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We have been developing a drug delivery system that uses Pluronic P105 micelles to seques-
ter a chemotherapeutic drug – namely, Doxorubicin (Dox) – until it reaches the cancer site. 
Ultrasound is then applied to release the drug directly to the tumor and in the process mini-
mize the adverse side effects of chemotherapy on non-tumor tissues. Here, we present an 
artificial neural network (ANN) model that attempts to model the dynamic release of Dox from 
P105 micelles under different ultrasonic power intensities at two frequencies. The developed 
ANN model is then utilized to optimize the ultrasound application to achieve a target drug 
release at the tumor site via an ANN-based model predictive control. The parameters of the 
controller are then tuned to achieve good reference signal tracking. We were successful in 
designing and testing a controller capable of adjusting the ultrasound frequency, intensity, 
and pulse length to sustain constant Dox release.

Key words: Artificial Neural Network; Model Predictive Control; Doxorubicin; Polymeric 
Micelles; Drug Release; Continuous and Pulsed Ultrasound.

Introduction

Several therapies are effective in combating abnormal neoplastic tissue growth. 
One of the methods extensively used to eradicate cancer cells is chemotherapy. Yet 
chemotherapy has many drawbacks including alopecia, gastrointestinal cramps, 
leucopenia, and irritation at the site of injection. These side effects are caused 
primarily because of the non-specific nature of the treatment since systemically 
delivered drug is able to interact with healthy as well as cancerous cells. Our 
research group has been developing a drug delivery system that encapsulates the 
drug until it reaches the tumor site. Then ultrasound is applied to release the che-
motherapeutic agent directly to the cancer which would minimize any interaction 
with the healthy cells in the body. Thus the adverse side effects of chemotherapy 
are minimized. Our technique uses polymeric micelles to sequester hydrophobic 
drugs and ultrasound to trigger their release.

Micelles can be formed from simple and small surfactants or from large 
amphiphilic block copolymers. In applications employing polymeric micelles, 
hydrophobic drugs are sequestered in the micelle core. Most published applica-
tions of US-assisted micellar drug delivery employ polymeric micelles (1-13). 
The advantages and disadvantages of using copolymeric micelles over other 
nanosized drug carriers are:

1. They are structurally stable at high concentrations of the copolymer (where
they form micelles). Since these molecules have high molecular weights, the
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dissociation time upon dilution is usually longer than 
other nanoparticles and micelles composed of molecules 
of lower molecular weights (14).

2.	 When their corona contains poly (ethylene oxide) (PEO) 
chains, the micelles are able to circulate in the blood for 
long times without being recognized and subsequently 
cleared by the immune system. They are also stable in 
biological fluids other than blood. In addition, these  
polymeric compounds do not degrade, and they have long 
shelf-lives. Recently, a study showed that short chains of 
PEO tend to adsorb proteins on their surface (15); how-
ever PEO chains in Pluronic P105 are sufficiently long 
that they will prevent such an adsorption from taking  
place. Pluronic P105 is a block copolymers of poly  
(ethylene oxide) (PEO) – poly (propylene oxide) (PPO) – 
poly (ethylene oxide) (PEO). It has an average molecular 
weight of 6500 with the number of monomer units in the 
PEO and PPO blocks being 37 and 56, respectively. At 
sufficiently high concentrations, P105 forms micelles, 
These micelles allow for the sequestration of hydrophobic 
materials (including drugs) in their core.

3.	 They are of appropriate size to escape renal excretion 
(>15-30 nm) while being large enough to allow for 
extravasation at a tumor site. With a size this small, a 
simple filtration process can be used to sterilize the poly-
mer-micelle solution. These micelles can be easily intro-
duced into the circulatory system by intravenous injection  
(16, 17). 

4.	 Hydrophobic drugs can be easily incorporated into copo-
lymer micelles by the simple act of mixing. Such physi-
cal entrapment is an efficient and easy way of loading 
drugs into micellar systems. Physical entrapment has 
been achieved for several anticancer drugs including 
Doxorubicin (Dox) and Ruboxyl (Rb) in P105 micelles 
(18, 19). 

