sequences affecting the encapsulation 
process and measurement, a number of estimators that are stochastic and/or optimization-based are applied to accurately estimate 
the drug encapsulation. The release of the drugs from the different types of micelles is modeled by a first-order differential 
equation. This equation is first order in drug re-encapsulation and zero-order in release. 

The identification of the covariance of the dynamics and measurement noise sequences took the form of a maximum likelihood 
problem on this discretized system. An optimization algorithm was used to solve for the covariance values of the noise sequences. 
This a priori knowledge of the statistics of the noise sequences guarantees the optimality of the Kaman filter. 

The proposed algorithms were compared against two methods available in the literature. First, an optimization based stochastic 
estimator, the Moving Horizon estimator, was used for comparison. Second, an adaptive Kalman filter that operates with 
hypothesized measurement noise covariance magnitudes was also compared to the proposed algorithm. A Monte-Carlo simulation 
test was carried to validate the feasibility of the estimators as the truth state is known in this environment. Subsequently, 
experimental validation was conducted. The MLE-optimized filters proved to outperform the other estimators. The Moving 
Horizon approach was 
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.  

inferior to the other algorithms, because the nonlinear solver cannot converge to a good solution in a real-time application. The 
adaptive Kalman filter approach, while converging within a reasonable timeframe to estimate the state accurately, does not account 
for possible mismodeling of the dynamics noise. 

REFERENCES 
[1] G. A. Husseini and W. G. Pitt, “Micelles and nanoparticles for ultrasonic drug and gene delivery,” Adv. Drug Delivery Rev., vol. 60, pp. 1137–1152, Jun. 

2008. 
[2] D. G. Kanjickal and S. T. Lopina, “Modeling of drug release from polymeric delivery systems—A review,” Therapeutic Drug Carrier Syst., vol. 21, no. 5, 

pp. 345–386, 2004. 
[3] V. Torchilin, “Multifunctional and stimuli-sensitive pharmaceutical nanocarriers,” Eur. J. Pharm. Biopharm., vol. 71, no. 3, pp. 431–444, Mar. 2009. 
[4] N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as 

drug carriers,” Ultrasound Med. Biol., vol. 36, pp. 419–429, Mar. 2010. 
[5] G. A. Husseini, D. Stevenson-Abouelnasr, W. G. Pitt, K. T. Assaleh, L. O. Farahat, and J. Fahadi, “Kinetics and thermodynamics of acoustic release of 

doxorubicin from non-stabilized polymeric micelles,” Colloids Surf. A, Physicochem. Eng. Aspects, vol. 359, pp. 18–24, Apr. 2010. 
[6] Y. Qiu, C. Zhang, J. Tu, and D. Zhang, “Microbubble-induced sonoporation involved in ultrasound-mediated DNA transfection in vitro at low acoustic 

pressures,” J. Biomech., vol. 45, pp. 1339–1345, May 2012. 
[7] G. A. Husseini, M. A. D. de la Rosa, E. S. Richardson, 

D. A. Christensen, and W. G. Pitt, “The role of cavitation in acousticallyactivated drug delivery,” J. Control Release, vol. 107, pp. 253–261, Oct. 2005. 
[8] S. Rodamporn, N. R. Harris, S. P. Beeby, R. J. Boltryk, and 

T. Sanchez-Elsner, “HeLa Cell Transfection Using a Novel Sonoporation System,” IEEE Trans. Biomed. Eng., vol. 58, no. 4, pp. 927–934, Apr. 2011. 
[9] T. Siu, J. Jackson, H. Burt, and M. Chiao, “Drug uptake enhancement using sonodynamic effects at 4 MHz—A potential application for microultrasonic-

transducers,” IEEE Trans. Biomed. Eng., vol. 54, no. 6, pp. 1153–1156, Jun. 2007. 
[10] M. A. Zagrobelny and J. B. Rawlings, “Identifying the uncertainty structure using maximum likelihood estimation,” in Proc. Amer. Control Conf. (ACC), 

