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This paper models steady state acoustic release of Doxorubicin (Dox) from Pluronic P105 

micelles using Artificial Neural Networks (ANN).  Previously collected release data were 

compiled and used to train, validate, and test an ANN model.  Sensitivity analysis was then 

performed on the following operating conditions: ultrasonic frequency, power density, Plu-

ronic P105 concentration, and temperature.  The model showed that drug release was most 

efficient at lower frequencies.  The analysis also demonstrated that release increases as the 

power density increases.  Sensitivity plots of ultrasound intensity revealed a drug release 

threshold of 0.015 W/cm2 and 0.38 W/cm2 at 20 and 70 kHz, respectively.  The presence of 

a power density threshold provides strong evidence that cavitation plays an important role in 

acoustically activated drug release from polymeric micelles.  Based on the developed model, 

Dox release is not a strong function of temperature, suggesting that thermal effects do not 

play a major role in the physical mechanism involved.  Finally, sensitivity plots of P105 con-

centration indicated that higher release was observed at lower copolymer concentrations.

Key words: Artificial neural networks; Polymeric micelles; Ultrasonic stimulus; Doxorubicin; 

and Pluronic P105.

Introduction

Pluronic P105 copolymer forms dense micelles at a concentration of 4% or above 
(1).  These micelles are capable of encapsulating chemotherapeutic agents and 
releasing their contents using acoustic energy (2-11).  Similarly, we have shown 
that acoustically activated drug release increases with increasing power densi-
ties and decreasing frequencies (4).  Our research group has also reported that 
P105 micelles stabilized with an interpenetrating network of N,N-diethylacryl-
amide can be acoustically stimulated to release Doxorubicin (Dox) (2).  Re-
cently, we have shown that acoustically activated drug release from unstabilized 
Pluronic P105 micelles is highly correlated to the appearance of a subharmonic 
peak in acoustic spectra, revealing the important role of cavitation in this release 
phenomenon (3).  In all of our experiments, a custom made ultrasonic exposure 
chamber with fluorescence detection was used to investigate drug release from 
micelles.  The apparatus was designed to measure real-time release kinetics of 
Dox from different micellar systems including stabilized and unstabilized Plu-
ronic P105 micelles.  Dox exhibits a substantial decrease in fluorescence when 
transferred from the hydrophobic poly-propylene-oxide (PPO) core of the mi-
celle to the surrounding aqueous solution (2, 6).

Mechanistic models were used to predict the kinetics of release and re-encapsula-
tion in an attempt to optimize the application of ultrasound in future in vivo ex-
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periments (6).  That study showed that the model with zero-
order release and first-order re-encapsulation most closely 
predicted experimental data compared to the three other pro-
posed models.  Although this mechanistic model was able to 
approximate the kinetics of both release and re-encapsula-
tion, the range of data used in that study encompasses lim-
ited operating conditions including power density, frequency, 
Pluronic P105 concentration, and temperature.

The complex nature of this novel drug delivery system 
prompts the need for a modeling technique that can be used 
to predict drug release at a wider range of operating condi-
tions.  Such models can be utilized to mimic and extrapolate 
the behavior of drug loaded micelles without the need for 
further extensive experimentation.

In the research described in this paper, artificial neural net-
work models (ANNs) were used to predict drug release as 
a function of the four variables mentioned above.  Such 
modeling entails using a large number of experimental data 
to reconcile model predictions with actual release measure-
ments in order to validate the ANN model.  The next section 
provides a brief background and describes the methodology 
used in neural network modeling.

Neural Networks Modeling: Background and Methodology

The development of artificial neural networks started in the 
early middle of the last century to help cognitive scientists in 
understanding the complexity of the nervous system.  These 
models evolved steadily and were adopted in many areas of 
science.  Basically, ANNs are numerical structures inspired 
by the learning process of the human brain.  They are con-
structed and used as alternative mathematical tools to solve 
a diversity of problems in the fields of system identifica-
tion, forecasting, pattern recognition, classification, process 
control, and many others (12-15).  The interest in ANN as a 
mathematical modeling tool resulted in the consolidation of 
its theoretical background and the development of its under-
lying learning and optimization algorithms.