The main disadvantage associated with micellar carriers 
is their rapid clearance from the circulation. However by 
incorporating an exterior layer of PEO, the micelle surface  
is modified such that they are not cleared as quickly. 
Because of the hydrophilic nature of PEO, water associ-
ates with the poly(ethylene oxide) chains, and this leads 
to steric repulsion of proteins and a subsequent reduction 
in protein adsorption on the surface of these drug delivery 
vehicles. By reducing, and in some cases, preventing pro-
tein adsorption, micellar drug carriers remain longer in the 
blood circulation because they are protected from detection 
and clearance by several biological mechanisms (20). While 
these carriers are important in our drug delivery system, 
the release or trigger mechanism (ultrasound) is equally  
important.

Ultrasound (US) has been investigated by several groups  
as a potential facilitator of the delivery and absorption of  

drugs (21-23). Early studies on transdermal drug delivery  
using higher frequencies available in diagnostic equipment 
had limited success (24-26), but Mitragotri using lower ultra-
sonic frequencies (20 kHz) achieved transdermal delivery 
of medium molecular weight proteins (insulin, interferon, 
and erythropoeitin) (27). His hypothesis was that cavitation 
events disrupted the stratum corneum. In our drug delivery 
work we believe that cavitation disrupts micelles, leading to 
drug release. Kruskal et al. have reported that higher frequency 
ultrasound (imaging frequencies) increased the permeability  
of blood vessels and increased the quantity of Dox delivered 
by stable liposomes to hepatic colorectal metastases in a mouse 
model (28). Thus US may further increase the enhanced per-
meability of tumor capillaries which already enable some  
passive targeting of tumors by nanosized drug carriers (29, 30).  
Kwok et al. demonstrated ultrasonic-activated release of  
insulin from a monolithic drug reservoir with an imperme-
able surface coating that is disrupted by the action of ultra-
sound (31). After insonation is stopped, the coating reforms 
and blocks further release of the drug. In addition to triggering 
the release, ultrasound is credited with causing or enhancing 
chemical reactions that can be chemotherapeutic (32-34).

We have been focusing much of our attention on modeling 
acoustically activated drug release and re-encapsulation from 
polymeric micelles (2, 10, 11). Modeling such a system is 
interesting because of the ease with which the release can 
be controlled, simply by increasing or decreasing the length 
and the intensity of the acoustic pulse. In a previous publi-
cation, we reported on the use of Artificial Neural Network 
(ANN) algorithms to deduce the sensitivity of acoustically 
activated drug release from polymeric micelles (10), because 
we found that conventional linear modeling techniques are 
incapable of capturing the transient nature of this highly non-
linear process. Black-box modeling algorithms are capable 
of modeling nonlinear systems and are gaining the scientific 
community acceptance because of their simplicity and high 
prediction performance (35). ANN modeling techniques are 
attractive for use in drug delivery because no prior knowl-
edge of the process mechanism (usually needed to generate 
the pharmacokinetic models) is required. To model any sys-
tem using ANN, all one needs is the input-output data from 
the process being investigated. This data will be used first to 
train the neurons and later to validate and test the resulting 
model. 

In addition to modeling, Neural Networks are currently 
being used to devise controllers in a variety of fields. They 
are either directly implemented where the network control-
ler is trained to learn the inverse of the process dynamics, 
or indirectly implemented by training the neural network 
to predict future outputs from past and present inputs and 
outputs. In the former case, the process is modeled with a 
separate neural network; the controller does not invert the 
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The NN-MPC structure used in this study is shown in  
Figure 1. It is composed of four components in addition to 
the process. These components are; two neural networks 
(one for the process and the other for the controller), an opti-
mizer and a performance function. For a selected time hori-
zon, the controller optimizes the process output by using the 
neural network model for calculating controller moves and 
predicting the plant or process output. The neural network 
controller is trained using real process input-output data in 
order to produce the correct controller moves generated by 
the optimization algorithm.

