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Multi-Model Investigation and Adaptive
Estimation of the Acoustic Release
of a Model Drug From Liposomes
Ali Wadi , Mamoun Abdel-Hafez , Ghaleb A. Husseini , and Vinod Paul

Abstract— This paper researches a suitable mathemati-
cal model that can reliably predict the release of a model
drug (namely calcein) from biologically targeted liposomal
nanocarriers triggered by ultrasound. Using mathematical
models, curve fitting is performed on a set of five experimen-
tal acoustic drug release runs from Albumin-, Estrone-, and
RGD-based Drug Delivery Systems (DDS). The three moi-
eties were chosen to target specific cancers using receptor-
mediated endocytosis. The best-fitting mathematical model
is then enhanced using a Kalman filtering (KF) algorithm
to account for the statistics of the dynamic and measure-
ments noise sequences in predicted drug release. Unbiased
drug-release estimates are realized by implementing an
online noise identification algorithm. The algorithm is first
deployed in a simulated environment in which it was rigor-
ously tested and compared with the correct solution. Then,
the algorithm was used to process the five experimental
datasets. The results suggest that the Adaptive Kalman
Filter (AKF) is exceptionally good at handling drug release
estimation problems with a priori unknown or with changing
noise covariances. In comparison with the KF, the AKF
approach exhibited as low as a 69% reduction in the level of
error in estimating the drug release state. Finally, the pro-
posed algorithm is not computationally demanding and is
capable of online estimation tasks.

Index Terms— Chemotherapy, calcein, drug release,
online estimation, adaptive noise identification, adaptive
Kalman filter, modeling, liposomes, ultrasound.

I. INTRODUCTION

THE need to mitigate the adverse side effects of
chemotherapeutic treatments has brought about the devel-

opment of new ways through which these drugs can be admin-
istered. The use of Drug Delivery Systems (DDS) in cancer
treatment is a trend enabled by nanotechnology; whereby
nanoparticles, in the size range of 1 nm to 1μm, are used as
chemotherapeutic drug carriers. These nanocarriers encapsu-
late therapeutic drugs allowing the controlled administration
of cytotoxic drugs like alkylators, topoisomerase inhibitors,

Manuscript received October 3, 2018; revised January 21, 2019,
May 5, 2019, October 9, 2019, and October 26, 2019; accepted
October 26, 2019. Date of publication November 6, 2019; date
of current version December 31, 2019. (Corresponding author:
Ghaleb A. Husseini.)

A. Wadi and M. Abdel-Hafez are with the Department of Mechanical
Engineering, American University of Sharjah, Sharjah, United Arab
Emirates (e-mail: awadi@aus.edu; mabdelhafez@aus.edu).

G. A. Husseini and V. Paul are with the Department of Chemical
Engineering, American University of Sharjah, Sharjah, United Arab
Emirates (e-mail: ghusseini@aus.edu; vpaul@aus.edu).

Digital Object Identifier 10.1109/TNB.2019.2950344

antimetabolites, microtubule, and amino acid depletion agents
[1]–[3]. Nanocarriers must release their encapsulated mole-
cules in a controlled manner in a given period. Consequently,
modeling the triggered release of chemotherapeutics is ben-
eficial to the deployment of DDS. An effective DDS that
uses nanocarriers enables the controlled targeting of cancer
cells, thus limiting the healthy cell exposure to the cytotoxic
therapeutic agents, and enhancing the quality of life of a cancer
patient.

In our lab, we study the multimodal delivery of nanocar-
riers using three targeting techniques: passive (targeting by
optimal size ranging between 15 and 200 nm), active (target-
ing using a ligand/moiety) and acoustically triggered (using
ultrasound as the trigger). The nanocarriers, studied in this
work, are liposomes; vesicles composed of a phosopholipid
bilayer which surrounds an aqueous core. Liposomes can
encapsulate hydrophilic drugs in their inner aqueous interior,
and hydrophobic drugs within the lipid bilayer. Alternatively,
they can be modified with ligand or moiety to specifically
target receptors overexpressed on the membrane of cancer
cells [4], including albumin [5], estrogen [6], and RGD [7].
Each moiety is used to target certain cancers. The release of
chemotherapeutics from any of the above-targeted vehicles
may be acoustically-triggered using ultrasound (US). These
waves allow the drug load, encapsulated inside these nanocar-
riers, to target the malignant cells where US is focused, thus
sparing the healthy unsonicated cells from the action of the
anti-neoplastic agents.