Our area of interest in this paper is the modeling and simu-
lation using Pluronic P105 micelles as drug delivery ve-
hicles and acoustic power as a trigger mechanism.  The 
implementation of empirical correlations for this complex 
system involves a great deal of mathematical difficulties 
and in many instances lacks the desired accuracy.  Neuron-
based modeling can be used confidently as a substitute in 
such situations.  This is due to the favorable features en-
tailed in their use, such as simplicity, fault and noise toler-
ance, plasticity (the ability to retain its prediction efficiency 
even after the removal or damage of some of its neurons), 
black box modeling methodology, and robustness (the ca-
pability to adapt to process changes).

ANNs can be categorized, in terms of their topology, as sin-
gle and multi-layer feedforward networks (FFNN), feedback 
networks (FBNN), recurrent networks (RNN), and self-orga-
nized networks.  In addition, they can be further categorized 
in terms of application, connection type, and learning method.  
The most commonly used type of networks is the feedforward 
networks (FFNN) shown in Figure 1.  This network topology 
is composed of one input layer, one output layer, and a mini-
mum of one hidden layer.  The term feedforward describes 
the way in which the output of the FFNN is calculated using 
its input layer-by-layer throughout the network.  No matter 
how complex the network is, its building block is a simple 
structure called the neuron.  It performs a weighted sum of its 
inputs and calculates an output using certain predefined acti-
vation functions.  Activation functions for the hidden units are 
needed to introduce the nonlinearity into the network.  Sig-
moidal functions, such as logistic and tanh, and the Gaussian 
function, are the most common choices of activation func-
tions.  The neural system architecture is defined by the num-
ber of neurons and the way by which the neurons are intercon-
nected.  The network is fed with a set of input-output pairs 
and trained to reproduce the outputs.  The training is done by 
adjusting the neurons weights and biases using an optimiza-
tion algorithm that attempts to minimize the quadratic error 
between experimental data and computed outputs.  The per-
formance function used in the optimization is usually based 
on the squared difference between the actual observed output 
ai and the network prediction ti for n sample points (14, 15).

Input-target training data are usually pretreated in order to 
improve the numerical condition of the optimization and 
training process.  Thus, the data is normally divided into 
three subsets: training, validation, and testing.  The training 
subset is used to accomplish network learning and fit net-
work weights by minimizing an appropriate error function.  
Backpropagation is the training technique usually used for 
this purpose.  It refers to the method for computing the gradi-

Performance Index = 1
n Σ(ti – ai)2|

n

i=1
[1]
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Figure 1:  General structure of a three layers feedforward ANN.
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ent of the case-wise error function with respect to the weights 
of the feedforward network.  The performance of the network 
is then independently compared by evaluating the error func-
tion using the validation subset.  The testing subset data is 
then used to measure the generalization of the network (i.e., 
how accurately the network predicts outputs for inputs that 
are not in the training set).  This process is sometimes re-
ferred to as hold-out validation.

Selecting the network structure is a crucial step in the over-
all design of ANNs.  The structure must be optimized to 
reduce computer processing, achieve good performance 
and avoid overfitting.  The selection of the best number of 
hidden units depends on many factors.  The size of the train-
ing set, the amount of noise in the targets, the complexity 
of the sought function to be modeled, the type of activation 
functions used and the training algorithm all have interact-
ing effects on the sizes of the hidden layers.  There is no 
way to determine the best number of hidden units without 
training several networks and estimating the generalization 
error of each.  If there are few hidden units, then high train-
ing and high generalization errors due to underfitting may 
occur.  On the other hand, if many hidden layers are used, 
low training error can be achieved, but network generaliza-
tion degrades (16).  A good reference on the feedforward 
networks and its applications is given by Fine (17).