Basically, the NN-MPC solves for the control signal variable 
u9 by minimizing the following objective function:
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Where, λ is the control weighting parameter that determines 
the contribution of the sum of the squares of the control pre-
diction increments have on the performance index. The N1 

and N2 are the minimum and the maximum prediction hori-
zons. Nu is the “controller’s move horizon.” It specifies the 
instant time, when the output of the controller should be kept 
at a constant value. The U is the Nu future control moves 
vector defined as: U = u t u t u t Nu

T
( ), ( ),..., ( ) .+ + − 1 1   

Nørgaard et al. (44) reported the derivation of the controller 
in details.

The controller parameters can be used to tune the per-
formance of the predicted output. This usually requires 
some exploratory experiments for determining the best  
controller parameters. Depending on the problem formula-
tion, the main tuning parameters may involve one or more 
of the following; sampling time, control horizon, predic-
tion horizon, and weighting matrices in the optimization  
formulation (45, 46). 

exact process model and the offset cannot be eliminated. 
The indirect method is more suitable for control applica-
tions. The trained process model is used with a control 
algorithm to calculate the controller output. ANN-based 
control algorithms are implemented in Model Predictive 
Control (MPC) (36, 37), Internal Model Control (IMC) 
(38), Dynamic Matrix Control (DMC) (39), and Adap-
tive Control (40). The application of ANN nonlinear con-
trol design techniques in modeling drug delivery (namely, 
release and re-encapsulation of Doxorubicin from Pluronic 
P105 micelles) systems is unique as well as promising. In 
this article, we extend our previous ANN dynamic model-
ing efforts (10) to propose an neural networks-based MPC 
controller capable of maintaining a steady state profile of 
drug release from micelles using ultrasound. ANN is par-
ticularly useful to model this system because of the strong 
nonlinearity and high noise aspects of the experimental 
data available. As with all neural network/control based 
algorithms, the validated model is then utilized to train an 
ANN-based model predictive controller. Finally, the con-
troller parameters are tuned to achieve acceptable refer-
ence signal tracking. The proposed controller is capable of 
adjusting the ultrasound frequency, intensity, and the pulse 
length to sustain a constant release of Doxorubicin from 
Pluronic P105 micelles. Next we will discuss the ANN 
based control model/algorithm.

Model Predictive Control 

Model based predictive control (MPC) controllers are 
designed to drive the process from one constrained steady 
state to another. They may receive an optimal steady-state 
operating point from an overlying optimizer, or they may 
compute an optimal operating point using an internal steady-
state optimizer. MPC was successfully applied in solving 
process control problems (41). This is basically related to its 
ability to deal with complex situations such as systems with 
large delays, process variables constraints, non-minimum 
phase systems. Another success is its robust performance 
against model inaccuracies (42). The basic implementation 
of MPC was mainly for linear systems. Recently, great effort 
is being devoted for the development and implementation 
of nonlinear versions of this algorithm. One of these imple-
mentations is the use of neural networks for controller design 
purposes. Neural networks are capable of capturing the sys-
tem nonlinear dynamics and can be used to approximate the 
process as well as to design the model predictive controller. 
The neural network based model predictive controller (NN-
MPC) uses a neural network model of a nonlinear plant to 
predict future plant or process performance. The controller 
then calculates the predicted control input that will optimize 
the plant or process performance over a specified future time 
horizon. This control method is based on the receding hori-
zon technique (43).
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Figure 1:  The neural network based MPC structure.
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(Variac). The insonation intensity as a function of applied 
voltage was determined using a calibrated hydrophone (Bruel 
and Kjaer model 8103, Decatur, GA). The acoustic intensity 
generated by the Sonicor bath increased with applied voltage 
and the intensity dropped below detection level when less 
than 60 V A.C. were applied from the Variac. 