Modeling drug release of chemotherapeutics from DDS has
been reported in the literature [8], [9]. Many methodologies
are applied to realize mathematical models that have the
capacity to predict and quantify the release of the drug
from the carrier into the surrounding environment. These
methods utilize regression-based statistical approaches,
model-dependent approaches, model-independent approaches,
and, more recently, nonlinear observers, stochastic estimators,
evolutionary algorithms, and other information processing
paradigms such as Artificial Neural Networks [9], [10], [19],
[11]–[18]. Given the difficulty in identifying the parameters
in biological models, other methods that couple the process
of state and parameter estimation into one and/or apply
constrained optimization on the parameter set to ensure
finding physically meaningful parameters have been proposed
[20], [21]. Here, five model-dependent kinetic mathematical

“© 2019 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new 

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”

Authorized licensed use limited to: AMERICAN UNIVERSITY OF SHARJAH. Downloaded on April 12,2020 at 19:01:51 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4617-7026
https://orcid.org/0000-0002-9010-4094
https://orcid.org/0000-0002-5022-7030
https://doi.org/10.1109/tnb.2019.2950344


WADI et al.: MULTI-MODEL INVESTIGATION AND ADAPTIVE ESTIMATION 69

models are investigated to predict the acoustic release of a
model drug, namely calcein, from liposomes.

As is the case with all dynamic systems, dynamics and
measurements noises affect the process and the measurement
apparatus. The former type of noise can be attributed to
the uncertainty in the ability of the mathematical model to
accurately predict the state of a dynamic system, while the
latter is attributed to the uncertainty in the equipment (used to
measure drug release) in obtaining an accurate estimate of the
dynamic system state [22]. Accounting for the two noise types
can prove advantageous to the prediction of drug release. This
is achieved by applying a Kalman filter to predict the drug
release using the mathematical model and subsequently update
that state using the information acquired through available
measurements. This is accomplished while accounting for
the dynamics and measurements noises plaguing the process
[23], [24]. To have the best possible estimate of the drug
release state, the uncertainty structure of the noises affecting
the process and measurement equations are to be identified,
which is achieved by applying one of several algorithms
reported in literature including Maximum Likelihood, Autoco-
variance Least Squares, and Covariance Matching [25]–[27].

Accurate and precise delivery of chemotherapeutics to can-
cer patients using our proposed DD technique is highly depen-
dent on the estimation algorithm, which gives better estimates
of the released drug amounts over mere measurements. This
is especially true when and where the measurements are not
available for a specified duration, even if this duration is short.
An advantage over other statistical approaches, the proposed
estimation algorithm can predict the released drug amounts
in real-time to successfully maintain the operation of the
controlled drug delivery system.

II. METHODS AND MATHEMATICAL MODELLING

A. Drug Synthesis

Here, the synthesis of the targeted liposomes is presented.
More details can be found in [28]–[30]. Multiple batches for
each of the drugs were prepared, and the acoustic release
(at 20 kHz) was measured using a fluorometer.

A similar protocol for preparing albumin and RGD
conjugated liposomes was followed. The liposomes were
prepared according to the modified lipid film hydration
method described by Lasch et al. The lipids: DPPC and
DSPE-PEG(2000)-NH2, in addition to the cholesterol, were
dissolved in chloroform at a molar ratio of 65 : 5 : 30 in
a round bottom flask. The chloroform was then evaporated
under a reduced pressure using a rotatory evaporator
maintained at 50◦C , leading to the formation of a thin lipid
film inside the flask. The film was then hydrated with 2 mL
of 50mM calcein (dissolved in phosphate buffer saline (PBS)
and the pH adjusted to 7.4) using the rotatory evaporator
for 50 mins at 60◦C followed by sonication at 60◦C using
a sonication bath (Agar Scientific) for 2 mins. The formed
liposomes were then extruded at 60◦C through the 0.2 − μm
polycarbonate membrane using Avanti®mini-extruder (Avanti
Polar Lipids, Inc., Alabaster, AL, USA). The liposomes were
purified using Sephadex®G-100 gel filtration (size exclusion

chromatography) equilibrated with Borate buffer (pH∼ 8.5).
The covalent conjugation liposomes to the ligands were carried
out using cyanuric chloride (2, 4, 6 trichloro-1, 3, 5 triazine)
as a coupling agent. Cyanuric chloride (CC) was reacted with
the liposomes in a 1 : 1 ratio with the DSPE-PEG(2000)-NH2
for 3 hours at0◦C (pH∼ 8.5). Albumin or RGD were then
added dropwise to the liposomes, and the reaction was left to
stir overnight at room temperature to allow the conjugation to
proceed. The unconjugated moieties were then removed using
Sephadex®G-100 gel filtration prepared with PBS buffer
(pH∼ 7.4).