Materials and Methods

Materials

Pluronic P-105 was provided by BASF Corp. (Mount Olive, 
NJ); Doxorubicin (Dox) was obtained from the University of 
Utah Hospital (Salt Lake City, UT) in a 1:5 mixture with lac-
tose and from Pharmacia & Upjohn Company (Kalamazoo, 
MI); it was dissolved in phosphate buffered saline (PBS) and 
sterilized by filtration through a 0.2 μm filter (Millipore Bil-
lerica, MA).  The pH of PBS was 7.4.

Drug Encapsulation in Pluronic Micelles

Stock solutions of Pluronic (BASF, Mount Olive, NJ) were 
prepared by dissolving P105 in a PBS solution to the desired 
final concentration.  Dox was dissolved into the P105 solu-
tions at room temperature (37 ºC) to produce a final Dox con-
centration of 10 μg/ml.  The same drug concentration was 
also prepared in PBS (pH =7.4).

Measuring Ultrasound-triggered Release of Dox 
From Pluronic P105 Micelles

The chamber was built to measure the change of fluorescence 
level with and without the application of ultrasound.  Details 
were described previously (4).  Briefly, an argon-ion laser 

beam at 488 nm was directed to either a cuvette or a tube 
containing the encapsulated drug.  The emissions were col-
lected using a fiber optic collector and filtered to remove the 
excitation wavelength.  Then these emissions were quantified 
using a photodetector on an oscilloscope and subsequently 
stored on a computer for further analysis (4).

The decrease in fluorescence of the encapsulated drug solu-
tion was assumed to be directly proportional to the amount 
of drug released relative to a known baseline.  The fluores-
cence of Dox in PBS, in the absence of Pluronic, was mea-
sured to simulate 100% release.  Then the percent release 
was calculated as follows:

where, IUS is the fluorescence intensity upon exposure to ul-
trasound, IPBS is the fluorescence intensity in a solution of 
Dox in PBS, and IP105 is the intensity recorded when the drug 
is encapsulated in Pluronic P105 (which corresponds to 0% 
release or 100% encapsulation).

In these experiments, the fluorescence intensity of the drug 
in PBS was measured both with and without the application 
of ultrasound.  Ultrasonic power at 67, 80, and 90 kHz was 
generated using a Sonicor SC-100 ultrasound bath (Sonicor 
Instr., Copaique, N. Y.).  The intensity of ultrasound was 
controlled by adjusting the input voltage using a variable 
A.C. transformer (Variac).  Ultrasound at 20 kHz was gen-
erated using a probe transducer (Sonics and Materials, New-
ton, CT) inserted into the water bath.  While the sonication 
at 47 kHz was performed in a Cole-Parmer sonication bath 
(Cole-Parmer, Mount Vernon, IL).  The insonation inten-
sity was determined using a calibrated hydrophone (Bruel 
and Kjaer model 8103, Decatur, GA).  The power densities 
used in data collection fell in the range of 0-0.06 W/cm2 at 
20 kHz, and 0-2.8 W/cm2 at 47, 67, 80, and 90 kHz.  Three 
different temperatures were used in these experiments: 24 
ºC, 37 ºC, and 56 ºC.  Finally, four polymeric concentra-
tions were used in the modeling: 0.1%, 1%, 5%, and 10%.  
Further details can be found in (4).

Ultrasonic power at 67, 80, and 90 kHz was generated using a 
Sonicor SC-100 ultrasound bath (Sonicor Instr., Copaique, N. 
Y.), which employs two flat piezoelectric transducer mounted 
on the underside of the stainless steel tank.  The waveform can 
be described as a 67, 80, or 90 kHz signal that is amplitude 
modulated sinusoidally at about 120 Hz.  The geometry of 
the bath creates standing waves, and the tube or cuvette with 
the sample was placed in a region of high power density (or 
intensity), usually directly above one of the transducers.  The 
insonation intensity at the sampling point was determined us-
ing a calibrated hydrophone (Bruel and Kjaer model 8103, 
Decatur, GA).  The intensity of ultrasound was controlled by 

% release =  × 100%
IP105 – IUS
IP105 – IPBS

[2]
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adjusting the input voltage using a variable A.C. transformer 
(Variac).  In other experiments, 20 kHz ultrasound was gener-
ated using a probe transducer (Sonics and Materials, Newton, 
CT) inserted adjacent to the tube or cuvette in the water bath.  
This instrument produced a continuous sinusoidal waveform, 
and acoustic waves radiate spherically from the tip of the 
probe.  Reflections in the water bath created standing waves.  
Again, the intensity at the sampling point was measured with 
the hydrophone.  Further details can be found in (4).