2015, pp. 422–427. 
[11] G. A. Husseini, F. S. Mjalli, W. G. Pitt, and N. M. Abdel-Jabbar, “Using artificial neural networks and model predictive control to optimize acoustically 

assisted doxorubicin release from polymeric micelles,” Technol. Cancer Res. Treat., vol. 8, pp. 479–488, Dec. 2009. 
[12] G. A. Husseini, N. M. Abdel-Jabbar, F. S. Mjalli, and W. G. Pitt, “Modeling and sensitivity analysis of acoustic release of Doxorubicin from unstabilized 

pluronic P105 using an artificial neural network model,” Technol Cancer Res. Treat., vol. 6, pp. 49–56, Feb. 2007. 
[13] G. A. Husseini, L. Kherbeck, W. G. Pitt, J. A. Hubbell, 

D. A. Christensen, and D. Velluto, “Kinetics of ultrasonic drug deliveryfrom targeted micelles,” J. Nanosci. Nanotechnol., vol. 15, no. 3, pp. 2099–2104 
2015. 

[14] G. A. Husseini, D. Velluto, L. Kherbeck, W. G. Pitt, J. A. Hubbell, and D. A. Christensen, “Investigating the acoustic release of doxorubicin from targeted 
micelles,” Colloids Surf. B, Biointerfaces, vol. 101, pp. 153–155, Jan. 2013. 

[15] J. B. Rawlings and B. R. Bakshi, “Particle filtering and moving horizon estimation,” Comput. Chem. Eng., vol. 30, nos. 10–12, pp. 1529–1541, Sep. 2006. 
[16] M. Abdel-Hafez and G. A. Husseini, “Predicting the release of chemotherapeutics from the core of polymeric micelles using ultrasound,” IEEE Trans. 

Nanobiosci., vol. 14, no. 4, pp. 378–384, Jun. 2015. 
[17] G. A. Husseini, G. D. Myrup, W. G. Pitt, D. A. Christensen, and N. Y. Rapoport, “Factors affecting acoustically triggered release of drugs from polymeric 

micelles,” J. Controlled Release, vol. 69, no. 1, pp. 43–52, 2000. 
[18] G. A. Husseini, N. Y. Rapoport, D. A. Christensen, J. D. Pruitt, and W. G. Pitt, “Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles,” 

Colloids Surf. B, Biointerfaces, vol. 24, no. 3, pp. 253–264, 2002. 
[19] C. V. Rao, J. B. Rawlings, and D. Q. Mayne, “Constrained state estimation for nonlinear discrete-time systems: Stability and moving horizon 

approximations,” IEEE Trans. Autom. Control, vol. 48, no. 2, pp. 246–258, Feb. 2003. 
[20] J. Rawlings, “Moving horizon estimation,” in Encyclopedia of Systems and Control. London, U.K.: Springer, 2013, pp. 1–7. 
[21] A. A. Al-Matouq and T. L. Vincent, “Multiple window moving horizon estimation,” Automatica, vol. 53, pp. 264–274, Mar. 2015. 
[22] V. Rao, J. B. Rawlings, and J. H. Lee, “Constrained linear state estimation—A moving horizon approach,” Automatica, vol. 37, no. 10, pp. 1619–1628, 

2001. 
[23] C. C. Qu and J. Hahn, “Computation of arrival cost for moving horizon estimation via unscented Kalman filtering,” J. Process Control, vol. 19, no. 2, pp. 

358–363, 2009. 
[24] J. Garcia-Tirado, H. Botero, and F. Angulo, “A new approach to state estimation for uncertain linear systems in a moving horizon estimation setting,” Int. 

J. Autom. Comput., vol. 13, no. 6, pp. 653–664, Feb. 2016. 
[25] V. Rao and J. B. Rawlings, “Constrained process monitoring: Movinghorizon approach,” AIChE J., vol. 48, no. 1, pp. 97–109, 2002. 
[26] P. Mohan and N. Rapoport, “Doxorubicin as a molecular nanotheranostic agent: Effect of doxorubicin encapsulation in micelles or nanoemulsions on the 

ultrasound-mediated intracellular delivery and nuclear trafficking,” Molecular Pharmacol., vol. 7, no. 6, pp. 1959–1973, Dec. 2010. 


	I. INTRODUCTION
	A.Experimental Methods
	B.Measurement Technique
	C.Mechanistic Dynamic Model
	D. Data Acquisition
	A. Uncertainty Structure Identification
	B.EncapsulationStateEstimation
	C.Comparison
	A. Uncertainty Identification
	B.Simulation Results
	C.Experimental Results
	V. DISCUSSION AND CONCLUSION
	REFERENCES