For estrone liposomes, we first modified the DSPE-
PEG(2000)-NH2. ES was reacted with CC in a 1 : 1 molar
ratio, in the presence of two molar equivalents of triethylamine
(TEA), at 0◦C for more than three hours. The solution of
estrone with TEA dissolved in dry chloroform was added
dropwise to a solution of CC dissolved in dry chloroform at
0◦C . The functionalized ligand 2, 4 dichloro, 6 estrone-1, 3, 5
triazine (CC-ES) was then reacted with the lipids DSPE-
PEG(2000)-NH2 in a 1 : 1 molar ratio, in the presence of two
equivalents of TEA using chloroform as a solvent, and the
reaction was carried at 0◦C for three hours, then the mixture
was left stirring overnight at room temperature. The same
synthesis scheme described above was used to conjugate the
RGD and albumin moieties.

B. Experimental Measurements Apparatus

Quantifying the release of the model drug from liposomes is
achieved by measuring the fluorescence change in the agent’s
environment. The acoustic actuation results in the release of
the model drug, encapsulated inside the liposomes, and a
measurable change in fluorescence is observed during this
process. The percent release, R, of the fluorescent agent from
liposomes can be computed using the following equation:

R = F − F0

Fmax − F0
(1)

where F is the fluorescence intensity of the drug, F0 is the
average baseline fluorescence intensity of the solution when
ultrasound is applied, and Fmax is the fluorescence intensity
of 100% drug release upon the destruction of the liposomes
using the surfactant Triton X-100 .

Our experimental apparatus consisted of a low-frequency
ultrasonic piezoelectric transducer to stimulate the drug release
and a fluorescence measurement apparatus to quantify the
release. Specifically, a 3−mm probe connected to a VCX 750
actuator (Vibra cells, Sonics and Material) is used to trigger
drug release. The tapered probe has a water-resistant tip, and it
produces a 20 − kHz frequency ultrasonic beam. The solution
is placed in a cuvette with a 1 cm × 1 cm opening, allowing
the probe to vibrate freely which ensures maximum energy
transfer into the liposomal solution. More details pertaining to
the experimental apparatus can be found in [31].

The release kinetics of the chemotherapeutic agents are
modeled mathematically to find the best fitting model. In total,
five models are investigated. They are the zero-order, first-
order, Higuchi, Korsmeyer-Peppas, and Gompertz models. The
released percent for all models is quantified as the released
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cumulative fraction of the drug and not as the absolute amount
released, as seen by the fluorescence measurement equation.
Release results showed that the liposomes did not release their
entire drug content after exposure to ultrasound. Hence, a bias
term was added to give the investigated models an extra degree
of freedom to describe this behavior [32]. We treated this bias
as being batch-dependent and variable, and we aim to propose
an algorithm to identify this bias online to get better estimates
of the model drug release.

The zero-order model assumes a constant release rate from
the nanocarrier [33], given by equation (2).

Rt = k0t + b (2)

where Rt is the fraction of drug released, k0
[
s−1

]
is the

zero-order release constant, and b represents the initial release
amount.

The first-order model describes the release using a first-
order differential equation [34], whose solution is given by
equation (3).

Rt = ce−k1t + b1 (3)

where Rt is the fraction of drug released at time t , c is a
pre-factor that depends on the initial condition, k1

[
s−1

]
is

the first-order release constant, and b1 = b
k1

[
s−1

s−1

]
is a term

that arises from integrating the first-order model. The b term
represents the amount of unreleased drug amount at the end
of the release process.

The Higuchi model aims to describe the drug release from
a matrix system [35], given by equation (4).