Results and Discussion

ANNs were applied to model acoustically activated drug re-
lease from polymeric micelles.  The aim is to predict drug 
release as a function of the following input variables: fre-
quency, power density, polymer concentration, and tem-
perature.  The MATLAB neural networks toolbox (18) was 
used for this analysis.

Drug release experimental data (3, 4) were grouped in five 
vectors (four inputs and one output) and were sorted and 
pre‑processed to fall in the range [-1, 1] by calculating the 
minimum and maximum of each vector variable and then scal-
ing the data with respect to these limits.  This was achieved 
using the MATLAB function premnmx.  This improves the 
efficiency of the network training.  The data set with 359 data 
points was subdivided into three subsets namely: training, 
validation, and testing.  The size ratio of these subsets was 
2(training):1(validation):1(testing), respectively.

The network structure was selected after running some prelim-
inary simulations to explore the training speed and response 

Figure 2:  The SIMULINK interface for the 
ANN drug release model.  Four input variables 
are used (frequency, power density, pluronic 
concentration, and temperature).  The output 
variable is drug release percent.

Figure 3:  A plot of Neural Network (NN) predictions versus experimental 
data.  The plot shows a linear fit with an R2 = 0.957.
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time of different structures.  To keep the network structure 
as simple as possible, three layers were used in all networks: 
one input layer, one hidden layer, and one output layer.  The 
number of neurons in the input and output layers was limited 
to the number of input and output variables provided.  Con-
sequently, four neurons were used in the input layer and one 
neuron in the output layer.  On the other hand, the number of 
neurons in the hidden layer was selected after testing the per-
formance of different network combinations.  It was observed 
that the least number of neurons in the hidden layer, which 
converged to a final acceptable solution, was eight neurons.  
This structure ensures training with reasonable speed for a 
specific network performance.  The constituents of the net-
work layers (i.e., types of neurons used), were taken to be 
tan-sigmoidal for the input and hidden layers, whereas linear 
neurons were used for the output layer.  This is a common 
choice for function approximation neural networks (18).

The optimization algorithm used for network training was the 
Levenberg‑Marquardt.  The MATLAB routine trainlm with 
memory reduction was used for the optimization.  Previously, 
we found that this algorithm attains fast learning speed and 
high performance relative to other optimization algorithms.  
The details of this algorithm are given by Hagan (19).  The 
optimization performance target was set to 1 × 10-5.

Based on this selected network structure, the training process 
achieved the performance target for maximum training epochs 
of 3000.  The learning rate was chosen to be 0.1.  This value 
ensures stable fast learning.  The training took approximately 
10 minutes without any violation to the validation error.  Fig-

ure 2 represents the SIMULINK interface for the ANN drug 
release model.  As mentioned earlier, four input variables are 
used (frequency, power density, pluronic concentration, and 
temperature).  The output variable is drug release.  Figure 3 
shows a linear correlation between experimental and network 
predictions of drug release (R2 = 0.957).  As can be seen from 
the figure, the network gave accurate predictions with most 
predictions within the 95% confidence limit.  Figure 4 shows 
the complete experimental dataset and the corresponding 
ANN predictions.  Additionally, Figure 5 shows neural net-
work training versus the standard square of error.  Clearly, the 
square of error decreases as the number of epochs increases.

Following the training of the network, post-processing 
of the output data vector was performed using the same 
scaling parameters determined in the pre-processing stage.  
The MATLAB function postmnmx was used for this pur-
pose.  A Matlab/Simulink simulation model was built for 
the trained network.  This was achieved by converting the 
Matlab network structure into a Simulink block and defin-
ing the Input/Output ports, data processing, and simulation 
parameters.  The model input was configured in a form of 
pre-assigned sequences for the four input variables.  These 
sequences allow the user to vary input variables simultane-
ously or individually in order to characterize the effect of 
these variables on drug release.  As such, different sensitiv-
ity profiles were obtained as shown below.