Twenty-kHz ultrasound was generated by a probe transducer 
(Sonics and Materials, Newton, CT) inserted into the water 
bath. The 20-kHz ultrasound probe was programmed to gen-
erate continuous wave (CW) or pulsed ultrasound of varying 
power densities and duty cycles. 

Measuring drug release

We have developed a laser fluorescence detection system to 
quantify the amount and the kinetics of Dox release from these 
micelles (3, 7). The system consists of an argon-ion laser at 488 
nm directed into a glass cuvette containing the trial solution to 
be insonated. A fiber optic probe is used to collect the fluores-
cence emission from the cuvette. The collected light passes 
through a bandpass filter centered at 535 nm to a sensitive sili-
con detector, whose signal is digitized and stored on a com-
puter. The temperature of the ultrasonic exposure chamber is 
maintained at 37°C. A decrease in fluorescence is attributed to 
release of the Dox from the micelle core to the aqueous phase 
where its fluorescence is partially quenched by water, and the 
release was quantified using a calibration with free Dox (3). 
The percent release was calculated using the following:
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and, the encapsulation fraction, the fraction of Dox inside 
the micelle, as:
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where IP105, IUS, and IPBS refer to the fluorescent intensities of 
Dox in P105 solution (no US), Dox in P105 with application 
of US, and Dox in a PBS solution, respectively.

Results using this system revealed that up to 10% of the 
Dox is released, depending upon the insonation intensity 
(3). Pulsed insonation resulted in pulsed drug release and 
re-encapsulation (2). Analysis of the kinetics of the release 
and re-encapsulation showed that Dox release was zero 
order with respect to Dox concentration (but a strong func-
tion of insonation parameters) and re-encapsulation was 
first order in free Dox concentration (2, 11). Both release 
and re-encapsulation were completed within 0.6 seconds at 
any frequency. Energy deposition does not appear to be a 
requirement to release drugs. The release appears to occur at 

Materials and Methods

Pluronic P105

Pluronic P105 was found to be an ideal drug carrier for 
ultrasonic-activated drug release for several reasons. First, 
it forms micelles quickly upon simple dissolution in water 
(16). Second,  the core of PPO is sufficiently hydrophobic 
to stabilize the micelle and sequester hydrophobic drugs 
(47). Third, the micelles can be perturbed by low frequency 
ultrasound to release the drug (3). The drug is quickly  
re-encapsulated in the carrier when insonation is stopped  
(3, 7, 8). Finally, Pluronic compounds at low concentrations 
are non-toxic and can be cleared by the kidneys (48).

We briefly experimented with other Pluronic (triblock copo-
lymer of the form PEOx-PPOy-PEOx) compounds, but found 
them unsatisfactory when used as pure Pluronics because 
those with longer PEO blocks had too high of a critical 
micelle concentration (CMC), and those with longer PPO 
blocks could not dissolve easily in water. Thus the composi-
tion of Pluronic P105 appears to be close to optimal for drug 
sequestration and ultrasonic release.

Pluronic P105 was purchased from BASF Corporation. 
The surfactant was dissolved in a phosphate buffered saline 
(PBS) solution. The final concentration of the Pluronic solu-
tions used in our study was 10 wt%. These solutions were 
sterilized by filtration through a 0.2 µm filter. 

Doxorubicin

Doxorubicin (Dox) was purchased from Sigma and from the 
University Hospital (University of Utah, Salt Lake City, UT) 
and was dissolved in a stock solution of phosphate buffered 
saline (PBS). This drug is presently being used extensively in 
the therapy of several cancers. Dox received from Sigma was 
98 % Dox and 2 % HCl, while Dox purchased from the Uni-
versity Hospital was one sixth Dox and the balance lactose. 
Anthracycline drugs (including Dox) are topoisomerase I and 
II inhibitors. These compounds intercalate with DNA, affect-
ing many of its functions, including the synthesis of DNA and 
RNA. These drugs cause single- and double-strand breaks to 
occur in the DNA, which leads subsequently to cell death (49). 
Dox was introduced into PBS or Pluronic P105 micellar solu-
tions from a stock solution in PBS (1 mg/ml). In our release 
experiments, a drug concentration of 6.67 µg/ml was used. 