Rt = A
√

D
(
2Clip − Cs

)
Cst (4)

where Rt is the fraction of drug released in time t per unit area
A, D is the diffusivity of the drug molecules in the liposome,
Clip is the initial drug concentration encapsulated inside the
liposome, and Cs is the drug solubility in the liposome media.
The Higuchi model is simplified and rewritten as shown in
equation (5).

Rt = kHi
√

t + b (5)

where Rt is the fraction of drug released, kHi
[
s−1/2

]
is the

Higuchi release rate that groups all the unknowns, and b is
the initial fraction of the model drug released.

The Korsmeyer-Peppas model was derived from a polymeric
system equation to describe drug release, and it applies to
release data from several formulations of microcapsules and
microspheres [36]. The power-law model is given by:

Rt = kK Ptn + b (6)

where Rt is the fraction of drug released in time t , kH P
[
s−n

]
is the Korsmeyer-Peppas release rate, n is the release exponent,
and b represents the initial release amount.

The Gompertz model [37] uses an exponential model to
describe the dissolution profile, expressed by equation (7):

Rt= 1−ce−αeβ log(t) + b (7)

where Rt is the fraction of drug released at time t , c is a pre-
exponential factor that depends on the initial condition, α is

TABLE I
FITTING RESULTS FOR MATHEMATICAL MODELS ACROSS ALL

EXPERIMENTAL RELEASE DATASETS

a scale parameter, β is a shape parameter, and b is the bias
term.

To fit the experimental datasets against the proposed models,
a nonlinear regression in the MATLAB was performed. In each
case, bounds/limits on the parameter values were imposed such
that the solution of the optimization algorithm is physically
permissible. The nonlinear least-squares routine minimizes the
sum of squares of the error between the measured drug release
and the model-based estimate to find the best values of the
model parameters (that exist within the allowable interval for
each parameter). The best-fitting parameters alongside their
confidence intervals are then reported, and the goodness of
fit is evaluated in terms of the Mean Square Errors (M SE)
between the model prediction and the experimental response.
We report the results for all the models for every dataset in
Table I, and we present one case of curve fitting results in
Fig. 1. It is evident that models which utilize exponential
functions fit the experimental data best. The first-order and
the Gompertz models have low and comparableM SE , which
was calculated using the five collective experimental fits. The
first-order model, however, was selected due to its simple form
which can be exploited in applying the Kalman filter.

III. FILTERING

As a consequence of the noisy nature of the release
environment and the acquired measurements, we propose to
enhance the best model deduced in the previous section with a
stochastic filtering scheme. This filtering algorithm makes use
of the dynamics model proposed, as well as a measurements
model to describe the release of calcein from liposomes. Aside
from the models, the algorithm also considers the existence
of noises in the DDS and compensates for their existence,
thus providing enhanced estimates of the dynamic states of
the DDS.

The Kalman Filter (KF) is a linear Minimum Mean
Square Error estimation technique that is widely applied for
state estimation. Combining the structural information avail-
able from a mathematical model of the process of interest,
as well as a model that describes the measurement apparatus,
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Fig. 1. Curve fitting results for the Albumin dataset at 20% Power Density.

the KF is able to fuse that information together to generate
optimal estimates of the states of this dynamic Drug Delivery
system. However, its performance is heavily reliant on the
proper tuning of the noise covariance values that are used to
describe the uncertainty surrounding the measurements and
dynamics of the drug release process. The linear KF is best
suited to work with Gaussian noise sequences, which is the
assumption made in this work.

Hence and based on previously presented results, the math-
ematical model chosen was the first-order bias-augmented
model presented in equation (3). Taking the state vector of
the DDS to include both the drug release and the bias in
the release, we can write the following discrete dynamic
and measurement models. The sampling frequency in all
experiments was 100 H z.

[
Rk+1
bk+1

]
=

[
1 − �tkr �t

0 1

] [
Rk

bk

]
+

[
1 0
0 1

] [
w1k

w2k

]

= Axk + BWk

zk+1 = [
1 0

] [
Rk+1
bk+1

]
+ vk+1

= Cxk + vk+1 (8)

where RK is the drug release state at time step k, bK is the
bias at time step k, �t is the sampling time period equal
to the inverse of the sampling frequency, and wk and vk+1
are the dynamics and measurement noise sequences at their

respective time steps. Looking at (1 − �tkr ), we note that
it is less than unity in magnitude, and we deduce that the
above discrete model is stable. Furthermore, checking the
observability, we compute a full rank Gramian, which satisfies
the observability condition. The filter, then, should be able to
estimate the drug release state and the bias as long as the
correct model is used.