Effect of Ultrasonic Frequency on Drug Release

Figure 6 depicts a sensitivity plot of Dox release versus fre-
quency at several power densities, a constant bath tempera-
ture of 37 ºC, and a Pluronic P105 concentration of 10%.  
The plot indicates that drug release from micelles was most 
efficient at lower frequencies.  This is in agreement with all 
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previously published data (4).  At higher frequencies, higher 
power densities are needed to obverse the same amount of 
Dox release as those measured at lower frequencies.  Lower 
frequencies have more energy capable of perturbing the mi-
celles (either by microstreaming or shock waves during cavi-
tation events), thus allowing Dox to escape out of the micelle 
and into the surrounding aqueous environment.

Drug Release as a Function of Power Density

Figures 7 and 8 demonstrate that release increases as the pow-
er density increases.  This behavior is expected because high-
er ultrasonic intensities are capable of perturbing the micelles 
more vigorously, which leads to the drug release observed 
here.  Figures 7 and 8 indicate the presence of a release thresh-
old at approximately 0.02 and 0.38 W/cm2 for 20 and 70 kHz, 
respectively.  This power density threshold has been related 
to the emergence of a subharmonic peak in acoustic spectra, 
which would indicate that cavitation events play an important 
role in this release phenomenon.  It should be noted here that 
drug release versus the power density is linear at 20 kHz while 
it shows a non-linear behavior at 70 kHz.  This is mainly due 
to the nature of the fitting function used in ANN that attempts 
to fit all experimental data collected at this higher frequency.

Drug Release as a Function of Temperature

Figure 9 shows a sensitivity plot of Dox release versus tem-
perature at several power densities, a Pluronic Concentration 
of 10%, and 70 kHz ultrasound.  It suggests that hyperther-
mic effects do not play a major role in the amount of drug 
released.  However, the role of temperature becomes more 
pronounced at lower power densities.  This confirms previ-
ous reports that the observed drug release is not attributed to 

the increase in the local temperature of the sonicated regions, 
but rather to non-thermal mechanical effects (8).

Drug Release as a Function of Pluronic Concentration

Figure 10 shows the sensitivity plot of Dox release versus 
weight percent of Pluronic P105 at a power density of 1 
W/cm2, a temperature of 37 ºC, and two different frequen-
cies.  Higher drug release from P105 micelles as the con-
centration of the copolymer decreases may be attributed to 
the higher local concentration of the drug in the coploymer’s 
core.  The increase in the hydrophobic/hydrophobic interac-
tion between the PPO core of the micelle and Dox at higher 
P105 concentration reduces micellar perturbation caused by 
ultrasound.  Thus, less drug molecules are able to diffuse out 
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Figure 8:  The drug release sensitivity plot of power density at 70 kHz.  
(Temp = 37 ºC, Concentration = 10 %).
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of the micelle, which in turn minimizes observed release.  We 
speculate that these micellar perturbations are caused by mi-
crostreaming or shock waves during cavitation events.

Our previous research has shown that drug release is not 
based on ultrasonic thermal effect.  Instead, there are sev-
eral non-thermal effects caused by ultrasound that include 
oscillating bubbles, radiation pressure, radiation torque, and 
acoustic streaming.  These effects play an important role in 
increasing the convection and subsequent transport of the 
drug.  Cavitation occurs when a gas bubble expands and con-
tracts in size in response to the oscillating pressure during 
sonication.  Bubbles with a natural resonance frequency that 
match the frequency of ultrasonic activation are capable of 
achieving the highest amplitude of cavitation or oscillation.  
When the power density increases the size of the bubble ap-
proaches the resonance size that causes extreme non-linear 
bubble oscillations.  This results in the destruction of the 
bubble.  The collapse is typically attributed to the increase 
in the inward-moving water surface so that it overcomes the 
pressure inside the bubble.  This phenomenon is referred to 
as transient or collapse cavitation.  It is capable of creating 
shock waves, increasing the local pressure by 100 atm, and 
the local temperature by several thousands of degrees (K).  
Several reports in literature have shown that shockwaves can 
cause substantial cell damage and possible cell lysis.  Anoth-
er adverse bioeffect is caused by free radicals generated dur-
ing bubble collapse.  It is important to note here that stable 
(non-inertial) cavitation, where bubbles are able to cavitate 
without imploding, is capable of causing some bio-effects 
(20).  As the bubble oscillates, high shear stresses are created 
near the bubble surface that can create micropores in the cell 
membrane, thereby making the cell more permeable to other 
macromolecules present in the vicinity (21, 22).