Ultrasound

Ultrasound power at 70 kHz was generated by a Sonicor 
SC-100 ultrasonicating bath (Sonicor Instr., Copaique,  
N. Y.). The power density (acoustic intensity) was controlled 
by adjusting the input voltage using a variable A.C. transformer 
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the three acoustic power densities used (0.765, 0.675 and 0.58 
W/cm2) resulted in the new steady state encapsulated frac-
tion averages of 0.9049, 0.9112 and 0.9348, respectively. It 
is clear that the three ultrasound intensities, at both frequen-
cies, achieved steady state encapsulated drug fraction levels 
that are not linearly proportional to the power densities of the 
ultrasound introduced. This nonlinearity necessitates the need 
to use a non-conventional control technique that is capable of 
handling such process complexities accurately and efficiently.

Modeling and Controller Design Results

As mentioned in the introduction section, a nonlinear model 
based control strategy should be capable of attaining good ref-
erence tracking with minimum controller moves for complex 

isothermal conditions, and in water that has a very low atten-
uation, particularly at these low frequencies. Thus exposure 
to the pressure field, and not energy deposition, releases the 
drug from the carrier.

Results and discussion

Figures 2 and 3 show the two sequences of experimental 
data points collected at 20 and 70 kHz, respectively. For both 
sequences, the three profiles of the three pulses indicate a non-
linear behavior for the drug release process. The three power 
densities shown in Figure 2 at 20 kHz are 0.058, 0.047 and 
0.033 W/cm2. These intensities produced new steady state 
encapsulated fraction averages of 0.9150, 0.9203 and 0.9613, 
respectively. Similarly for the case of 70 kHz (see Figure 3), 
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Figure 3:  Raw and smoothed experimentally gen-
erated drug release data and the corresponding power 
density signals (at 70 kHz).
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erated drug release data and the corresponding 
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The MATLAB software implementation of the Levenberg-
Marquardt back-propagation optimization algorithm (LMBP) 
was used for this purpose. The algorithm converges to the 
optimal solution with minimum optimization steps. 

The 20-kHz and 70-kHz input/output data sets pairs were 
then divided into three subsets with the ratio of 2:1:1 (train-
ing, validation and testing, respectively). At 20-kHz, a total 
of 514 epochs (training steps) were needed to achieve predic-
tion errors of 1.07310 ‑6, 2.10310-6 and 7.1310-6 for the three 
respective subsets within a search time of 104 seconds. On 
the other hand, the 70-kHz data needed 431 epochs to attain 
the training target and achieve prediction errors of 5.1310 ‑6, 
8.12310-6 and 4.2310-6 for the three respective subsets within 
a search time of 93 seconds. With this performance, the trained 
ANN can predict process dynamics accurately. Figure 5 shows 
the profiles of prediction errors for the training, validation 
and the testing subsets for the 20 kHz data, while Figure 6 
depicts the same information for the 70 kHz data. The ANN 
predictions are very close to the actual drug release data with 

processes such as the drug delivery process at hand. Adopt-
ing such a control algorithm necessitates the computation 
of a neural network equivalent dynamic model of the drug 
release process. The input-output data were first smoothed to 
get rid of measurement noise and prepare it for ANN training. 
A moving average smoothing strategy was used with a sam-
pling proportion of 0.01. The smoothed data (see Figures 2 
and 3) revealed the nonlinearity, especially within the periods 
where the power density was changed. 