A. State Estimation

The KF algorithm is first initialized with the expected value
of the DDS state vector, x , given the measurement, z, and its
covariance.

E [x0|z0] = x̂0

Cov [x0|z0] = P̂0 (9)

The previous a posteriori state estimate, x̂k , is propagated
in time to get the a priori estimate, x̄K+1, using the dynamic
model. Similarly, the a priori state covariance, P̄K+1, is also
realized using the previous a posteriori covarianceP̂k

x̄k+1 = x̂k+1|k = Ax̂k

P̄k+1 = P̂k+1|k = AP̂k A + Q (10)

The a priori measurement is then:

E
[
zk+1|k

] = z̄k+1 = x̄k+1 (11)
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The innovation and its covariance are defined as follows:

z̃k+1 = zk+1 − z̄k+1

Sk+1 = P̄k+1 + R (12)

The optimal Kalman gain, as well as the updated
a posteriori state and covariance estimates, are then shown
to be:

Wk+1 = P̄k+1 S−1
k+1

x̂k+1 = x̄k+1 + Wk+1 z̃k+1

P̂k+1 = P̄k+1 − Wk+1 Sk+1W T
k+1 (13)

As observed from equations above, the performance of the
Kalman filter, in terms of stability as well as the optimality
of the estimate, is heavily reliant on the proper selection of
the noise covariance magnitudes, Q and R. If the covariance
magnitudes are not correct in representing the true uncertainty
in the dynamic and measurement models, the estimates will
not be optimal. This will then reflect on the accuracy of the
estimate. The next section addresses this optimality issue; we
propose an online real-time noise covariance estimation algo-
rithm to tune the covariance magnitudes to be representative
of the true statistics of the noise sequences.

B. Online Uncertainty Identification Algorithm

It is of interest to invoke the adaptation in the KF algo-
rithm such that the dynamics and measurements covariance
magnitudes used by the KF are as close to the real magnitudes
as possible, hence the filter estimates are as close to optimal
as possible. Here, we describe and implement an adaptive
KF (AKF) approach based on covariance matching. This
approach exploits the theoretical definitions of the innovation,
which is defined as the difference between the acquired
measurement and the predicted measurement value, and the
residual, defined as the difference between the acquired mea-
surement and the updated measurement value.

At time step k + 1, the innovation, z̃k+1, and the residual,
�k+1, are given by:

z̃k+1 = zk+1 − z̄k+1

= zk+1 − H x̄k+1

�k+1 = zk+1 − H x̂k+1 (14)

From the KF equations, the measurement covariance esti-
mate can be written as:

R̂k = Sk+1 − H P̄k+1 H T (15)

This estimate is the difference between two positive definite
matrices, which can prove problematic as it does not ensure the
positive definiteness of the covariance matrix. Consequently,
following Wang [38], a residual-based approach is to be
followed.

Applying the error propagation law to the residual equation
in equation IV gives:

Cov (�k+1) = Cov
(
zk+1 − H x̂k+1

)
= Cov

(
H xk+1 + νk+1 − H x̂k+1

)
= Cov (νk+1) − H Cov

(
xk+1 − x̂k+1

)
H T

= Rk+1 − H P̂k+1 H T (16)

Fig. 2. Moving Window Step Size Sensitivity Analysis.

The covariance of the filtering residuals can be approxi-
mated in a moving window of n measurements to be

Cov (�k+1) = 1

n

n−1∑
i=0

�k+1−i�
T
k+1−i (17)

Alternatively, one could use a forgetting factor, α, to modify
the above approach to invoke a more tunable adaptation from
the estimation algorithm at a lower computational burden [25].
A higher value of α will put more weight on previous estimates
and will cause a slower and more stable adaptation of the
covariance estimate. This can be written as follows:

R̂k+1 = αRk + (1 − α)
[
�k+1�

T
k+1 + H P̂k+1 H T

]
(18)

Testing the two approaches, however, showed slightly better
performance with the moving window-based approach. As a
consequence of the moving window averaging not posing a
significant computational burden, it will be used in favor of
the forgetting factor approach.