Subharmonic and higher harmonic emissions are charac-
teristics of cavitation events (both stable and collapse) and 
are caused by bubbles oscillating at half (f/2), and nf/2 of 
the driving frequency (f), respectively.  In addition to these 
harmonic emissions, collapse cavitation has been correlated 
with the intensity of the non-harmonic background noise 
generated by shock waves as bubbles are destroyed.  Figure 
8 suggests that the release of Dox from P105 micelles has a 
threshold of acoustic intensity of approximately 0.38 W/cm2 
at 70 kHz.  Several studies have shown that inertial cavita-
tion has an apparent threshold (this is one of the reasons why 
cell lysis is usually attributed to inertial cavitation events) 
(23-25).  However, Liu et al. (26) have shown that under 
certain conditions hemolysis (red blood cell lysis) is caused 
by stable or non-inertial cavitation.  Stable cavitation does 
not have an intensity threshold because any level of pressure 
oscillation will cause the bubble to expand and contract in 
an acoustic field.  Again, it is important to keep in mind that 
biological effects of stable cavitation have a power density 
threshold; although, substantially lower than that observed 
for inertial cavitation.  The presence of a power density 
threshold in Figures 7 and 8 suggest that acoustically activat-
ed drug release from unstablilized P105 micelles is caused 
by collapse rather than stable cavitation.  The threshold of 
collapse cavitation increases as the frequency of ultrasound 
increases.  For example, the onset of collapse cavitation at 
20 kHz occurs at approximately 0.015 W/cm2 while at 70 
kHz this threshold increases to 0.38 W/cm2.

Although most of our studies were conducted using an iso-
thermal water bath at 37 ºC, to simulate physiological condi-
tions, we have investigated the effect of temperature upon re-
lease.  This was done in an attempt to rule out the possibility 
that the absorption of ultrasonic energy by the micelle raises 
the local temperature and activates release by decreasing the 
local viscosity of the micellar core, thus rendering Dox mol-
ecules more mobile.  Figure 9 shows that Dox release is not 
a strong function of temperature, suggesting that thermal ef-
fects do not play an important role in the physical mechanism 
involved with this drug delivery technique.

Finally, it is worth mentioning here that several factors should 
be considered when measuring the release of chemotherapy 
drugs in vivo whereby micelles are able to circulate freely 
in the blood stream.  The hydrophobic nature of anti-neo-
plastic agents will complicate the sequestration process after 
the drug has been released via ultrasonic stimulus.  Other 
hydrophobic molecules circulating in blood, e.g., albumin, 
will compete with Pluronic micelles to re-encapsulate acous-
tically released drug molecules.  Additionally, ultrasound has 
to be carefully focused and controlled to prevent cell lysis in 
the healthy tissues surrounding the sonicated tumor.  Sonoly-
sis (cell lysis observed when tissues are exposed to acous-
tic energy) is caused by transient cavitation events whereby 
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cavitating bubbles implode near the membrane of sonicated 
cells causing substantial damage to various cellular compart-
ments and leading subsequently to cell death.

Conclusion

In conclusion, neural network models can be used to model 
and predict the acoustic release of Dox from Pluronic P105 
micelles.  ANNs are simple to apply and are capable of pro-
viding robust and accurate predictions.  This modeling will 
enable optimizing the operating conditions, which can be 
used in future in vivo experiments.
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