A feedforward ANN with output feedback was constructed 
with one hidden layer. The general structure of this net-
work is shown in Figure 4. The neural networks structure 
was selected based on testing different network topologies 
that vary in terms of structure and simulation parameters. 
The criteria for network structure selection are based on its 
simplicity, performance, and accuracy of model prediction. 
The finally selected network consists of a single hidden layer 
with 3 neurons. The activation function used in the hidden 
layer is the hyperbolic tangent sigmoid transfer function 
while the output layer contains a linear neuron. Two delayed 
process outputs were used in the network to account for the 
time variation of the variables in the system. The inputs and 
targets data were preprocessed by normalization so that they 
fall in the interval [-1, 1]. This makes the neural network 
training more efficient. Network training was accomplished 
by manipulating its weights and biases to achieve certain 
performance criteria. This was accomplished using an opti-
mization algorithm that searches for network parameters 
capable of minimizing the prediction error ( es ) described by  
the mean square errors between the experimental encap-
sulation fraction,yi, and the network predictions ŷ for n  
sampling points expressed as:
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feedforward neural networks. The struc-
ture of the controller is given by Liu et al.  
(50). The design of the controller 
involves tuning its parameters. From 
the controller objective function given 
in equation [1], the tuning parameters 
for this controller are: the prediction 
horizon (N2), the control horizon (Nu), 
the control weighting factor (λ) and the 
search parameter (α). These parameters 
were selected as described next. The 
prediction and control horizons were set 
at their best values of 10 and 5, respec-
tively, after attempting other values. 
These values showed moderate aggres-
siveness and a good stability of the con-
troller response. The NN-MPC control 
weighting factor was set at (λ=0.1). 
This value resulted in a smooth process 
output and gave good tracking with low 
oscillatory behavior.

The last tuning parameter is the search 
parameter (α). This parameter is used to 
control the optimization speed and perfor-
mance. It determines the termination of the 
search process. The Levenberg-Marquardt 
optimization algorithm uses this scale fac-
tor to minimize the performance training 
function along the search direction. After 
several trials, a value of 0.001 was selected 
to insure reasonable performance criteria 
and optimization convergence speed.

To test the final design of the NN-MPC 
controller, a series of set-point excitations 
in the drug release (or drug encapsulation 
fraction) were introduced in the process 
control loop during which the controller 
performance was recorded. The resulting 
profile of the process and the correspond-
ing controller moves for the 20-kHz and 
70-kHz cases are shown in Figures 8 and 9, 
respectively. In terms of controller moves, 

the NN-MPC configuration produced smooth and non-ag-
gressive changes in the power density. The controller output 
was bounded within the allowable limits of ultrasound inten-
sity range (0 - 0.058 W/cm2 and 0 - 0.756 W/cm2 for the two 
respective frequencies). The figures indicate that the con-
troller was able to direct the process to track the reference 
signals excitations safely, smoothly and within a reasonable 
response time. Figure 10 shows the response of the control-
ler as the percent drug release is increased to 5% (hence, the 
fraction of drug encapsulated decreased from 1, or 100%, to 

a maximum prediction error of 0.002 and 0.001 at 20 kHz and 
70 kHz, respectively. Figure 7 shows a comparison between 
experimental data and model output for an input of 1 second 
“On”: 1 second “OFF” pulsed ultrasound at 20 kHz and 0.058 
W/cm2. The figure clearly shows that the model accurately cap-
tures the kinetic behavior of release and re-encapsulation even 
when the duration of the ultrasound pulse is 1 second or less.

After modeling the drug release process dynamics, the 
generated trained ANN was implemented in the NN-MPC 
controller. The controller structure of the model is based on 
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in a model based strategy. The designed controller was effec-
tive in controlling the release of Doxorubicin from unstabi-
lized micelles at different frequencies, power intensities and 
acoustic pulses. However, at 20 kHz, more rapid controller 
effort was needed to guide the drug release to reach its set 
point. This is mainly due to the process high nonlinearity at 
this frequency. The modeling and control strategy presented 
in this paper can be adopted for similar processes where 
conventional modeling techniques are inefficient due to the 
highly nonlinear behavior of the process studied.
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