The covariance estimate of the dynamics noise can be
written, for the DDS dynamics, as:

ŵk = x̂k+1 − Axk

= x̂k+1 − x̄k+1

= Wk+1 z̃k+1

= Wk+1 (zk+1 − H x̄k+1) (19)

Applying the error propagation law to the above equation
yields:

Cov
(
ŵk

) = Cov (Wk+1 z̃k+1)

= Wk+1Cov (z̃k+1) W T
k+1

Q̂k = Wk+1
1

n

n−1∑
i=0

z̃k+1−i z̃
T
k+1−i W

T
k+1 (20)
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Fig. 3. Algorithm performance in the simulated environment Top figure displays the Adaptive Kalman Filter, and the bottom one displays the Classic
Kalman Filter.

Applying the forgetting factor methodology, the dynamics
noise covariance estimator becomes:

Q̂k+1 = αQk +
= (1 − α)

[
Wk+1 z̃k+1 z̃T

k+1W T
k+1

]
(21)

As with the measurement noise covariance estimation, mov-
ing window averaging will be employed to approximate the
covariance.

The next section will implement the proposed DDS model-
ing algorithm and extensively test it out in both simulated and
experimental settings.

IV. RESULTS

It is imperative to deploy the proposed modeling algorithm
in a simulated environment to test and validate its perfor-
mance against a known truth. First, the size of the moving
window that approximates the covariances in the adaptive
algorithm was investigated in a sensitivity analysis study.

Then, a simulated study case was designed to stress test the
proposed algorithm. Finally, the algorithm was used to process
experimental data after the validation in our simulated setting.

A. Moving Window Sensitivity Analysis

The moving window approach used to approximate covari-
ances operated on a predefined number of points, and it
averages those points to approximate the covariance. It is of
interest to study the effect of the size of the moving window
on both the performance of the filtering algorithm and the
computational burden that the size of the window imparts on
the machine running the algorithm.

To identify a suitable window size, Monte Carlo simulations
were performed by investigating moving window sizes that
range from 1 to 50. We ran each simulation 50 times, and
the Mean Square Errors (MSE), as well as the computational
time needed to execute the code, were recorded. The MSE is
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Fig. 4. Filtering performance on the Albumin dataset at �.��, �.��, and ��.��mW
cm�

US power densities (from left to right).

given by:

MSE = 1

K

K∑
i=1

(
xi − x̂i

)2 (22)

where K is the length of the measurements window and
xi − x̂i is the error between the true state and the estimate.

Figure 2 presents the Monte Carlo simulation averaged
results. As the window size increases, a sharp drop in the
MSE is observed with the bias state, which shows the most
significant change. After approximately20 steps, the MSE
stabilizes to almost constant levels. Similarly, the drug release
state MSE drops to constant levels, but the change is small
in magnitude when compared to the bias. The computational
performance of the algorithm displays an erratic trend, but it
seems to hover around an average value of 0.22 s to process
the entire 6000 data points. Therefore, we chose the moving
window size of 20 steps to execute fewer computations than
deemed necessary.

B. Simulation Results

The algorithms were implemented in an exaggerated noisy
environment for rigorous testing purposes. To evaluate the per-
formance and robustness of the adaptation algorithm, a change
in the noise sequences being simulated was induced. For
the first 35 seconds, the noise covariance magnitudes were
Q = 5 × 10−5 and R = 5 × 10−3, and they suddenly change
to Q = 5 × 10−4 and R = 5 × 10−2 for the rest of the
simulated time. This simulates a catastrophic degradation in
the data acquisition apparatus accompanied by a change in the

TABLE II
SIMULATED ENVIRONMENT FILTER PERFORMANCE

dynamics of the DDS. The simulated test case is designed to
stress test the algorithms in order to showcase the benefits of
the proposed adaptive approach.

The DDS parameters, as well as the AKF initialization used
to simulate the response of the DDS, are as follows:

x̂0 = x̄0 =
[

0
�

]

P̂0 = P̄0 =
[

� 0
0 10

]

W0 =
[

1
1

]

Q0 =
[

1 0
0 1

]
× 5 × 10−5

R0 = 5 × 10−3

kr = 0.259

b = 0.242

The simulation results for a non-optimal Kalman Filter
are presented alongside the results of the proposed Adaptive
Kalman Filter in Fig. 3. The acquired measurements are
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Fig. 5. Filtering performance on the Estrone dataset at �.��, �.��, and ��.��mW
cm�

US power densities (from left to right).

Fig. 6. Filtering performance on the RGD dataset at �.��, �.��, and ��.��mW
cm�

US power densities (from left to right).

extremely noisy and are scattered around the true state of
drug release. They are not representative of the true state
of drug release. It is evident that the filter quickly adapts at

the beginning to track the true states of drug release, as well
as the bias. When the simulated change in noise covariance
magnitudes happens, the filter again proves its robustness and
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TABLE III
EXPERIMENTAL AKF PERFORMANCE

TABLE IV
EXPERIMENTAL KF PERFORMANCE

tracks the erratic response of the DDS states. Some oscillations
are still visible, especially with the bias state, (note the high
level of noise injected into the processes).

Table II documents the calculated MSE for the AKF and
the KF. The MSE between the true state of drug release and
the AKF estimate was computed to be M SER = 0.0042,
while the MSE for the bias estimate was computed to be
M SEb = 0.0115. On the other hand, the MSE between the
true state of drug release and the KF estimate was computed
to be M SER = 0.0086, while the MSE for the bias estimate
was computed to be M SEb = 0.0231. The performance of
the AKF is clearly superior in the simulated setting, and it
warrants deploying the algorithm in an experimental setting.

V. EXPERIMENTAL RESULTS

Now that the AKF performed well in the simulated environ-
ment, we deploy it in an experimental setting on the acquired
drug releases discussed earlier. The releases of calcein from
three types of targeted nanocarriers were acquired at the three
distinct US power densities of 7.46, 9.85, and 17.31 mW

cm2 , which
are equivalent to 20%, 25%, and 30% of the total available
power, respectively.

Fig. 4, 5, and 6 display the performance of both the KF and
the AKF on the acquired experimental datasets. The levels
of measurements noise are clearly not as large as those in
the simulated environment, but they are scattered around the
estimate and not very smooth in nature. This noise is mainly

attributed to the nature of US. Nonetheless, the AKF converges
very quickly to the true bias in comparison to the KF. The
true state of bias was identified through the postprocessing
of the data through the curve fitting of the model. In turn,
identifying the true bias very early throughout the release
experiment results in the filter producing estimates that are not
as scattered as the measurement points. Moreover, the AKF
tracks the measurements much better than the KF. As the true
state of drug release is unknown, the MSE statistics presented
in this work are computed between the measurements and the
filter estimates. It is of interest, however, to stress on the filter’s
capacity to quickly converge on the true bias, which gives
merit to the drug release estimate being also close to the true
state of drug release and our proposed approach. Table III
documents the experimental MSE for the AKF and Table IV
documents the experimental MSE for the KF. In all cases,
the MSE with the AKF is slightly better to significantly better
than its nonadaptive counterpart. In comparison to the KF,
the AKF MSE difference is as small as being half the KF and
as large as being three orders of magnitude less than the KF.
The proposed algorithm consistently performs better than the
classic one.

VI. DISCUSSION AND CONCLUSION

Reliable prediction of the dynamic behavior of chemother-
apeutic DDSs is essential to reaching a selective treatment
system where the drug delivery is controlled using algorithms
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such as Model Predictive Controller (MPC). This type of
intelligent control requires a robust mathematical model and
quality measurements of the amount of drug delivered to the
patient. This is where our proposed modeling approach can be
deployed; the AKF fuses the structural information of a first-
order kinetics model that is capable of describing the release
process with the filtering scheme that is able to estimate the
state of drug release regardless of the quality of measurements
acquired. The need for the proposed adaptation arises because
the noise uncertainty structure is inherently unknown and is
difficult to know beforehand.

Numerous mathematical models reported in literature were
first studied to determine the best fit to the experimental data.
Then, an adaptive variant of a Kalman filter was designed to
make use of the dynamics and measurements models, while
adaptively estimating the noise covariance magnitudes plagu-
ing the dynamics and measurement processes. The proposed
approach was deployed in a simulated environment where it
performed exceptionally well compared to the classical filter.
Afterwards, the algorithm was used to filter the experimental
data, identify the true state of bias in the process and give
accurate drug release estimates.

The next step is to study the relation between ultrasonic
power density and the kinetic release constants at play in this
triggered DDS. This relationship can in turn be used to design
an MPC system capable of controlling drug delivery in time
and space both theoretically and experimentally.
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